

Atte Marttinen

Design and implementation of graphical
user interface for electric motorcycle

Bachelor’s thesis

Bachelor of electrical and automation engineering

2022

Degree Bachelor of Engineering
Author (authors) Atte Marttinen
Thesis title Design and implementation of a graphical user interface for elec-

tric motorcycle
Commissioned by Xamk
Time 2022
Pages 38 pages, 4 pages of appendices
Supervisor Teemu Manninen

ABSTRACT

This thesis describes the designing and implementation process of a graphical
user interface for electric motorcycle using Qt. The project was started at the
end of year 2019 and finished in April of 2022. The project was carried out by
three electrical and automation engineering students.

The motorcycle has numerous electronic devices whose information and state
need to be displayed to the driver. The goal of this thesis was to create a user
interface that is easy to understand and view while driving. The user interface
was decided to be programmed by me because there were no good options
available for this project in the market.

This thesis starts by introducing the main components of the motorcycle such
as the battery management system and the motor controller. These compo-
nents were chosen to be discussed in this thesis because an user interface
developer must understand at least the basics of the system to be able to cre-
ate a working interface for the vehicle.

The thesis then continues to discuss about CAN-bus protocol since it was
used in this project as a communication method between the electronics of the
motorcycle.

After the hardware of the system was described, the thesis proceeds to the
actual implementation process of the project. At this point, the steps for setting
the developing environment up are introduced. The software was developed
with an open-source principle which means that one can use the software as
desired. The source code can be used also as a template for any vehicle or
system that uses CAN-bus as its communication method.

The outcome of this thesis was a working user interface that can display the
information of the system to the driver. The modular design of the system sim-
plifies the possible future developing work, meaning that components that use
CAN-bus communication can be easily added to the system.

Keywords: CAN-bus, Qt, user interface, Raspberry Pi, electric motorcycle

Tutkintonimike Insinööri (AMK)

Tekijä/Tekijät Atte Marttinen
Työn nimi Sähkömoottoripyörän käyttöliittymän suunnittelu ja toteutus
Toimeksiantaja Xamk
Vuosi 2022
Sivut 38 sivua, liitteitä 4 sivua
Työn ohjaaja(t) Teemu Manninen

Tiivistelmä

Tässä opinnäytetyössä käydään läpi sähkömoottoripyörämuunnoksen graafi-
sen käyttöliittymän suunnittelu- ja toteutusprosessia. Projekti alkoi vuoden
2019 lopulla ja päättyi pääsiäisenä 2022. Projektin toteutti kolme sähkö- ja au-
tomaatioinsinööriopiskelijaa. Projektitiimi valittiin kilpailulla, jonka tarkoituk-
sena oli tehdä esisuunnitelma sähkömoottoripyörämuunnoksesta.

Moottoripyörässä on monia elektronisia laitteita, joiden tilasta täytyy saada
tieto kuljettajalle. Tämän opinnäytetyön tarkoitus oli luoda helposti ymmärret-
tävä käyttöliittymä, jota pystyttäisiin lukemaan myös ajaessa. Käyttöliittymä
päätettiin luoda itse, koska markkinoilla ei ollut sopivia näyttöjä tähän projek-
tiin.

Opinnäytetyössä esitellään moottoripyörän oleellisimmat komponentit pikai-
sesti, jotta lukija ymmärtää niiden toiminnan korkealla tasolla. Näiden kompo-
nenttien toiminnan ymmärrys on suotavaa, jotta kehittäjä osaa suunnitella
käyttöliittymän siten, että siitä pystyy näkemään laitteen tärkeimmät arvot, esi-
merkiksi akuston jännitteen.

CAN-väylän ohjelmointi ja kytkennät olivat iso osa tätä työtä, sillä moottoripyö-
rän elektroniikka kommunikoi keskenään käyttäen tätä tiedonsiirtomuotoa.

Käyttöliittymä ohjelmointiin open-source-periaatteella, mikä tarkoittaa sitä, että
kuka vain voi käyttää ohjelmaa haluamallaan tavalla. Opinnäytetyö sisältää
tärkeimmät vaiheet ohjelmointiympäristön pystyttämiseen sekä ohjelmointiesi-
merkkejä. Yhdessä lähdekoodin sekä ohjelmointiesimerkkien kanssa lukija
pystyy hahmottamaan ohjelman toiminnan ja kehittämään sitä niin halutes-
saan.

Työn tuloksena syntyi tavoitteet saavuttanut käyttöliittymä, joka osoittautui tes-
tien perusteella toimivaksi. CAN-väylän toiminta oli luotettavaa, eikä ohjelma
kaatunut bugeihin. Modulaarinen suunnittelu helpottaa mahdollisen jatkokehi-
tyksen, sillä ainoa vaatimus pyörään asennettavalle elektroniikalle on, että sen
täytyy kyetä kommunikoimaan CAN-väylän kautta päätietokoneelle.

Avainsanat: CAN-väylä, Qt, käyttöliittymä, Raspberry Pi, sähkömoottoripyörä

TABLE OF CONTENTS

1 INTRODUCTION ... 6

1.1 Need for a self-made user interface .. 6

1.2 EbanditXamk .. 7

2 COMPONENTS AND TECHNOLOGIES .. 8

2.1 Raspberry Pi .. 9

2.1.1 Raspbian .. 9

2.2 BMS.. 9

2.3 Curtis motor controller ... 9

2.4 Elcon TC charger ... 10

2.5 Mcp2515 CAN shield ... 10

2.6 52PI display ... 10

2.7 Qt .. 11

3 CAN-BUS ... 11

3.1 History .. 11

3.2 Can bus layers ... 12

3.2.1 Physical layer ... 12

3.2.2 Data link layer .. 13

3.2.3 Higher layer.. 13

3.3 CAN frames ... 13

3.3.1 Data and remote frames .. 13

3.3.2 Error frame ... 14

3.3.3 Overload frame .. 15

3.4 Prioritization ... 15

4 DESIGN.. 15

4.1 Displayed values .. 15

4.1.1 Battery values .. 16

4.1.2 Motor controller values .. 18

4.1.3 State of switches.. 18

4.2 Graphical layout ... 21

4.3 Installation of the Screen ... 22

5 QT LIBRARIES .. 24

5.1.1 Qt Serial Bus .. 25

5.1.2 QCanBus ... 25

5.1.3 QCanBusFrame ... 25

5.1.4 QCanBusDevice .. 25

6 RASPBERRY PI PROGRAMMING ... 25

6.1 SSH connection ... 26

6.2 Connecting to internet ... 26

6.3 Software installation .. 27

6.3.1 Qt.. 27

6.3.2 Compiler for raspberry ... 28

6.3.3 Can-utils ... 28

6.3.4 Bringing can interface up ... 29

6.4 User interface programming .. 29

6.4.1 C++ .. 29

6.4.2 QML ... 33

7 RESULTS AND CONCLUSIONS .. 35

REFERENCES .. 37

APPENDICES

 Appendix 1. Orion BMS CAN pids.

6

1 INTRODUCTION

EBanditXamk is a school project that aimed for converting a conventional mo-

torcycle into an electric-powered one. It was designed and developed by three

electrical and automation engineering students. The project started at the end

of the year 2019 and was completed In April of 2022.

The team for the project was selected by a competition where students were

meant to draw up a preliminary plan for the motorcycle conversion. Our team

which consisted of Me, Kalle Hellgren, and Miikael Riuttaskorpi won the com-

petition.

The project started by searching for a motorcycle according to the preliminary

plan. A suitable one was found in Helsinki for a reasonable price. This motor-

cycle had a faulty engine, which made it perfect for the project.

The objective of the project was to gain knowledge and data about electrical

vehicles for Xamk. The secondary objective was to get teaching material for

electronics and automation courses. Future students can study and develop

the motorcycle even further.

1.1 Need for a self-made user interface

There were no displays available that would serve the needs of this project for

sale. At the very beginning of the project, it came clear that one had to be de-

signed for the motorcycle for it to meet the appearance and usability stand-

ards defined in the preliminary plan.

The minimal objectives set in the preliminary plan were that the driver should

be able to see the most important information about the system on the display,

such as speed, state of charge, and battery voltage. The physical installation

should also be good looking for anyone who is not interested in electrical vehi-

cles.

Many technologies could have been used for creating the user interface of

Ebandit. This thesis describes how it was created and why the technologies

used, were chosen to be used. This thesis is not intended to be a

7

programming tutorial but to be an informational writing about designing and

developing an user interface for an electric vehicle. The source code can be

found on Github.

1.2 EbanditXamk

The motorcycle chosen for this project was Suzuki Gsf 600, more familiarly

known as Suzuki Bandit. Bandit was chosen because of its steel frame, which

made the installation of the electric motor and the batteries easier. The sec-

ond reason was that it is rather good-looking even without any modifications.

Image 1. Suzuki Bandit 600

file:///C:/Users/ama/AppData/Roaming/Microsoft/Word/github

8

Image 2. Ebandit at American Car Show

Images 1 and 2 show the difference between the original Bandit and the fin-

ished Ebandit. The use of outside work resources was as limited as possible.

The only work that had to be done by people outside the team was the manu-

facturing of the battery enclosure, motor mounts, and the custom airbrush

paint job of the battery enclosure.

Kalle Hellgren 3D-modeled the battery enclosure and the motor mountings

which helped keeping the costs of the project lower. The work hours of the

team members can be calculated in thousands of hours.

2 COMPONENTS AND TECHNOLOGIES

EbanditXamk has numerous electronic devices that need to be able to com-

municate with each other. These devices were selected after a thorough in-

vestigation of available products. One important selection criterion was that

the devices could be configured to communicate with each other.

This chapter introduces the selected devices at a high level. Additional infor-

mation about the electronics can be found in the manufacturer’s official docu-

mentation.

9

2.1 Raspberry Pi

The heart of the system is Raspberry Pi 3 Model B+ with the Raspbian buster

operating system.

Raspberry Pi is a single-board computer with an ARM Cortex-A53 1.4GHz

processor and up to 1GB SRAM. It has built-in Wi-Fi and Bluetooth. With its

four USB ports and HDMI-port, it is more than enough for this project. It has

40 GPIO-pins of most remain unused.

2.1.1 Raspbian

Raspbian is a free operating system based on Debian optimized for the Rasp-

berry Pi hardware. An operating system is the set of basic programs and utili-

ties that makes Raspberry Pi run /1/.

Raspbian was selected since it is basically a full Linux system. This allows the

use of various Linux interfaces such as Socketcan which is needed to read

and write CAN-frames with the Raspberry.

2.2 BMS

The battery pack of ElectricBandit is made from Lithium-ion batteries. These

kind of batteries need BMS to operate safely. BMS monitors the condition of

the battery pack and protects it in dangerous conditions such as low voltage or

over-current.

The Orion BMS is a fully-featured lithium-ion battery management system that

is specifically designed to meet the tough requirements of protecting and man-

aging battery packs for electric vehicles (EV), plug-in hybrid (PHEV), and hy-

brid vehicles (HEV) with automotive-grade quality /2/.

2.3 Curtis motor controller

The motor controller provides power to the motor of the vehicle. It also

measures the rotation speed of the motor with an encoder and the tempera-

ture of the motor with a thermistor.

10

The operation of the controller is controlled by BMS, thus for example, the

voltage of the battery is getting too low, the BMS sends a command to the

controller to lower its output power. Some parameters of the controller can be

set from the Raspberry, such as Eco or Sport mode or the power of the regen-

erative braking.

The Curtis 'SE' AC controllers utilize the latest technology to increase the

peak current ratings for each size of controller. For a given rating, the SE

models are smaller and cost less than previous Curtis AC controllers, benefits

that are highly advantageous for all types of applications /3/.

2.4 Elcon TC charger

The charger charges the battery pack when it is plugged in. It communicates

with the CAN-bus. When the charger is plugged in the motor controller is pro-

grammed not to provide power to the motor.

2.5 Mcp2515 CAN shield

The Raspberry Pi needs an exterior CAN-shiel to interface with the CAN-bus

of the motorcycle. This shield converts the CAN protocol to SPI which the pro-

cessor of the Raspberry can read and write to.

There were industrial-grade CAN to USB repeaters available on the market

but due to the shortage of components, this shield was selected for the pro-

ject.

2.6 52PI display

The display used in this project was 5-inch capacitive touchscreen display

manufactured by 52Pi. It was connected to the Raspberry Pi with HDMI and

USB cables.

This display was selected to the project due to its high resolution and its size

that made the installation of it easier.

11

2.7 Qt

The user interface was created using a tool called Qt. Qt is a cross-platform

framework, which means that applications programmed with it can run on dif-

ferent devices regardless of operating systems. It is used by high-profile com-

panies such as Mercedes-Benz and Koenigsegg which made it a perfect

choice for this project.

The power of Qt comes from its ability to combine lower-level programming

languages such as C++ with higher-level languages. In this project, all the

business logic code is written with C++, and the visual parts are written with

QML. This makes the application much faster compared to for example appli-

cations programmed with python.

Qt comes with a wide variety of libraries and APIs to serve the needs of a de-

veloper.

3 CAN-BUS

The communication between all the motorcycles devices was handled with a

CAN-bus. Because CAN-bus is a great part of this project, it is important to

cover it with more detailed information. The programming of the CAN-bus is

covered in later sections.

3.1 History

CAN is a serial field bus protocol that was originally used in road vehicles. Its

development history can be traced back to the early 1980s. At that time, all

automotive manufacturers were using these point-to-point problems and wir-

ing also systems enhance to the connect safety and electronic devices robust-

ness, Bosch in vehicles. developed as the application of electronics increased

rapidly, the wiring between different components became heavy, long, expen-

sive, and disorganized; it also made repairs very difficult /4 p. 2/.

12

3.2 Can bus layers

CAN-bus can be divided into three layers which are the physical layer, the

data link layer, and the higher layer. /4 p. 11/. This basically means wiring, bits

running on the CAN-bus, and converting the bits to a human-readable form.

Programming of the CAN protocol used in this project is introduced in chapter

5.2

3.2.1 Physical layer

According to the ISO 11898 standard, the CAN-bus consists of a twisted pair

cable. One wire is CAN High which voltage range is 2.5 V to 4 V, the other is

CAN Low which voltage is from 1 V to 2.5 V. The voltage difference repre-

sents values 0 (dominant) or 1 (recessive) /1 s. 12/.

The CAN-bus has always at least two nodes. The twisted pair cable must

have a 120 Ω terminating resistor to minimize signal reflection /4 p. 13/.

Image 3. Representation of the CAN-bus

Image 3 shows the planned CAN-bus wiring of the devices of the motorcycle.

The terminating resistors were connected close to the BMS and the motor

controller.

13

3.2.2 Data link layer

In the OSI reference model, the Data Link Layer (DLL) is one layer above the

physical layer. Its function is to assemble the signals received from the physi-

cal layer into a meaningful message to provide a procedure for data transmis-

sion control /4 p. 15/.

3.2.3 Higher layer

The CAN Specification 2.0 and ISO 11898 jointly only specify the physical and

data link layers in the OSI reference model. They do not define any tasks from

the application layer, such as Start-up behavior, Identifier (ID) definition for dif-

ferent nodes, flow control, transportation of data exceeding data frame (eight

bytes), data frame content definition, status reporting, and so on /4 s. 15/.

To supplement the CAN definition, there are associations, organizations, and

companies specifying the higher layer protocol for CAN. The common proto-

cols are CANopen (CAN in Automation), DeviceNet (Allen Bradley), CANaero-

space, OSEK/VDX, etc. CAN Kingdom (KV ASER), J939 (by SAE), SDS,

CANaerospace, OSEK/VDX etc /4 s.15/.

3.3 CAN frames

Messages that are sent via CAN-bus are called frames. A can frame sent from

a device can be seen from other devices on the bus. Receiving devices will

then decide if they are going to do any actions based on the frame or will they

ignore it.

There are four types of CAN frames:

• Data frame

• Remote frame

• Error frame

• Overload frame

3.3.1 Data and remote frames

Contents of a data frame are:

• Start of the frame, which tells about a new frame.

• ID, Unique ID of the frame.

14

• Remote transmission request, 0 for sending data and 1 for requesting.

• Control field, data length.

• Data field, Actual data.

• CRC, Cyclic redundancy check, check that the frame is valid.

• End of the frame /5/.

Data and remote frame differ in that the remote frames data field is empty

Image 4. Standard 11-bit ID can frame (Wilfried Voss 2018).

Image 4 shows the contents of a CAN frame. This would appear as zeroes

and ones if viewed with an oscilloscope.

3.3.2 Error frame

The active error frame has six consecutive dominant bits. This frame is sent if

a node detects an error condition on the CAN-bus. The other nodes on the

bus detects this error frame and they will start transmitting error frames also /4

p. 21/. Image 3 below shows the contents of a error frame.

15

Image 3. Contents of error frame (Copperhill Technologies 2017)

3.3.3 Overload frame

The overload frame is used by the receiver to notify that it is not ready to re-

ceive any frames. Like an error frame, the overload frame is also comprised of

two fields: an overload flag consisting of six to twelve dominant bits, and an

overload delimiter consisting of eight recessive bits /4 p. 21/.

3.4 Prioritization

Devices can send data to the CAN-bus whenever it is available. If several de-

vices are sending frames at the same time, the frame with the lowest ID will

be sent and the others ignored.

4 DESIGN

This section covers the design process of the graphical user interface and the

system architecture. The basic idea of this design was to make the system as

modular as possible. This means that the development of the system can be

done more easily in the future. One can simply design a device that sends its

data via the CAN-bus and easily integrate it into the project.

4.1 Displayed values

The actual implementation part of this project started by gathering information

about the devices running in the system. It is important to understand at least

the very basics of the concepts behind all the devices sending information to

the CAN-bus. This research process started before the motorcycle was

bought and it took a good part of the design time of the whole project.

16

4.1.1 Battery values

The battery is the most crucial part of an electric vehicle. The driver needs to

have information about the state of the battery during driving. The most im-

portant values that are shown on the screen are discussed in this chapter.

More information about the battery pack can be found in Kalle Hellgren’s the-

sis or from at https://www.youtube.com/watch?v=UEFlmc8w0dg which is a

video of manufacturing one smaller battery pack module for this project.

Lowest cell voltage

The battery pack of the motorcycle consists of 28 lion cells connected in paral-

lel and 29 cells connected in series. This means that the voltage of one paral-

lel-connected group is the same. The total voltage of the pack is the sum of

the parallel-connected groups.

Lion cells can operate safely from around 2.7 volts to 4.2 volts. (These num-

bers can vary a little based on the battery type). The weakest link of the bat-

tery pack is the group that has the lowest voltage. This information is im-

portant for the driver since he/she can start driving economically when the

voltage is getting lower. Of course, the battery management system is lastly in

charge to cut the power when the voltage of one cell group is getting danger-

ously low.

Highest cell temperature

The battery pack was divided into five individual packs which were connected

in series with copper busbars. One temperature sensor was installed in the

middle of each pack. The highest temperature is displayed on the screen. The

lithium-ion cell type that was used in this project can handle up to 80 °C of

heat. As for the lowest cell voltage, the driver can act if the temperature is get-

ting too high.

State of charge

State of Charge (SoC) describes how much the battery pack has capacity Ah

or energy KWh left. It is calculated by the BMS with an algorithm that inte-

grates the current of the battery pack over the charge or discharge cycle.

https://www.youtube.com/watch?v=UEFlmc8w0dg

17

The capacity of the battery pack is 87Ah and the total energy is a little over

10kWh fully charged. SoC was displayed in ampere-hours in this case since it

was more relevant than kilowatt-hours in this case. Another option would have

been to display the SoC in percentage, but I preferred this option.

Current, voltage, power, and energy consumption

Current, voltage power, and energy consumption were values that wanted to

be shown for the driver. The BMS sends these values to the CAN-bus at 20ms

intervals, and they are updated immediately in the display.

The energy consumption [KWh/km] was calculated from the battery pack

power and the time is taken for driving one kilometer using the formula:

𝑈 ∗ 𝐼 ∗
1𝑘𝑚

𝑣

Where

U = voltage

I = current

v = is the velocity in km/h.

Image 4. BMS can frames

Image 4 illustrates the can frames that were configured to be sent from the

BMS. Every value that the BMS is supervising can be sent to the CAN-bus.

18

4.1.2 Motor controller values

Like the BMS the motor controller is an autonomously functioning device that

is programmed to give power to the motor and to communicate with other de-

vices in the CAN-bus. This chapter describes only the values that are dis-

played on the screen. More information about the controller can be found in

Miikael Riuttaskorpi’s thesis.

Speed

The electrical motor that was used in this project has an integrated encoder

that sends feedback to the controller. The controller converts this data to revo-

lutions per minute and then sends it to the CAN-bus.

The rpm value can be converted to speed when the gear ratio of the motorcy-

cle’s sprockets and the perimeter of the rear wheel are known. The formula

used for converting rpm to km/h is as follows:

(
𝑟𝑝𝑚
𝐺𝑟 ∗ 𝑝 ∗ 60𝑚𝑖𝑛)

1000𝑚

Where

Gr = gear ratio

p = perimeter

This formula converts the rpm value to meters per hour. It is then divided by

1000 to get kilometers per hour.

Motor temperature

The motor has also an integrated temperature sensor whose data is also sent

to the CAN-bus by the controller. The safe operating temperature of the motor

goes up to 140°C

4.1.3 State of switches

All the motorcycle’s physical switches were connected to an Arduino Uno,

which controls the motorcycle's lights, hazards and horn. The Arduino is also

programmed to send its data to the CAN-bus. The screen displays if the haz-

ard is turned on the left or right and it also tells the driver which light is on.

19

This chapter describes the CAN-bus functionality from Arduino’s perspective.

More information about the source code and wiring of the Arduino can be

found in Miikael Riuttaskorpi’s thesis.

Image 5. Arduino function for sending CAN frame

Image 5 illustrates a simple function for sending a CAN message based on

the state of the switches of the motorcycle. The function works like this; it first

initiates a variable which is type tCAN. (The type comes from the library that

was used). Then an ID, remote transfer request, and data length fields are as-

signed to that variable. Note that the remote transfer request is 0 since no

data is being requested.

Next data will be assigned for the data fields of the frame. The first three fields

of the message had actual data while the others were only 0x0. For example,

if the light switch is turned on low beam, then the headlightCanState variable

would have the value of 0x01, at high beam, it would be 2 and 0 when the

lights are turned off.

20

Image 6. Arduino function for reading CAN frame

Image 6 shows a function for reading CAN-bus data with Arduino. This func-

tion checks if there are any messages in the CAN-bus. The working principle

of this function is that it initiates a variable of type tCan. Then it checks if there

are any frames in the CAN-bus and if there is, it calls for get_message func-

tion and passes a reference to that already created variable as its argument.

The get_message function uses SPI to convert the CAN-bus data into a

format that the Arduino can use. It also assigns the needed fields for the

message that can be then used in the Arduino code.

The next step is to check that the message has the ID that Arduino is

interested in, in this case, it was 0x651. If a message with this ID was found its

first data field would have been assigned to a variable that controls the led

strips of the motorcycle.

21

Image 7 Part of the get_message function from the library

Image 7 is shown for illustrating the contents of a third-party library. This func-

tion is called from the Arduino’s software described above.

4.2 Graphical layout

The user interface (UI) is the space where interactions between humans and

machines occur. UI is an integral aspect of user experience (UX) that consists

of two major parts: visual design, which conveys the look and feel of a prod-

uct; and interaction design, which is the functional and logical organization of

elements /6/.

UI design prioritizes the user’s visual experience. A good user interface is

functional, reliable, and enjoyable to use. User interface design should mini-

mize the effort that the user has to invest interacting with a product and help

users accomplish their goals with ease /6/.

The first goal was to create a layout that is easy to understand, and which de-

scribes all the necessary information about the devices in the CAN-bus.

This layout included gauges for speed and battery state of charge. Other val-

ues were presented with a representational icon that changes color based on

22

values retrieved from the CAN-bus. The actual values are displayed under the

icons. Image 8 shows a demo version of the user interface running on a PC.

Image 8. The first version of the user interface

It is important to highlight the values with colors since the driver won’t have

too much time to inspect the display while driving. The values displayed from

the top left are:

• Battery voltage.

• Battery current.

• Motor temperature.

• Highest battery temperature, there are a total of 5 thermistors.

• Clock and heading.

• Speed.

• Battery state of charge

The layout was programmed with QML language, and it was connected to the

C++ backend using Qts methods.

4.3 Installation of the Screen

The screen needed to be installed in a such place where it could be easily

read. The most natural place was to install it on the gasoline tank. Kalle

Hellgren designed and 3D-printed a ring where the display could be installed

23

and I manufactured casing for it from a 1mm steel plate. The casing was MIG-

welded onto the tank. The screen was then clued to the casing using Sikaflex

for water insulation after the tank was painted.

Image 9. Welding of the screen casing

An important note when welding thin metal is that the welding should be done

in short tacks to prevent warping and burning through the metal. As figure 9

shows the casing was tacked for about 2 centimeters at a time and then

switched to another position. This allows the weld to cool down.

24

Image 10. Painted tank

Image 10 shows the finished tank. The tank was cut hollow to make more

space for the charger and junction box of the motorcycle. The metal under-

neath the screen was also cut to make it possible to plug or unplug the USB

and HDMI cables of the screen.

The ring for the screen is visible in the top left corner of the image. More infor-

mation about how the casing was made can be found in this video

https://www.youtube.com/watch?v=b40mqFr8uNo.

5 QT LIBRARIES

The communication between the user interface and the devices on the CAN-

bus was programmed using C++. As mentioned earlier Qt has many libraries

and APIs to interface with the lower-level components and drivers of the target

device. This chapter describes the classes and functions of the library. More

information and programming examples are provided in chapter 6.4.

https://www.youtube.com/watch?v=b40mqFr8uNo

25

5.1.1 Qt Serial Bus

The Qt Serial Bus API provides classes and functions to access the various

industrial serial buses and protocols, such as CAN, Modbus, and others. /7/.

5.1.2 QCanBus

QCanBus class was used to connect the application to the socketCan driver of
the raspberry.

Image 11. Example code provided by Qt (qt.io 2022)

5.1.3 QCanBusFrame

QCanBusFrame is a container class representing a single CAN frame. It con-

tains the frame identifier and the data payload. QCanBusFrame contains the

timestamp of the moment it was read /7/.

5.1.4 QCanBusDevice

QCanBusDevice communicates with a CAN plugin providing users with a con-

venient API. The CAN plugin must be specified during the object creation /5/.

This class contains the functions that are used for reading and sending CAN-

frames. An object whose type is QcanBusDevice is created Programmatically

and its functions are then used.

6 RASPBERRY PI PROGRAMMING

The programming of the screen started by installing the Raspbian operating

system and configuring all the needed settings for the Raspberry. This chapter

describes the necessary information for setting up the programming

26

environment and some programming examples. One is advised to find more

information from other sources.

The knowledge needed to program the software was gained through the time

undersigned was in school, from different courses, forums, technical docu-

mentation, and work-life. The learning curve was steep, but luckily Raspberry

Pi and Qt have a great and open community where one can find help for their

problems.

6.1 SSH connection

The programming of the raspberry was done via SSH connection using Linux

PC. Raspberry Pi OS has the SSH server disabled by default. It can be ena-

bled manually from the Raspberry’s terminal using commands:

sudo raspi-config in a terminal window

Select Interfacing Options

Navigate to and select SSH

Choose Yes

Select Ok

Choose Finish /8/.

6.2 Connecting to internet

The Raspberry Pi must be connected to the internet for the SSH connection to

work between the PC and the raspberry. The Raspberry can be connected to

the internet by an ethernet cable or Wi-Fi. When using Wi-Fi, it is easiest to

use the interface of the Raspberry to enter the Wi-Fi password.

Another option to connect to Wi-Fi is from the terminal of the Raspberry. Com-

mand “sudo nano /etc/wpa_supplicant/wpa_supplicant.conf” opens a configu-

ration file where one can add Wi-fi credentials.

Image 12. Example of network configuration. (Raspberrypi.com 2022)

27

Figure 12 represents an example network configuration after the config file

was open. After saving and closing the file by pressing ctrl + x, the Raspberry

should be booted, and it should be able to connect to the configured Wi-Fi net-

work.

The next step was to find the Raspberry’s IP address. It could be achieved in

multiple ways, but the simplest was to type ‘’hostname -I’’ in the Raspberry’s

terminal. This command returns the IP of the Raspberry, for example

192.168.1.8 and now it was possible to connect the PC by using command

‘’ssh pi@192.168.1.8”, where pi is the name of the Raspberry, by default it is

pi.

6.3 Software installation

Lots of software needed to be installed into the PC used in programming and

into the Raspberry. This chapter describes the used software and their instal-

lation. The software used were mainly open source and the information about

them can be found in official documentations of the software.

6.3.1 Qt

Qt was downloaded from the Qts official webpage https://www.qt.io/download

and selecting the open-source version. This method downloaded Qt online in-

staller. The installer was used to select and download the right version of the

Qt which was 5.15.0 in this case. The installer also installed Qt creator IDE

which was used to program the user interface.

https://www.qt.io/download

28

Image 13. Qt Creator IDE and some C++ code

Image 13 is a screenshot from the Qt creator illustrating the checkFrames

function. This function is called every time that there are data on the CAN-bus.

The function checks the validity of the frame first and then starts to do actions

based on the frame’s ID if the data was valid. This code was written at the

early stages of the project, and it is different at the time of writing.

6.3.2 Compiler for raspberry

The system architecture of a Raspberry Pi is different than PCs which means

that a cross-compiler needed to be installed to run the software on Raspberry

Pi. The compiler and additional software packages were installed according to

instructions found in this link https://github.com/UvinduW/Cross-Compiling-Qt-

for-Raspberry-Pi-4.

6.3.3 Can-utils

Can-utils is a Linux-specific software package for interfacing the SocketCan

driver of the Raspberry Pi kernel. The Raspberry needed some configuration

to open the CAN communication.

The CAN-utils package was installed with “sudo apt-get install can-utils” com-

mand on Raspberry’s terminal. After the can-utils was installed, it was needed

to open /boot/config.txt file by typing “sudo nano /boot/config.txt” in the

https://github.com/UvinduW/Cross-Compiling-Qt-for-Raspberry-Pi-4
https://github.com/UvinduW/Cross-Compiling-Qt-for-Raspberry-Pi-4

29

terminal and adding “dtoverlay=mcp2515-can0,oscillator=8000000,inter-

rupt=12”, “dtoverlay=spi-bcm2835-overlay” lines at the end of the file. Adding

these lines in the file gives the MCP2515 integrated circuit in the CAN-shield

instructions to function properly.

6.3.4 Bringing can interface up

The CAN-network was set up using command “sudo ip link set can0 up type

can bitrate 250000” in the Raspberry’s terminal. This command sets the CAN

network up at 250Kb/s speed. The speed was set to 250Kb/s because the mo-

tor controller uses that speed, and it cannot be configured to use any other

speed.

A shell script was written to automate the process of bringing the CAN net-

work up, and for starting the user interface software after the Raspberry was

booted up correctly.

6.4 User interface programming

The easiest part of the project was the actual user interface programming.

Most of the time was used for background work like choosing the right devices

for the system or researching the documentation of the Qt framework. This

chapter describes the principal ideas of the motorcycle’s UI software starting

from the C++ side and ending on the QML side.

6.4.1 C++

The C++ side of the software handles all the CAN-bus communication, and it

is also used to render the speed and SoC gauges of the screen. C++ assigns

values to the QML front-end.

30

Image 14. C++ class for displaying SoC

Image 15 shows a constructor for a C++ class that renders the state of charge

of the battery. Variables that start with the m_ prefix are member variables or

properties of the class.

Image 16. Get function for the class properties

Get functions are used to get the value of the property. The get function is

called when a property of this class is being accessed.

31

Image 17. Set function for property m_BatteryLevel

Set functions are called if one wants to change the value of the class property.

The function checks that the value assigned to the property is different than it

was already, and if it was different, it would assign the value and call for the

update function that updates the value on the display.

Emit batteryLevelChanged is Qts special way to signal when an object’s inter-

nal state has changed in some way that might be interesting to the object's cli-

ent or owner /9/.

Image 18. Main function

The main function is where the software starts. All the needed objects are initi-

ated in the main function. Also, the custom C++ classes are registered as a

QML-types which makes it possible to render them on the display. Casting

them as a QObject allows their values to be changed later in the code.

32

Image 19. Function for setting displayed values

Image 18 shows a function that is called whenever there is a CAN-frame on

the CAN-bus with an ID of 0x601. The function assigns the data field of the

frame to a variable called payload which is a type of QByteArray. Next, it

reads the values of the first three fields of the payload and assigns them to

variables that are typed as integers.

The value for motors rotation is sent by two bytes and they had to be con-

verted to a 16-bit value. The value of motor temperature was sent using one

byte only.

The actual speed of the motorcycle is then calculated using the formula dis-

cussed in chapter 4.1.2. After converting the values to a readable form, they

were assigned to the QML side of the software using the setProperty function.

Image 20. IDs of the CAN-frames of the system

The IDs of every CAN frame on the CAN-bus are described in image 19. The

software has a function for every ID for decoding the bytes and displaying the

values on the screen.

33

Image 21. Actual can data

Image 21 shows the actual CAN data of the system. The data was read with a

CAN-bus reader. The equations for converting the data to a human readable

form can be found in appendix 1.

6.4.2 QML

As already mentioned, the QML code is responsible for rendering the visual

elements on the screen. The Qt creator has a drag and drop feature for creat-

ing user interfaces, but in this case, it was not used.

 Image 22. The layout of the user interface

The items on the display are set on the screen as image 22 shows. The win-

dow was wrapped inside a column layout which makes the items appear on

top of each other. The items in the top bar are wrapped inside a row layout

that sets the items side by side. The speedometer, light indicators, and state

of charge are wrapped in another row layout where light indicators and state

of charge are in a column layout.

34

Image 23. QML code syntax

Image 23 shows the syntax of the QML language. The curly brackets repre-

sent the scope of the item. For example, all the items are inside the column

layout but inside the row layout, there are only the items that are under the

toolbar of the user interface.

35

Image 24. Main QML file

The main QML file is the frame of the user interface’s QML software. As seen

in image 24 the QML software is split into pages that display the information

on the screen. The swipe view item makes it possible to use the touchscreen

to change views of the user interface.

7 RESULTS AND CONCLUSIONS

After around 2000 hours of work from the team, it could be safe to say that the

project was more than successful. The project gained lots of attention from

conventional media and broke records of likes and views on Xamk’s social

media channels. Even Yle made a small TV news about the inspection of the

motorcycle.

Testing of the motorcycle proved that the software of the user interface func-

tions properly without bugs or crashes. It passed the inspection, and it is also

easy to view while driving even in sunny weather when the sun is shining di-

rectly on the screen.

36

The user interface was developed simultaneously with other parts of the mo-

torcycle which added some challenges to the programming of the user inter-

face software. Also, Covid-19 delayed the project for about 6 months since the

school was locked at that time. This caused that all the designed features

could not be programmed onto the user interface within the time limits of the

project.

Image 25. Finished user interface

Image 25 shows the user finished user interface. The values are clearly dis-

played to the user. The current and power are negative because the motorcy-

cle is plugged in for charging.

If there would have been more time for developing the user interface, I would

have developed a remote-control application for a mobile phone for visualizing

37

the motorcycle’s data and for controlling it. This could have been done using

MQTT communication between the Raspberry and the mobile phone.

The future of the motorcycle is to go around events related to vehicles or tech-

nology and to be a studying material for the future students of Xamk. I person-

ally hope that one is going to develop the user interface more. If information is

needed one can contact me for a briefing.

REFERENCES

[1] Raspbian documentation. WWW document. https://www.rasp-
bian.org/ [referred 18.1.2022]

[2] Orion battery management system documentation. WWW docu-

ment. Available at: http://www.orionbms.com/ [referred 18.1.2022]

[3] Curtis motor controller documentation. WWW document. Availa-

ble at: https://www.curtisinstruments.com/products/motor-control-
lers [referred 19.1.2022]

[4] Zhu, Y. CAN and FPGA Communication Engineering: Implemen-

tation of a CAN Bus Based Measurement System on an FPGA

Development Kit. Diplomica Verlag. 2010

[5] Wilfried, V. Controller Area Network (CAN Bus) - Message Frame

Architecture. WWW document. Available at: https://cop-

perhilltech.com/blog/controller-area-network-can-bus-message-

frame-architecture/ [referred 18.1.2022]

[6] Adobe. UI design. Available at: https://xd.adobe.com/ideas/pro-
cess/ui-design/ [referred 4.3.2022]

[7] Qt. Documentation of serial bus class. WWW document. Available
at: https://doc.qt.io/qt-5/qtserialbus-index.html
[referred 4.3.2022]

[8] Raspberry Pi documentation. WWW document. Available at:

https://www.raspberrypi.com/documentation/computers/remote-
access.html [referred 27.4.2022]

https://www.raspbian.org/
https://www.raspbian.org/
http://www.orionbms.com/
https://www.curtisinstruments.com/products/motor-controllers
https://www.curtisinstruments.com/products/motor-controllers
https://copperhilltech.com/blog/controller-area-network-can-bus-message-frame-architecture/
https://copperhilltech.com/blog/controller-area-network-can-bus-message-frame-architecture/
https://copperhilltech.com/blog/controller-area-network-can-bus-message-frame-architecture/
https://xd.adobe.com/ideas/process/ui-design/
https://xd.adobe.com/ideas/process/ui-design/
https://doc.qt.io/qt-5/qtserialbus-index.html
https://www.raspberrypi.com/documentation/computers/remote-access.html
https://www.raspberrypi.com/documentation/computers/remote-access.html

38

[9] Qt. Documentation for signals and slots. WWW document. Availa-
ble at: https://doc.qt.io/qt-5/signalsandslots.html [referred
28.4.2022]

https://doc.qt.io/qt-5/signalsandslots.html

39

 Appendix 1

40

 Appendix 2/4

41

 Appendix 3/4

42

 Appendix 4/4

	1 Introduction
	1.1 Need for a self-made user interface
	1.2 EbanditXamk

	2 components and technologies
	2.1 Raspberry Pi
	2.1.1 Raspbian

	2.2 BMS
	2.3 Curtis motor controller
	2.4 Elcon TC charger
	2.5 Mcp2515 CAN shield
	2.6 52PI display
	2.7 Qt

	3 Can-bus
	3.1 History
	3.2 Can bus layers
	3.2.1 Physical layer
	3.2.2 Data link layer
	3.2.3 Higher layer

	3.3 CAN frames
	3.3.1 Data and remote frames
	3.3.2 Error frame
	3.3.3 Overload frame

	3.4 Prioritization

	4 Design
	4.1 Displayed values
	4.1.1 Battery values
	4.1.2 Motor controller values
	4.1.3 State of switches

	4.2 Graphical layout
	4.3 Installation of the Screen

	5 qt libraries
	5.1.1 Qt Serial Bus
	5.1.2 QCanBus
	5.1.3 QCanBusFrame
	5.1.4 QCanBusDevice

	6 Raspberry pi programming
	6.1 SSH connection
	6.2 Connecting to internet
	6.3 Software installation
	6.3.1 Qt
	6.3.2 Compiler for raspberry
	6.3.3 Can-utils
	6.3.4 Bringing can interface up

	6.4 User interface programming
	6.4.1 C++
	6.4.2 QML

	7 Results and conclusions
	REFERENCES

