Metropolia

Alejandro Sanz Martin

Implementing Azure Managed
|dentity

Metropolia University of Applied Sciences
Bachelor of Engineering

Information Technology

Bachelor’s Thesis

3 May 2022

Abstract

Author: Alejandro Sanz Martin

Title: Implementing Azure Managed ldentity
Number of Pages: 26 pages

Date: 3.5.2022

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: Internet of Things

Supervisors: Janne Salonen, Head of Department

The main objective of this project is to give the reader a good understanding of what
azure managed identity is and to demonstrate how to implement it in a normal
scenario. It also shows the code that is needed to develop an application that is able
to use azure managed identity. This project will not cover the creation of Azure Active
Directory, assuming that the reader already knows how to create it properly.

The project will start with an introduction of the importance of security for companies,
followed by an overview of the material and methods used during the project. The
general concepts related to the project and the basic scenario used during the project
are also explained. After that, there will be a demonstration of how all the Azure
resources used in this project were created.

The project shows two different demonstrations of how to implement Azure managed
identity. The first demonstration implements a system assigned identity, while the
second demonstration implements a user assigned identity.

The project ends with the main conclusion, that Azure managed identity offers a good
solution to secure connections between different Azure resources. It also offers a
possibility of removing all the possible passwords from the code, that would be
needed for establishing a connection between different resources.

Keywords: Microsoft, Azure, Managed Identity

Contents

List of Abbreviations

1 Introduction
2 Material and Methods
3 Theoretical Background

3.1 What is Microsoft Azure

3.2 Managed Identity
3.2.1 System Assigned Managed ldentity
3.2.2 User Assigned Managed ldentity

4 Scenario

4.1 Overview
4.2 Prerequisites
4.3 Implementation
4.3.1 Web Application
4.3.2 Data Base
4.3.3 Storage Account
4.4 System-Assigned Managed Identity Implementation
4.4.1 Overview
4.4.2 Creating the system assigned identity
4.4.3 Configuring the database
4.4.4 Configuring the storage account
4.4.5 Code implementation
4.5 User-Assigned Managed Identity Implementation
4.5.1 Overview
4.5.2 Creating and using the user assigned identity
4.5.3 Configuring the database
4.5.4 Configuring the storage account
4.5.5 Code implementation

5 Conclusion

References

O A WODN

\l

© © 0o

10
14
15
15
16
17
17
18
20
20
21
22
23
24

25

List of Abbreviations

ISP:

laaS:

PaaS:

SaaS:

AD:

Internet Service Provider. Company which provides internet

connection to organizations or individuals.

Infrastructure as a Service. Cloud computer service model type.

Platform as a Service. Cloud computer service model type.

Software as a Service. Cloud computer service model type.

Active Directory. Identity and access management service.

1 Introduction

Currently many companies offer online services through the internet and use
Microsoft Azure as a platform. Normally these companies store a big variety of
sensitive information of their users. Any breach in the system or vulnerability in

the code could lead to exposure of the user’s private information.

Companies are responsible for protecting the information and privacy of their
users. Loosing this information might have legal consequences and affect the
image of the company. It might also affect their users in many different ways,
depending on the type of information that is compromised. For this reason,
companies spend a great amount of money, time and resources in
cybersecurity. In some cases, companies hire third-party companies to ensure

the security.

Clients of Microsoft Azure can benefit of a great variety of services oriented to
secure their resources. Because it is offered by Microsoft, it means that the
company doesn’t have to worry about all the security aspects related with the
resource and it can focus on the code and application security aspects. The
company can save money, time and resources that the company would need to

employ to get the same result.

One of the multiple services that Microsoft Azure offers to their clients, is
Managed Identity. This service, which does not have any costs, provides the
resources with an identity inside of Microsoft Azure Active Directory which can
be used by developers to eliminate the needed credentials from the code or

connection strings.

In this project, the reader will get an understanding of what Azure managed
identity is and how it can be used. The project also shows how to configure the

Azure resources and how to implement it in the code.

2 Material and Methods

The material used in this project is mainly books and Microsoft documentation
that is available online. The books are strongly based on Azure infrastructure
and authentication. They have been used to get a good base knowledge about
Azure in general and the resource deployment process. The knowledge coming

from these books was important during the phase of creating the scenario.

The Microsoft documentation used was focused on the main topic, managed
identity and its implementation. This documentation has been the key for this
project. It provided the information needed to understand, what is managed
identity and its different types, as well as the classes and functions available to

develop applications using these identities.

The method used was mainly trying and comparing the results, using the
knowledge acquired from the material. The log files provided by the Azure
resources, combined with the debugger tools of Visual Studio, were the key to

detect errors and to find solutions.

3 Theoretical Background
3.1 What is Microsoft Azure

Before being published, Microsoft Azure used to be referred with the codename
Red Dog (RD) (. On October 27, 2008, it was announced with the name of
Windows Azure at the Professional Developers Conference, and it was
available as Community Technical Preview (CTP) 2. In 2010 it became
commercially available 2. Currently Windows Azure is known as Microsoft

Azure [,

Microsoft Azure is one of the principal cloud computing providers available in
the market. Azure offers a big variety of different kinds of resources and service
models like PaaS, SaaS and laaS, hosted on top of its own infrastructure. [2 S

Cloud providers, such as Microsoft Azure, offer companies a cost-effective

alternative to the traditional on-premises infrastructure. Companies using cloud

computing do not have to consider the cost of licenses, hardware, maintenance,

expansions, the space needed, the electricity or ISP. [2 3]

3.2 Managed ldentity

Managed identity is a free feature, provided by Microsoft Azure, which allows

different Azure resources to authenticate and authorize themselves with other

Azure resources that support this feature. 45 6.7]

Managed identity allows code developers to escape, without additional cost, the

challenge that represent the management of credentials, which are used to

protect the communication between different components of the solution. Figure

1 shows this idea simplified with a small list of resources that support managed

identity. 4 5 6.7]

| can use Managed ldentities when...

As a developer, |
want to build an
application using

Source:

Azure Resources
Azure VMs

Azure App Services
Azure Functions
Azure Container
instances

Azure Kubernetes
Service

Azure Logic Apps
Azure Storage

that
accesses

[7Any target that .

Target:

supports Azure
Active Directory
Authentication:
Your applications
- Azure Services:
» Azure Key
Vault
* Azure
Storage
+ Azure SQL...

without having to
manage any
credentials!

For example, | want to build an application using Azure App Services that accesses Azure Storage without having to manage any credentials.

Figure 1 Basic Idea of Azure Managed Identity [l

Managed identity, or Managed Service Identity (MSI) as it was formerly known,

requires that the source and the target resource or service supports Azure AD

authentication in order to establish the connection without managing

credentials.[

Currently there are two different types of managed identity. The first one is
System Assigned Managed Identity and the second one is User Assigned
Identity. Both have the same purpose but the way of using them and their life

cycle is different. 4 ©

Two Types of managed identities

System-assigned and User-assigned

Keys:
/9 gﬁ ; ; SAS keys, username)
and password, etc.
M * Built-in garage door remote:
q -// System-assigned q
@ @ %04 managed identity

Azure Storage, Key

Virtual MaChine, £33 Hand-held garage door remote:
Flinction: Aop \ @ User-assigned q Vault, Resource

Service, ftc' managed identity Manager, etc.

Azure IdentilY to resoturce Identity Authentication & C|Ol:ld
resource assignmen Authorization Service

Figure 2 Representation of the different types of Managed Identity [

Figure 2 shows a simple representation of both types of managed identity, user
assigned and system assigned. The system assigned managed identity is
represented as a built-in garage door remote, which can only be used by one
car. Same way, the system assigned identity can only be used by one resource.
The user assigned managed identity is represented as a hand-held garage door
remote, which can be used from many different cars. The user assigned identity

can be used by one or more applications the same way.

3.2.1 System Assigned Managed Identity

System assigned identity is represented as an option that can be turned on or

off for resources that support managed identity. When it is turned on, one Azure

AD identity is assigned exclusively for that resource, and it can be used to

authenticate that resource in Azure.

Table 1 System-Assigned Managed Identity Properties [

Property System-assigned managed
identity
Creation Created as part of an Azure

resource (for example, an Azure
virtual machine or Azure App
Service)

Life cycle Shared life cycle with the Azure
resource that the managed
identity is created with.

When the parent resource is
deleted, the managed identity is
deleted as well.

Sharing across Azure resources Cannot be shared.

It can only be associated with a
single Azure resource.

Common use cases Workloads that are contained
within a single Azure resource

Workloads for which you need
independent identities.

For example, an application that
runs on a single virtual machine

It is possible to create only one system assigned managed identity for each
Azure resource, and as Table 1 shows, it is bounded to the resource and its life
cycle. This also means that a system assigned identity cannot be shared with

other Azure resources.“

System assigned managed identity is the best option in scenarios where each
resource requires a specific set of permissions or where logging the specific

activity of each resource is needed. Another scenario where system assigned

identity is recommended to be used is when it is required that the permissions

granted to a resource are removed along with the resource. (@

3.2.2 User Assigned Managed Identity

User assigned identity is represented as a standalone Azure resource, and it
can be assigned to one or more Azure resources. This identity is independent
from the associated Azure resources, which means that it is not bounded to the
related resource life cycle, as Table 2 shows. This type of identity can only be
deleted manually. [8l

Table 2 User Assigned Managed Identity Properties 4!

Property User-assigned managed identity
Creation Created as a stand-alone Azure

resource
Life cycle Independent life cycle.

Must be explicitly deleted.

Sharing across Azure resources

Can be shared

The same user-assigned
managed identity can be
associated with more than one
Azure resource.

Common use cases

Workloads that run on multiple
resources and which can share a
single identity.

Workloads that need pre-
authorization to a secure
resource as part of a provisioning
flow.

Workloads where resources are
recycled frequently, but
permissions should stay
consistent.

Property User-assigned managed identity

For example, a workload where
multiple virtual machines need to
access the same resource

In most scenarios, user assigned managed identity is more efficient than
system assigned. For scenarios where multiple resources run the same task or
access the same resources, user assigned identity is the best solution. In
scenarios where multiple resources are being created or deleted in a short
period of time, using system assigned identities might reach the Azure Active
Directory rate limit and it would end with a HTTP 429 error. However, using user
assigned identities would avoid the rate limit deploying resources associated

with a single user assigned identity. (€l

4 Scenario

4.1 Overview

In this project there will be two scenarios created that are based on the same
idea but implementing different managed identity types to show how to
implement them from the beginning. Both scenarios will be based on PaaS and

will use the same Azure resources.

This project focuses on the needed configuration on the Azure resources and
the code changes, in order to implement and use managed identity. The project
will not cover the creation of Azure Active Directory, assuming that the reader

has a general understanding of how to do it.

The scenario will be based in one web application hosting a web page which
will access a data base and a storage account. At the same time, the web

application will record all the logs in a storage account.

Resource Group

Hﬂﬂ

N\
e

@
i

Figure 3 Basic Scenario

The picture 3 shows a representation of this basic scenario, connecting a web
application with a SQL database and a storage account which contains a blob

container.

4.2 Prerequisites

In order to recreate this scenario and to be able to use managed identity, it will

be necessary to meet the following requirements:

e One Azure account with a subscription

e Azure Active Directory

e Resources that support managed identity

In this scenario will be used resources with minimum tier to keep the cost as low

as possible.

4.3 Implementation

This section will cover the needed steps to create and configure the basic
scenario that will be used to implement the different types of managed identities

in following sections.

4.3.1 Web Application

Like for any Azure resource, the first step is to create it from the Azure portal
home page, clicking on the “Create a resource” button. After clicking there, the
next step is to find the resource that will be created, in this case, “Web App”.
Figure 4 shows an example of some of the options available for the web app

creation.

Create Web App

Basics Deployment Monitoring Tags Review + create

App Service Web Apps lets you quickly build, deploy, and scale enterprise-grade web, mobile, and API apps running on
any platform. Meet rigorous performance, scalability, security and compliance requirements while using a fully managed
platform to perform infrastructure maintenance. Learn more '

Project Details

Select a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage
all your resources,

{New) ManagedidentityTest

Instance Details

Need a database? Try the ne

WebAppTestManagedidentity

Code Docker Container Static Web App

NET 6 (LTS}

Linux Windows

North Europe
find

App Service Plan

plan pricing tier determines the location, features, cost and compute resources associated with your app.
o

Figure 4 Web App Creation Panel

10

From figure 4, all the needed parameters for the creation of the web app have
been introduced. Figure 5 shows the missed parameters from the figure 4 that

refers to the creation of the app service plan that will host the web app.

App Service Plan

App Service plan pricing tier determines the location, features, cost and compute resources associated with your app.

n (North Europe) * @ (New) WebPlanTestManagedidentity

Free F1
Shared infrastructure, 1 GB memory

Zone redundancy

An App Service plan can be deployed as a zone redundant service in the regions that support it. This is a deployment
time only decision. You can't make an App Service plan zone redundant after it has been deployed o

2dundancy

Figure 5 App Service Plan Creation

The rest of the options from the other tabs can keep the default parameters. After
reviewing the parameters and clicking on the create button, it might take a couple

of minutes to create the resources.

4.3.2 Data Base

The data base can be created from the home page, clicking on the “Create a
resource” button as previously. Then, the next step is to find and select the
resource with a name "SQL Database”. Figure 6 shows an example of some of

the options available for the SQL Database creation.

11

Microsoft Azure £ Search resources, services, and docs (G+/)

Create SQL Database
M
Basics Networking Security Additional settings Tags Review + create

Create a SQL database with your preferred configurations. Complete the Basics tab then go to Review + Create to
provision with smart defaults, or visit each tab to customize. [

Project details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and
manage all your resources.

ManagedidentityTest

Database details

Enter required settings for this database, including picking a logical server and configuring the compute and storage
resources

DbManagedidentityTest

(new) dbservermanagedidentitytest (North Europe)

Yes No

General Purpose
Serverless, Gen5, 1 vCore, 32 GB storage, zone redundant disabled

Backup storage redundancy

Choose how your PITR and LTR backups are replicated. Geo restore or ability to recover from regional outage is only
available when geo-redundant stora selected.

Figure 6 SQL Data Base Creation Panel

In figure 6, the parameters needed for the creation of the data base, have already
been introduced. The resource group chosen is the same as the web app uses.
For this scenario, it will not be necessary to use SQL elastic pool due there is not

scheduled tasks to run.

12

= Microsoft Azure ' Search resources, services, and docs (G+/)

Create SQL Database Server

Microsoft

Server details
Enter required settings for this server, including providing a name and location. This server will be created in the same
subscription and resource group as your database.

dbservermanagedidentitytest

(Europe) North Europe

Authentication
Select your preferred authentication methods for accessing this server. Create a server admin login and password to

access your server with SQL authentication, select only Azure AD authentication using an existing Azure AD
user, group, or application as Azure AD admin , or select both SQL and Azure AD authentication.

Authentication method Use SQL authentication
Use only Azure Active Directory (Azure AD) authentication
Use both SOL and Azure AD authentication

e AD admin

Admin Object/App ID:

er admin login AdminTest

d

Figure 7 SQL Database Server Creation Panel

SQL Database requires a SQL Server to serve it. SQL Server can be created by
clicking on the “Create server” button showed in figure 6. Figure 7 shows the SQL
server creation panel with the parameters that will be used in this scenario. For
the SQL database, the name must be in lowercase letters. It is very important
that the SQL server allows the Azure Active Directory authentication. In order to
create database contained users that authenticate using Azure AD, it is

necessary to be logged with an Azure AD account.

13

Microsoft Azure A~ Search resources, services, and docs (G+/)

Configure

Feedback

Service and compute tier

Select from the available tiers based on the needs of your workload. The vCore model provides a wide range of configuration controls
and offers Hyperscale and Serverless to automatically scale your database d on your workload needs. Alternately, the DTU model
provides set price/performance packages to choose from for easy configuration.

General Purpose (Scalable compute and storage options)

Provisioned - Compute resources are pre-allocated. Billed per hour based on
vCores configured.

Serverless - Compute resources are auto-scaled. Billed per second based on
vCores used.

Compute Hardware

Select the hardware configuration based on your workload requirements. Availability of compute optimized, memory optimized, and
confidential computing hardware depends on the region, service tier, and compute tier.

Hardware Configuration Gen5

up to 40 vCores, up to 120 GB memory

Max vCores

Min vCores

0.5 vCores

_2.02 GB MIN MEMORY 3 GB MAX MEMORY

Auto-pause delay

The database automatically pauses if it is inactive for the time period specified here, and automatically resumes when database activity recurs. Altematively,
auto-pausing can be disabled.

Figure 8 Database Compute and Memory Configuration Panel

Figure 8 shows the panel that appears after clicking on the “Configure database”
button from figure 6, and it allows to configure the compute tier and the storage
capacity. For this scenario, using the serverless compute tier is the only change

applied based on reducing costs.

Backup storage redundancy

Choose how your PITR and LTR backups are replicated. Geo restore or ability to recover from regional outage is only
available when geo-redundant stora selected.

0] Locally-redundant backup storage

Zone-redundant backup storage

Geo-redundant backup storage

Figure 9 Backup Storage Redundancy

14

Figure 9 shows the backup storage redundancy section that did not fit in figure 6.
For this scenario, there is no need for a redundancy solution. The option chosen
is the “Locally-redundant backup storage”. The rest of the options in the other

tags can stay as default.

4.3.3 Storage Account

The storage account can be created, as the previous, from the home page by
clicking on the “Create a resource” button and choosing the resource “Storage
account”. Figure 10 shows the main option available for the storage account

creation.

Create a storage account

Basics Advanced Networking Data protection Encryption Tags Review + create

Azure Storage is a Microsoft-managed service providing cloud storage that is highly available, secure, durable, scalable, and
redundant. Azure Storage includes Azure Blobs (objects), Azure Data Lake Storage Gen2, Azure Files, Azure Queues and Azure
Tables. The cost of your storage account depends on the usage and the options you choose below. Learn Az

Project details

Select the subscription in which to create the new storage account. Choose a new or existing resource group to organize and
manage your storage account together with other resources.

Subscription *

I— Resource group * ManagedidentityTest

Instance details

If you need to create a legacy storage account type, please click here
Storage account name @ * | storageaccountmitest

Region @ * |(E|_||'C]pe)'\|lj|’thEu[0Pe—v‘

Performance @ * Standard: Recommended for most scenarios (general-purpose v2 account)

(_) Premium: Recommended for scenarios that require low latency.

Redundancy ® * Locally-redundant storage (LRS)

Next : Advanced >

Figure 10 Storage Account Creation Panel

15

For this scenario the parameters that need to be configured are shown in figure
10. The storage account name must be in lowercase letters. Once again, there
is no need for redundancy in this scenario, so the option chosen is the “Locally-
redundant storage”. The rest of the parameters in other tabs can stay as

default.

Once the storage account is created, it is time to create the blob container which
will store the log files from the web application for this scenario. This can be done
from the “Containers” section in the storage account menu, clicking on the “+
Container” button.

New container

@5 storageaccountmitest | Containers =

Last modified

2/26/2022, 8:54:41 PM

= Storage browser (preview)

Data storage
B Containers
M File shares
= Queues

B Tables

Figure 11 Blob Container Creation Panel

The process of creating a new blob container is shown in figure 11. The name
must be in lowercase letters, and for this scenario, the access level will be set as
private, and the encryption options will stay as default.

4.4 System-Assigned Managed ldentity Implementation

4.4.1 Overview

In this scenario, a system assigned managed identity will be generated. The
identity will be bounded to the web application, which will use it to authenticate

with the database and the storage account.

16

A new database contained user will be created for the database, which will be
declared as an Azure AD user. This means that the database will not store a
password for this user. The user needs to have the same name as the web
application, and it will represent an Azure AD user and Azure will handle the
authentication. Once the user is created, the needed permissions have to be

granted to it.

In case of the storage account, it is only necessary to grant permissions to the
web application. The web application is treated as a normal Azure AD user after

creating the managed identity.

4.4.2 Creating the system assigned identity

The system assigned identity is created from the Azure resource which will be
associated with, in this case, the web application. The process for generating
this identity is very simple. The only step needed, is to switch the status option
under the system assigned section, from the “Identity” setting in the web

application menu.

% WebAppTestManagedIdentity | Identity

System

Figure 12 System Assigned Managed Identity Panel

17

Figure 12 shows the managed identity panel of the web application. The system
assigned managed identity has been enabled and one new identity has been
generated and associated with the web application. At this point the web
application can use this identity to authenticate with any Azure resource which

supports managed identity.

4.4.3 Configuring the database

In order to use a system assigned identity to authenticate with a database, the
database must contain a user with the exact name of the Azure resource using
the system assigned identity and be declared as an Azure AD user. The
process for the creation of this user, must be performed using an Azure AD user

with enough permissions to execute this action.

CREATE USER [managedidentitytest] FROM EXTERNAL PROVIDER;
ALTER ROLE db datareader ADD MEMBER managedidentitytest;
ALTER ROLE db datawriter ADD MEMBER managedidentitytest;

Listing 1. SQL queries used to create a database contained Azure AD user and

grant read and write permissions.

Listing 1 shows three SQL queries, needed in this scenario to create the
database user that the web application will use to connect, and then, grant that
user the minimum privileges needed. The minimum permissions needed for this
scenario are “read” and “write”. Those permissions are granted through the

roles “db_datareader” and “db_datawriter”.

4.4.4 Configuring the storage account

To authenticate with a storage account, one Azure resource using managed
identity needs to have the permissions needed for the task that will run in the
storage account. In this scenario, the web application will write the activity logs
in a blob container. The minimum amount of permissions that will be needed for
this task, are “read” and “write” blobs. Those two permissions are grouped in

the role “Storage Blob Data Contributor”.

18

Add role assignment

“y Got feedback?

Figure 13 Access Control (IAM) Add Role Panel

Figure 13 shows the process of assigning the role, “Storage Blob Data
Contributor”, to the system assigned identity, which is bounded to the web
application. After finishing this process, the web application using this identity will

have “read” and “write” privileges on the blob container.

4.4.5 Code implementation

Connection with the database can be established from the code using the
managed identity to get an authentication token. This token replaces any

password needed before in the connection string.

19

public async Task Connect ()
{
try
{
var tokenCredential = new DefaultAzureCredential ();
var accessToken = await tokenCredential.GetTokenAsync (
new TokenRequestContext (scopes: new string[] {
"https://database.windows.net/" + "/.default" }) { });

//using Microsoft.Azure.Services.AppAuthentication is no longer
recomended

//string token = await (new
AzureServiceTokenProvider ()) .GetAccessTokenAsync ("https://database.windows.net
/", true);

_logger.LogWarning ("TOKEN: " + accessToken.Token);

_logger.LogInformation ("Starting new connection with the database");

connection = new SqglConnection (ConnectionString);

connection.AccessToken = accessToken.Token;

connection.Open () ;

_logger.LogInformation ("Database connection "+
connection.State.ToString());

}

catch (Exception ex)
{
_logger.LogError (ex.ToString ()) ;
throw ex;
}
}

Listing 2. .NET Core code using system assigned managed identity to connect
to a data base

Listing 2 shows an example of a code used to establish the connection with the
database using the system assigned managed identity. The class
“DefaultAzureCredential” is used to obtain an authentication token using the
managed identity. After that, the token is used by the class “SglConnection”

which opens the connection with the database.

The connection with the storage account can be done by getting an
authentication token using the managed identity. In some cases, the class used
to create the connection with the storage account, is capable to handle the

managed identity to open the connection.

In this scenario, the class “BlobContainerClient” has been used to connect with
the blob container. This class can handle the managed identity to authenticate

with the blob container.

20

string containerEndpoint =

string.Format ("https://{0}.blob.core.windows.net/{1}",

accountName,

containerName) ;

// Get a credential and create a client object for the blob container.

BlobContainerClient containerClient = new BlobContainerClient (new
Uri (containerEndpoint), new DefaultAzureCredential());

Listing 3. .NET Core code using system assigned managed identity to connect
to a blob container

Listing 3 shows an example code used to open a connection with blob container,
using the system assigned identity of the application that runs it. The class
BlobContainerClient is used to establish the connection with blob container. The
class receives the variable “containerEndpoint” as parameter, which contains the
Uri that refers to the storage account and the blob container, and a new instance
of the class “DefaultAzureCredential’, which manages the system assigned

identity.

4.5 User-Assigned Managed Identity Implementation

45.1 Overview

In this scenario, a user assigned managed identity will be created as a standalone
resource. Then this identity will be associated with the web application to be used

by this resource to authenticate with the database and the storage account.

A new database contained user will be created in the database. This user will
have the same name that the user assigned managed identity and it will be
declared as an Azure AD user. This means that the database will not store a
password for this user. The user will represent an Azure AD user and Azure will
handle the authentication. Once the user is created, the needed permissions
have to be granted for it. In the case of the storage account, it is only necessary
to grant permissions to the user assigned managed identity, which is treated as

a normal Azure AD user.

21

4.5.2 Creating and using the user assigned identity

A user assigned identity is created independently as another Azure resource.
The process is simple. It starts from the Azure portal home page, clicking the
“create a resource” button and, then searching “User Assigned Managed

Identity”.

Create User Assigned Managed Identity

Basics Tags Review + create

Project details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and
manage all your resources.

Subscription © (D)

L

Resource group * (D) ManagedidentityTest

Instance details

Region * (1) | North Europe

Name* @ [user-assigned-identity /]

Figure 14 User Assigned Managed ldentity Creation Panel

Figure 14 shows the creation panel for the user assigned managed identity, and
the parameters used for this scenario. After choosing the subscription, it is
necessary to select the resource group where the user assigned identity will be
contained. Then it is possible to select the region of this resource, which should
match the resource group region. Last step is to assign a unique name to the
user assigned identity.

After creating a user assigned identity, it can be assigned to one or more Azure
resources that supports managed identity. When the user assigned identity is
associated with an Azure resource, this resource can use that identity to
authenticate with other resources and use the privileges that were granted to
the identity.

22

WebAppTestManagedldentity | Identity -
e

ssigned User assigned

ser assigned managed identities enable Azure re: enticate to cloud ser y Vault) without stori
B Activitylog Virtual Machine) can utilize multiple user assigned ed identities. S . asi naged identity can

Access control (1AM) Add [0 Refresh | Got feedback?

Tags

¢ Diagnose and sclve problems
@ Security

4 Events (preview)
Deployment

& Quickstart

= Deployment slots

Deployment Center

Settings

¥ Application Insights (preview)

% Identity

& Backups

Figure 15 Panel to Add User Assigned Identities

Figure 15 shows the panel to manage the user assigned identities used by the
web application. The list shows one user assigned identity associated to the web
application. That identity was added from the “Add” button, which shows a panel

that allows to select the user assigned identities to be added.

4.5.3 Configuring the database

In order to use a user assigned identity to authenticate with a database, the

database must contain a user with the exact name of the user assigned identity
resource and be declared as an Azure AD user. The process for the creation of
this user, must be performed using an Azure AD user with enough permissions

to execute this action.

CREATE USER [User-Assigned-Identity] FROM EXTERNAL PROVIDER;
ALTER ROLE db datareader ADD MEMBER User-Assigned-Identity;
ALTER ROLE db datawriter ADD MEMBER User-Assigned-Identity;

Listing 4. SQL queries used to create a database contained Azure AD user and

grant read and write permissions.

Listing 4 shows three SQL queries, needed in this scenario to create the

database user and grant that user the minimum privileges needed that the web

23

application, thought the user assigned identity, will use to connect. The
minimum permissions needed for this scenario are “read” and “write”. Those

permissions are granted through the roles “db_datareader” and “db_datawriter”.

4.5.4 Configuring the storage account

To authenticate with a storage account, one Azure resource using managed
identity needs to have only the permissions needed for the task that will run in
the storage account. In this scenario, the web application will write the activity
logs in a blob container. The minimum amount of permissions that will be
needed for this task, are “read” and “write” blobs. Those two permissions are

grouped in the role “Storage Blob Data Contributor”.

Add role assignment -

Ay Got feedback?

Selected role Storage Blob Data Contributor

Assign access to \7\ User, group, or service principal

(®) Managed identity

Name Type
User-Assigned-ldentity Managed Identity ©

Description

Figure 16 Access Control (IAM) Add Role Panel

Figure 16 shows the process of assigning the role, “Storage Blob Data
Contributor”, to the user assigned identity, which is associated with the web
application. After finishing this process, the web application using this identity will

have “read” and “write” privileges on the blob container.

24

4.5.5 Code implementation

Developing the code, the connection with the database is created by getting an
authentication token using the user assigned identity associated to the resource.
When user assigned identity is used, it is necessary to specify the “Client ID” of

the identity that will be used by the code.

public async Task Connect ()

{

try
{
var tokenCredential = new DefaultAzureCredential (new
DefaultAzureCredentialOptions { ManagedIdentityClientId =
Environment.GetEnvironmentVariable ("managedidentitytest") 1});

var accessToken = await tokenCredential.GetTokenAsync (
new TokenRequestContext (scopes: new string[] {
"https://database.windows.net/" + "/.default" }) { });

//using Microsoft.Azure.Services.AppAuthentication is no longer
recomended

//string token = await (new
AzureServiceTokenProvider ()) .GetAccessTokenAsync ("https://database.windows.net
/", true);

_logger.LogWarning ("TOKEN: " + accessToken.Token);

_logger.LogInformation ("Starting new connection with the database");

connection = new SglConnection (ConnectionString);

connection.AccessToken = accessToken.Token;

connection.Open () ;

_logger.LogInformation ("Database connection "+
connection.State.ToString()) ;

}

catch (Exception ex)
{
_logger.LogError (ex.ToString());
throw ex;
}
}

Listing 5. .NET Core code using user assigned managed identity to connect to a
data base

Listing 5 shows an example code used to establish the connection with the
database using the user assigned managed identity. The class
“DefaultAzureCredential” is used to obtain an authentication token using the
managed identity. In order to use the user assigned identity, this class needs to
receive the “Client ID” of the identity as a parameter. In this example, the “Client
ID” of the identity has been set as an environment variable in the Azure web

application. This way, it is possible to change the user assigned identity with no

25

changes in the code. When the token is received, it is used by the class

“SqlConnection” which opens the connection with the database.

In order to establish a connection with the blob container, in this scenario has
been used the class “BlobContainerClient”. This class is capable of handling the

managed identity to authenticate with the blob container.

string containerEndpoint =

string.Format ("https://{0}.blob.core.windows.net/{1}",

accountName,

containerName) ;

// Get a credential and create a client object for the blob container.
BlobContainerClient containerClient = new BlobContainerClient (new

Uri (containerEndpoint), new DefaultAzureCredential (new

DefaultAzureCredentialOptions { ManagedIdentityClientId =
Environment.GetEnvironmentVariable ("managedidentitytest™) }));

Listing 6. .NET Core code using user assigned managed identity to connect to a
blob container

Listing 6 shows an example code used to open a connection with blob container
using the user assigned identity associated with the application that runs the
code. The class BlobContainerClient is used to establish the connection with blob
container. The class receives the variable “containerEndpoint” as parameter,
which contains the Uri that refers to the storage account and the blob container,
and a new instance of the class “DefaultAzureCredential”, which receives the
“Client ID” of the identity as a parameter. The “Client ID” of the user assigned

identity has been set as an environment variable in the Azure web application.

5 Conclusion

The principal objectives of this project were to explain what Azure managed
identity is, and to create a simple scenario to show how to implement both types
of managed identities. Those objectives have been successfully achieved using

the materials and methods showed in this project.

In conclusion, Azure managed identity is a good way for companies to become
password-free and be detached from the responsibility of storing and keeping

passwords.

At the same time, this project has demonstrated that the implementation of
Azure managed identity, in the different resources and in the code, is not

complicated, and it provides additional security.

26

References

1 Becker, Riccardo. 2012. Windows Azure programming patterns for
Start-ups. Packt Publishing.

2 Webber-Cross, Geoff. 2014. Learning Microsoft Azure. Packt
Publishing.
3 J. Dudley, Richard & A. Duchene, Nathan. 2010. Microsoft Azure

Enterprise Application Development: Enterprise Application
Development. Packt Publishing.

4 Microsoft. What are managed identities for Azure resources?
[online]. https://docs.microsoft.com/en-us/azure/active-
directory/managed-identities-azure-resources/overview
Accessed on 31/01/2022

5 Au, Benney. 2020. How to Use Managed Identities with Azure SQL
Database [online].
https://www.pluralsight.com/quides/how-to-use-managed-identity-
with-azure-sql-database
Accessed on 31/01/2022

6 Blesson, John & Issagha, BA. Azure Data Factory Security &
Authentication [online].
https://www.industry-era.com/images/pdf/Azure%20data%20Factory-

Security.pdf
Accessed on 31/01/2022

7 Microsoft. How managed identities for Azure resources work with
Azure virtual machines [online].
https://docs.microsoft.com/en-us/azure/active-directory/managed-
identities-azure-resources/how-managed-identities-work-vm
Accessed on 05/02/2022

8 Microsoft. Managed identity best practice recommendations [online].
https://docs.microsoft.com/en-us/azure/active-directory/managed-
identities-azure-resources/managed-identity-best-practice-
recommendations
Accessed on 13/02/2022

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://www.pluralsight.com/guides/how-to-use-managed-identity-with-azure-sql-database
https://www.pluralsight.com/guides/how-to-use-managed-identity-with-azure-sql-database
https://www.industry-era.com/images/pdf/Azure%20data%20Factory-Security.pdf
https://www.industry-era.com/images/pdf/Azure%20data%20Factory-Security.pdf
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/how-managed-identities-work-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/how-managed-identities-work-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/managed-identity-best-practice-recommendations
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/managed-identity-best-practice-recommendations
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/managed-identity-best-practice-recommendations

