

Nhan Nguyen Thien

FAMILY IN MUSIC PLATFORM
NextJS Full Stack Web Application

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Degree Program in Information Technology

ABSTRACT

Author Nhan Nguyen Thien
Title Family In Music Platform
Year 2022
Language English
Pages 47
Name of Supervisor Mikael Jakas

In this thesis, the objective was to develop the Dashboard page feature with the
design and logic for implementation from FAIM’s product team to replace
current landing page of the platform and the current landing page would become
What We Do page.

Subsequently, the Dashboard page was introduced as a current landing page of
the platform as well as there was an issue had to be tackled which was the
performance of that page when numerous APIs were called in run time when
using getServerSideProps from NextJs.

The Dashboard has been released and needs to be maintained whenever some
bugs or issue received from customer’s feedback. In the future, the product team
is having an idea to create new section which called “Wanted Advertisements”
section to replace current “Looking fors” and “Services” section in landing page.

Keywords Family In Music Platform, NextJs, Full Stack Web Application

CONTENTS

ABSTRACT

1 INTRODUCTION…………………………………………………………………………………………….9

 1.1 Background………………………………....……………………………………………………….9

 1.2 Motivation…...…………………………………………………………………………………….13

2 TECHNOLOGIES…………………………………………………………………………………………..16

 2.1 REACTJS…....…..………………….………....…………………………………………………….16

 2.2 NEXTJS……………………….……………………………………………………………………….17

 2.3 SANITY……….………………………………………………………………………………………..20

 2.4 PRISMA……....…………..………………………………………………………………………….21

 2.5 POSTGRESSQL………………………..……………………………………………………..…….23

 2.6 TAILWINDCSS….…………………..…………………………………………………………..….26

 2.7 LODASH………….…………………..…………………………………………………………..….27

3. ENVIRONMENT SETUP………………………………………………………………………………..28

 3.1 Installing Required Tools for Development………………………………………….28

 3.2 Environment Files for Development from AWS………………………………….…29

 3.3 Setting Up Database for Local Development………………………………………30

4 IMPLEMENTATION .. 31

 4.1 Creating Models for Lookingfors and Services Section from Prisma.…....31

 4.2 Creating Logic for Matching Lookingfors and Services.…….………………….33

 4.3 Creating UI based on Figma design………..…….……..….……………….………...37

 4.4 Integrating APIs to UI..……………….………………...……..……………………………..41

5 CONCLUSIONS….…………………………………………………………………………………………45

4

LIST OF FIGURES

Figure 1. Family in Music Platform overview…………………………………………….10

Figure 2. Monolith MVP Platform………………...…………………………………………..11

Figure 3. FAIM Platform Architecture…………...………………………………………….11

Figure 4. Possible future architecture………....……………………………………………12

Figure 5. Data architecture………....………………………...………………………………..12

Figure 6. Key software tools………....……………………...……...............................13

Figure 7. Dashboard page design from Figma……………………………………………14

Figure 8. Popular websites built with React……………………………………………….16

Figure 9. Advantages for websites built with React……………………………………17

Figure 10. Server-side rendering……………………...……………..............................18

Figure 11. Static site generation…………………………………..................................19

Figure 12. SSR with ISR method……………………………………................................20

Figure 13. Prisma Architecture……………………………………………………………………21

Figure 14. Prisma configuration………………………………………………………………….22

Figure 15. Prisma Model…………………………………………………………………………….23

Figure 16. PostgreSQL data structure………………………………………………………….25

Figure 17. Link CDN of Tailwind CSS…………………………..………………………………..26

Figure 18. Example of Using Tailwind CSS……………………………………………………27

Figure 19. React snippet………………………………………………….…………………….……28

Figure 20. Prettier ESlint snippet……………..…………………………………………………28

5

Figure 21. GitLens snippet……………………………………………….…………………………29

Figure 22. Step for creating local database……………………………………………….…30

Figure 23. Sample UI for single user card………….…………………………………………40

Figure 24. Sample UI for one section on the right column……………………………41

Figure 25. Final landing page UI…………………………………………………………………..44

6

LIST OF CODE SNIPPET

Code Snippet 1. Env file for local development…………………………………………………29

Code Snippet 2. UserTag and LookingFor model……………………………………….………31

Code Snippet 3. UserTag and LookingFor added inside Tag model………….…………32

Code Snippet 4. UserTag and LookingFor added inside User model……………………32

Code Snippet 5. Get matching Lookingfors query from Prisma……………………….…33

Code Snippet 6. Get matching Services query from Prisma……….…………………….…34

Code Snippet 7. Folder structure for APIs………………………………….…………………….…35

Code Snippet 8. Get matching LookingFors Api……….…………………….…………………..35

Code Snippet 9. Get matching Services Api……………………………….…………………….…36

Code Snippet 10. Get matching LookingFors Api Request……….……….………………..36

Code Snippet 11. Get matching Services Api Request………………….………………….…37

Code Snippet 12. Dashboard components….…………………………….…………………….…38

Code Snippet 13. Single user card……………...…………………………….…………………….…39

Code Snippet 14. One section on the right column………..………….…………………….…40

Code Snippet 15. Get All Matching LookingFors and Services functions………..……42

Code Snippet 16. lookingForsResults and servicesResults………..…………….……….…43

Code Snippet 17. hasMatchingServices and hasMatchingLookingFors…………….…43

Code Snippet 18. LookingFors, Services and NetworkSugesstions data………….…44

Code Snippet 19. Calling Apis with SWR………………………..………….…………………….…44

7

LIST OF ABBREVIATIONS

APIs Application Programming Interfaces

AWS Amazon Web Services

CMS Content Management System

DOM Document Object Model

EDM Electronic Dance Music

Env Environment

FAIM Family In Music

GraphQL Graph Query Language

HTML Hyper Text Markup Language

IDE Integrated development environment

ISR Incremental Static Regeneration

JS JavaScript

MVC Model-View-Controller

MVCC Multiversion Concurrency Control

MVP Minimum viable product

ORM Object–relational mapper

OP Operating system

SEO Search Engine Optimization

SPA Single Page Application

8

SSR Server-side rendering

SSG Static Site Generation

SQL Structured query language

SWR Stale while revalidate

UI User Interfaces

URL Uniform resource locator

9

1 INTRODUCTION

1.1 Background

Every day, more new music is being written and released around the world than

ever before in music industry, and it is expected to keep increasing significantly in

the future. This has created a rapidly expanding group of new independent crea-

tors who often do not fit the existing structures of the industry and whose needs

are mostly unmet or underserved. That is why FAIM company is building a new

Family In Music Platform for all different kinds of creators as well as people from

different roles in music industry such as: Artist, Event Organizer, Music Producer,

Advisor as well as with different kinds of genres such as EDM, Pop, Hip hop, Singer-

songwriter and some more popular genres. These people from the newbie, and

the inexperienced to the seniors or the celebrities have a mission to create con-

nections with others, motivate, educate and elevate. This platform is offering net-

working, lessons and tools, featuring distribution and release workflows, and with

more to come including campaign monitoring, analytics, song title validation, song

registration, radio play monitoring, daily payments and royalty advances. Signifi-

cant features of this platform include:

- Distribution: Distributing music to all leading digital music stores and major

streaming services including Apple Music, Spotify, Tik Tok and Instagram which

will revolutionise the way these creators work and get paid for what they have

contributed to the music industry.

- Knowhow: Lessons from professional and experienced people in music industry

who will share their experience, valuable knowledge about how to write, produce

and promote music that can help other people, especially new creators just step

ping into entertainment industry to gain their own success.

- Workflows: Showing step by step and instructions which help new creators to

follow which help their next released albums or songs become smoother. Creators

can build their marketing plans or PR campaigns, using FAIM’s platform templates,

to take all the guesswork out of what should be doing and when.

10

- Networking: Users can make connections and collaborate with creators and in-

dustry professionals as well as discover new opportunities in the platform. They

first need to send the requests and waiting for them to accept and then, they can

start texting and sharing experience.

- MgNTa: A new industry identifier that supports and empowers the new genera-

tion of creators by helping create a pathway to rights, control and revenue. Users

will be able to be identified as songwriters and recognised when their music is

being used on digital services.

-Wallet: Users can access daily royalty payments and smooth royalty splits for cre-

ators. In addition, they can be paid directly on their digital wallet and cash out

anytime they want.

For faster development, this MVP platform is built in a monolith architecture. In

the case of scalability issues a likely development is to make most popular services

independent as they gain traction. Below are some images related to the FAIM

platform architecture.

Figure 2. Monolith MVP Platform

11

In the future, features such as Know How, Workflows and Networking will greatly

benefit of mobile clients (iOS, Android). In addition, when going to the global plat-

form, millions of users will eventually require distributed services or microservices

infrastructure.

Figure 4. Possible future architecture

This is the data architecture and key software tools which are used for the FAIM

platform.

At the moment, this platform is the beta version and new features are constantly

being developed and they are willing to hear the feedback to improve their plat-

form to be a better version.

1.2 Motivation

As the platform is developing significantly and a large number of users come to

the platform for expanding their connections and gain their success, the motiva-

tion to create a Dashboard page to become current landing page and the current

landing page will become the What We Do page.

12

Figma is a collaborative interface design tool which works on any OS and helps

design the UI with stylings and exact ratios for each element from designers and

developers can rely on it and start developing the UI for website.

Figure 7. Dashboard page design from Figma

The idea of Dashboard page is as follows:, there are 4-four sections in the page:

+ The first section is about useful and helpful lessons displayed in the center of the

page shown as “Recommended Content” for users who could learn about music

industry from seniors. These lessons from Knowhow feature of the platform.

+ The second section is on the left side of this page; the current user can view their

profile or edit their own profile. Below that section, there is the “Recommended

Professionals” section which displays randomly three users each time the Dash-

board page is refreshed or reloaded or when navigating back to this page from

other pages. This section lets users easily connect with each other.

+ The third section is “Looking for” section on the right of the page which shows

three random tags from current user tag lists about roles or services. Below that,

there are three random people provided that match the request.

For example, if one user is looking for artists to collaborate with, this section will

show random three users who are artists.

13

+ The fourth section is “Services” section on the right of the page which shows

three random tags from the current user tag lists about his/her own roles and ser-

vices that he/she is working at the moment. Below that, there are three random

people who are looking for roles and services that match their current role.

For example, if one user is an artist, this section will display random three users

who are looking for artists to collaborate and produce new music.

In addition, the “Recommended Professionals”, “Looking for” and “Services” sec-

tions have a “View more” button which can help the user to have more options

when finding suitable and appropriate to work and make connections with.

14

2.TECHNOLOGIES

2.1 ReactJS

ReactJS (known as React) is an open-source front-end JavaScript library which has

considerable supports from the developer community. This JavaScript library was

first invented on May 29, 2013, by Jordan Walke and is maintained and developed

by Meta (formerly known as Facebook). Nowadays, this library has over thousands

of contributors according to its popularity and reputation. The most critical pur-

pose of ReactJS is to improve the speed of the applications and require a minimal

coding effort when developing web applications. There are numerous websites

which have been developed and built with React, such as Netflix, Facebook, Pay-

Pal, Twitter and many other web applications. /1/

Figure 8. Popular websites built with React /2/

React can be used for building interactive and user-friendly user interfaces by di-

viding into multiple components and each of them has its own logic, controls and

functionalities that developers can reuse effectively.

In addition, React is used to build SPA which can enhance the performance of web

applications based on the virtual DOM. When building a SPA by React, for every

DOM object, there is corresponding “virtual DOM object”. Basically, the DOM

represents the UI of the web application. Additionally, a virtual DOM object is a

15

representation and lightweight copy of a real DOM object. ReactJS has solved the

issue of the slow update of DOM by updating the virtual DOM objects when the

state of a component changes first, once the virtual DOM has been fully updated,

React updates those objects in real DOM./3/

Furthermore, JavaScript frameworks has an issue with SEO-friendly traditionally.

In general, the Google crawlers, which is one of the most popular search engines

cannot read JavaScript-heavy applications. With React, there is no such problem

because the applications written by this library can run on the server and the vir-

tual DOM will be rendering to the browser as a regular web page, which helps

numerous developers to be navigated in different kinds of search engines.

Figure 9. Advantages for websites built with React /4/

In contrast to these significant benefits, there are some drawbacks. A critical draw-

back of React is that it covers only the UI layers (known as the View part in MVC

model) so that we need another framework or library to collaborate with in order

to get the complete tools for developing a project. That is why NextJS was invented

to serve the purpose of building a full-stack web application from front-end to

back-end.

2.2 NextJS

NextJS is an open-source web development framework invented by Guillermo

Rauch and first released on October 25, 2016, on GitHub, and currently being

16

maintained and developed by Vercel developers and open-source community.

This is a React framework built on top of NodeJS and it has several remarkable

features, including server-side rendering and generating static websites. /5/

Firstly, server-side rendering (SSR) using getServerSideProps function is the ability

of a web application to prepare all the content of a page on the server instead of

on the client side. When inspecting the source code of a loaded application built

with standard React, it is noticed that the page is empty right from the beginning.

It only displays a basic HTML skeleton and since React is a client-side Javascript

library, all that rendering occurs on the client, so in the browsers, it is not happen-

ing on the server. It can be an issue when users must wait for the response of

outgoing requests (APIs called for fetching data in client side) because the page

we requested did not include any data yet. In addition, the problem can occur with

search engine optimization for public-facing pages with a lot of content, which

should be found by crawlers or search engines, but it will not be a problem with

administration dashboard pages required logging in. These issues can be solved by

using server-side rendering in NextJS. In case the page would be prerendered on

the server or the data fetching process can be completed on the server. hen users

send requests to that page, then the finished page would be served to our users

and search engines. Subsequently, search engines crawlers would see the content

of the page as well as users would not have to wait for flickering loading state.

Figure 10. Server-side rendering /6/

17

An additional feature about NextJS is static page generation using getStaticProps.

SSG is a preferred way of rendering the content of websites or applications at build

time and the output of it is a set of static files which include the HTML files itself

as well as assets such as CSS and JS. When the browser receives the page built with

Javascript libraries such as React or scripts at run time in the browser, it is usually

simple HTML without much content. This then loads the scripts to pull the content

into the page, known as hydration. But with SSG, tools like NextJS, attempt to ren-

der that page mostly as it would in the browser, but at compile time, also known

as build time. This allows us to serve the whole content on the initial load. During

this procedure, the scripts continues to hydrate the page, but with fewer or no

changes.

Figure 11. Static site generation /7/

With the updates of NextJS in version 9.5, Incremental Static Regeneration con-

cept allows developers to update existing static pages by doing re-rendering pro-

cess in the background as requests comes in. It makes the static content also be-

come dynamic. Users' traffic is always delivered from the static storage, although

the page content can be revalidated at predefined intervals (in seconds). The re-

generation frequency is controlled by the revalidated configuration flag./8/

18

Figure 12. SSG with ISR method /6/

2.3 Sanity

The Sanity Studio is a React.js-based open-source CMS which allows for quick con-

figuration as well as free-form customization. Utilizing these toolkits and plugins

to design a workflow that is optimized for the way users wish to work with mate-

rial. /9/

In the FAIM platform, Sanity is containerised separately, working like a micro ser-

vice. The app container fetches data from there and it builds its own APIs. It is used

as the workspace or backend which contains data for lessons and non-developer

users can easily add new, edit or delete lessons and do not need to have any

knowledge about technical things. In addition, the mission of developers with San-

ity is to create additional custom fields by coding so that non-developer users can

add the fields they want with the main objective to display the desired UI in the

platform.

FAIM has 2 Sanity studios, Family in Music Staging and Family in Music Production.

Users can add draft versions of lessons on the Staging Studio and display in the

Staging server first, then if the lessons are accepted by the product team in the

company, they can be deployed to Sanity Production by command: sanity deploy.

19

2.4 Prisma

Prisma is a next-generation object–relational mapper (ORM) that claims to speed

up development and reduce mistakes. In comparison to traditional ORMs, Prisma

takes a unique approach to ORMs.It makes use of a Schema Definition Language

(SDL) that creates type-safe code and writes migrations automatically. Prisma

does not employ classes or decorators for model definition, unlike TypeORM and

MikroORM. Instead, it leverages schema-driven code creation, to GraphQL Code

Generator tool. For stronger type safety and powerful IDE auto-completion capa-

bilities, the Prisma Client uses this produced TypeScript code.

Compared to Prisma version 1, which required a custom server running in a con-

tainer to transform calls to database queries, with the update of version 2,

Prisma 2 completely changes the approach, using a combined binary. /10/

Prisma manipulates so that, it takes the models written in the schema and pro-

duces SQL migrations and types in node modules/.prisma/client using the prisma

migrate command. These types are aware of the relationships established in the

models and generate code that may be used to query the models. How to de-

velop models and utilize them with the Prisma client will be explained in more

detail in the section following. When the client is used to query, it sends the re-

quests to a Query Engine binary, which optimizes them and turns them to data-

base queries.

Figure 13. Prisma Architecture

20

Although the developer will never interact with Prisma's engine when working

with it, it is useful to understand how Prisma works. The engine handles all com-

munication with the database layer. The engine's optimization has several ad-

vantages, one of which is that it overcomes the N+1 relationship problem, which

is frequent in GraphQL applications.

Figure 13 describes the flow of Prisma architecture which shows how the query

engine process is started and connects to the query engine which connects di-

rectly to the database. After getting into the database, Prisma returns the API

and we can get the API from the back end in server-side to display in front-end.

/11/

Figure 14. Prisma configuration

The schema.prisma file is the most significant since it is the PostgreSQL that we

will use to create our models. In figure 14, we configure the datasource with the

provider PostgreSQL and URL with the link env. We're specifying our data source

and informing Prisma that we'll be utilizing PostgreSQL in these lines. The envi-

ronment variables will provide the URL for it. Finally, the generator informs

Prisma of the language that will be used with the Prisma client. It will be JavaS-

cript in this scenario.

21

Figure 15. Prisma Model

We will now create our first model to illustrate this.

The name of a table in the database corresponds to the model. The model's

name should follow the following naming conventions:

• Must begin with an alphanumeric letter and continue with numbers, let-

ters, or underscores.

• It must begin with a letter and is usually written in Pascal Case.

• Should be written in the singular (for example, User instead of user, users

or Users)

Prisma does not immediately update the database just by writing the model. We

will have to build a migration and test it against our database. This may be done

in development using the following command:

npx prisma migrate dev --name init

In the Prisma folder, a new folder called migrations will be created. Prisma will

generate a PostgreSQL file that will be automatically executed against the data-

base throughout development. Prisma also provides type declarations for all the

models that may be utilized with the TypeScript Prisma Client.

2.5 PostgreSQL

PostgreSQL is a sophisticated, open source object-relational database system

that employs and extends the SQL language. It is used as a replacement for raw

22

SQL or other database access tools like SQL query builders (like knex. js) or ORMs

(like TypeORM and Sequelize).

Transactions with Atomicity, Consistency, Isolation, and Durability (ACID) quali-

ties, automatically updatable views, materialized views, triggers, foreign keys,

and stored procedures are all available in PostgreSQL.

It can manage a wide range of workloads, from single computers to data ware-

houses or Web services with a large number of concurrent users.

PostgreSQL includes a number of features targeted at assisting developers in the

development of applications, administrators in the protection of data integrity

and the creation of fault-tolerant settings, and the developer in the management

of the data, regardless of the size of the dataset. /12/

Many advanced features are available in PostgreSQL in other enterprise-class da-

tabase management systems, such as:

• Types defined by the user

• Inheritance in tables

• Locking mechanism with a high level of sophistication

• Referential integrity of foreign keys

• Views, rules, and subquery are all terms that can be used to describe

something.

• Transactions nested

• Controlling concurrency across many versions (MVCC)

• Replication that is asynchronous

23

Figure 16. PostgreSQL data structure

For the processes that a PostgreSQL structure, it must go through in order to get

results:

- A connection to the PostgreSQL server must be made from an application

program.

- The parser stage validates the query sent by the application program for

proper syntax before constructing a query tree.

- The rewriting system looks for any rules (stored in the system catalogs)

that can be applied to the query tree formed during the parser step.

- The transformations specified in the rule bodies are carried out by it.

- The development of views is one application of the rewriting system.

- When a query is run against a view (i.e., a virtual table), the system re-

writes it in order to obtain access to the data table.

- The planner/optimizer builds a query plan from the query tree, which will

be passed to the executor. It accomplishes this by first generating all fea-

sible paths that lead to the same outsource.

24

- The executor traverses the plan tree in a recursive manner, retrieving

data in the order specified by the plan. While scanning relations, perform-

ing sorts and joins, evaluating qualifications, and finally returning the

rows, the executor uses the storage system.

2.6 TailwindCSS

Tailwind CSS is a utility-first CSS framework that allows to create and custom

user interfaces quickly. It is a highly configurable, low-level CSS framework that

offers all the building blocks needed to create personalized designs.

The advantages of using Tailwind CSS include:

• Fastest UI building process appropriate with ReactJs and NextJS

• It is a utility-first CSS framework which means utility classes can be used

to build custom designs without writing CSS as in traditional approach.

There are many ways to use Tailwind CSS to apply in the project, but the easiest

way to integrate in the project is installing Tailwind via npm with the command

npm install Tailwindcss

After installing package in terminal, Use the @tailwind directive to inject Tail-

wind’s base, components, and utilities styles into your CSS file.

@tailwind base;

@tailwind components;

@tailwind utilities;

Now we can apply it in the project by using class name from tailwind CSS.

In the second method, we can add it through CDN link from Tailwind, adding it

directly to the folder public index.js of the project.

Figure 17. Link CDN of Tailwind CSS

But when using with CDN some drawbacks need to be considered:

25

- Theme of Customize Tailwind default cannot be used.

- Directives like @apply, @variants cannot be used.

- Cannot install third party plug-ins.

Figure 18. Example of Using Tailwind CSS /9/

Figure 18, shows this is an example of using Tailwind CSS class names to style the

component. It is fast and easy to use, the result we get from styling is extremely

eye-catching. /13/

2.7 Lodash

Lodash simplifies JavaScript by removing the tedium of dealing with arrays, num-

bers, objects, texts, and other data types. Great methods for Lodash’s modular are

iterating arrays, objects, and strings or creating composite functions. /14/

26

3.ENVIRONMENT SETUP

3.1 Installing Required Tools for Development

For setting up the development environment, some tools must be installed such

as:

-Visual Studio Code which is a free coding editor that helps developers code in any

programming language. After installing it, some plugins can be added for helping

coding process easier: /15/

• ES7+React/Redux/React-Native snippets which support React syntaxes

and developers only need to enter the snippets then click Tab button for

displaying full syntax for that snippet. /16/

Figure 19. React snippets

• Prettier ESLint snippet which help developers format their code opinionat-

edly. It enforces a consistent style by analyzing their code and re-printing

it according to its own standards, which take into consideration the maxi-

mum line length and wrap code as needed. /17/

Figure 20. Prettier ESLint snippet

• GitLens is an extension for checking quickly whom, why, and when a line

or block of code was changed and how those codes evolved. /18/

27

Figure 21. GitLens snippet

- Postman, which is a tool for testing APIs, after creating an API, Postman will sup-

port developers to test if that API work or have to make changes something. /19/

- SquirrelSQL which is a tool for connecting to local, Staging or Production data-

base so that developers can test or do some queries directly in database. /20/

3.2 Environment Files for Development from AWS

After installing essential tools for development process, the FAIM platform project

needs some .env files for running the project as well as for deployment process.

There are three .env files have to be filled:

- . env: This is a file for local development and it can be filled in by asking

former developers or from README.md file of the project

- Staging.env: This file is for staging environment and it can be filled by ac-

cessing to Staging Amazon Web Services of FAIM and retrieve secret values

from Secret Manager section. These values also include keys for deploy-

ment to Staging server.

- Production.env: This file is for production environment and the process is

similar with staging environment.

3.3 Setting up Database for Local Development

For setting up local database, developer can get access to Confluence website

where store all of the documents about the FAIM platform including features, en-

vironment setup, wanted features in the future. There are some steps for creating

the local database:

- Firstly, get access to postgreSQL server in your local machine

- Then, start creating name of the database and user as instruction.

- After that, granting all privileges for that user.

28

- Next, add the URL to that database with correct credentials in

web/prisma/.env .

- Finally, running prisma commands in order to connect between the project

and local database. First command is : “docker-compose run web npm run

db: generate” and then, run “docker-compose run web npm run db:mi-

grate”.

Below is the figure about the procedure for creating local database from Conflu-

ence website.

Figure 22. Steps for creating local database

Subsequently, the project can be started locally by running the command:

“docker-compose up web”

29

4.IMPLEMENTATION

4.1 Creating Models for Lookingfors and Services Section from Prisma

The first step of creating the Dashboard page is to design the necessary fields

and models in database. For this page, two more models are created which are

LookingFor and UserTag.

Code Snippet 2. UserTag and LookingFor model

The UserTag model, is for the connection between the User model and the Tag

model and the UserTag is where users’s roles and services they are working on

are displayed.

The LookingFor model, is the similar connection as UserTag but the main objec-

tive is to display roles or services what users are looking for to collaborate and

support their own career.

Additionally, these two models must be added inside the User model and the Tag

model in order to complete the mapping between the User and Tag model.

30

Code Snippet 3. UserTag and LookingFor added inside Tag model

Code Snippet 4 . UserTag and LookingFor added inside User model

31

4.2 Creating Logic for Matching Lookingfors and Services

After completing creating essential models, the next step is to handle Prisma

queries to do get, create or delete actions with the database to process and re-

ceive expected output.

For the Dashboard page, two queries are needed which are get matching looking

fors and get matching services.

The logic with getting matching looking fors, is that after getting ids about

logged in user roles and services, a query is written in order to map all users in

the platform and find out who are looking for at least one role or service that

matches at least one logged in user role or service and then, to select and return

needed fields from the User model to improve the performance when getting

data instead of returning all fields from the User model.

Code Snippet 5. Get matching Lookingfors query from Prisma

32

Code Snippet 6. Get matching Services query from Prisma

After preparing the essential queries, the next phase is to create Apis for these

queries. Two new Apis are created inside pages/api folder and because these

Apis related to the user so they are put inside the user subfolder.

33

Code Snippet 7. Folder structure for APIs

In these two APIs, the user object is passed as a body request for each of these

two APIs. For getting matching lookingfors, it needs lookingFor ids from the cur-

rent user, and for getting matching services, it needs userTag ids, so we pass the

user object and then when handling queries in Prisma, the user object is ac-

cessed to get lookingFor and userTag properties.

In the code snippets, Toni is my English name in the company which help co-

workers feel more comfortable when communicating with me in company.

The code snippets below shows the two created APIs:

 Code Snippet 8. Get matching LookingFors Api

34

 Code Snippet 9. Get matching Services Api

After completing APIs, they can be called and integrated directly inside pages

that need to call those actions but in order to make the project structure looks

more clearer and cleaner, the APIs should be defined the inside api-request

folder where the APIs can be easily reused and found in the future.

Below are the code snippets for those two files.

Code Snippet 10. Get matching LookingFors Api Request

35

Code Snippet 11. Get matching Services Api Request

4.3 Creating UI Based on Figma Design

According to the Figma design, the user interfaces of Dashboard page can be di-

vided into three columns:

- The first column for logged in users’ information where the user can see

their own profile or edit their information. Beneath that, there is a rec-

ommended section for some other random users that current user can

connect to and chat with. The api for this section was already imple-

mented previously.

- The middle column is used for displaying all the lessons available in the

platform. These lessons are from seniors who want to share with newbie

artists to enhance and improve their skills as well as knowledge.

- The third column is for LookingFors and Services sections.

This UI including the responsiveness of the page can be implemented faster than

before with the support from Tailwind CSS which eliminates long and hard to re-

member class names as well as easier for maintain and develop.

36

Code snippet 12 shows the structure of dashboard components inside the pro-

ject.

Code Snippet 12. Dashboard components

In addition, this is the code snippet for a single card about user information in

LookingFors and Services section written in Tailwind CSS.

<div id="" className="w-full">
 <div className="flex items-start">
 <div className="mt-2">
 <Link href={`/profiles/${slug}`}>
 <div
 className="w-14 h-14 bg-gray-300 rounded-full bg-cover bg-
center bg-no-repeat cursor-pointer"
 style={{
 backgroundImage: `url(${avatarUrl})`
 }}
 ></div>
 </Link>
 </div>
 <div className="ml-3 mt-2">
 <h3 className="text-base font-bold mb-1">
 <Link href={`/profiles/${slug}`}>

 {firstName} {lastName}

 </Link>
 </h3>

37

 { !!services && services.filter((item, idx) => idx <
showMaxTags).map(({ tag }) => (
 <li key={tag.id}>{tag.name}
))
 }

 <div className="flex flex-row mt-2 space-x-2">
 <p className="text-sm mb-3"></p>
 {currentUserId !== id && <ConnectionRequestButton
 targetId={id}
 currentUserId={currentUserId}
 chatPendingAccept={chatPendingAccept}
 styleName="dashboardConnectionButton"
 chatButton={CHAT_BUTTON.REPLACE}
 />}
 <div className="inline-flex items-center border-brand-text
w-min-20 h-6 text-sm text-brand-text border border-brand-gray-2 rounded-
xl font-semibold tracking-wide hover:opacity-50 focus:outline-none p-2">
 <Link href={`/profiles/${slug}`}>

 Profile

 </Link>
 </div>
 </div>
 </div>
 </div>
 <hr className="mt-2 mb-2"></hr>
 </div>

Code Snippet 13. Single user card

For this snippet, there are two buttons for a single user card which can help a

logged in user to connect to or visit their profile. The first button is Connection

button. There are three values for <ConnectionRequestButton /> which are: Con-

nect, Accept and Chat now:

+ Connect: which means a logged in user and that the user has not con-

nected before

+ Accept: which means that the user sent a connection request and waits

for a logged in user to accept that connection

38

+ Chat now: which means a logged in user and that the users are already

connected with each other and ready to chat with each other.

The second button is the Profile button which will link to that the user profile

when the logged in user clicks it.

Figure 23 shows the UI.

Figure 23. Sample UI for single user card

Additionally, this is the code snippet for UI of one section on the right column of

the page and it contain three times component from Code Snippet 13 which can

be reused for both LookingFors and Services section.

Code Snippet 14. One section on the right column

The UI in this code snippet 14 has the visual similarly with the figure below.

39

Figure 24. Sample UI for one section on the right column

4.4 Integrating APIs to UI

After completing UI based on the Figma design, the final step is to integrate all

created APIs to current UI to render expected results.

At first, because the platform is built with NextJS, getServerSideProps method

can be used to improve performance of the page. Because of that, get matching

services and get matching lookingfors logic are called directly from the database

with Prisma queries on the server side instead of using APIs for calling on the cli-

ent side. At that time, it worked perfectly in the local and Staging environment

but there was an issue since this feature deployed to the Production environ-

ment, where thousands of users available compared to only approximately thirty

users in the local and hundred users on the Staging. Because it had to load all

content, which included lessons data and user data, of the page before rendering

to the page, it affected the performance when the loading time was around

three to four seconds at that time. We decided to use another feature of NextJS

which is getStaticProps, which means that the page is prerendered at build time

40

instead of at each request or runtime. The approach for this method is to fetch

lesson data at build time because these lessons are always the same and with

the revalidation method from getStaticProps, the page can be revalidated and

fetched new lessons if available.

One more issue is that because when a user log in to the platform, this is running

at runtime so that we cannot use get matching LookingFors and Services at build

time therefore, they must be fetched on the client side by using created APIs.

Because of that, a function is created with Promise all method which calls all

functions at the same time and avoids calling them respectively that affects the

performance of the page.

Code Snippet 15. Get All Matching LookingFors and Services functions

In this function, except get matching lookingfors and services api requests, there

is another api which is get all user random limited. This api is in the first column,

used for Recommended section under the current user information which dis-

plays random users for the logged in user to connect with. Additionally, one

more objective of this api is for the current user who does not set what they are

looking for or what their roles and services are in music industry. If they have not

41

set one of these two or both sections yet, the LookingFors and Services sections

will display the user randomly. For LookingFors, it will display three random users

who are looking for some roles or services and those roles and services match

current user. And For Services, it will display three random users who set their

roles and services and maybe current user is looking for them.

After getting data from all random users, two empty arrays have to be set which

are lookingForResults and servicesResults in case the current user does not set

yet, these arrays will be used to render in landing page.

Code Snippet 16. lookingForsResults and servicesResults

For the condition to use either get matching lookingfors and services apis or get

all user random limited, there are two variables for that which are hasMatchingS-

ervices and hasMatchingLookingFors.

Code Snippet 17. hasMatchingServices and hasMatchingLookingFors

If the logged in user has not set their roles and services or what they are looking

for, the data sent back from back-end from getMatchingLookingFors and

getMatchingServices apis will be empty array so it can be checked if their length

greater than zero.

Finally, there will be three final arrays data which will be displayed in the UI after

checking conditions, which are lookingForWithMaxRes for LookingFors section,

42

servicesWithMaxRes for Services section and networkSuggestions for Recom-

mended section. These arrays will be updated whenever their roles and services

are updated based on useMemo hook from React.

In addition, Samplesize function from Lodash is used in this case in order to limit

the array data with maxResults variable there. Also, filterAvatars is a helper func-

tion for prioritizing and choosing users who already set their own avatars.

Code Snippet 18. LookingFors, Services and NetworkSuggestions data

For updating called apis frequently, useSWR is the best option when using NextJS

and this is how those apis are called in SWR after every fifteen seconds which

make sure data will not be stale and will be revalidated.

Code Snippet 19. Calling Apis with SWR

After integrating these apis, the final UI for landing page was finished and shown

in Figure 25.

43

Figure 25. Final landing page UI

44

5.CONCLUSIONS

This feature is completed and after testing carefully and approved by the product

team in Family In Music, it was deployed to Staging and then Production server.

This is the link for Production server which can be accessed: https://app.fami-

lyinmusic.com/ .

After completing this feature, there is a wide range of new knowledge needed to

learn and practice from back-end to front-end side. During the time this feature is

on Production server, there are several changes related to UI to make this page

look more attractive and cleaner.

The next step for this page, after discussing with the Product team is, to create

Wanted Advertisements section beneath LookingFor and Services section so as to

attract more new users in music industry. The Figma design is implemented and

will be started in the near future.

45

REFERENCES

/1/ Wikipedia. ReactJS. Accessed 01/03/2022
https://en.wikipedia.org/wiki/React_(JavaScript_library)

/2/ Simform. Accessed 17/04/2022
https://www.simform.com/blog/websites-use-react/

/3/ Peerbits. Advantages of ReactJS. Accessed 01/03/2022
https://www.peerbits.com/blog/reasons-to-choose-reactjs-for-your-web-devel-
opment-project.html

/4/ Valuecoders. Accessed 17/04/2022
https://www.valuecoders.com/blog/technology-and-apps/business-benefits-of-
reactjs-framework-for-modern-web-and-app-development/

/5/ Wikipedia. NextJS. Accessed 01/03/2022
https://en.wikipedia.org/wiki/Next.js

/6/ Grzybek,Pawel.2020. Client-side rendering, serverside rendering and static
site generation of Nextjs applications explained. Accessed 17/04/2022
https://pawelgrzybek.com/client-side-rendering-server-side-rendering-and-
static-site-generation-of-nextjs-applications-explained/

/7/ Nextjs. Accessed 17/04/2022
https://nextjs.org/learn/basics/data-fetching/two-forms

/8/ NextJS. getServerSIdeProps, getStaticProps, Incremental Static Regeneration.
Accessed 01/03/2022
https://nextjs.org/docs/basic-features/data-fetching/overview

/9/ Sanity. Sanity definition. Accessed 02/03/2022
https://www.sanity.io/

/10/ Prisma. Prisma definition. Accessed 02/03/2022
https://www.prisma.io/

/11/ Formidable. Prisma manipulation. Accessed 02/03/2022
https://formidable.com/blog/2021/prisma-
orm/#:~:text=Prisma%20is%20a%20next%2Dgeneration,and%20gener-
ates%20type%2Dsafe%20code.

/12/ Wikipedia. PostgreSQL. Accessed 02/03/2022
https://en.wikipedia.org/wiki/PostgreSQL

/13/ Tailwindcss. Tailwind CSS. Accessed 03/03/2022
https://tailwindcss.com/

46

/14/ Lodash. Lodash JavaScript library. Accessed 17/04/2022
https://lodash.com/

/15/ Visual Studio Code. Coding Tool. Accessed 17/04/2022
https://code.visualstudio.com/

/16/ Visual Studio Code Marketplace. ReactJS Snippets. Accessed 17/04/2022
https://marketplace.visualstudio.com/items?itemName=xabikos.ReactSnippets

/17/ Visual Studio Code Marketplace. Prettier ESLint. Accessed 17/04/2022
https://marketplace.visualstudio.com/items?itemName=rvest.vs-code-prettier-
eslint

/18/ Visual Studio Code Marketplace. GitLens. Accessed 17/04/2022
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens

/19/ Postman. APIs platform for building and using APIs. Accessed 17/04/2022
https://www.postman.com/

/20/ Wikipedia. A database administration tool.Accessed 17/04/2022
https://en.wikipedia.org/wiki/SQuirreL_SQL_Client

