

Alejandro Sanz Martín

Implementing Azure Managed
Identity

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

3 May 2022

Abstract

Author: Alejandro Sanz Martín

Title: Implementing Azure Managed Identity

Number of Pages: 26 pages

Date: 3.5.2022

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: Internet of Things

Supervisors: Janne Salonen, Head of Department

The main objective of this project is to give the reader a good understanding of what
azure managed identity is and to demonstrate how to implement it in a normal
scenario. It also shows the code that is needed to develop an application that is able
to use azure managed identity. This project will not cover the creation of Azure Active
Directory, assuming that the reader already knows how to create it properly.

The project will start with an introduction of the importance of security for companies,
followed by an overview of the material and methods used during the project. The
general concepts related to the project and the basic scenario used during the project
are also explained. After that, there will be a demonstration of how all the Azure
resources used in this project were created.

The project shows two different demonstrations of how to implement Azure managed
identity. The first demonstration implements a system assigned identity, while the
second demonstration implements a user assigned identity.

The project ends with the main conclusion, that Azure managed identity offers a good
solution to secure connections between different Azure resources. It also offers a
possibility of removing all the possible passwords from the code, that would be
needed for establishing a connection between different resources.

Keywords: Microsoft, Azure, Managed Identity

Contents

List of Abbreviations

1 Introduction 1

2 Material and Methods 2

3 Theoretical Background 2

3.1 What is Microsoft Azure 2

3.2 Managed Identity 3

3.2.1 System Assigned Managed Identity 4

3.2.2 User Assigned Managed Identity 6

4 Scenario 7

4.1 Overview 7

4.2 Prerequisites 8

4.3 Implementation 9

4.3.1 Web Application 9

4.3.2 Data Base 10

4.3.3 Storage Account 14

4.4 System-Assigned Managed Identity Implementation 15

4.4.1 Overview 15

4.4.2 Creating the system assigned identity 16

4.4.3 Configuring the database 17

4.4.4 Configuring the storage account 17

4.4.5 Code implementation 18

4.5 User-Assigned Managed Identity Implementation 20

4.5.1 Overview 20

4.5.2 Creating and using the user assigned identity 21

4.5.3 Configuring the database 22

4.5.4 Configuring the storage account 23

4.5.5 Code implementation 24

5 Conclusion 25

References

List of Abbreviations

ISP: Internet Service Provider. Company which provides internet

connection to organizations or individuals.

IaaS: Infrastructure as a Service. Cloud computer service model type.

PaaS: Platform as a Service. Cloud computer service model type.

SaaS: Software as a Service. Cloud computer service model type.

AD: Active Directory. Identity and access management service.

1

1 Introduction

Currently many companies offer online services through the internet and use

Microsoft Azure as a platform. Normally these companies store a big variety of

sensitive information of their users. Any breach in the system or vulnerability in

the code could lead to exposure of the user’s private information.

Companies are responsible for protecting the information and privacy of their

users. Loosing this information might have legal consequences and affect the

image of the company. It might also affect their users in many different ways,

depending on the type of information that is compromised. For this reason,

companies spend a great amount of money, time and resources in

cybersecurity. In some cases, companies hire third-party companies to ensure

the security.

Clients of Microsoft Azure can benefit of a great variety of services oriented to

secure their resources. Because it is offered by Microsoft, it means that the

company doesn’t have to worry about all the security aspects related with the

resource and it can focus on the code and application security aspects. The

company can save money, time and resources that the company would need to

employ to get the same result.

One of the multiple services that Microsoft Azure offers to their clients, is

Managed Identity. This service, which does not have any costs, provides the

resources with an identity inside of Microsoft Azure Active Directory which can

be used by developers to eliminate the needed credentials from the code or

connection strings.

In this project, the reader will get an understanding of what Azure managed

identity is and how it can be used. The project also shows how to configure the

Azure resources and how to implement it in the code.

2

2 Material and Methods

The material used in this project is mainly books and Microsoft documentation

that is available online. The books are strongly based on Azure infrastructure

and authentication. They have been used to get a good base knowledge about

Azure in general and the resource deployment process. The knowledge coming

from these books was important during the phase of creating the scenario.

The Microsoft documentation used was focused on the main topic, managed

identity and its implementation. This documentation has been the key for this

project. It provided the information needed to understand, what is managed

identity and its different types, as well as the classes and functions available to

develop applications using these identities.

The method used was mainly trying and comparing the results, using the

knowledge acquired from the material. The log files provided by the Azure

resources, combined with the debugger tools of Visual Studio, were the key to

detect errors and to find solutions.

3 Theoretical Background

3.1 What is Microsoft Azure

Before being published, Microsoft Azure used to be referred with the codename

Red Dog (RD) [1]. On October 27, 2008, it was announced with the name of

Windows Azure at the Professional Developers Conference, and it was

available as Community Technical Preview (CTP) [1, 2]. In 2010 it became

commercially available [1, 2]. Currently Windows Azure is known as Microsoft

Azure [2].

Microsoft Azure is one of the principal cloud computing providers available in

the market. Azure offers a big variety of different kinds of resources and service

models like PaaS, SaaS and IaaS, hosted on top of its own infrastructure. [1, 2, 3]

3

Cloud providers, such as Microsoft Azure, offer companies a cost-effective

alternative to the traditional on-premises infrastructure. Companies using cloud

computing do not have to consider the cost of licenses, hardware, maintenance,

expansions, the space needed, the electricity or ISP. [2, 3]

3.2 Managed Identity

Managed identity is a free feature, provided by Microsoft Azure, which allows

different Azure resources to authenticate and authorize themselves with other

Azure resources that support this feature. [4, 5, 6, 7]

Managed identity allows code developers to escape, without additional cost, the

challenge that represent the management of credentials, which are used to

protect the communication between different components of the solution. Figure

1 shows this idea simplified with a small list of resources that support managed

identity. [4, 5, 6,7]

Figure 1 Basic Idea of Azure Managed Identity [4]

Managed identity, or Managed Service Identity (MSI) as it was formerly known,

requires that the source and the target resource or service supports Azure AD

4

authentication in order to establish the connection without managing

credentials.[4]

Currently there are two different types of managed identity. The first one is

System Assigned Managed Identity and the second one is User Assigned

Identity. Both have the same purpose but the way of using them and their life

cycle is different. [4, 6]

Figure 2 Representation of the different types of Managed Identity [4]

Figure 2 shows a simple representation of both types of managed identity, user

assigned and system assigned. The system assigned managed identity is

represented as a built-in garage door remote, which can only be used by one

car. Same way, the system assigned identity can only be used by one resource.

The user assigned managed identity is represented as a hand-held garage door

remote, which can be used from many different cars. The user assigned identity

can be used by one or more applications the same way.

3.2.1 System Assigned Managed Identity

System assigned identity is represented as an option that can be turned on or

off for resources that support managed identity. When it is turned on, one Azure

5

AD identity is assigned exclusively for that resource, and it can be used to

authenticate that resource in Azure.[4]

Table 1 System-Assigned Managed Identity Properties [4]

Property System-assigned managed
identity

Creation Created as part of an Azure
resource (for example, an Azure

virtual machine or Azure App
Service)

Life cycle Shared life cycle with the Azure
resource that the managed

identity is created with.

When the parent resource is
deleted, the managed identity is

deleted as well.

Sharing across Azure resources Cannot be shared.

It can only be associated with a
single Azure resource.

Common use cases Workloads that are contained
within a single Azure resource

Workloads for which you need
independent identities.

For example, an application that
runs on a single virtual machine

It is possible to create only one system assigned managed identity for each

Azure resource, and as Table 1 shows, it is bounded to the resource and its life

cycle. This also means that a system assigned identity cannot be shared with

other Azure resources.[4]

System assigned managed identity is the best option in scenarios where each

resource requires a specific set of permissions or where logging the specific

activity of each resource is needed. Another scenario where system assigned

6

identity is recommended to be used is when it is required that the permissions

granted to a resource are removed along with the resource. [8]

3.2.2 User Assigned Managed Identity

User assigned identity is represented as a standalone Azure resource, and it

can be assigned to one or more Azure resources. This identity is independent

from the associated Azure resources, which means that it is not bounded to the

related resource life cycle, as Table 2 shows. This type of identity can only be

deleted manually. [4, 8]

Table 2 User Assigned Managed Identity Properties [4]

Property User-assigned managed identity

Creation Created as a stand-alone Azure
resource

Life cycle Independent life cycle.

Must be explicitly deleted.

Sharing across Azure resources Can be shared

The same user-assigned
managed identity can be

associated with more than one
Azure resource.

Common use cases Workloads that run on multiple
resources and which can share a

single identity.

Workloads that need pre-
authorization to a secure

resource as part of a provisioning
flow.

Workloads where resources are
recycled frequently, but

permissions should stay
consistent.

7

Property User-assigned managed identity

For example, a workload where
multiple virtual machines need to

access the same resource

In most scenarios, user assigned managed identity is more efficient than

system assigned. For scenarios where multiple resources run the same task or

access the same resources, user assigned identity is the best solution. In

scenarios where multiple resources are being created or deleted in a short

period of time, using system assigned identities might reach the Azure Active

Directory rate limit and it would end with a HTTP 429 error. However, using user

assigned identities would avoid the rate limit deploying resources associated

with a single user assigned identity. [8]

4 Scenario

4.1 Overview

In this project there will be two scenarios created that are based on the same

idea but implementing different managed identity types to show how to

implement them from the beginning. Both scenarios will be based on PaaS and

will use the same Azure resources.

This project focuses on the needed configuration on the Azure resources and

the code changes, in order to implement and use managed identity. The project

will not cover the creation of Azure Active Directory, assuming that the reader

has a general understanding of how to do it.

The scenario will be based in one web application hosting a web page which

will access a data base and a storage account. At the same time, the web

application will record all the logs in a storage account.

8

Figure 3 Basic Scenario

The picture 3 shows a representation of this basic scenario, connecting a web

application with a SQL database and a storage account which contains a blob

container.

4.2 Prerequisites

In order to recreate this scenario and to be able to use managed identity, it will

be necessary to meet the following requirements:

• One Azure account with a subscription

• Azure Active Directory

• Resources that support managed identity

In this scenario will be used resources with minimum tier to keep the cost as low

as possible.

9

4.3 Implementation

This section will cover the needed steps to create and configure the basic

scenario that will be used to implement the different types of managed identities

in following sections.

4.3.1 Web Application

Like for any Azure resource, the first step is to create it from the Azure portal

home page, clicking on the “Create a resource” button. After clicking there, the

next step is to find the resource that will be created, in this case, “Web App”.

Figure 4 shows an example of some of the options available for the web app

creation.

Figure 4 Web App Creation Panel

10

From figure 4, all the needed parameters for the creation of the web app have

been introduced. Figure 5 shows the missed parameters from the figure 4 that

refers to the creation of the app service plan that will host the web app.

Figure 5 App Service Plan Creation

The rest of the options from the other tabs can keep the default parameters. After

reviewing the parameters and clicking on the create button, it might take a couple

of minutes to create the resources.

4.3.2 Data Base

The data base can be created from the home page, clicking on the “Create a

resource” button as previously. Then, the next step is to find and select the

resource with a name ”SQL Database”. Figure 6 shows an example of some of

the options available for the SQL Database creation.

11

Figure 6 SQL Data Base Creation Panel

In figure 6, the parameters needed for the creation of the data base, have already

been introduced. The resource group chosen is the same as the web app uses.

For this scenario, it will not be necessary to use SQL elastic pool due there is not

scheduled tasks to run.

12

Figure 7 SQL Database Server Creation Panel

SQL Database requires a SQL Server to serve it. SQL Server can be created by

clicking on the “Create server” button showed in figure 6. Figure 7 shows the SQL

server creation panel with the parameters that will be used in this scenario. For

the SQL database, the name must be in lowercase letters. It is very important

that the SQL server allows the Azure Active Directory authentication. In order to

create database contained users that authenticate using Azure AD, it is

necessary to be logged with an Azure AD account.

13

Figure 8 Database Compute and Memory Configuration Panel

Figure 8 shows the panel that appears after clicking on the “Configure database”

button from figure 6, and it allows to configure the compute tier and the storage

capacity. For this scenario, using the serverless compute tier is the only change

applied based on reducing costs.

Figure 9 Backup Storage Redundancy

14

Figure 9 shows the backup storage redundancy section that did not fit in figure 6.

For this scenario, there is no need for a redundancy solution. The option chosen

is the “Locally-redundant backup storage”. The rest of the options in the other

tags can stay as default.

4.3.3 Storage Account

The storage account can be created, as the previous, from the home page by

clicking on the “Create a resource” button and choosing the resource “Storage

account”. Figure 10 shows the main option available for the storage account

creation.

Figure 10 Storage Account Creation Panel

15

For this scenario the parameters that need to be configured are shown in figure

10. The storage account name must be in lowercase letters. Once again, there

is no need for redundancy in this scenario, so the option chosen is the “Locally-

redundant storage”. The rest of the parameters in other tabs can stay as

default.

Once the storage account is created, it is time to create the blob container which

will store the log files from the web application for this scenario. This can be done

from the “Containers” section in the storage account menu, clicking on the “+

Container” button.

Figure 11 Blob Container Creation Panel

The process of creating a new blob container is shown in figure 11. The name

must be in lowercase letters, and for this scenario, the access level will be set as

private, and the encryption options will stay as default.

4.4 System-Assigned Managed Identity Implementation

4.4.1 Overview

In this scenario, a system assigned managed identity will be generated. The

identity will be bounded to the web application, which will use it to authenticate

with the database and the storage account.

16

A new database contained user will be created for the database, which will be

declared as an Azure AD user. This means that the database will not store a

password for this user. The user needs to have the same name as the web

application, and it will represent an Azure AD user and Azure will handle the

authentication. Once the user is created, the needed permissions have to be

granted to it.

In case of the storage account, it is only necessary to grant permissions to the

web application. The web application is treated as a normal Azure AD user after

creating the managed identity.

4.4.2 Creating the system assigned identity

The system assigned identity is created from the Azure resource which will be

associated with, in this case, the web application. The process for generating

this identity is very simple. The only step needed, is to switch the status option

under the system assigned section, from the “Identity” setting in the web

application menu.

Figure 12 System Assigned Managed Identity Panel

17

Figure 12 shows the managed identity panel of the web application. The system

assigned managed identity has been enabled and one new identity has been

generated and associated with the web application. At this point the web

application can use this identity to authenticate with any Azure resource which

supports managed identity.

4.4.3 Configuring the database

In order to use a system assigned identity to authenticate with a database, the

database must contain a user with the exact name of the Azure resource using

the system assigned identity and be declared as an Azure AD user. The

process for the creation of this user, must be performed using an Azure AD user

with enough permissions to execute this action.

CREATE USER [managedidentitytest] FROM EXTERNAL PROVIDER;

ALTER ROLE db_datareader ADD MEMBER managedidentitytest;

ALTER ROLE db_datawriter ADD MEMBER managedidentitytest;

Listing 1. SQL queries used to create a database contained Azure AD user and

grant read and write permissions.

Listing 1 shows three SQL queries, needed in this scenario to create the

database user that the web application will use to connect, and then, grant that

user the minimum privileges needed. The minimum permissions needed for this

scenario are “read” and “write”. Those permissions are granted through the

roles “db_datareader” and “db_datawriter”.

4.4.4 Configuring the storage account

To authenticate with a storage account, one Azure resource using managed

identity needs to have the permissions needed for the task that will run in the

storage account. In this scenario, the web application will write the activity logs

in a blob container. The minimum amount of permissions that will be needed for

this task, are “read” and “write” blobs. Those two permissions are grouped in

the role “Storage Blob Data Contributor”.

18

Figure 13 Access Control (IAM) Add Role Panel

Figure 13 shows the process of assigning the role, “Storage Blob Data

Contributor”, to the system assigned identity, which is bounded to the web

application. After finishing this process, the web application using this identity will

have “read” and “write” privileges on the blob container.

4.4.5 Code implementation

Connection with the database can be established from the code using the

managed identity to get an authentication token. This token replaces any

password needed before in the connection string.

19

public async Task Connect()

 {

 try

 {

 var tokenCredential = new DefaultAzureCredential();

 var accessToken = await tokenCredential.GetTokenAsync(

 new TokenRequestContext(scopes: new string[] {

"https://database.windows.net/" + "/.default" }) { });

 //using Microsoft.Azure.Services.AppAuthentication is no longer

recomended

 //string token = await (new

AzureServiceTokenProvider()).GetAccessTokenAsync("https://database.windows.net

/", true);

 _logger.LogWarning("TOKEN: " + accessToken.Token);

 _logger.LogInformation("Starting new connection with the database");

 connection = new SqlConnection(ConnectionString);

 connection.AccessToken = accessToken.Token;

 connection.Open();

 _logger.LogInformation("Database connection "+

connection.State.ToString());

 }

 catch (Exception ex)

 {

 _logger.LogError(ex.ToString());

 throw ex;

 }

}

Listing 2. .NET Core code using system assigned managed identity to connect
to a data base

Listing 2 shows an example of a code used to establish the connection with the

database using the system assigned managed identity. The class

“DefaultAzureCredential” is used to obtain an authentication token using the

managed identity. After that, the token is used by the class “SqlConnection”

which opens the connection with the database.

The connection with the storage account can be done by getting an

authentication token using the managed identity. In some cases, the class used

to create the connection with the storage account, is capable to handle the

managed identity to open the connection.

In this scenario, the class “BlobContainerClient” has been used to connect with

the blob container. This class can handle the managed identity to authenticate

with the blob container.

20

string containerEndpoint =

string.Format("https://{0}.blob.core.windows.net/{1}",

accountName,

containerName);

// Get a credential and create a client object for the blob container.

BlobContainerClient containerClient = new BlobContainerClient(new

Uri(containerEndpoint), new DefaultAzureCredential());

Listing 3. .NET Core code using system assigned managed identity to connect
to a blob container

Listing 3 shows an example code used to open a connection with blob container,

using the system assigned identity of the application that runs it. The class

BlobContainerClient is used to establish the connection with blob container. The

class receives the variable “containerEndpoint” as parameter, which contains the

Uri that refers to the storage account and the blob container, and a new instance

of the class “DefaultAzureCredential”, which manages the system assigned

identity.

4.5 User-Assigned Managed Identity Implementation

4.5.1 Overview

In this scenario, a user assigned managed identity will be created as a standalone

resource. Then this identity will be associated with the web application to be used

by this resource to authenticate with the database and the storage account.

A new database contained user will be created in the database. This user will

have the same name that the user assigned managed identity and it will be

declared as an Azure AD user. This means that the database will not store a

password for this user. The user will represent an Azure AD user and Azure will

handle the authentication. Once the user is created, the needed permissions

have to be granted for it. In the case of the storage account, it is only necessary

to grant permissions to the user assigned managed identity, which is treated as

a normal Azure AD user.

21

4.5.2 Creating and using the user assigned identity

A user assigned identity is created independently as another Azure resource.

The process is simple. It starts from the Azure portal home page, clicking the

“create a resource” button and, then searching “User Assigned Managed

Identity”.

Figure 14 User Assigned Managed Identity Creation Panel

Figure 14 shows the creation panel for the user assigned managed identity, and

the parameters used for this scenario. After choosing the subscription, it is

necessary to select the resource group where the user assigned identity will be

contained. Then it is possible to select the region of this resource, which should

match the resource group region. Last step is to assign a unique name to the

user assigned identity.

After creating a user assigned identity, it can be assigned to one or more Azure

resources that supports managed identity. When the user assigned identity is

associated with an Azure resource, this resource can use that identity to

authenticate with other resources and use the privileges that were granted to

the identity.

22

Figure 15 Panel to Add User Assigned Identities

Figure 15 shows the panel to manage the user assigned identities used by the

web application. The list shows one user assigned identity associated to the web

application. That identity was added from the “Add” button, which shows a panel

that allows to select the user assigned identities to be added.

4.5.3 Configuring the database

In order to use a user assigned identity to authenticate with a database, the

database must contain a user with the exact name of the user assigned identity

resource and be declared as an Azure AD user. The process for the creation of

this user, must be performed using an Azure AD user with enough permissions

to execute this action.

CREATE USER [User-Assigned-Identity] FROM EXTERNAL PROVIDER;

ALTER ROLE db_datareader ADD MEMBER User-Assigned-Identity;

ALTER ROLE db_datawriter ADD MEMBER User-Assigned-Identity;

Listing 4. SQL queries used to create a database contained Azure AD user and

grant read and write permissions.

Listing 4 shows three SQL queries, needed in this scenario to create the

database user and grant that user the minimum privileges needed that the web

23

application, thought the user assigned identity, will use to connect. The

minimum permissions needed for this scenario are “read” and “write”. Those

permissions are granted through the roles “db_datareader” and “db_datawriter”.

4.5.4 Configuring the storage account

To authenticate with a storage account, one Azure resource using managed

identity needs to have only the permissions needed for the task that will run in

the storage account. In this scenario, the web application will write the activity

logs in a blob container. The minimum amount of permissions that will be

needed for this task, are “read” and “write” blobs. Those two permissions are

grouped in the role “Storage Blob Data Contributor”.

Figure 16 Access Control (IAM) Add Role Panel

Figure 16 shows the process of assigning the role, “Storage Blob Data

Contributor”, to the user assigned identity, which is associated with the web

application. After finishing this process, the web application using this identity will

have “read” and “write” privileges on the blob container.

24

4.5.5 Code implementation

Developing the code, the connection with the database is created by getting an

authentication token using the user assigned identity associated to the resource.

When user assigned identity is used, it is necessary to specify the “Client ID” of

the identity that will be used by the code.

public async Task Connect()

 {

 try

 {

 var tokenCredential = new DefaultAzureCredential(new

DefaultAzureCredentialOptions { ManagedIdentityClientId =

Environment.GetEnvironmentVariable("managedidentitytest") });

 var accessToken = await tokenCredential.GetTokenAsync(

 new TokenRequestContext(scopes: new string[] {

"https://database.windows.net/" + "/.default" }) { });

 //using Microsoft.Azure.Services.AppAuthentication is no longer

recomended

 //string token = await (new

AzureServiceTokenProvider()).GetAccessTokenAsync("https://database.windows.net

/", true);

 _logger.LogWarning("TOKEN: " + accessToken.Token);

 _logger.LogInformation("Starting new connection with the database");

 connection = new SqlConnection(ConnectionString);

 connection.AccessToken = accessToken.Token;

 connection.Open();

 _logger.LogInformation("Database connection "+

connection.State.ToString());

 }

 catch (Exception ex)

 {

 _logger.LogError(ex.ToString());

 throw ex;

 }

}

Listing 5. .NET Core code using user assigned managed identity to connect to a
data base

Listing 5 shows an example code used to establish the connection with the

database using the user assigned managed identity. The class

“DefaultAzureCredential” is used to obtain an authentication token using the

managed identity. In order to use the user assigned identity, this class needs to

receive the “Client ID” of the identity as a parameter. In this example, the “Client

ID” of the identity has been set as an environment variable in the Azure web

application. This way, it is possible to change the user assigned identity with no

25

changes in the code. When the token is received, it is used by the class

“SqlConnection” which opens the connection with the database.

In order to establish a connection with the blob container, in this scenario has

been used the class “BlobContainerClient”. This class is capable of handling the

managed identity to authenticate with the blob container.

string containerEndpoint =

string.Format("https://{0}.blob.core.windows.net/{1}",

accountName,

containerName);

// Get a credential and create a client object for the blob container.

BlobContainerClient containerClient = new BlobContainerClient(new

Uri(containerEndpoint), new DefaultAzureCredential(new

DefaultAzureCredentialOptions { ManagedIdentityClientId =

Environment.GetEnvironmentVariable("managedidentitytest") }));

Listing 6. .NET Core code using user assigned managed identity to connect to a
blob container

Listing 6 shows an example code used to open a connection with blob container

using the user assigned identity associated with the application that runs the

code. The class BlobContainerClient is used to establish the connection with blob

container. The class receives the variable “containerEndpoint” as parameter,

which contains the Uri that refers to the storage account and the blob container,

and a new instance of the class “DefaultAzureCredential”, which receives the

“Client ID” of the identity as a parameter. The “Client ID” of the user assigned

identity has been set as an environment variable in the Azure web application.

5 Conclusion

The principal objectives of this project were to explain what Azure managed

identity is, and to create a simple scenario to show how to implement both types

of managed identities. Those objectives have been successfully achieved using

the materials and methods showed in this project.

In conclusion, Azure managed identity is a good way for companies to become

password-free and be detached from the responsibility of storing and keeping

passwords.

26

At the same time, this project has demonstrated that the implementation of

Azure managed identity, in the different resources and in the code, is not

complicated, and it provides additional security.

References

1 Becker, Riccardo. 2012. Windows Azure programming patterns for
Start-ups. Packt Publishing.

2 Webber-Cross, Geoff. 2014. Learning Microsoft Azure. Packt
Publishing.

3 J. Dudley, Richard & A. Duchene, Nathan. 2010. Microsoft Azure
Enterprise Application Development: Enterprise Application
Development. Packt Publishing.

4 Microsoft. What are managed identities for Azure resources?
[online]. https://docs.microsoft.com/en-us/azure/active-
directory/managed-identities-azure-resources/overview
Accessed on 31/01/2022

5 Au, Benney. 2020. How to Use Managed Identities with Azure SQL
Database [online].
https://www.pluralsight.com/guides/how-to-use-managed-identity-
with-azure-sql-database
Accessed on 31/01/2022

6 Blesson, John & Issagha, BA. Azure Data Factory Security &
Authentication [online].
https://www.industry-era.com/images/pdf/Azure%20data%20Factory-
Security.pdf
Accessed on 31/01/2022

7 Microsoft. How managed identities for Azure resources work with
Azure virtual machines [online].
https://docs.microsoft.com/en-us/azure/active-directory/managed-
identities-azure-resources/how-managed-identities-work-vm
Accessed on 05/02/2022

8 Microsoft. Managed identity best practice recommendations [online].
https://docs.microsoft.com/en-us/azure/active-directory/managed-
identities-azure-resources/managed-identity-best-practice-
recommendations
Accessed on 13/02/2022

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://www.pluralsight.com/guides/how-to-use-managed-identity-with-azure-sql-database
https://www.pluralsight.com/guides/how-to-use-managed-identity-with-azure-sql-database
https://www.industry-era.com/images/pdf/Azure%20data%20Factory-Security.pdf
https://www.industry-era.com/images/pdf/Azure%20data%20Factory-Security.pdf
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/how-managed-identities-work-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/how-managed-identities-work-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/managed-identity-best-practice-recommendations
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/managed-identity-best-practice-recommendations
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/managed-identity-best-practice-recommendations

