Atte Marttinen

Design and implementation of graphical
user interface for electric motorcycle

Bachelor’s thesis

Bachelor of electrical and automation engineering

2022

Kaakkois-Suomen
ammattikorkeakoulu

Kaakkois-Suomen

ammattikorkeakoulu

Degree Bachelor of Engineering

Author (authors) Atte Marttinen

Thesis title Design and implementation of a graphical user interface for elec-
tric motorcycle

Commissioned by Xamk

Time 2022

Pages 38 pages, 4 pages of appendices

Supervisor Teemu Manninen

ABSTRACT

This thesis describes the designing and implementation process of a graphical
user interface for electric motorcycle using Qt. The project was started at the
end of year 2019 and finished in April of 2022. The project was carried out by
three electrical and automation engineering students.

The motorcycle has numerous electronic devices whose information and state
need to be displayed to the driver. The goal of this thesis was to create a user
interface that is easy to understand and view while driving. The user interface
was decided to be programmed by me because there were no good options
available for this project in the market.

This thesis starts by introducing the main components of the motorcycle such
as the battery management system and the motor controller. These compo-
nents were chosen to be discussed in this thesis because an user interface
developer must understand at least the basics of the system to be able to cre-
ate a working interface for the vehicle.

The thesis then continues to discuss about CAN-bus protocol since it was
used in this project as a communication method between the electronics of the
motorcycle.

After the hardware of the system was described, the thesis proceeds to the
actual implementation process of the project. At this point, the steps for setting
the developing environment up are introduced. The software was developed
with an open-source principle which means that one can use the software as
desired. The source code can be used also as a template for any vehicle or
system that uses CAN-bus as its communication method.

The outcome of this thesis was a working user interface that can display the
information of the system to the driver. The modular design of the system sim-
plifies the possible future developing work, meaning that components that use
CAN-bus communication can be easily added to the system.

Keywords: CAN-bus, Qt, user interface, Raspberry Pi, electric motorcycle

South-Eastern Finland
University of Applied Sciences

Tutkintonimike Insin66ri (AMK)

Tekija/Tekijat Atte Marttinen

Tyon nimi Sahkomoottoripyoran kayttoliittyman suunnittelu ja toteutus
Toimeksiantaja Xamk

Vuosi 2022

Sivut 38 sivua, liitteité 4 sivua

TyoOn ohjaaja(t) Teemu Manninen

Tiivistelma

Tassa opinnaytetyossa kaydaan lapi sahkdomoottoripydramuunnoksen graafi-
sen kayttoliittyman suunnittelu- ja toteutusprosessia. Projekti alkoi vuoden
2019 lopulla ja paattyi paasiaisena 2022. Projektin toteutti kolme sahko- ja au-
tomaatioinsindoriopiskelijaa. Projektitiimi valittiin kilpailulla, jonka tarkoituk-
sena oli tehda esisuunnitelma sahkdmoottoripydramuunnoksesta.

Moottoripyorassa on monia elektronisia laitteita, joiden tilasta taytyy saada
tieto kuljettajalle. Taman opinnaytetydn tarkoitus oli luoda helposti ymmarret-
tava kayttoliittyma, jota pystyttaisiin lukemaan myods ajaessa. Kayttoliittyma
paéatettiin luoda itse, koska markkinoilla ei ollut sopivia nayttdja tahén projek-
tiin.

Opinnaytetytssa esitellaan moottoripydran oleellisimmat komponentit pikai-
sesti, jotta lukija ymmartaa niiden toiminnan korkealla tasolla. Naiden kompo-
nenttien toiminnan ymmarrys on suotavaa, jotta kehittdja osaa suunnitella
kayttoliittyman siten, etta siité pystyy nakemaan laitteen tarkeimmat arvot, esi-
merkiksi akuston jannitteen.

CAN-vaylan ohjelmointi ja kytkennat olivat iso osa tata tyota, silla moottoripyo-
ran elektroniikka kommunikoi keskenaan kayttaen tata tiedonsiirtomuotoa.

Kayttoliittyma ohjelmointiin open-source-periaatteella, mika tarkoittaa sita, etta
kuka vain voi kayttaa ohjelmaa haluamallaan tavalla. Opinnaytety0 sisaltaa
tarkeimmat vaiheet ohjelmointiympériston pystyttdmiseen seké ohjelmointiesi-
merkkeja. Yhdessa lahdekoodin seka ohjelmointiesimerkkien kanssa lukija
pystyy hahmottamaan ohjelman toiminnan ja kehittamaan sita niin halutes-
saan.

TyoOn tuloksena syntyi tavoitteet saavuttanut kayttoliittyma, joka osoittautui tes-
tien perusteella toimivaksi. CAN-vaylan toiminta oli luotettavaa, eikd ohjelma
kaatunut bugeihin. Modulaarinen suunnittelu helpottaa mahdollisen jatkokehi-
tyksen, silla ainoa vaatimus pydraan asennettavalle elektroniikalle on, etta sen
taytyy kyeta kommunikoimaan CAN-vaylan kautta paatietokoneelle.

Avainsanat. CAN-vayla, Qt, kayttoliittyma, Raspberry Pi, sd@hkomoottoripyora

TABLE OF CONTENTS

1

4

INTRODUGCTION ..ottt e s e aaaaaaaaaaaaaeaaaeeees 6
1.1 Need for a self-made USer INtErface...........ccooiiiiiiiiii e 6
1.2 EDANAIXAMK. ...t 7

COMPONENTS AND TECHNOLOGIES ..o 8
2.1 RASPDEITY Pl e e e 9

2.1.1 RASPDIAN ... e e e e e e e ————— 9
2.2 B S 9
2.3 CuUrtisS MOtOr CONTIONEToeiiiieie e 9
2.4 EICON TC CRarger ... 10
2.5 MCP2515 CAN ShI€ld.....coiiiiiiiiiiie e 10
2.6 B2PI diSPIAY oieeii e ———————————— 10
2.7 Qoo ettt ettt e et n et n et enen e, 11

CAN-BUS ettt 11
0 A o 1510 o PP PP PPPP PP 11
3.2 AN DUS LAY BIS i —————————————— 12

3.2. 1 PRYSICAl LAY ... 12

3.2.2 DaAta lINK [AYET ...eveeeeeeeeee et e e e e e e e 13

3.2.3 HIGEr [aYer ... ———————— 13
3.3 CAN fTAMES et e et e e e st e e e e b b e e e e et b e e e e e annneeeas 13

3.3.1 Data and remote fraMES.........oeiiiiiiiiiiie it 13

3.3.2 EITON frAMIE ettt 14

3.3.3 OVErlOAd fTAMEcei i 15
K S 10 11 172=\ 1[0 o IO TP UPRPPPPRPRTRIN 15

DESIGN . e aaaaaaaaaaes 15
4.1 DISPlay@d VAIUES.........uiiiiiiiieiee et e e e e e e e e e e e e e aea e 15

4.1.1 Battery VAlUBSooeioeiie et 16

4.1.2 MOLOF CONTTOIBE VAIUEGS ...ttt e e e e e e e e e e e e e e e e aaees 18

4.1.3 S At Of SWITCNES .. et e e aees 18

A € = o] o o= | F= Yo 11 | P PERRRRR 21
4.3 Installation Of the SCrEEN ..o 22
S QT LIBRARIES ... 24
5.1.1 QU SErial BUS...coooi i 25
5.1.2 QECANBUS ..o 25
5.1.3 QCanBUSFIamME.... oo e e e 25
5.1.4 QCaANBUSDEVICEccoeiii e 25
6 RASPBERRY Pl PROGRAMMING........cittiiiiiiiiiiiiitiiiiiiiiiiie e 25
6.1 SSH CONNECHIONceiiiiiiiiiie ettt e e e 26
6.2 CONNECHNG 10 INTEINETeiiiiiiiiii e 26
6.3 Software INSLallAtioNcooiiiiiiii e 27
B.3.1 Qe oottt ettt ettt ee ettt er et seer e, 27
6.3.2 Compliler for raspherry.........cui e ——— 28
6.3.3 CAN-ULIIS ... e 28
6.3.4 Bringing Can iNTEIrfaCe UP........ueeieiiiiiiieeaiiiiie et 29
6.4 User interface programming........ccueeeeeeeeeeeiiiiiiirieiieereeseeesessssanrreeereeseeeeessessnsssnnees 29
B.4.] G e s 29
B.4.2 QL oottt ettt ettt ettt n e er s, 33
7 RESULTS AND CONCLUSIONS.o 35
REFERENGCES. oottt e e e e e e oo oo e e e e e e e e e e e e e e e e eeee et e eeeeeeeeeesesssessnessnnnsnnnes 37
APPENDICES

Appendix 1. Orion BMS CAN pids.

1 INTRODUCTION

EBanditXamk is a school project that aimed for converting a conventional mo-
torcycle into an electric-powered one. It was designed and developed by three
electrical and automation engineering students. The project started at the end

of the year 2019 and was completed In April of 2022.

The team for the project was selected by a competition where students were
meant to draw up a preliminary plan for the motorcycle conversion. Our team
which consisted of Me, Kalle Hellgren, and Miikael Riuttaskorpi won the com-

petition.

The project started by searching for a motorcycle according to the preliminary
plan. A suitable one was found in Helsinki for a reasonable price. This motor-

cycle had a faulty engine, which made it perfect for the project.

The objective of the project was to gain knowledge and data about electrical
vehicles for Xamk. The secondary objective was to get teaching material for
electronics and automation courses. Future students can study and develop

the motorcycle even further.

1.1 Need for a self-made user interface

There were no displays available that would serve the needs of this project for
sale. At the very beginning of the project, it came clear that one had to be de-
signed for the motorcycle for it to meet the appearance and usability stand-

ards defined in the preliminary plan.

The minimal objectives set in the preliminary plan were that the driver should
be able to see the most important information about the system on the display,
such as speed, state of charge, and battery voltage. The physical installation
should also be good looking for anyone who is not interested in electrical vehi-

cles.

Many technologies could have been used for creating the user interface of
Ebandit. This thesis describes how it was created and why the technologies

used, were chosen to be used. This thesis is not intended to be a

7

programming tutorial but to be an informational writing about designing and
developing an user interface for an electric vehicle. The source code can be
found on Github.

1.2 EbanditXamk

The motorcycle chosen for this project was Suzuki Gsf 600, more familiarly
known as Suzuki Bandit. Bandit was chosen because of its steel frame, which
made the installation of the electric motor and the batteries easier. The sec-
ond reason was that it is rather good-looking even without any modifications.

B

> AN
X T TR
O AN R
. \\\\\\\\“{ttt\\\\\\\

AL LTI . AEEEETRERAMAARARASTRARANAN

77
T

Image 1. Suzuki Bandit 600

file:///C:/Users/ama/AppData/Roaming/Microsoft/Word/github

Image 2. Ebandit at American Car Show

Images 1 and 2 show the difference between the original Bandit and the fin-
ished Ebandit. The use of outside work resources was as limited as possible.
The only work that had to be done by people outside the team was the manu-
facturing of the battery enclosure, motor mounts, and the custom airbrush

paint job of the battery enclosure.

Kalle Hellgren 3D-modeled the battery enclosure and the motor mountings
which helped keeping the costs of the project lower. The work hours of the

team members can be calculated in thousands of hours.

2 COMPONENTS AND TECHNOLOGIES

EbanditXamk has numerous electronic devices that need to be able to com-
municate with each other. These devices were selected after a thorough in-
vestigation of available products. One important selection criterion was that

the devices could be configured to communicate with each other.

This chapter introduces the selected devices at a high level. Additional infor-
mation about the electronics can be found in the manufacturer’s official docu-

mentation.

2.1 Raspberry Pi

The heart of the system is Raspberry Pi 3 Model B+ with the Raspbian buster

operating system.

Raspberry Pi is a single-board computer with an ARM Cortex-A53 1.4GHz
processor and up to 1GB SRAM. It has built-in Wi-Fi and Bluetooth. With its
four USB ports and HDMI-port, it is more than enough for this project. It has
40 GPIO-pins of most remain unused.

2.1.1 Raspbian

Raspbian is a free operating system based on Debian optimized for the Rasp-
berry Pi hardware. An operating system is the set of basic programs and utili-

ties that makes Raspberry Pi run /1/.

Raspbian was selected since it is basically a full Linux system. This allows the
use of various Linux interfaces such as Socketcan which is needed to read

and write CAN-frames with the Raspberry.

2.2 BMS

The battery pack of ElectricBandit is made from Lithium-ion batteries. These
kind of batteries need BMS to operate safely. BMS monitors the condition of
the battery pack and protects it in dangerous conditions such as low voltage or

over-current.

The Orion BMS is a fully-featured lithium-ion battery management system that
is specifically designed to meet the tough requirements of protecting and man-
aging battery packs for electric vehicles (EV), plug-in hybrid (PHEV), and hy-
brid vehicles (HEV) with automotive-grade quality /2/.

2.3 Curtis motor controller

The motor controller provides power to the motor of the vehicle. It also
measures the rotation speed of the motor with an encoder and the tempera-

ture of the motor with a thermistor.

10

The operation of the controller is controlled by BMS, thus for example, the
voltage of the battery is getting too low, the BMS sends a command to the
controller to lower its output power. Some parameters of the controller can be
set from the Raspberry, such as Eco or Sport mode or the power of the regen-

erative braking.

The Curtis 'SE' AC controllers utilize the latest technology to increase the
peak current ratings for each size of controller. For a given rating, the SE
models are smaller and cost less than previous Curtis AC controllers, benefits

that are highly advantageous for all types of applications /3/.

2.4 Elcon TC charger

The charger charges the battery pack when it is plugged in. It communicates
with the CAN-bus. When the charger is plugged in the motor controller is pro-

grammed not to provide power to the motor.

2.5 Mcp2515 CAN shield

The Raspberry Pi needs an exterior CAN-shiel to interface with the CAN-bus
of the motorcycle. This shield converts the CAN protocol to SPI which the pro-

cessor of the Raspberry can read and write to.

There were industrial-grade CAN to USB repeaters available on the market
but due to the shortage of components, this shield was selected for the pro-

ject.

2.6 52Pl display

The display used in this project was 5-inch capacitive touchscreen display
manufactured by 52Pi. It was connected to the Raspberry Pi with HDMI and
USB cables.

This display was selected to the project due to its high resolution and its size

that made the installation of it easier.

11

27 Qt

The user interface was created using a tool called Qt. Qt is a cross-platform
framework, which means that applications programmed with it can run on dif-
ferent devices regardless of operating systems. It is used by high-profile com-
panies such as Mercedes-Benz and Koenigsegg which made it a perfect

choice for this project.

The power of Qt comes from its ability to combine lower-level programming
languages such as C++ with higher-level languages. In this project, all the
business logic code is written with C++, and the visual parts are written with
QML. This makes the application much faster compared to for example appli-

cations programmed with python.

Qt comes with a wide variety of libraries and APIs to serve the needs of a de-

veloper.

3 CAN-BUS

The communication between all the motorcycles devices was handled with a
CAN-bus. Because CAN-bus is a great part of this project, it is important to
cover it with more detailed information. The programming of the CAN-bus is

covered in later sections.

3.1 History

CAN is a serial field bus protocol that was originally used in road vehicles. Its
development history can be traced back to the early 1980s. At that time, all
automotive manufacturers were using these point-to-point problems and wir-
ing also systems enhance to the connect safety and electronic devices robust-
ness, Bosch in vehicles. developed as the application of electronics increased
rapidly, the wiring between different components became heavy, long, expen-

sive, and disorganized; it also made repairs very difficult /4 p. 2/.

12

3.2 Can bus layers

CAN-bus can be divided into three layers which are the physical layer, the
data link layer, and the higher layer. /4 p. 11/. This basically means wiring, bits
running on the CAN-bus, and converting the bits to a human-readable form.
Programming of the CAN protocol used in this project is introduced in chapter

5.2

3.2.1 Physical layer

According to the ISO 11898 standard, the CAN-bus consists of a twisted pair
cable. One wire is CAN High which voltage range is 2.5 V to 4 V, the other is
CAN Low which voltage is from 1 V to 2.5 V. The voltage difference repre-

sents values 0 (dominant) or 1 (recessive) /1 s. 12/.

The CAN-bus has always at least two nodes. The twisted pair cable must

have a 120 Q terminating resistor to minimize signal reflection /4 p. 13/.

Controller BMS

Asiaqdsey

Charger Arduino

Image 3. Representation of the CAN-bus

Image 3 shows the planned CAN-bus wiring of the devices of the motorcycle.
The terminating resistors were connected close to the BMS and the motor

controller.

13

3.2.2 Datalink layer

In the OSI reference model, the Data Link Layer (DLL) is one layer above the
physical layer. Its function is to assemble the signals received from the physi-
cal layer into a meaningful message to provide a procedure for data transmis-

sion control /4 p. 15/.

3.2.3 Higher layer

The CAN Specification 2.0 and 1SO 11898 jointly only specify the physical and
data link layers in the OSI reference model. They do not define any tasks from
the application layer, such as Start-up behavior, Identifier (ID) definition for dif-
ferent nodes, flow control, transportation of data exceeding data frame (eight

bytes), data frame content definition, status reporting, and so on /4 s. 15/.

To supplement the CAN definition, there are associations, organizations, and
companies specifying the higher layer protocol for CAN. The common proto-
cols are CANopen (CAN in Automation), DeviceNet (Allen Bradley), CANaero-
space, OSEK/VDX, etc. CAN Kingdom (KV ASER), J939 (by SAE), SDS,
CANaerospace, OSEK/VDX etc /4 s.15/.

3.3 CAN frames

Messages that are sent via CAN-bus are called frames. A can frame sent from
a device can be seen from other devices on the bus. Receiving devices will
then decide if they are going to do any actions based on the frame or will they

ignore it.

There are four types of CAN frames:

Data frame
Remote frame
Error frame
Overload frame

3.3.1 Data and remote frames

Contents of a data frame are:

e Start of the frame, which tells about a new frame.
e D, Unique ID of the frame.

14

Remote transmission request, 0 for sending data and 1 for requesting.
Control field, data length.

Data field, Actual data.

CRC, Cyclic redundancy check, check that the frame is valid.

End of the frame /5/.

Data and remote frame differ in that the remote frames data field is empty

Start of Frame

Remote Transmission Request Delimiter Bits
Bus |5 Message |7 Control Data Field oRC é EOF | IFS | Bus Idle
Idle | Identifier Field Sequence |
Number
of Bits «ra 11 s lie € g 0:0% e 15 L ALE, 7 3,
Interframe
CRC Sequence Space
Arbitration CRC End of
* Feld " *Field "™ " Frame
Field
= Bit Stuffing » Acknowledgement

Field

CAN Data Frame .

Image 4. Standard 11-bit ID can frame (Wilfried Voss 2018).

Image 4 shows the contents of a CAN frame. This would appear as zeroes

and ones if viewed with an oscilloscope.

3.3.2 Error frame

The active error frame has six consecutive dominant bits. This frame is sent if
a node detects an error condition on the CAN-bus. The other nodes on the
bus detects this error frame and they will start transmitting error frames also /4

p. 21/. Image 3 below shows the contents of a error frame.

15

Error Condition Occurs

Uncompleted Frame 8 Blts 3 Bits Retransmission

Error Error
Flag Delimiter
Error Frame Interframe
< >4

Space

Image 3. Contents of error frame (Copperhill Technologies 2017)

3.3.3 Overload frame

The overload frame is used by the receiver to notify that it is not ready to re-
ceive any frames. Like an error frame, the overload frame is also comprised of
two fields: an overload flag consisting of six to twelve dominant bits, and an

overload delimiter consisting of eight recessive bits /4 p. 21/.

3.4 Prioritization

Devices can send data to the CAN-bus whenever it is available. If several de-
vices are sending frames at the same time, the frame with the lowest ID will

be sent and the others ignored.

4 DESIGN

This section covers the design process of the graphical user interface and the
system architecture. The basic idea of this design was to make the system as
modular as possible. This means that the development of the system can be

done more easily in the future. One can simply design a device that sends its

data via the CAN-bus and easily integrate it into the project.

4.1 Displayed values

The actual implementation part of this project started by gathering information
about the devices running in the system. It is important to understand at least
the very basics of the concepts behind all the devices sending information to
the CAN-bus. This research process started before the motorcycle was

bought and it took a good part of the design time of the whole project.

16

4.1.1 Battery values

The battery is the most crucial part of an electric vehicle. The driver needs to
have information about the state of the battery during driving. The most im-

portant values that are shown on the screen are discussed in this chapter.

More information about the battery pack can be found in Kalle Hellgren’s the-

sis or from at https://www.youtube.com/watch?v=UEFImc8w0dqg which is a

video of manufacturing one smaller battery pack module for this project.

Lowest cell voltage

The battery pack of the motorcycle consists of 28 lion cells connected in paral-
lel and 29 cells connected in series. This means that the voltage of one paral-
lel-connected group is the same. The total voltage of the pack is the sum of

the parallel-connected groups.

Lion cells can operate safely from around 2.7 volts to 4.2 volts. (These num-
bers can vary a little based on the battery type). The weakest link of the bat-
tery pack is the group that has the lowest voltage. This information is im-
portant for the driver since he/she can start driving economically when the
voltage is getting lower. Of course, the battery management system is lastly in
charge to cut the power when the voltage of one cell group is getting danger-

ously low.

Highest cell temperature

The battery pack was divided into five individual packs which were connected
in series with copper busbars. One temperature sensor was installed in the
middle of each pack. The highest temperature is displayed on the screen. The
lithium-ion cell type that was used in this project can handle up to 80 °C of
heat. As for the lowest cell voltage, the driver can act if the temperature is get-

ting too high.

State of charge
State of Charge (SoC) describes how much the battery pack has capacity Ah
or energy KWh left. It is calculated by the BMS with an algorithm that inte-

grates the current of the battery pack over the charge or discharge cycle.

https://www.youtube.com/watch?v=UEFlmc8w0dg

17

The capacity of the battery pack is 87Ah and the total energy is a little over
10kWh fully charged. SoC was displayed in ampere-hours in this case since it
was more relevant than kilowatt-hours in this case. Another option would have

been to display the SoC in percentage, but | preferred this option.

Current, voltage, power, and energy consumption
Current, voltage power, and energy consumption were values that wanted to
be shown for the driver. The BMS sends these values to the CAN-bus at 20ms

intervals, and they are updated immediately in the display.

The energy consumption [KWh/km] was calculated from the battery pack

power and the time is taken for driving one kilometer using the formula:

1km
U=xI=*
v
CANBUS Messages
Enabled jul Length Byte0 Bytel Byte2 Byte3 Byte4 Byte5 Byte6 Byte7
[] I 0x000 | 0 l Blank | | | [| | A

V| 0x300 8 Low Cell Volt... IN USE High Cell Volt... IN USE Pack Current IN USE Pack Amphours IN USE

o 0x301 8 Pack SOC | High Temper... Pack CCL Pack DCL IN USE Custom Flag | High Cell Volt... | Low Cell Volt...

v 0x602 8 Blank Blank Blank Blank Blank Blank Blank Blank

v | 0x601 | 8 | Blank | Blank Blank | Blank Blank | Blank Blank Blank

] | Ox1806E7F4 | 8 |Maximum Pac...| IN USE PackCCL | IN USE Custom Flag | Blank Blank Blank |

V| 0x1806E5F4 8 Maximum Pac... IN USE Pack CCL IN USE Custom Flag Blank Blank Blank v

Message Settings Field Settings
B " Cl
Speed (ms) 2| Receive/Transmit| Transmit Field Length (Bytes): 02 Multiply Value By: 15 0se
Is-Charging CANBUS Interface| | pisabled Bit Order (First): Most Significant Bit Then Divide By: 1(= Edit Flags
Is-Ready Extended ID Byte Order: Big Endian Then Add: 05 Help
MPIL Actlver Keep-Alive Mesg Zero While Charging: Signed Value:
MPI2 Active Maximum Value: 03
MPI3 Active Minimum Value: 0s ST
Cz App

Image 4. BMS can frames

Image 4 illustrates the can frames that were configured to be sent from the

BMS. Every value that the BMS is supervising can be sent to the CAN-bus.

18

4.1.2 Motor controller values

Like the BMS the motor controller is an autonomously functioning device that
is programmed to give power to the motor and to communicate with other de-
vices in the CAN-bus. This chapter describes only the values that are dis-
played on the screen. More information about the controller can be found in

Miikael Riuttaskorpi’s thesis.

Speed
The electrical motor that was used in this project has an integrated encoder
that sends feedback to the controller. The controller converts this data to revo-

lutions per minute and then sends it to the CAN-bus.

The rpm value can be converted to speed when the gear ratio of the motorcy-
cle’s sprockets and the perimeter of the rear wheel are known. The formula
used for converting rpm to km/h is as follows:
rpm .
(gr * P ox 60mm)
1000m

Where
Gr = gear ratio

p = perimeter

This formula converts the rpm value to meters per hour. It is then divided by

1000 to get kilometers per hour.

Motor temperature

The motor has also an integrated temperature sensor whose data is also sent
to the CAN-bus by the controller. The safe operating temperature of the motor
goes up to 140°C

4.1.3 State of switches

All the motorcycle’s physical switches were connected to an Arduino Uno,
which controls the motorcycle's lights, hazards and horn. The Arduino is also
programmed to send its data to the CAN-bus. The screen displays if the haz-

ard is turned on the left or right and it also tells the driver which light is on.

19

This chapter describes the CAN-bus functionality from Arduino’s perspective.
More information about the source code and wiring of the Arduino can be

found in Miikael Riuttaskorpi’s thesis.

void sendCan() {

tCAN message;

message.id = 0x&08;
message.header.rtr = 0;
message .header.length = 8;
message.datal[0] headlightCanState;
message.datal[l] blinkerCanState;
interlockCanState;
Ox0;

0x0;

0x0;

0x0;

Ox0;

message.data[2]
message.data [3]
message.data[4]
message.datal[3]

message.datal[6]

message.datal[7]

mcp2515 bit modify (CANCTRL, (1<<REQOP2) | (1<<REQOPL) | (L<<REQOPO), 0);
mcp2515_ send message (kmessage) ;

}

Image 5. Arduino function for sending CAN frame

Image 5 illustrates a simple function for sending a CAN message based on
the state of the switches of the motorcycle. The function works like this; it first
initiates a variable which is type tCAN. (The type comes from the library that
was used). Then an ID, remote transfer request, and data length fields are as-
signed to that variable. Note that the remote transfer request is 0 since no

data is being requested.

Next data will be assigned for the data fields of the frame. The first three fields
of the message had actual data while the others were only 0x0. For example,
if the light switch is turned on low beam, then the headlightCanState variable
would have the value of 0x01, at high beam, it would be 2 and 0 when the

lights are turned off.

20

volid readCan() {

tCAN message;

1f (mcp25315_check _message())
{
if (mcp2515_get_message (tmessage))
{
if {message.id == 0x&51)
{
ledCanState = message.datal0];
}
}
}

Image 6. Arduino function for reading CAN frame

Image 6 shows a function for reading CAN-bus data with Arduino. This func-
tion checks if there are any messages in the CAN-bus. The working principle
of this function is that it initiates a variable of type tCan. Then it checks if there
are any frames in the CAN-bus and if there is, it calls for get_message func-

tion and passes a reference to that already created variable as its argument.

The get_message function uses SPI to convert the CAN-bus data into a
format that the Arduino can use. It also assigns the needed fields for the

message that can be then used in the Arduino code.

The next step is to check that the message has the ID that Arduino is
interested in, in this case, it was 0x651. If a message with this ID was found its
first data field would have been assigned to a variable that controls the led

strips of the motorcycle.

21

uint8 t mcp2515_get message(tCAN *message)
{
status = mcp2515_read_status(
ddr;
t
if (bit_is_set(status,6)) {

addr = 5
1
I
else if (bit_is_set(status,7)) {

addr = | @x@ﬂ;l

return 0;

()2

spi_putc(addr);

->id = (uintl6_t) spi_putc(@xff) << 3;
->id |= spi_putc(@xff) »> 5;

Image 7 Part of the get_message function from the library

Image 7 is shown for illustrating the contents of a third-party library. This func-

tion is called from the Arduino’s software described above.

4.2 Graphical layout

The user interface (Ul) is the space where interactions between humans and
machines occur. Ul is an integral aspect of user experience (UX) that consists
of two major parts: visual design, which conveys the look and feel of a prod-
uct; and interaction design, which is the functional and logical organization of

elements /6/.

Ul design prioritizes the user’s visual experience. A good user interface is
functional, reliable, and enjoyable to use. User interface design should mini-
mize the effort that the user has to invest interacting with a product and help

users accomplish their goals with ease /6/.

The first goal was to create a layout that is easy to understand, and which de-

scribes all the necessary information about the devices in the CAN-bus.

This layout included gauges for speed and battery state of charge. Other val-

ues were presented with a representational icon that changes color based on

22

values retrieved from the CAN-bus. The actual values are displayed under the

icons. Image 8 shows a demo version of the user interface running on a PC.

Image 8. The first version of the user interface

It is important to highlight the values with colors since the driver won’t have
too much time to inspect the display while driving. The values displayed from
the top left are:

Battery voltage.

Battery current.

Motor temperature.

Highest battery temperature, there are a total of 5 thermistors.
Clock and heading.

Speed.

Battery state of charge

The layout was programmed with QML language, and it was connected to the
C++ backend using Qts methods.

4.3 Installation of the Screen

The screen needed to be installed in a such place where it could be easily
read. The most natural place was to install it on the gasoline tank. Kalle

Hellgren designed and 3D-printed a ring where the display could be installed

23

and | manufactured casing for it from a 1mm steel plate. The casing was MIG-
welded onto the tank. The screen was then clued to the casing using Sikaflex

for water insulation after the tank was painted.

Image 9. Welding of the screen casing

An important note when welding thin metal is that the welding should be done
in short tacks to prevent warping and burning through the metal. As figure 9
shows the casing was tacked for about 2 centimeters at a time and then

switched to another position. This allows the weld to cool down.

24

Image 10. Painted tank

Image 10 shows the finished tank. The tank was cut hollow to make more
space for the charger and junction box of the motorcycle. The metal under-
neath the screen was also cut to make it possible to plug or unplug the USB

and HDMI cables of the screen.

The ring for the screen is visible in the top left corner of the image. More infor-
mation about how the casing was made can be found in this video

https://www.youtube.com/watch?v=b40magFr8uNo.

5 QTLIBRARIES

The communication between the user interface and the devices on the CAN-
bus was programmed using C++. As mentioned earlier Qt has many libraries
and APIs to interface with the lower-level components and drivers of the target
device. This chapter describes the classes and functions of the library. More
information and programming examples are provided in chapter 6.4.

https://www.youtube.com/watch?v=b40mqFr8uNo

25

5.1.1 Qt Serial Bus

The Qt Serial Bus API provides classes and functions to access the various

industrial serial buses and protocols, such as CAN, Modbus, and others. /7/.

5.1.2 QCanBus

QCanBus class was used to connect the application to the socketCan driver of
the raspberry.

errorString;

::instance()->createDevice(
("vcan0"), &errorString);
if (!device)
gDebug() << errorString;
else
device->connectDevice();

Image 11. Example code provided by Qt (qt.io 2022)

5.1.3 QCanBusFrame

QCanBusFrame is a container class representing a single CAN frame. It con-
tains the frame identifier and the data payload. QCanBusFrame contains the

timestamp of the moment it was read /7/.

5.1.4 QCanBusDevice

QCanBusDevice communicates with a CAN plugin providing users with a con-

venient API. The CAN plugin must be specified during the object creation /5/.

This class contains the functions that are used for reading and sending CAN-
frames. An object whose type is QcanBusDevice is created Programmatically

and its functions are then used.

6 RASPBERRY PI PROGRAMMING

The programming of the screen started by installing the Raspbian operating
system and configuring all the needed settings for the Raspberry. This chapter

describes the necessary information for setting up the programming

26

environment and some programming examples. One is advised to find more

information from other sources.

The knowledge needed to program the software was gained through the time
undersigned was in school, from different courses, forums, technical docu-

mentation, and work-life. The learning curve was steep, but luckily Raspberry
Pi and Qt have a great and open community where one can find help for their

problems.

6.1 SSH connection

The programming of the raspberry was done via SSH connection using Linux
PC. Raspberry Pi OS has the SSH server disabled by default. It can be ena-

bled manually from the Raspberry’s terminal using commands:

sudo raspi-config in a terminal window
Select Interfacing Options

Navigate to and select SSH

Choose Yes

Select Ok

Choose Finish /8/.

6.2 Connecting to internet

The Raspberry Pi must be connected to the internet for the SSH connection to
work between the PC and the raspberry. The Raspberry can be connected to
the internet by an ethernet cable or Wi-Fi. When using Wi-Fi, it is easiest to

use the interface of the Raspberry to enter the Wi-Fi password.

Another option to connect to Wi-Fi is from the terminal of the Raspberry. Com-
mand “sudo nano /etc/wpa_supplicant/wpa_supplicant.conf” opens a configu-

ration file where one can add Wi-fi credentials.

network={
ssid="testing"

psk="testingPassword"

3

Image 12. Example of network configuration. (Raspberrypi.com 2022)

27

Figure 12 represents an example network configuration after the config file
was open. After saving and closing the file by pressing ctrl + x, the Raspberry
should be booted, and it should be able to connect to the configured Wi-Fi net-

work.

The next step was to find the Raspberry’s IP address. It could be achieved in
multiple ways, but the simplest was to type “hostname -I” in the Raspberry’s
terminal. This command returns the IP of the Raspberry, for example
192.168.1.8 and now it was possible to connect the PC by using command

“ssh pi@192.168.1.8”, where pi is the name of the Raspberry, by default it is
pi.

6.3 Software installation

Lots of software needed to be installed into the PC used in programming and
into the Raspberry. This chapter describes the used software and their instal-
lation. The software used were mainly open source and the information about

them can be found in official documentations of the software.

6.3.1 Ot

Qt was downloaded from the Qts official webpage https://www.gt.io/download

and selecting the open-source version. This method downloaded Qt online in-
staller. The installer was used to select and download the right version of the
Qt which was 5.15.0 in this case. The installer also installed Qt creator IDE

which was used to program the user interface.

https://www.qt.io/download

28

e. frame1d())

VEHICLE_SPEED:

BATTERY_INFO:

Image 13. Qt Creator IDE and some C++ code

Image 13 is a screenshot from the Qt creator illustrating the checkFrames
function. This function is called every time that there are data on the CAN-bus.
The function checks the validity of the frame first and then starts to do actions
based on the frame’s ID if the data was valid. This code was written at the

early stages of the project, and it is different at the time of writing.

6.3.2 Compiler for raspberry

The system architecture of a Raspberry Pi is different than PCs which means
that a cross-compiler needed to be installed to run the software on Raspberry
Pi. The compiler and additional software packages were installed according to

instructions found in this link https://github.com/UvinduW/Cross-Compiling-Ot-

for-Raspberry-Pi-4.

6.3.3 Can-utils

Can-utils is a Linux-specific software package for interfacing the SocketCan
driver of the Raspberry Pi kernel. The Raspberry needed some configuration

to open the CAN communication.

The CAN-utils package was installed with “sudo apt-get install can-utils” com-
mand on Raspberry’s terminal. After the can-utils was installed, it was needed

to open /boot/config.txt file by typing “sudo nano /boot/config.txt” in the

https://github.com/UvinduW/Cross-Compiling-Qt-for-Raspberry-Pi-4
https://github.com/UvinduW/Cross-Compiling-Qt-for-Raspberry-Pi-4

29

terminal and adding “dtoverlay=mcp2515-can0,oscillator=8000000,inter-
rupt=12", “dtoverlay=spi-bcm2835-overlay” lines at the end of the file. Adding
these lines in the file gives the MCP2515 integrated circuit in the CAN-shield

instructions to function properly.

6.3.4 Bringing can interface up

The CAN-network was set up using command “sudo ip link set can0 up type
can bitrate 250000” in the Raspberry’s terminal. This command sets the CAN
network up at 250Kb/s speed. The speed was set to 250Kb/s because the mo-
tor controller uses that speed, and it cannot be configured to use any other

speed.

A shell script was written to automate the process of bringing the CAN net-
work up, and for starting the user interface software after the Raspberry was

booted up correctly.

6.4 User interface programming

The easiest part of the project was the actual user interface programming.
Most of the time was used for background work like choosing the right devices
for the system or researching the documentation of the Qt framework. This
chapter describes the principal ideas of the motorcycle’s Ul software starting
from the C++ side and ending on the QML side.

6.4.1 C++

The C++ side of the software handles all the CAN-bus communication, and it
is also used to render the speed and SoC gauges of the screen. C++ assigns

values to the QML front-end.

30

#include <QPainter:
#include "batterygauge.h"

Batterygauge: :Batterygauge (QQuickItem *parent)
:QQuickPaintedItem(parent),
| m_BatterygaugeSize(350),
m_StartAngle(50),
| m_AlignAngle(260),
m_LowestRange(0),
m_HighestRange(100),
m_Batterylevel(Q),
m_ArcWidth(15),
m_OuterColor(QColor(12,16,247)),
m_InnerColor({QColor(51,88,255,80)),
m_BatterylLevelColor (QColor(255, @, 0)),
m_TextColor (QColor(255,255,255)),
17|~ m_BackgroundColor{(Qt::transparent)

Image 14. C++ class for displaying SoC

Image 15 shows a constructor for a C++ class that renders the state of charge
of the battery. Variables that start with the m_ prefix are member variables or

properties of the class.

qreal Batterygauge::getBatterygaugeSize()
{

return m_BatterygaugeSize;

}

greal Batterygauge::getStartAngle()

{
return m_StartAngle;

}

qreal Batterygauge::getAlignAngle()

{
return m_AlignAngle;
}

qreal Batterygauge::getLowestRange()

{
return m_LowestRange;
}
qreal Batterygauge::getHighestRange()
{
return m_HighestRange;
}

Image 16. Get function for the class properties

Get functions are used to get the value of the property. The get function is

called when a property of this class is being accessed.

31

void Batterygauge::setBatteryLevel(greal batterylLevel)

{
if(m_Batterylevel == batterylLevel)
return;
m_Batterylevel = batterylLevel;
update();
emit batterylLevelChanged();
}

Image 17. Set function for property m_BatteryLevel

Set functions are called if one wants to change the value of the class property.
The function checks that the value assigned to the property is different than it
was already, and if it was different, it would assign the value and call for the

update function that updates the value on the display.

Emit batteryLevelChanged is Qts special way to signal when an object’s inter-
nal state has changed in some way that might be interesting to the object's cli-

ent or owner /9/.

int main(int arge, char =*argv[])

‘ QCorelApplication: setAttribute(Qt::AA_EnableHighDpiScaling); 'AA_EnableHigh
QGuiApplication app(argc, argv);
qmlRegisterType< Speedometer>("com.dashboard.speedometer",1,0,"Speedometer");
gmlRegisterType< Batterygauge>("com.dashboard.batterygauge",1,0,"Batterygauge");
QQmlApplicationEngine engine;

engine.load(QUr1(QStringLiteral("qgrc: /main.gml")));

QObject *object = engine.rootObjects()[0]; Don't
qDebug() << object;

QO0bject *speedometer = object->findChild<QObject*>("speedoMeter");
QO0bject *batterygauge = object->findChild<QObject*>("batteryGauge");

ptrBatteryGauge = qobject_cast<Batterygaugex>(batterygauge);
ptrSpeedometer = qobject_cast<Speedometer*>(speedometer);

Image 18. Main function

The main function is where the software starts. All the needed objects are initi-
ated in the main function. Also, the custom C++ classes are registered as a
QML-types which makes it possible to render them on the display. Casting

them as a QObiject allows their values to be changed later in the code.

32

* void handleFirstControllerInfo(const QCanBusFrame &frame)

-

const QByteArray payload = frame.payleoad();
const int highRpm = paylead[0];
const int lowRpm = payload[1];
const int motorTempemperature = payload[2];
| int motorRpm = (short) (((highRpm) & @xFF) << & (LowRpm)) ;
63
speed = (motorRpm / 4) = 2 = 68 / 1668;

engineTemp->setProperty("text", QString("%1°")
| .arg(motorTempemperature));
"

ptrSpeedometer->setProperty("speed”, speed);

[

Image 19. Function for setting displayed values

Image 18 shows a function that is called whenever there is a CAN-frame on
the CAN-bus with an ID of 0x601. The function assigns the data field of the
frame to a variable called payload which is a type of QByteArray. Next, it
reads the values of the first three fields of the payload and assigns them to

variables that are typed as integers.

The value for motors rotation is sent by two bytes and they had to be con-
verted to a 16-bit value. The value of motor temperature was sent using one

byte only.

The actual speed of the motorcycle is then calculated using the formula dis-
cussed in chapter 4.1.2. After converting the values to a readable form, they

were assigned to the QML side of the software using the setProperty function.

4|l 7/ CAN Bus IDs
#define FIRST_CONTROLLER_INFO 0x601
#define SECOND_CONTROLLER_INFO 0x602
#define FIRST_BMS_INFO 0x300
#define SECOND_BMS_INFO 0x301
#define THIRD_BMS_INFO 0x6B1
#define ARDUINO_INFO 0x608

Image 20. IDs of the CAN-frames of the system

The IDs of every CAN frame on the CAN-bus are described in image 19. The
software has a function for every ID for decoding the bytes and displaying the

values on the screen.

33

D Length Byte0 Bytel Byte2 Byte3 Byted ByteS Byte6 Byte7? Count Timestamp
253 F9 20

254 FA 20

300 59 103

301 59 104

601 46 108

602 46 107

608
651

9E 14
66 99

@ || @ oo n|olo
=)
8

[1:3 97 87

Image 21. Actual can data

Image 21 shows the actual CAN data of the system. The data was read with a
CAN-bus reader. The equations for converting the data to a human readable

form can be found in appendix 1.

6.42 QML

As already mentioned, the QML code is responsible for rendering the visual
elements on the screen. The Qt creator has a drag and drop feature for creat-

Ing user interfaces, but in this case, it was not used.

ICOMN ICOMN I ICOMN I ICOMN I[CON I[CON

LABEL LABEL LABEL LABEL LABEL LABEL

Image 22. The layout of the user interface

The items on the display are set on the screen as image 22 shows. The win-
dow was wrapped inside a column layout which makes the items appear on
top of each other. The items in the top bar are wrapped inside a row layout
that sets the items side by side. The speedometer, light indicators, and state
of charge are wrapped in another row layout where light indicators and state
of charge are in a column layout.

34

¥ window {
= ColumnLayout {
= ToolBar{
}
= RowLayout {
= Speedometer {
}
= ColumnLayout {
= LightIndicators {
}
= Batterygauge {
32
}
}
}
}
}

Image 23. QML code syntax

Image 23 shows the syntax of the QML language. The curly brackets repre-
sent the scope of the item. For example, all the items are inside the column
layout but inside the row layout, there are only the items that are under the

toolbar of the user interface.

35

Window {
id: window
visible: true
width: 800
height: 400
color: "#555753"

SwipeView {
id: view
currentIndex: 0
anchors.fill: parent

Firstpage {
id: first

}

Secondpage {
id: secondPage

}

Image 24. Main QML file

The main QML file is the frame of the user interface’s QML software. As seen
in image 24 the QML software is split into pages that display the information
on the screen. The swipe view item makes it possible to use the touchscreen

to change views of the user interface.

7 RESULTS AND CONCLUSIONS

After around 2000 hours of work from the team, it could be safe to say that the
project was more than successful. The project gained lots of attention from
conventional media and broke records of likes and views on Xamk’s social
media channels. Even Yle made a small TV news about the inspection of the

motorcycle.

Testing of the motorcycle proved that the software of the user interface func-
tions properly without bugs or crashes. It passed the inspection, and it is also
easy to view while driving even in sunny weather when the sun is shining di-

rectly on the screen.

36

The user interface was developed simultaneously with other parts of the mo-
torcycle which added some challenges to the programming of the user inter-
face software. Also, Covid-19 delayed the project for about 6 months since the
school was locked at that time. This caused that all the designed features
could not be programmed onto the user interface within the time limits of the

project.

® = HNE @

111.7V -22.1A 23° 23° 3.83V -2.5KW 0 Wh/k

- 0 =

0

Image 25. Finished user interface

Image 25 shows the user finished user interface. The values are clearly dis-
played to the user. The current and power are negative because the motorcy-

cle is plugged in for charging.

If there would have been more time for developing the user interface, | would

have developed a remote-control application for a mobile phone for visualizing

37

the motorcycle’s data and for controlling it. This could have been done using

MQTT communication between the Raspberry and the mobile phone.

The future of the motorcycle is to go around events related to vehicles or tech-

nology and to be a studying material for the future students of Xamk. | person-

ally hope that one is going to develop the user interface more. If information is

needed one can contact me for a briefing.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Raspbian documentation. WWW document. https://www.rasp-
bian.org/ [referred 18.1.2022]

Orion battery management system documentation. WWW docu-
ment. Available at: http://www.orionbms.com/ [referred 18.1.2022]

Curtis motor controller documentation. WWW document. Availa-
ble at: https://www.curtisinstruments.com/products/motor-control-
lers [referred 19.1.2022]

Zhu, Y. CAN and FPGA Communication Engineering: Implemen-
tation of a CAN Bus Based Measurement System on an FPGA

Development Kit. Diplomica Verlag. 2010

Wilfried, V. Controller Area Network (CAN Bus) - Message Frame
Architecture. WWW document. Available at: https://cop-
perhilltech.com/blog/controller-area-network-can-bus-message-
frame-architecture/ [referred 18.1.2022]

Adobe. Ul design. Available at: hitps://xd.adobe.com/ideas/pro-
cess/ui-design/ [referred 4.3.2022]

Qt. Documentation of serial bus class. WWW document. Available
at: https://doc.qat.io/gt-5/gtserialbus-index.html
[referred 4.3.2022]

Raspberry Pi documentation. WWW document. Available at:
https://www.raspberrypi.com/documentation/computers/remote-
access.html [referred 27.4.2022]

https://www.raspbian.org/
https://www.raspbian.org/
http://www.orionbms.com/
https://www.curtisinstruments.com/products/motor-controllers
https://www.curtisinstruments.com/products/motor-controllers
https://copperhilltech.com/blog/controller-area-network-can-bus-message-frame-architecture/
https://copperhilltech.com/blog/controller-area-network-can-bus-message-frame-architecture/
https://copperhilltech.com/blog/controller-area-network-can-bus-message-frame-architecture/
https://xd.adobe.com/ideas/process/ui-design/
https://xd.adobe.com/ideas/process/ui-design/
https://doc.qt.io/qt-5/qtserialbus-index.html
https://www.raspberrypi.com/documentation/computers/remote-access.html
https://www.raspberrypi.com/documentation/computers/remote-access.html

38

[9] Qt. Documentation for signals and slots. WWW document. Availa-
ble at: https://doc.qgt.io/gt-5/signalsandslots.html [referred
28.4.2022]

https://doc.qt.io/qt-5/signalsandslots.html

39

13 L S S (Flgamal o= B fie abiegop, g0

A g]
b L o) =g L] 1 0o L < T R T T il L aliegep, @
— 4] L SO e L 5 [} slaszal oolsEe B0 fa lEgen, 180
43 L& O S A 5 o relgzal ooz SIS 5a obegop, gea
> 54 L2 900 S I 5 [Helogmall ooz L[] e abieyop, gao
= 13 L S0 ey A 5 o idlgez.al s fels] el alieyoy, =0
© 5 L St Sl A] [(Qdesz.al polsZz o] 2 algeg, 40
m 5 (Bl] A 5 o g+laseal oolsEE (MLl 1 alegoy, goa
o 20+3.050) 00 uenba abue JEyUaAE S 104 i L#f Se0p) Sy =]] ar 3 4R o) i sdnpeadig |
o TEw056) 00 uonenba alp EBuuaE- 04 I L o Gy 2 og ar 0 40T o) BN St
A Zeeols o uaienbe sl s o4 1 [FL] o il ar- o 440422 E s B Burgmiedn)
zo+B.5a) *m umjenbe shump JEyusaE o3 43 L& O S o] ar 8 440 | dum) L marpeadwe
o+, ' uonenba afuep JEuuaaES J04 5 L 00 s fa] o0& ar ¥ 40T dwa ek duwa) yusieaH
Brav s o usanbe sl BuusaE od L L] 3 i ar- W BZ0ER sy s anjgdug | faes]
Zo+v.[5) xm ujenbe sfump GEyusaE) Jo3 4 L& O S o] ar v BIO=EE dwe) yiy mnpisdwe] by
1 L o) 29 @ 9 [¥ d0=E spow anag {snu apopy swug
PRSI S JORUIE JSLIND WM LD PISEY SEURYS | SN | WiNUew ay | [0 Lt S0 B W (Z# JLONY 005 o [T T e d a 1] alieyzsig
PRI] ARG URUND g L0 pas ARURL | SLNILLL | L ay) b L o =g W (24 JLONY 005 0o IelaszNl w0 L+) afieyg
4] H1E L] 2 o5 o ool A{eleEn, wng wead v famygeg Jnid gy

T brmun dmyes] Tl
P RS B0 SRS UGN N, Ue PACE BOURLS | b4 SUIMAILLL | LNUUGELL Ay I L o S5 W 20 ALONY 005 128 ZL0M) 005~ L Sl0-EE aduny Tuaany fageg
~[r Y S EE- el ST

oo L e G0 0 ST 30) L L S g L SE550 [} [el25ZN BL0LEE sk g SapAT ¥R 0L
1 L S e A 0z o oolgdastell pr0=z 1w Addng Aphdng sz
53 L8 00 S wiy s 55C o oookigHasead) BEO=EE S0] STUBIHEY TR]
I L O 5 iy i 552 [[gvvThE: BN R T g =ay Yy sumpsmay sy
AL % peonpal s fognae ‘uoqeylg nbuc) @ of @ b L S0 Sy) []] QoL gHEED SENSET A, DS LSy) Vo 15 e aeo)
AL 4 PRONpRI S LR uchegg enbie) B o eng 4] Lo o ey L L [} OO000H ATl BEDSET A sy il e Dm0 sy
4 L& # ol o L [+ 1L L] O 1P e
ML o paonpas 5 foemooe ‘uogeywy anbioyg e oy ang 54 L2 200y S I 5 o oooooidgHomyl) TEosT A IR wa sbeyny, Ip0 e
13 Lig = e @ o0&l o W ORDATT AT a1 10 sy
AL O PEANDAIL LSRN UCORYLLG St @ of @] 1 L S0 S A G [} e T s CE b e o o g YO Al pal i
[t L i e At 55¢ o oooidgH@stell o=z S A R [0 5t
PRETSU| U8 FAD s 404 UG POTEG AIER |14 FUTRLIULE | WNWEEW oU) 53 L% O B A 05E o ooiia-asyl) 300z e, umin obegoy, usds waed
PAEFSUI AT S{0 AR AOU UD PISED AIEA |[4 SITLLILLL |/ LINWELW 3y) 14 L 900 S A o5E o ooolia-aEsl) rinsET 1o, paLILING affyoy, Wng ey
P EEL AR] AL MO0 UG PEEED LIRS |BA SR LU Sl I L o g M 0t 0 [T st RS o8 PR sias, ped
b Laf S S L] ool [} W EMER HOE i g
1 L B e % ool o g AT g aoa sfmpag o yrdeg
1 L 0oy 29 % ook o 0Ty 00T 08 afuryn o wng
5] L ey 2 EETNe] I o ¥ aace Burzumieg gy Busumeq
b L o =g EE Ll e 3 [g p00ET U] s i uicwE g
[t L S i EET.la) 2 o feal poosEz Ry mBai Apes sedinigg
L3 L& WO G EEL1 V)) o al ooz wqeu3 sfmmps ogeu3 sfimygn
13 142 S0y e 440G 1 [fogl rooEz apaeug afieyosg aygeug atieyosig
[t L S e EETTa) * o iral poodEz andu) sEndaed-nngy iy esading-anp
K L O S EEL1 V] I o 58 ooz 1o WY SNIEE Mne Y
43 142 20Oy S 440G 1 [gl roosz s fpeay SMEE Jawa Apeay

I L o =y A0]]

=EN lopEg oy JapiEay I0A0 neny i L | i ||

SLOBMLENL ey e

T3l apeoy e auug ue SEY SEREL AULI0U 0 Jsglaye. uo Bupuadap auod Lageq s U pRGEUE 90 0 DRy AEW DEY LOREINWES DAL #U) ‘oS (o
F S (] (3T 0A0 Yk SATIEY 0 15 30 PNOYS SI| SOqENGE | SHEILEK SL0s Ui APadaid o o S()ld S5l 10y 198 20 o) PSSU |Le Speay QB0 YL 310N

IS DAIJSNIEED UE S0 0 PARUAIT 10U S S04 12 191 5L Aoy

RO Gyt aied Bupueba) poddns oy Ao p yu e o enbad) po SOy e LD SRR R aspedeeg deg) A payBuldon ae
quyEuliug pue antuc) yueufug o enbuog o) peddne sspeend i seop sou fee e o) sureabus o antun] v peRpge jou S swaels Ok paE 3108
1517 Josuagsid eaug yurpuibug) anbiol WG veuo

AN oaed HTog 1apRIH 2080 nen wiraLne e wraunnn uanenk3 did 7 IR0 DURN LoUS AUrN

40

Appendix 2/4

5] L e e
I L gy g
i Lif Sy 2
4 L e @
:n L 0 2
I L oy 2
L] Lif 2o oog
5 L S s
] L e
Y L ey 2
] Lip 2oy 2=
= Lo) S
] L e e
I L gy 2
] Lif) 20
1= L S0 Sy
L] Lt e
It L gy meg
:n L 0 2
H Lif o) 2o
& L S Sl
I Lt e
w L 00y 2
I L o) 25
L] Lif S0 S
] L |
" L o0y B
w L ey 2
L] Lt e e
Y L ey e
; L 900y 2
H Lif o) 2o
—n L o) =g
] Lt e
w [E
" L o) 25
= s]
4 Lt) e
" L o meng
:n L ey 2
x L S0y =g
L] L S B2
] L e e
w L 0 2
I Lip ooy =g
L] Lif 2o oog
5 Lo B e
] L oy e
I L ey 2o
] Lip 2oy 2=
1 L o g
4] L e e
I Lip) =
] L S S
]]
] [
" L o) 2
] L 2oy oog
5 Lo S e
4 L o e
I L ey 2
] Lip =gy 225
4 Lo e @
] L e e

FON e ¥rog lapead Z080

(35 = A
{m+logz.nl
Ll Haz.sh
[aalgsE.0l
(=tagr.all
(NHIEZHE
Ll b =AT]
Ir+lgsz. i
IH=tasz.al
(3+agz.ah
(gHgez.an
(3 (Tl
Gilgsr.mb
{m+lmgz.nl
ClHasz.sh
lagelaST.ON
[EREHa]
(N+Esz.nl
Lt Al
=AMl
[Halg5E.al
(3435231
(g+lmgz.al
IG+ipsz.wl)
[N
{rHBsEanh
(L+(asr.sl
laz=iapm.ol
[EREHa]
(N+lzsz.nl
[l Al]
lrigazall
[atgsE.al
(4+l352.31)
(o+legz.al
Ig+ipez.wl)
e lgstmb
imHBsz.nl
(L+lasr.sl
lg=iasm.oh
(=lasz.ol
(Helasz.nil
15l
Ir+legz.il
IHslagr.al
(gelgzz.ah
gHesz.an
(B+(Fsz.vl
D+ lagr.ml
LAHEEZNH
(Lalgsz.sh
lu=lase.al
(=lagz.ol
[T
15l
Ir+legz.il
IHslagr.ol
[A]
(gHesz.ah
(g+az.5l)
D+ lagr.ml)
LAHEEZNH
(1elgsz.gh
laz+tasEal
LT LI uanenbs

s?>}b?>}b>>}P?>}b?>}}>?}}>>}}>>>}}>>}??b}}>>}}>>}b}b?>}b?>}b>}}b?
C I B R e e A N A N A A B e A I I B R
= = - = = = = = - A= R -

£

504222 zam
ST ¥l]
SHRET [s]
P Ee o= 1]
ST E9RD
SOLRE LD
ST D
S01=EE 3= L]
SO0H=E FEpD
=T RO
SHET RS
SO1LEZ 1= [L)
222 [=Tesd
FOLSEE BIRD
L ESE L]
PLSET =] o]
FlSEE -]
PO 55RO
FLEE FHRD
PLEET 2= o]
L ZEED
PObSEE [ET]
POLEE oGP
PLRT EHFD
[ErE EHED
EO0L=EE i e]
EO=ZE eHPD
EDIRE SHED
EOIEE FHED
Enb=2E EHIO
EnLE ZHRD
EDLRT LHED
E0LEE OHIED
Eni=22 BEID
EDH=EE SEIRD
EOLRE LEIRD
=T o= o]
E01=22 SEIHD
=z FEIRD
=z £EIRD
LR D
[H =t LEED
TS CEID
LT BTIRD
ENLRE Ll sl
[E 5 LTIED
E01E2 BaED
e sERD
MILEE FERD
T el s
W2 sl o]
M [Elee]
=T DakRD
WIHLEE BLED
M g
[L]E-rd 2HPD
MILEE aLRD
T SLED
=2 FHED
MRz EHPD
0=z ZURD
LHE S LLED
00122 OLED
o2 -]
aid 7 apaw awey poys

Zranbegon e
1ia afiegon 120
nge-abeyos 13
e abegoy, e
aoa abegos 190
100 abeyop 10
B abegon gad
sae alEgon 180
o nbegos 190
e afieyon, 120
zae abeyon 120
Laa abEgon 180
fi Ll LY Lal
aaa abegon 1m0
nga abegos 10
£50 abegon, e
B alegon (el
s5g afegon 120
paa abiegos 190
£Ge abegon jan
Zoe alegon gad
r5a abegon g0
nga afiegos, 190
Aa abegoy, 120
A alegon gad
Lim alEgan 180
e afegos 190
gia abeyoy 120
i alegon 1ol
Era afegon 120
tra afiegos, 130
e abegop ga0
O alegop gad
aea abegon 10
BEa afiegos 190
iEaabegoy 120
BEs alegon gag
sea alegen 1800
pEa alegos 190
£aabegon 190
TEe alegon gan
LEa alegon g
fiE i LY Lal
6iza abegon 190
Aze abieyos g
Lz aliegos 1
Bza aliegos 160
szaabegon 190
rza afiegon 120
e aliegos 1D
ZEa abegon 180
izaabegon 1o
0z albieyoy =0
Al aleges gan
e ELY LAl
Liaabegos 100
pia abieyos 1@
S aliegos 1
piaaleges v
Elanbegon 190
zia afiegon, 120
iia abeyon 120
O aliegon 1
Ll EAY Ll
aueN

41

Appendix 3/4

(4] L WO
It Lt Seop 9
Ix L S0 2=
® L S0 ey
] L 20 2
I L S0 a=
1 L o S
i® L S
b L B0 moeg
e LE 200 2=
1 L S e
= L S S
It Lt ey s
] L 20 29
1® Ll oo Sy
1 L o S
] Lt g e
b L& B0 moeg
ke L¥ 200 2=
1% L oo e
= L S S
5 L o e
[L 20 29
1® Ll S Sy
1 L S S
It Lt g e
[L B0 S
e LE S0 2=
= g B ey
L] L B
" L S0y 2
1= L o 2y
It L) e
(4] L WO
It Lt 20R 9
¥ L S0 S
I L S0 iy
5 b o G
L L B
I L 200 2o
1= L o 2y
It L) e
4] L WO
It Lt 20R 9
Ix L S0p) 2=
I L S0 ey
= L o
L] L B
I L 200 2o
I® L =y =g
It L) e
(4] L SO
1 L oo e
= Lip S S
L] b T e
] L 2T B
I LE S0 2=
1 L o S
¥ Lad S
b L B0 moeg
e LE 200 295
1 L oo e
= Lip S S
L] b R
EION Jopey ¥Eg JapeaH 2080

IH-last.al
(3+iggz.ah
(Hgsz.an
(el
L+ (gt
{aHagE.nt
(Lelgz.ah
lusslasg.ol
[ERET Xall]
LN+ EsEZ.b
[y AT

(el
IH-last.al
(3+laazal
(a+Hgez.al
ezl
[+lasEaml
{nHegz.nl
(Lrirz.sh
slpgz.oh
{g+lgsg.al
(R
{1+l

lir+lggzall
IH+(g5Z.ah
[E =]
(oHesz.al
(Gl
HgsEM
{nHesznl
(L+gz.sh
I +ipg.ah
(g+gsg.al
N+t il
{1+igsz.ul

(g2 L= ==A]]
IHeipSE.al
(42, ah
(o+esz.al
G+
D+ gsTamb
{nHesz.nh
(L+asEsh
las-dngr.all
(+pgz.0n
LT =]
{1+l

[r+lsz.il

gHesz.al
(g+iaszml
DeHgsEmb
(hHEsz.nh
(1+lgsr.sh
les=lagz.alh
Ic+ipET.0l
[T
{1zl

(r+lesz. it
IH=iast.al
(g+ipez.ah
(g+gsz.al
(a+igsral)

uanenky

sb:‘-3:>b=\-}>>b}b)b-:?>)=—b}b)b—}b)}b}b)b-:?b)b-??bb-}}??)}bbb}}}bb}bbb}}}bb}b)
[T T T I P O R T B R B T R A T T R T S T R O T A T T N R AT A A
= = = e === A= = = A= R

E
|

Ok D
BOLRT FLIRD
Al FELIED
A014EE TLLIFG
WOIRT TCHFD
YR LELIRD
L Er LD
wOSZE BELIFD
WOIRT TEHED
YOIET ATHIFED
WA ATLIRD
Wl STHED
v FELIED
WOIRT TZHFD
WO TTLED
L Er LEHED
BOLSEE [N]
BOIRT &k D
BOIET kLD
B0142E ALLIED
L E s Ak HED
BO=EE S HED
BOIET FEHFD
B0152E TLLED
LU THHED
Bl =EE LELIED
BOIRT ak HFED
BOIET A0LIED
B0 0LIED
BOE=RE ADHIFED
B0 LIRS
BT SOLIED
B0 FOLIEC
BOLSEE LD
BOLRT 0L
L= Lo
BT OLIEC
BOLSEE 2]
BOE=RT B
[-4 LEIFD
LT SR
LT GBI
LOSEE FHED
I0LRT EEIRD
PUTE ZEIFD
L0LAEE LEIED
L0 el
L0b=ET BEIFD
L0LRT BRI
ENS2E LIRS
L0SEE EEAR
L0 SEIFD
a0LAEE FRIED
BT fas o]
BOLSEE fa= L]
iRz AR
MRT CHIED
BT BlED
BOLSZE LN
BOlRE LD
T DD
B0LSEE LR
BlLEE FLFD
BOLSEE LD
Oid 7 30 ey HoYs

AT LAY Ll
sEie abegon, 190
Fil8 abeyey 1
£E L abegoy, ga0
zEia abegoy, o0
V1 abegog, g2
0 L aliegog, jag
B2 ki #legan, gaa
51 obegoy, o0
LT1a abegoy, 1o
57 10 abegoy, 1an)
524 alegop, gad
ke obegon, 100
Ezia abegoy, o0
7z 18 aboacy, 10
121 alegoy, gag
02 4 legan, gaa
o4 L ofegoy, go0
i la abegon, 10
2ive abeyoy, gen
B L aliegoy, gan
51 1 begon, god
i b abegoy, o0
£ 1@ abeyoy, e
Ti b alegog, gag
VT L1 GAY Ll
04 L obegoy, g0
B01e abiegoy, g2
Gl Blegny, 180
L0ke nfegop, gea
o0ia abeyoy, 1an
Gila abiegoy, 120
L aleany, 100
biia ebegoy, 163
zna abegon, 190
1ia abegoy, g
0048 2Begoy, gag
e alegop, gag
aoa obegoy, goo
Lga afegoy, jag
B aliegoy, 120
Sha alegoy, (a0
LRl BN Ll
£6a abegon, 10
L L]
o abegoy, ga

Aii alegog, §ag
o alegoy, 1aa
Lranfegoy, 100
aga abegoy, 1o
G abegoy, 1a0
o algoy, §ag
£oe afEgon, 180

aauny

42

Appendix 4/4

G B I PIEN JOSUAS WSLIND S J0 S35 S UG PUSHAD JUSUND AR UL PUR WRLNEW ‘SpdlUess 50 Uomeriuod GIE 24 U0 pase] sBuByD Sens asay) |0 swos
R o paddag uaipe amEs gnejap) cagod) S E) 003 2080 SRS UCUD S 1Ry UD paiE aCURD v SpESH Z0E0

0
¥
ix
(&3
=
I
Ix

8
ix
(&3
b
VE
1
(£3
=
(83
(%3
[£3
(&9
(8]
=
(83
(84
ix
b
(&9
8
(83
(&3
=
e
e
(£3
(£]
(43
(84
®
(E]
(&3
ix
L=
(L]
(33
e
X
(k]
(43
(83
(84
[£3
(]

0N opey Weog

[
Li# 20hd 22
L oy =y
L Sy S
|7 B0y B
L 200N S
L S0pg =g

Lt St S
Ll o) ey
L) e
1§ o e
L# WO %95
Lt oy
L S Sy
L3)
L& B mag
Lt oo g
Ll =y ay
L# oo e
L S Sy
Lt S e
L& 2o T
Lidt S S
L S0 g
Ll e e
L3 oo e
L S S
Ly S0 S
L S e
14 o e
L¥ WO 205
Lt oy e
L = Sy
L4 S|
L3 oo meg
Li#t S S
Lt =0 S5
L o ey
Lt g e
Lidh Sl ey
L S ey
Lt e e
L ¥ N w5
Ll o g
Ll iy ey
Ll S ey
L3t oy e
Li#t S S
Ll =0 g
L S0 S
L3t e ey
lapeaH 2080

g S5T o
H SERSR o
) SEG5H 1]
v LBLZE LBLEe-
2 oo ar
a2 ooz ar
Widd s o

5}}}b}}hbh}}}}b}b}}}}b}}}b}b}bb}}}}h}}}}b}}}b
I A B N A e R A R B R P B B I A A I B A
= = = e === -

E
|

a]
Ig+gez.wh
[Helpsz.al

aoLadasz.an

a

a2
I+l

Wit A
tAHasT.nl
(Lalgszsh
[stgsz.al
(+lgz.oll
[T e el]
el

[r+lsz.ih
[H=lagz.al
(aHaan
(g+ggz.an
Ig+asr.wll
U N]
{aBsE.nh
(1+ae.sh
lg=agr.oh
(elpsz.of
(W+lErszml
(a0l =4t

lr+lagzall
[HslgsE.al
Ldelaszal
(a+eszal
g+l
W ar A]
{aslagznh
(lelaszah
[s+lasz.ol
(+lagr.aoh
4 YRR = =]
a5zl

[r+lese.i
[Helpgz.al
(delgszal
(a+ese.ah
g+l
Wit =M
Ly]
(Lelgszsh
[melasz.ol
Li+l@gr.aoh
(RS b =]
elgsznh

[r+lssz.i

uangenbsy

oo
i)
(=]
Lirerd
b
e
LErEg

ELIE=
Bl e
[e
EL[F 4
EL[E
AMRT
A042T
EL
EL[F-d
ELE
AT
EL{F
0aLEE
O0L4EE
00k4EE
Q0LIATT
Q02T
Q0L
0akdIE
[eal P
Q0ALAEE
Q0L 4EE
Q0kdEE
[ua]t
2014
D0LET
20L4EE
fa P70
2OLATE
e 15 1
DOLEE
D0kEE
20l
2OL4EE
faa |14
20T
AT
AT
an2T
BOLRE
B0LET
AT
A0
BT

e A3
Aouanbarg A3:H
a ASH
fshary A3
) oD AgaH
dwi | sy A3H
FldH A3

-1
BLLIED
B LD
LLHED
RS
SLLRED
PLHIED
A1
TLHRED
[P]
QLIRS
=111 a]
sl
P
=1
el e
ralED
EHED
=1 a]
[1-11]]
LR
-]
]
L5HRD
LR
SEHRED
FSLiED
TEHED
TRHED
LSHED
FHED
-1l
HFLIRD
AFLIED
arkies
FFHED
LD
EFLRED
TrLED
[ELa]
aFliED
LD
D
LEHIED
AW LoYE

TR ALON
‘HEALON

RS ERT
fougnbaig A4
afege, AT dH
sty 4344

dis g Enued A3uH
dws] oy A3dH
Vil A3dH

Dille abiegop, 1an
g1 abegon, a0
T TRy L]
L1 wbegop, ged
PIET L LAY Cal
SLie abeyon, ja
il alegop, a0
AR L LAY Ll
s e nbegon, 1eo
1 b abegop, 120
DL abEgep, §a0
ik abegon, 120
goLa alegep, a0
Lok abegan, 100
odie abegon, 120
Rl abegop, gan
raip abegop, §a0
Efa alegen, 180
o abegon, 120
e abegop, 1o
0aip abeygop, 1@
5 Lt alegiy, 180
L LAY Ll
25k abegon, 120
95 1e abiegop, gan
G5 L aleg, e
L LAY Ll
£5 ke abegon, 120
75 e abegoy, 1an
15 1@ abegop, e
05 b abege, 180
LEE Ll LAY Ll
v ia abegos, 1a0
Lpiaalegoy, 1a0
EELES TN L]
5k abegop, g0
riie abegop, g0
Er b abegon, e
Zria alegep, 180
trie abegon, goa
Dria abiegon, 1ao
BE 1@ abego, 1=
G L alegop, ga0
LE b begon, 182

auny

	1 Introduction
	1.1 Need for a self-made user interface
	1.2 EbanditXamk

	2 components and technologies
	2.1 Raspberry Pi
	2.1.1 Raspbian

	2.2 BMS
	2.3 Curtis motor controller
	2.4 Elcon TC charger
	2.5 Mcp2515 CAN shield
	2.6 52PI display
	2.7 Qt

	3 Can-bus
	3.1 History
	3.2 Can bus layers
	3.2.1 Physical layer
	3.2.2 Data link layer
	3.2.3 Higher layer

	3.3 CAN frames
	3.3.1 Data and remote frames
	3.3.2 Error frame
	3.3.3 Overload frame

	3.4 Prioritization

	4 Design
	4.1 Displayed values
	4.1.1 Battery values
	4.1.2 Motor controller values
	4.1.3 State of switches

	4.2 Graphical layout
	4.3 Installation of the Screen

	5 qt libraries
	5.1.1 Qt Serial Bus
	5.1.2 QCanBus
	5.1.3 QCanBusFrame
	5.1.4 QCanBusDevice

	6 Raspberry pi programming
	6.1 SSH connection
	6.2 Connecting to internet
	6.3 Software installation
	6.3.1 Qt
	6.3.2 Compiler for raspberry
	6.3.3 Can-utils
	6.3.4 Bringing can interface up

	6.4 User interface programming
	6.4.1 C++
	6.4.2 QML

	7 Results and conclusions
	REFERENCES

