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LIST OF ACRONYMS

API Application Programming Interface, a set of routines 

and tools for building applications. An API specifies how 

software components should interact with each other.

BSD Berkeley Software Distribution, a Unix operating system.

GCC GNU Compiler Collection, a compiler system developed by

the GNU Project.

HTTP Hypertext Transfer Protocol, an application protocol 

used in the data communication in the World Wide 

Web.

OS Operating System.

POSIX Portable Operating System Interface, a set of standards 

for maintaining compatibility between operating 

systems.

SDK Software Development Kit, a set of software 

development tools.

SOAP Simple Object Access Protocol, a protocol for 

exchanging structured data in web services.

VoIP Voice over Internet Protocol, a technology for delivering 

voice communications over Internet Protocol.
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1 INTRODUCTION

1.1 Apple iOS

iOS, formerly known as iPhone OS, is Apple's mobile platform used in smart phones 

and tablets. The first version of iOS was availed in 2007 and then new version has 

been released every year. At the time of writing this, the newest iOS version 7 was 

released in September 18, 2013. It has over 20 percent market share of mobile 

devices being one of the major mobile operating systems with Google's Android and 

Microsoft's Windows Phone.

The iOS is derived from Apple's desktop operating system OS X. Both systems are 

based on Darwin operating system and they share some of the basic frameworks and 

technologies. iOS also has its own frameworks for more mobile features like multi-

touch gestures and sensor interaction depending on the device. (iOS 2008.)

Darwin

Darwin is an open source POSIX-compliant operating system. It was released by Apple

Inc. in 2000. The Darwin project is derived from various open source projects like 

NeXSTEP and BSD. Later it was used as the base of the Apple's OS X and iOS systems. 

(Darwin (operating system) 2002.)

1.2 Objective-C

OS X and iOS applications are mainly programmed with Objective-C language. It is a 

cross platform object oriented programming language originally developed in 1980s 

and used by the NeXSTEP project. Objective-C is a superset of the C-language which 

allows to mix C and Objective-C code in a certain extend. There is also a variant called

Objective-C++, which in turns uses a combination of Objective-C and C++ syntax. 
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Objective-C extends C-language by adding support for classes and interfaces as well 

as more advanced features like key value coding, delegates and garbage collection 

mechanics. Objective-C programs are compiled with the GCC or Clang compiler. 

(Objective-C 2002.)

2 THE iOS SYSTEM

2.1 iOS Architecture

The iOS architecture consists of four main abstractions layers which progresses from 

higher level to lower level system frameworks. The higher level frameworks provides 

more object oriented abstractions from the lower level implementations. It is 

generally recommended to use top level frameworks that encapsulate all the 

complex features in a clean interface. That reduces the amount of code and keeps the

code base easier to maintain. However, it is possible to use low level APIs to access 

some of the specific features which are not present in the high level frameworks. 

(About the iOS Technologies 2013.)
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Core OS

The lowest layer, Core OS, is right at the top of the device hardware. It contains 

several services used to build other higher level technologies. Those services include 

Core Bluetooth framework to interact with different Bluetooth accessories, security 

frameworks for standardized security features and the System framework which 

contains C-based interfaces for low level memory and thread management. (Core OS 

Layer 2013.)

Core Services

The Core Services layer defines the basic types and core frameworks that every iOS 

application uses. These frameworks include iCloud storage services, location services,

data storage technologies like SQLite and XML management and the Core Data 

framework unique to iOS. The most important ones are the Core Foundation 

framework and the Foundation framework which are same in iOS and OSX.

FIGURE 1. iOS layers
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The Core Foundation framework provides C-based interfaces which include basic data

management like collection data types and string management. The Foundation 

framework wraps most of the Core Foundation framework's features into Objective-C

interfaces. These two frameworks can be mixed together with some degree. For 

example, some of the Core Foundation and Foundation types can be used in the 

functions of either framework. (Core Services Layer 2013.)

Media Layer

The Media layer contains necessary audio, video and graphics technologies to build 

various multimedia applications. Audio technologies include audio playing and 

recording capabilities as well as managing MIDI content. The video technologies 

support static video content and streaming videos from the Internet. On the graphical

side, iOS has necessary high level UI frameworks for creating application views. It also

supports lower level graphics APIs and technologies like OpenGL ES for advanced 2D 

or 3D rendering. (Media Layer 2013.)

Cocoa Touch Layer

The top level Cocoa Touch Layer frameworks define the look and feel of the 

application. When building an application, developers should first see, what these 

high level features provides before moving down on the layer hierarchy. Some of the 

high level features include multitasking model, Apple Push Notification service and 

storyboard interface designer. The Cocoa Touch layer also takes care of user's touch 

based input and gesture detection with different gesture recognizers. (Cocoa Touch 

Layer 2013.)

2.2 iOS Application development

iOS applications are developed using a Mac computer running the latest OSX version 

and Apple's Xcode development tools suite with the iOS software development kit. 

The main part of the suite is the Xcode integrated development environment. It 

contains fundamental code producing tools and features like
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• projects for source code management

• code editor

• build system

• code compiler

• debugger

• static code analyzer

• device manager.

Other tools include an interface builder for constructing graphical user interfaces, 

different device simulators for testing the app and a direct access to Apple's 

developer library documentation also referred to in this document. In addition Xcode 

is needed for the application release process. (iOS Developer Tools 2013.)

It is possible to develop and test applications for free with Xcode IDE and iOS 

simulator, however, to develop on a real device requires Apple's developer program 

account. Apple has different enrollment options for individual developers and 

companies. Individual enrollment costs about 80 euros per year. For that sum of 

money the developer can develop and test the program with devices running iOS and

distribute apps in the Apple's App Store service.

Native iOS applications are built using iOS frameworks included in the iOS SDK. The 

programming language is Objective-C or some of its dialects. iOS also supports web-

based apps using HTML, CSS and JavaScript technologies. Unlike normal apps, which 

are physically installed on the device, web apps are not running directly on iOS. They 

use Safari web browser as their platform and so require network connection. Third 

option is to use a third party solution to make a hybrid app that can combine native 

and web based technologies. (About the iOS Technologies 2013.)
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3 FEEDMON

3.1 Background

Feedmon is a mobile software developed by Nestronite Oy. The application is for 

collecting user feedback about products or services. The feedback can be given in 

three forms

• image

• audio recording

• video recording.

The user can, for example, buy a meal and tell his or her opinion on that in audio 

format. The restaurant can then use all those user reviews to improve their services 

and learn about the customers' likings. All review data are taken with mobile devices 

and the data has to be send to an external storage service over a network 

connection.

3.2 Technologies

The application uses various front- and back-end frameworks. All feedback media 

files are stored in the Amazon S3 cloud. The back-end is written in Node.js. Front-end

uses PhoneGap mobile application framework and is implemented with common 

web technologies. The file uploading is handled via native implementation as a 

PhoneGap plug-in, thus being a hybrid type of application.

Transferring a file to a cloud is a two step process. First the file data is sent to a 

Node.js based server using multipart MIME technology and a REST interface. From 

there the data is finally moved to the Amazon S3 cloud storage.
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3.2.1 Amazon S3 (Simple Storage Service)

Amazon S3 (Simple Storage Service) was first released in the United States in 2006, 

and a year after this it became available in Europe. The service provides online file 

storage space and supports REST, SOAP and BitTorrent technologies. In April 2013 

there were more than 2 trillion objects stored in Amazon S3. Amazon guarantees 

99.99% monthly up-time making it very reliable cloud storage system. (Amazon S3, 

2013)

The objects stored in S3 are organized into buckets. Each individual object can be a 

size of a maximum of 5 terabytes. All the data is secured by the Amazon. The storage 

supports encryption and multiple access control mechanics. The buckets and objects 

can be accessed only by the resource owners. (Amazon S3 Product Details n.d.)

3.2.2 Node.js

Node.js software platform project was started by Ryan Dahl in 2009. The platform is 

used to build scalable network applications, mainly server side solutions. The IO is 

non-blocking by design and the event loop is single threaded. Node.js contains a 

built-in HTTP server library that makes it trivial to establish a working server side 

applications. (Nodejs 2009.)

Node.js platform is modular by design. It has a rather tiny core making it able to run 

well on a cloud infrastructure with fewer resources. The core Node.js is extended 

with its own package manager command line tool called npm (Node Package 

Modules). It makes updating and installing new node modules easy and keeps the 

project organized.

FIGURE 2. Feedback service architecture
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3.2.3 PhoneGap

PhoneGap is a cross platform mobile development framework owned by the Adobe 

Systems. It allows to implement hybrid mobile applications with popular web 

technologies

• HTML

• CSS

• JavaScript.

It is also possible to interface native components and develop native plug-ins that 

work seamlessly with the web side program. PhoneGap apps can be build locally or 

Adobe's PhoneGap Build service can be used. The build service consists of cloud 

compilers that, from uploaded source files, generates the app for supported 

platforms. PhoneGap supports all the major mobile platforms like Apple iOS, Google 

Android and Microsoft Windows phone. (PhoneGap 2009.)

3.2.4 REST

REST (Representational State Transfer) is a stateless architecture style first defined in 

2000 by Roy Fielding. REST is based on HTTP 1.0 and it was developed in parallel with 

HTTP 1.1. The REST philosophy is mainly used for designing networking applications 

like web sites.

The REST architecture is meant to simplify client-server design by defining strict 

constraints. In general, clients do not know anything about the data storage behind 

the server. That improves the portability of the client software. On the other hand, 

the server side is not concerned about the user interface and state. This leads to a 

design where it is possible to replace clients and servers as long as they have a 

matching interface. (Representational state transfer 2004.)

The Representational State Transfer operates with request methods also included in 

the HTTP. The following table describes each of those methods.
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TABLE 1. REST API methods

Method Collection data Element data

GET List the details of the items in the 
collection.

Retrieve a member of the 
collection

PUT Replace the collection with 
another collection.

Create or replace an existing 
member of the collection.

POST Create new entry in the 
collection.

Not generally used. Can create a
new entry to the member.

DELETE Delete the entire collection. Delete the member.

Multipurpose Internet Mail Extensions

Multipurpose Internet Mail Extensions (MIME) is an Internet standard that extends 

the original e-mail protocol SMPT (Simple Mail Transport Protocol). MIME allows for 

exchanging different kinds of data files like audio, video and image files through the 

network. This technique is tolerant to connection drops making it suitable for the file 

transferring between client and server. (MIME 2001.)

3.3 File transfer service

3.3.1 Requirements

Most parts of the existing PhoneGap program was cross platform, however, the 

native side file uploading code had to be implemented in Objective-C following 

common iOS guidelines. The file transferring had to function the way the operation 

does not interrupt the client program. The user can continue giving feedback 

regardless there is file exchange between client and server or not.

That kinds of requirements leads to utilizing some form of a background task system. 

The file uploading logic had to be designed so that it works under the strict time 

constraints.
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3.3.2 iOS Background services

Sending a media file to the sever may take a significant amount of time to complete, 

therefore most of the uploading has to take place on the background, even when the 

user is not using the application. Only iOS 4 and higher supports that kind of 

background state and multitasking in general. The following figure shows different 

state changes in an iOS application life cycle. (App States and Multitasking 2013.)

FIGURE 3. iOS application states
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Not running

This is the initial state of the application. It has not been started or it is terminated by

the system. Not running means the application is not loaded in the device memory 

and thus not executing any code.

Inactive

Usually an application stays briefly in inactive state before being active. In this state 

the app is running in the foreground but is not receiving events.

Active

Active state means the app is running normally on the foreground and receiving 

events.

Background

Apps that request extra time from the system can stay on the background state and 

finish a background task. Otherwise the app stays briefly on the background and then

moves to the suspended state. An application can also be launched directly into the 

background state.

Suspended

In suspended state the app is in the background but is not executing any code. 

Suspended apps remain in the memory, however, the system may purge them to 

make more space for foreground apps. Purged apps return to the not running state.

3.4 Finite length background tasks

There are two types of background tasks in iOS system: finite-length and long 

running. Long running background tasks are only allowed for a certain type of 

applications, such as apps that play audio like music players, apps that support VoIP, 

and apps that receives regular updates from some external accessories. The file 

upload service does not meet any of these requirements, thus the appropriate choice
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is finite-length tasks. (App States and Multitasking 2013.)

When the app is about to move to the background, it can request additional time to 

complete some important finite-length task. During that extra time it is possible to 

run an operation such as file upload on the background. After the operation 

completes or the granted time runs out, the application moves to the suspended 

state.

4 DEVELOPMENT

4.1 Naming conventions

Apple recommended naming conventions were used in the program. Class names use

camel case notation and are prefixed as FM- (as FeedMon, the project name) to 

indicate namespace and avoid possible naming conflicts with other framework 

classes.

4.2 Architecture

4.2.1 PhoneGap native iOS plug-in

The project contains two parts: the PhoneGap plug-in side and the actual file transfer 

service. The plug-in part consists of three media views: audio, camera and video view.

Each of these views is responsible for capturing the respective media: audio clip, 

picture or video clip. Once the desired media is captured, the send service takes 

control.

The file data is sent to the server through multipart file upload that runs in the 

background thread. The result whether the operation succeeded or failed, is reported

back to the plug-in bridge and finally to the client program.
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4.2.2 AFNetworking

Standard iOS frameworks include some services for basic networking code. However, 

for more advanced implementations, there is a couple of third party networking 

libraries available. A popular iOS and OS X compatible networking library called 

AFNetworking is used to implement the send service.

AFNetworking is built on top of the URL Loading System of Apple's Foundation 

framework. It extends the built-in networking features found in the Cocoa 

framework. Those features include a thread management system for background 

operations and high level interaction with REST interfaces. (AFNetworking n.d.)

4.2.3 Asynchronous design

The file send service supports synchronous and asynchronous operations. In general, 

sending a relatively large file over the network is a slow process, therefore it makes 

the most sense to use asynchronous design. This leads to a more fluent user 

experience since upload processes are handled on the background and the main 

thread is not blocked keeping the app responsive.

Even when there are problems sending the file, network connection might be down 

or the server might not respond, the user must be able to continue to use the 

application as normal. For that reason, there has to be some mechanism to locally 

store unsent files in case issues arise.

4.2.4 Core Data framework

Apple's Core Data Framework is a way to store data in a structured object oriented 

way. While this system is not a relational database, it work in a similar fashion as an 

ORM implementation over an SQLite database. The Core Data supports object saving,

loading and querying. (Core Data Programming Guide 2004.)
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In this project Core Data was used to save information about the captured media 

files; this mainly for the purpose of keeping track of which files were sent to the 

server and which are still stored in the device. The used Core Data Model is illustrated

in the following table:

TABLE 2. File send service Core Data model

Property name Type Description

path String Path to the media file in device storage

status Integer Media file status: sent or unsent

taskId String Identifier to connect the media file to the 
correct task

taskType Integer Type of the task: picture, audio or video

username String The user who captured the media file

Entries are never deleted, only the status field is updated. This keeps the history of 

the captured media files in the device.

4.2.5 Callback functionality

The file transfer service makes heavy use of callback mechanics to internally 

communicate with the different parts of the code. Callback functionality is achieved 

with Apple's C-level extension called block objects. This extension is only available for

iOS 4.0 and newer.

Block objects are closure like function expressions that can be passed to other 

functions as a parameter, making them usable by multiple threads. With this 

technique, different block of code can be executed in different situations. For 

example, every operation related to the server traffic and local file data manipulation 

has a failing and a success block option. (Blocks 2011.)
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4.2.6 Class structure

The main class structure of the send service is really simple as the following class 

diagram shows. The service contains three main classes which handles the three 

main tasks: capture, save and send. Additionally there are few smaller classes 

providing helper functions and encapsulating plain data fields to a single objects.

FMCaptureController

As a PhoneGap plug-in, this controller class is the bridge between the native and web

side of the program implementing the iOS specific PhoneGap base class CDVPlugin. 

The controller is responsible for capturing the media files and preparing them for the 

further processing.

FMRestClient

The FMRestClient implements the file sending interface. It establishes a connection 

to the specified server and offers functions to asynchronously transfer file data from 

the client to the external storage. The rest client also manages a queue of unsent files

in a separate thread.

FIGURE 4. File send service class diagram
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FMCoreDataManager

The FMCoreDataManager class is in charge of local file data management. It provides 

a simple interface for manipulating the internal object data storage.

FMAppUtils

The main purpose of this class is to organize all the individual services and wire them 

together under a single function call. FMAppUtils attaches correct callback blocks to 

all Core Data and Rest client operations.

4.2.7 Application flow

In the application's normal behavior, it is assumed there is a working network 

connection and the server is available. The following sequence diagram shows the 

standard application flow when capturing a media file.

FIGURE 5: File transfer service sequence diagram
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The program does not proceed to the next operation until the previous one is 

executed successfully. If problems occur during the file upload, the operation is put to

a hold and the local copy of the file is kept on the device storage. After finishing the 

cycle, the service checks if there are more files on the queue and, if that is the case, 

starts the procedure again.

4.3 Testing

For testing iPhone simulator and an iPhone 5 device were used. Simulator versions 6 

and 7 were merely used to test the application runs on a device, since simulators do 

not support media capturing like taking pictures. A real device was used to test that 

the actual application and file sending worked correctly.

The testing environment included the Node.js server locally running on the 

development machine and the Amazon S3 storage server of where the files were 

ultimately transferred. 

4.4 Problems

Even though the front-end application was meant to be cross platform, it was 

optimized for Android platform. Some of the code structures between JavaScript and 

a native plug-in did not work in iOS environment. That bridge had to be modified so 

that it works with both platforms, Android and iOS.

Achieving a solid multithreaded asynchronous file transfer service was not easy. It 

took three iterations to find a correctly working architecture that suited the 

application specification. Completely custom service was first attempted to 

implement with only the standard iOS SDK. In the end, it turned out to be much 

reliable to use well tested AFNetworking framework to handle the critical parts of the

networking code.
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Large scale user testing is also troublesome with the iOS apps. Apple requires that 

every device used in testing has to be authorized separately and the test version of 

the app has to be shared through the iTunes (Apple's mobile device management 

application). Every tester need to send their device ID to the application owner, which

might be time consuming. (Beta Testing Your iOS App 2014.)

4.5 Improvements

The file send services is designed mainly for the Feedmon app to handle specific type 

of file data. Generally it would be more valuable to keep the service interface as 

generic as possible. The more generic service would allow it to be used in a different 

kinds of situations where file data has to be sent to a server over the Internet. The 

service does not necessarily have to know the details of the data to be send, only its 

type.

Also separating the PhoneGap plug-in side from the file transfer side would make the 

services more portable. The file transfer service does not have to depend on the 

PhoneGap specific implementations. It should act as a self contained entity that can 

be even compiled to a library.

5 RESULTS

Asynchronous file transferring between iOS and cloud was achieved. The file transfer 

service was implemented according to the company's needs following the agreed 

working methods. The specified requirements were taken into account during the 

development.

The working service was completed on a fairly tight schedule. Unfortunately, due to 

the pressure getting the Android version of the application to work and released, the 

iOS version did not make it into the pilot stage. Because of the Apple's strict app 
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release procedures, it will take some resources of the startup company to setup the 

developer licenses and application certificates and arrange proper beta testing.

The project gave a good hands-on introduction to iOS development. There were 

many difficulties that had to be solved concerning the asynchronous application 

design in mobile platform. Knowledge in advanced topics like network coding and 

thread management were vastly increased during the development.

It was an interesting experience to work in a small startup company where one has to

adapt to flexible working methods and be prepared for rapid changes of the 

requirements of the application.
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