

VECTOR GRAPHIC CONTENT LASER ENGRAVING PROGRAM ON

DOBOT MAGICIAN

Bachelor’s thesis

Mechanical Engineering and Production Technology

Spring 2022

Thien Hoang Le

Acknowledgement

I would like to thank my supervisor, Prof. Dr Sc. Christophe, who supports me in the thesis

implementation process of the project with his helpful counsel and insightful feedbacks. The

Robotic Department of HAMK in Riihimäki campus gave me opportunities to approach the

technical devices I used in the project.

In addition, I would like to thank my parents and my girlfriend who have always supported

and encouraged me. Finally, I could not finish this thesis without the help and advice from my

good friends.

In memory of Grandpa,

 Vantaa, May 10th, 2022

Le Thien Hoang

Degree Programme in Mechanical Engineering and Production Technology Abstract
Author Thien Hoang Le Year 2022
Subject Vector Graphic Content Laser Engraving Program on Dobot Magician
Supervisor Francois Christophe

ABSTRACT

The aim of the thesis is to develop a program of controlling an educational robot, Dobot

Magician, in laser cutting and engraving process. The input source of the program is vector

graphic SVG files. The Python program developed in this thesis is able to interpret the input

SVG file as G-code commands and control the robot according to these commands.

The program meets the requirement of controlling the robot to execute the laser process with

a vector graphic file and laser process settings as the input content. However, the program

still has limitations in handling the diversity of input formats and customization ability.

Further research for alleviating the limitation of the program improves the teaching capability

of the educational robot about the laser processing and G-code commands in Mechanical

Engineering field.

Keywords Dobot Magician, laser, G-code, vector graphic, SVG, Python
Pages 28 pages and appendices 11 pages

Contents

1 INTRODUCTION .. 1

2 THEORETICAL AND TECHNICAL BACKGROUND .. 3

2.1 Necessary terminologies and abbreviations .. 3

2.2 Vector graphic and SVG ... 4

2.2.1 Vector graphic .. 4

2.2.2 SVG format ... 6

2.3 SVG-to-gcode module .. 7

2.4 G-code .. 8

2.5 Dobot Magician .. 9

2.6 Dobot Magician DLL and API Description .. 9

2.7 Python 3 ... 10

2.8 Analytic Geometry ... 10

2.9 Orientation of 3 ordered points ... 11

3 IMPLEMENTATION .. 13

3.1 Overview .. 13

3.2 Vector graphic to G-code ... 14

3.3 Process the G-code file to control the robot ... 14

3.3.1 Overview .. 14

3.3.2 Coordinate transformation .. 17

3.3.3 Linear movement ... 18

3.3.4 Arc movement .. 19

3.3.5 Laser head control .. 22

3.4 Template of the main program .. 23

3.5 Technical setup .. 23

3.6 Result .. 24

4 CONCLUSION .. 27

References ... 29

Appendices

Appendix 1 Transformation formulas reconstruction

Appendix 2 Main program

Appendix 3 Line segment chain function

Appendix 4 Read G-code function

Appendix 5 Pen operation pictures

Appendix 6 Laser operation pictures

1

1 INTRODUCTION

In the last decade, modern technology has developed rapidly, and programming skill has

become one of the most important skills to learn for young people. As a consequence,

educational Robots are invested as the teaching facilities in high schools as well as universities

to help students study programming. Compared to programming on computers with ordinary

screen output, the educational robots are more efficient and fascinating to the students due

to the visual demonstration of the programming process by robot’s movements. The

educational robots are not only used in teaching programming, their application in educating

students in Automation and Mechanical lectures is significant. Many educational robots have

the ability to perform basic functions of some industrial processes such as laser engraving,

cutting, milling, and 3D printing.

Consequently, the need for research in programming and controlling the educational robot to

execute some light industrial processes is becoming more critical. Additionally, laser engraving

is a particular example in robot automation and CNC procedures. Therefore, this thesis

research project is expected to provide the educational robots the improved capabilities in

assisting students to interact with the laser engraving process.

The purpose of the thesis is to research the solution to control educational robots, specifically

the Dobot Magician, in the laser engraving process. The program system has the ability to

input an SVG vector graphic file and control the Dobot Magician to engrave the graphic onto

the operating surface. Furthermore, the program is expected to manipulate the power of the

laser head and the settings of the engraving operation.

The program provided by the publisher of Dobot Magician contains the laser engraving

function. The limitation of this add-in function is its inability to process the vector graphic files.

The program only supports raster graphic files, specifically .png, .jpg and .bmp. Additionally, it

is impossible for users to customize the process setting. The program developed in this thesis

is expected to alleviate this limitation and give the user opportunities to interact with the

setting. With this, the educational application in laser engraving process can be enhanced.

2

The software developed in the thesis project has the capability to process only one format of

vector graphic content, the SVG format. The programming interpreter of the software is

Python 3.8, there is no guarantee that the software can run without any error. On the other

hand, the thesis can be used as a foundation for further research in the educational robot

programming field.

3

2 THEORETICAL AND TECHNICAL BACKGROUND

The aim of the thesis project is to find a feasible system to control the Dobot Magician in laser

engraving process. An SVG vector graphic file should be used as the input of the system. The

approaching method to solve the problem is parsing the vector graphic geometry elements

into G-code commands. The system is programmed to process the G-code file and control the

robot according to the G-code commands. For education and research purposes in the

Mechanical field, G-code, a widely used CNC language in laser processes, was chosen to be

operated with. The parsing procedure from SVG geometry factors to G-code is common in

commercial NC laser machines. Therefore, the open-source appropriate solutions for this

procedure are accessible on the Internet. This theoretical background section gives an

overview of SVG, G-code, Python language, and the Dobot Magician robot. Additionally, the

parsing methods from SVG geometry elements to G-code and from G-code to the robot

behaviors are mentioned. Finally, the modules, libraries and its algorithms are also discussed.

2.1 Necessary terminologies and abbreviations

This section gives the definition of the terminologies used in the report.

1. CNC: abbreviated as Computer Numerical Control is a machining process in which the

movements of the manufacturing tools are controlled by pre-programmed computer

software. As the operation is dictated by the computer software, the CNC process

commonly provides higher precision compared to the manual control machining.

Therefore, CNC machining is applied widely in modern industrial manufacturing,

especially when the tasks require accuracy. (Hess, 2017)

2. XML: eXtensible Markup Language, a text format from SGML (ISO 8879). This format is

simple and flexible that was designed as the solution for “large-scale electronic

publishing”. (Quin, 2016)

3. Interpreted program language: The program language which is interpreted into

another program language to communicate with the computer instead of directly

communicating.

4

4. Object-oriented programming (OOP): “Is a computer programming model that

organizes software design around data, or objects, rather than functions and logic.”

(Alexander, 2021)

5. High-level language: A programming language considered as high-level program

language when the code written in the programming is similar to human language.

Oppositely, the low-level program language is difficult for regular people to

understand but it runs faster because it communicates with computer better. The

advantage of the high-level program language is its comprehensibility for the amateur

programmer in the moderate tasks.

6. Python packages/modules: Libraries in Python language which are compilations of

code was written by other programmer(s) to perform any task. Programmers can use

libraries written by others to optimize performing the required tasks.

7. Parsing and Compiling: Parsing is the process that reads the text into the internal

representation such as geometry shapes, graphs, trees, etc. Compiling is translating

the internal representation into another format.

8. Software extension: An add-in function which is created to perform the related

additional tasks in the software.

9. Function and sub-function: Function is a block of code that runs when it is called. Sub-

function is an internal function of a function.

10. Open-source: The designs or source codes of the open-source objects are publicly

approachable.

2.2 Vector graphic and SVG

The input of the system is the vector graphic file. This chapter refers the characteristic of the

Vector graphic and specifically the SVG format.

2.2.1 Vector graphic

Vector graphics are computer graphics images that are defined in terms of 2-dimensional (2D)

points, which are connected by lines and curves to form polygons and other shapes. Each of

these points has a definite position on the x- and y-axis of the work plane and determines the

5

direction of the path. Furthermore, each path may have various properties including values

for stroke colour, shape, curve, thickness, and fill. In other words, the vector graphic is a

combination of countless vector objects.

In the raster graphic formats, the image is defined by the colour of many pixels. Therefore,

when the image is magnified, the individual pixels are visible to human eye. On the other hand,

as the content of the vector graphics are defined vectors, the basic property of vector graphics

is the preservation of all the details when enlarging. Vector graphics are widely applied in logo

and poster design for their capability of enlarging without loss of details. Vector graphics can

be found in the SVG, EPS, PDF or AI graphic file formats. (Lutkevich, 2021)

Figure 1. The difference between vector graphics and rastor graphics (Lutkevich, 2021)

6

2.2.2 SVG format

As mentioned, there are several formats of vector graphics. In this project, the most common

format chosen to be the research subject is the SVG vector graphic format.

Scalable Vector Graphics, or SVG, was developed by World Wide Web Consortium (W3C). SVG

is based on Extensible Markup Language (XML) which uses syntax and keywords to determine

the graphic objects on 2D plane. These graphic objects are vector graphic shapes, images and

text. SVG is an open standard that allows for effortless customization and editing of graphical

objects. The SVG format is commonly used in Web applications where the graphic requires

scalability for different display resolutions. (Dahlström, et al., 2011)

Figure 2. An example for SVG code to represent a triangle. (Dahlström, et al., 2011)

In the document about the SVG, W3C mentions the rules to write the syntax and the keywords

as well as their arrangement to determine the graphical objects in SVG. The parsing module

used these rules as reference to develop the algorithms for parsing and compiling the

graphical objects defined in the SVG file into the G-code commands. (Dahlström, et al., 2011)

7

2.3 SVG-to-gcode module

SVG-to-gcode is a library programmed in Python 3 language. The library was developed by

Alex Padula. The library is the foundation for developing an Inkscape extension called J-Tech

Photonics Laser Tool. The function of the library and the extension is to parse the SVG graphic

file to G-code commands in the laser-cut process. The module is divided into 3 sub-modules:

geometry, parser and compiler. The geometry sub-module represents the geometry curves.

The parser sub-module parses and converts the SVG files to geometric curves. The compiler

transforms geometric curves into G-code commands. (Padula, 2021)

The most important function of the Padula’s

library is the line_segment_approximation

function. The purpose of this function is to

approximate the curves utilizing straight line

segments. This function converts any curve

path into small straight lines which has the

approximating tolerance within the defined

restriction. The function creates a list of lines

which is comprised of the straight lines that

approximate the curve. If the curve is a straight

line, the list of lines contains only that straight

line. When the curve is not a straight line, curve

approximating method is applied to determine

the approximate straight lines to be appended

into the created list of lines. There is a

coefficient “t” in the function which indicates

the portion of the curve under evaluation. For

example, curve.point(t=0) is the starting point

of the curve; curve.point(t=1) is the ending

point of the curve; similarly, curve.point(t=0.5) is

the point at the middle of the curve. First, a

straight line is created by connecting the starting

Figure 3. The flow chart of the curve

approximate method

8

point and the ending point of the curve (“t”=0 to “new_t”=1). The program evaluates the

maximum distance between the generated line and the whole curve. If the maximum distance

exceeds the upper limit which is defined in the tolerance section, the program considers the

line as inappropriate and decreases the “new_t” value to find a more accurate line. When the

function defines a suitable “new_t” which generates a qualified straight line, the line is then

appended to the list of lines created in the beginning of the function. After a straight line is

accepted into the list of lines, the loop is repeated to determine a new line by assigning the t

value of the new cycle to the new_t of the previous cycle. By doing so, the starting point of

the next line is identical to the ending point of the previous line in the list. The loop is ended

when the t value exceeds 1, which expresses the ending of the curve. There is also a lower

limit for the tolerances value. If the error between the segment line and the curve is lower

than this value, the increment of the t value is increased to reduce the unnecessary amount

of line segments.

The module has a file for the user where all the sub-modules and functions are imported to.

The user is able to adjust the name of the input/output directory. Most importantly, the user

has the capability to set the parameters of the functions to decide the settings of the laser

process. G-code file is generated based on the settings which were set by the user. The

program then outputs the G-code file and saves it in the directory folder for the next stage of

the process.

2.4 G-code

G-code is an ISO standard (ISO6983-1) used in program and dictating the movement of the

CNC machines or the robot arms (Nilsson, 2016). The G-code commands control the direction

of the movement, the movement speed, the depth of the cutting, etc. The generated G-code

is loaded onto the machine to operate the process. The G-code can be manually written by

the operator or auto-generated by the CAM software.

The G-code used in laser processing is a simplified version of the G-code in different CNC

machining processes such as milling, turning, turning or drilling. The G-code for laser process

which was researched in this thesis only relies on 5 G-command. G0 or G00 is created for rapid

9

movement when the laser head approaches the starting point and leaves the ending point of

an operating path. G1 or G01 defines the linear movement in laser operating heat procedure.

Lastly, G2 or G02 and G3 or G03 respectively perform the arc movement in clockwise and

counterclockwise orientation. The G-commands with the F-parameter set the speed of the

corresponding G movement. Additionally, 2 M-commands are involved in the laser operation.

While M3 or M03 controls the power of the laser head when it performs the cutting or

engraving, M5 or M05 has only function to turn the laser off. The M5 commands commonly

come with the G0 commands afterwards.

2.5 Dobot Magician

The educational robot researched in the thesis is Dobot Magician. Dobot Magician is a 3-axis

robot arm commercialized in 2017 by Shenzhen Yuejiang Technology Co., LTD. The robot is

usually used for educational purposes in schools and universities. Dobot Magician supports

secondary development by over 20 programming languages. The robot arm has the ability to

connect with multiple external devices via its 13 I/O connection ports. The supplier provides

various demo packages in over 20 programming languages to control Dobot Magician based

on the communication protocol of the robot. (DOBOT Magician - Lightweight Intelligent

Training Robotic Arm - An all-in-one STEAM Education Platform, n.d.)

2.6 Dobot Magician DLL and API Description

The Dobot Magician producer provides the Dynamic Link Library (DLL) file which instructs

other programs to call the controlling functions of the robot. In the DLL source code written

in Python, the developers can find information on how to call the functions and the meaning

of the parameters in those functions. This information is further explained in Dobot Magician

API Description. The Dobot Magician API Description used in the project is the version V1.2.2

released on 06 November 2018 by Shenzhen Yuejiang Technology Co., Ltd.

10

2.7 Python 3

Python 3 is an interpreted, object-oriented, high-level programming language. Python syntax

is simple and easy to learn, therefore suitable for beginners. Python 3 supports modules and

packages which help programmers reuse code and arrange code neatly. As Python is an open-

source language, it has a large community and free-of-charge standard library so that

programmers can easily use external modules and functions.

Dobot Magician supports Python as a secondary development language. Dobot Studio

software programming function generates Python code to interact with the robot. On the

official website of the supplier, users can download a Dobot Magician demo package for

Python. This package includes controlling programs for Dobot Magician written in Python 3

based on communication protocol of the robot.

2.8 Analytic Geometry

The theory of analytic geometry was applied in calculating and defining the circular point in

the arc movements of the robot.

The line equation in x-y coordinate system is written as

 𝑦 = 𝑎𝑥 + 𝑏 (1)

The circle equation in x-y coordinate system which has the coordinates of the center point

𝐼(ℎ, 𝑘) and radius 𝑟 is defined as:

 (𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑟2 (2)

11

In the process of interpreting the arc command, the linear equation and the circle equation

were applied to define the coordinates of the suitable circular point on the arc movement

path.

Slope 𝑚 of the line that ggoesthrough 2 points 𝐴(𝑥1,𝑦1) and 𝐵(𝑥2,𝑦2) is:

 𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
 (3)

If 2 lines 𝑙1 and 𝑙2, which respectively have the slope 𝑚1 and 𝑚2, are perpendicular, then

 𝑚1. 𝑚2 = −1 (4)

(Boljanovic, 2016).

2.9 Orientation of 3 ordered points

Analyzing the slope of the line segments generated by the connected lines of 3 points helps in

defining the orientation of this “triplet of point”. The input is the coordinates of 3 points set

in order, which are 𝑝1(𝑥1, 𝑦1), 𝑝2(𝑥2, 𝑦2) and 𝑝3(𝑥3, 𝑦3).

12

Figure 4. The figure explains the slope calculation of the connecting lines (Agrawal, 2021)

To define the orientation of the “triplet of point”, the “slope of line segment” created by 𝑝1

and 𝑝2 is compared to that of the 𝑝2 and 𝑝3 points. The equation (3) in section 2.7 was applied

to calculate the slope of each pair of points in the triplet.

After 2 slope values are calculated, they are analyzed to define the orientation. There are 3

possibilities of result to determine the orientation of the set of 3 points 𝑝1, 𝑝2, 𝑝3:

- 𝑠𝑙𝑜𝑝𝑒(𝑝1, 𝑝2) > 𝑠𝑙𝑜𝑝𝑒(𝑝2, 𝑝3): the orientation is clockwise.

- 𝑠𝑙𝑜𝑝𝑒(𝑝1, 𝑝2) < 𝑠𝑙𝑜𝑝𝑒(𝑝2, 𝑝3): the orientation is counterclockwise.

- 𝑠𝑙𝑜𝑝𝑒(𝑝1, 𝑝2) = 𝑠𝑙𝑜𝑝𝑒(𝑝2, 𝑝3): the orientation is collinear. (Agrawal, 2021)

13

3 IMPLEMENTATION

3.1 Overview

Below is the flow chart from the beginning to the end of the processing system.

Figure 5. The overall flowchart of the developed program

According to the flow chart, the SVG file is input to the SVG-to-gcode module to be parsed to

the G-code file. There are some parameters that can be modified such as operating speed,

number of passes and pass depth. Subsequently, the generated G-code file is handled by the

Read-gcode function. The robot movements are controlled by the program based on the data

from the g-code commands. The user needs to input the required distance from the laser head

to the operating surface. In this implementation section, each step in the process is explained

thoroughly.

14

3.2 Vector graphic to G-code

The main procedure of this process is to interpret the SVG file into G-code commands, which

is the responsibility of the SVG-to-gcode module. In the source code of the module, there is a

basic_usage.py Python file which allows the user to input the directory of the SVG file to

interpret it into G-code. The source code of basic_usage.py and the required modules are

imported to the main program. The input settings of the laser operation (including movement

speed, cutting speed, pass depth and number of passes) are programmed to be the

parameters which users can input whenever the main code starts.

3.3 Process the G-code file to control the robot

3.3.1 Overview

This function of the system is specialized in reading each line of g-code orderly and controlling

the robot according to the g-code command in that line. To initiate this procedure, each line

of G-code is analyzed by the sub-function called line-to-param. Line-to-param sub-function is

programmed to read the parameters in the G-code line and write them into a pre-made

dictionary. The program uses the data in the created dictionary to decide which movement

function to call out. As seen in figure 4, the data process works based on an if-else structure.

Specifically, the “G” value in the dictionary is checked if it is G00, G01, G02 or G03 to continue

to the following level of the structure. In this level, if the “F” value of the dictionary exists, the

system proceeds to call speed setting functions according to the “F” value. Otherwise, the

coordinate values are detected, and the robot movement functions are called afterwards. If

the ‘G” value does not exist, “M” value is investigated. For this situation, there are 2

possibilities: M03 means power on the laser head and the power is set on “F” value, M05 sets

the power to 0, which means power off the laser head. Consequently, the next line of g-code

is processed until the end of the g-code command file.

15

Figure 6. The detailed process to control the robot action according to the G-code commands.

The information of the parameters in the robot controlling function is determined in the DLL

Python source code named DobotDLLType.py which is provided by Dobot Magician

manufacturer. To call out the desired controlling function, the API description of the robot is

used as a reference. The table 1 is an example for the information of the PointToPoint (PTP)

command provided in the robot API description.

16

Table 1. Execute PTP command and the information of the parameter in the command.

(Shenzhen Yuejiang Technology Co., 2018)

17

3.3.2 Coordinate transformation

The coordinate system used in the SVG file is the same as the one in the drawing canvas. This

coordinate system is different from the coordinate system of the Dobot Magician. Coordinate

transformation between 2 coordinate systems is required to retain the direction of the

drawing.

Figure 7. The graph of the SVG canvas on the Dobot Magician working space

Figure 7 illustrates the SVG canvas on the working space of the robot. The red rectangle with

𝑥′𝑦′-coordinate system represents the canvas where the SVG images are drawn. The working

space of the robot in the 𝑋𝑌-coordinate system is limited by 2 semi-circles which have a radius

of 170mm, respectively 320mm. The coordinates of the origin 𝑂′ of the canvas coordinate

system is (𝑥𝑜 , 𝑦𝑜) in the robot coordinate system. The coordinate matrix in the 𝑋𝑌-coordinate

system is the summary of the product of coordinate matrix in the 𝑥′𝑦′-coordinate system with

inverse of the matrix 𝑇 and the coordinate matrix of the point 𝑂′ in 𝑋𝑌-coordinate system

(Croft & Davison, 2019).

[
𝑋
𝑌

] = 𝑇−1 [
𝑥′

−𝑦′] + [
𝑥𝑜

𝑦𝑜
] (5)

18

The matrix 𝑇 is the transformation matrix. In this transformation, the coordinate system with

inverse 𝑦-axis to one of the 𝑥′𝑦′-coordinate system is rotated an angle 𝜃 = −
𝜋

2
 compares to

the 𝑋𝑌-coordinate system, so the matrix 𝑇 = [
𝑐𝑜𝑠

−𝜋

2
𝑠𝑖𝑛

−𝜋

2

−𝑠𝑖𝑛
−𝜋

2
𝑐𝑜𝑠

−𝜋

2

] and the matrix [
𝑥′

−𝑦′] is

applied to the equation (5)

Appendix 1 is the process to formed the equations to calculated the coordinates in 𝑋𝑌

coordinate system from the coordinates in 𝑥′𝑦′ coordinate system using the equation (5), the

formed equations are:

 𝑋 = −𝑦′ + 𝑥𝑂 (6)

 𝑌 = −𝑥′ + 𝑦𝑂 (7)

From the formulas (6)(7), the coordinate values on the SVG file are transformed into values

that correspond to the coordinate system of the robot. The origin 𝑂′ of the canvas is assigned

to point (300,100) in the robot coordinate system. The value of 𝑥𝑜 and 𝑦𝑜 is then determined

to support the coordinate transformation. The point (300,100) is chosen to be the origin of

the canvas coordinate system. This is because the space for the SVG image generated by that

origin has the appropriate dimension and the reach of the robot covers it completely.

3.3.3 Linear movement

In the linear movement commands, the parameters in the G-code lines are identical to the

parameters required in the robot control functions. The parameters are the coordinate values

including the X- and Y- values of the destination position of the movement. In most of the

other cases, the parameters in the g-code commands are different from the parameters in the

robot control functions. The program has the ability to convert the parameters into the

suitable form. In the linear speed setting function, the developer can control not only the

speed but also the acceleration of the robot arm. The F-value in the G-code generated in the

19

project is F-value in mm/min unit. The unit of the linear speed setting function of the robot

has the same unit. Therefore, the velocity parameters is set as the same as the F-vaue in G-

code command. The acceleration is decided to be equivalent vale of the velocity parameters.

3.3.4 Arc movement

Arc command parameters in G2 and G3 commands are coordinates of the destination point

and the center point of the circular path of the movement. The required parameters of the

robot control function are the destination point and the circular point, which is a random point

on the circular path. The “G2G3_to_circularpoint” function was programmed to convert the

center point coordinates into the circular point coordinates. First, the center point of the arc

path is defined based on the end point and the I and J parameters given in the G-code arc

command. As the I and the J value is the offset between the ending point 𝐵(𝑥𝐵, 𝑦𝐵) and the

center point in X and Y ordinates respectively, the coordinates of the center point is

 𝐼(ℎ, 𝑘) = (𝑥𝐵 − 𝐼, 𝑦𝐵 − 𝐽) (8)

Then, the radius 𝑟 of the arc path is the distance between center point 𝐼(ℎ, 𝑘) and the ending

point 𝐵(𝑥𝐵, 𝑦𝐵)

 𝑟 = √(𝑥𝐵 − ℎ)2 + (𝑦𝐵 − 𝑘)2 (9)

20

Figure 8. The illustration of related points in the arc movement command

The figure 8 illustrates the relevant points in the circle of the arc command. The line goes

through the points 𝐴(𝑥𝐴, 𝑦𝐴) and 𝐵(𝑥𝐵, 𝑦𝐵) in figure 6 has the slope calculation created based

on the equation (3).

The 𝑀 point is defined as the midpoint of the line 𝐴𝐵. The extension of the line 𝐼𝑀 meets the

circle at 𝐶 and 𝐶′. These 2 points are possible circular points determined as 2 symmetric points

on the circle and the 𝐶𝐶′ line connects the center point 𝐼 and midpoint 𝑀. The linear equation

of the line 𝑙 through the points 𝐼, 𝑀, 𝐶, 𝐶′ is written based on the equation (1).

With the line 𝐼𝑀 being the altitude of the side 𝐴𝐵 in the isosceles triangle ∆𝐴𝐵𝐼, the line 𝑙 is

perpendicular with the line 𝐴𝐵 at point 𝑀. Then the slope of 𝐴𝐵 is the negative reciprocal of

the slope of 𝑙. Applying the equation (3), we have

𝑎 =

−1

𝑚
=

𝑥𝐵 − 𝑥𝐴

𝑦𝐴 − 𝑦𝐵
 (10)

21

As the line 𝑙 go through the point 𝐼(ℎ, 𝑘), 𝑥 = ℎ, 𝑦 = 𝑘 and 𝑎 =
𝑥𝐵−𝑥𝐴

𝑦𝐴−𝑦𝐵
 are substituted in the

equation 𝑦 = 𝑎𝑥 + 𝑏 :

 𝑘 =
𝑥𝐵 − 𝑥𝐴

𝑦𝐴 − 𝑦𝐵
. ℎ + 𝑏 (11)

 𝑏 = 𝑘 −
𝑥𝐵 − 𝑥𝐴

𝑦𝐴 − 𝑦𝐵
. ℎ (12)

The points 𝐶 and 𝐶′ lie on the arc which has center 𝐼(ℎ, 𝑘) and radius 𝑟, the circle equation of

the arc is formed based on equation (2)

 (𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑟2 (13)

The circular points are 2 points that have their coordinate values satisfying the linear equation

of the line 𝑙 with 𝑎 in equation (10), 𝑏 in equation (12) and the circle equations(13). After

solving the simultaneous equation, the coordinates of 2 circular points are determined.

𝑥 =
−𝑎𝑏 + 𝑎𝑘 + ℎ ± √𝑎2(𝑟2 − ℎ2) + 𝑏(2𝑘 − 2𝑎ℎ) + 2𝑎ℎ𝑘 − 𝑏2 − 𝑘2 + 𝑟2

𝑎2 + 1
 (14)

 𝑦 = 𝑎𝑥 + 𝑏 (15)

Where 𝑎 and 𝑏 are defined in respectively in equation (10) and (12).

For each value of 𝑥 determined in (14), there is a corresponding 𝑦-value calculated by (15).

Therefore, there are 2 pairs of 𝑥- 𝑦 value for 2 possible circular points that are required to be

found.

22

Finally, the program selects the suitable circular point for the G2/G3 command by the

“Clockwise_check” function. The method for analyzing the slope of the line segment created

by 3 points (starting point, circular point and ending point) mentioned in section 2.8 was

applied. One of the 2 circular points is put into 3-point-group to check if the orientation is

clockwise or counterclockwise. If it is equivalent with the required movement orientation, the

circular point is loaded to the circular point parameter of the arc movement control function.

Otherwise, the coordinates of the other circular point are loaded instead.

3.3.5 Laser head control

The laser head is connected to a PWM (Pulse Width Modulation) port and a digital port on the

robot. The program commands the robot to export the required output to control the laser

head. The output of the digital port controls the status ON/OFF of the laser head, and the

PWM port controls the power of it. When M5 commands are detected in the G-code file, the

program dictates the robot to output 0 at the digital port to turn the laser head off. With the

M3 command, the digital output is set to 1. Additionally, the power value identified in the M3

G-code line is processed to control the power the laser head. The power value in the M3

command is S-value, which is in the range of 0 to 255. The duty cycle of the PWM used to

control the power of the laser is set in the range of 0-100. As a result, the power value of the

PWM output is calculated as below:

𝑆′ = 𝑆 ×

100

255
 (16)

The value S’, after having been determined, is applied as the duty cycle parameter of PWM to

control the power of the laser head. The M3 and M5 commands are not the “queue” action,

which means the robot can execute the other tasks when the control of the laser power is

maintained. It helps the robot move the arm with the powered on laser head in the laser

operation.

23

3.4 Template of the main program

The template of the main program was developed based on the demo program in “Dobot

demo for python” package, which is provided by Shenzhen Yuejiang Technology Co., LTD. The

demo program instructs developer to import the required library, load the DLL, establish

computer-robot connection, clear the command queue, calibrate the robot and set up a new

command queue. All these procedures must be initiated in the mentioned order in the main

program. The commands interpreted in the reading g-code process are put in the generated

command queue in the initializing process. Additionally, the basic parameters of the robot,

consisting of home position and joint speed, can be set in the demo program as well as the

initial section of the main program.

3.5 Technical setup

The SVG file requires the most effort in the set up phase. The size of the file must not exceed

the working volume of the robot arm. To ensure this requirement, the SVG image was copied

and edited in the 200mm x 100mm canvas in Inkscape software. The display unit was set to

mm for synchronization. All the objects the created SVG file must be paths otherwise the

program cannot export the equivalent G-code file. The image should be saved in SVG format

after editing.

The Dobot Magician was set up and wired as instructed in the manual. The power supply cable

was connected from the electricity socket to the DC coaxial connector on the robot. The USB-

B port of the robot is connected to the USB port on the computer. When the program runs,

the signal connection between the robot and computer is established.

For the movement test, the pen provided by the manufacturer was used as the end effector

of the robot. The pen was attached and fixed to the robot arm by a tightening screw. The Z-

ordinate of the robot when the pen tip touches the drawing platform was recorded. This value

(in mm) is the Z value that should be inserted in the initial setting when the program starts to

run.

24

For the final test, the laser head was used to test the movement controlling of the program as

well as the powering of the laser controlling function. The laser head in use is provided by the

manufacturer, so that the attaching is similar to the pen. The laser head has 2 connectors that

need to be connected to a PWM port and a Digital port on the robot. The laser head is

controlled by the robot through these ports. The vertical distance between the laser head and

the operating platform should equal to the focal length of the laser beam. To define this

distance, the Z-axis of the robot is adjusted until the laser beam converges at the operating

platform. Similar to the pen processing, the Z-axis value needs to be recorded and input as an

initial setting at the beginning of the process.

3.6 Result

This section evaluates the ability of generating G-code from the SVG vector graphic file and

the performance of the robot in executing the laser operation. The G-code generated by the

SVG-to-gcode module is imported to a G-code simulator called Webgcode developed by

Nicolas Raynaud in 2020 to evaluate. The paths in the SVG file are approximated into several

line segments. With the default tolerance designated in the module, the difference between

the output G-code command and the input SVG image is invisible. The direction of the image

in the G-code simulator is upside down due to the inversion of the canvas coordinate system

compared to the simulator coordinate system. The amount of the line segments can be

adjusted corresponding to the “error cap” value in the tolerance section of the SVG-to-gcode

module. The G-code is repeated by the amount of times that equals the number of passes

that user entered to the program.

25

Figure 9. SVG image (left) and the output G-code in the simulator (right)

The purpose of the set up mentioned in section 3.6 is giving an overview about the laser

operating ability of the robot. In the set up with the pen, the drawing result of the pen

controlled by the robot is acceptable.

Figure 10. The result of the pen operation (left) and laser engraving operation (right)

The figure 10 shows the result of the laser process operated by the robot. While in figure 10

(left) the end effector is the pen, in figure 10 (right), the laser head was used as the end

effector on the robot. As shown in the figure 10 (left), there is vibration in the drawing line

26

due to the unstability of the robot arm when the pen tip contact with the surface, epscially in

the curve section. However, it is insignificant when observe from distance. Then, the laser

head was replaced by the laser head to evaluate the result of laser operation. As shown in

figure 10 (right), the drawing line is accurate to the SVG image, the vibration in the drawing

line was disappeared since the robot arm moved efforlessly in the air. The thickness of the

drawing is uneven. The curve sections which approximated by more line segments have more

thickness in the drawing line.

27

4 CONCLUSION

The project is successful in developing a system that control Dobot Magician execute laser

process the SVG file as the input. The result was evaluated as acceptable performance by an

educational robot. Additionally, the system have the ability to read the laser processing G-

code file to control the Dobot Magician according to the G-code commands. However, there

are some aspects that considered as limitations of the developed system. There are some

disadvantages of the library which is functioned as the tool to convert the SVG file into the G-

code commands. The library has the ability to parsing and compiling the image only in the SVG

format, the capability to inteprete different formats of vector graphic content is one of its

deficiency . The library applies the method that uses the line segments to approximate all path

in the SVG file. This method gives the function ability to convert the complex curves into the

straight lines, which supported by G-code commands, without loosing visible details of the

curves. On the other hand, this method restricts the usage of the arc commands in the G-code

system and makes the function cannot process any object in the SVG file but paths. The

function to control the robot execute the G-code commands only support the G-code for the

laser processing, which are G0, G1, G2, G3, M3 and M5 commands.

The recommendations for further research in the future is to alleviate the limitations

mentioned above. The ability to operate other formats of vector graphic content is necessary

in improving the system. The function to inteprete more types of object in the vector graphic

file is demanding, and the usage of the arc movement needs to be increased to reduce the

operating time of the robot. The function that transforms G-code commands to robot action

need further development to process the universal standard G-code. Finally, the GUI aspect

of the software is a possibility to progress. Viewing and editing tools for the vector graphic

content built-in is a significant improvement. A pre-view window of the laser operating

process increases the ability of the system in educational purpose due to the visualization of

the process.

The application of the project in increasing the educational ability of Dobot Magician is

significant. The education about G-code and laser processing can be take responsibility by

Dobot Magician when the work of this thesis applied. Additionally, the educational robot

28

programming process was researched and applied in the thesis, and these works can open the

possibility of the further research in educational robot.

29

References

Agrawal, R. (2021, Sep 1). Orientation of 3 ordered points. Retrieved from Geeks for geeks:

https://www.geeksforgeeks.org/orientation-3-ordered-points/

Alexander, S. G. (2021, July 21). What is Object Oriented Programing? Retrieved from

TechTarget Web site:

https://www.techtarget.com/searchapparchitecture/definition/object-oriented-

programming-OOP

Boljanovic, V. (2016). Applied Mathematical and Physical Formulas (Second ed.).

Connecticut: Industrial Press, Inc. Retrieved April 1st, 2022

Croft, A., & Davison, R. (2019). Mathematics For Engineers (Fifth ed.). Harlow: Pearson

Education Limited. Retrieved April 15th, 2022

Dahlström, E., Dengler, P., Grasso, A., Lilley, C., McCormack, C., Schepers, D., & Watt, J.

(2011, August 16). Scaleable Vector Graphics (SVG) 1.1 (Second Edition). Retrieved

from W3.org: https://www.w3.org/TR/SVG11/

DOBOT Magician - Lightweight Intelligent Training Robotic Arm - An all-in-one STEAM

Education Platform. (n.d.). Retrieved from Dobot Official Web site:

https://www.dobot.cc/dobot-magician/product-overview.html

Hess, B. (2017, May 22). What Is CNC Machining? A Comprehensive Guide. Retrieved from

Astro Machine Works: https://astromachineworks.com/what-is-cnc-machining/

Lutkevich, B. (2021, June). What are Vector Graphic? Vector Art Explained. Retrieved from

techtarget.com: https://www.techtarget.com/whatis/definition/vector-graphics

Nilsson, D. (2016). G-Code to RAPID translator for Robot-Studio. Trollhättan, SWEDEN:

University West, Department of Engineering Science.

Padula, A. (2021, January 27). PadLex/SvgToGcode. Retrieved from Github:

github.com/PadLex/SvgToGcode

Quin, L. (2016, October 11). Extensible Markup Language. Retrieved from W3C:

w3.org/XML/

Shenzhen Yuejiang Technology Co., L. (2018, November 06). Dobot Magician API Description.

Shenzhen, China.

Appendix 1: TRANSFORMATION FORMULAS RECONSTRUCTION

 [
𝑋
𝑌

] = 𝑇−1 [
𝑥′

−𝑦′] + [
𝑥𝑜

𝑦𝑜
] (5)

 [
𝑋
𝑌

] = [
𝑐𝑜𝑠

−𝜋

2
𝑠𝑖𝑛

−𝜋

2

−𝑠𝑖𝑛
−𝜋

2
𝑐𝑜𝑠

−𝜋

2

]

−1

[
𝑥′

−𝑦′] + [
𝑥𝑜

𝑦𝑜
]

 [
𝑋
𝑌

] = [
0 −1
1 0

]
−1

[
𝑥′

−𝑦′] + [
𝑥𝑜

𝑦𝑜
]

 [
𝑋
𝑌

] = [
0 1

−1 0
] [

𝑥′

−𝑦′] + [
𝑥𝑜

𝑦𝑜
]

𝑋 = −𝑦′ + 𝑥𝑂

𝑌 = −𝑥′ + 𝑦

(6)

(7)

Appendix 2: MAIN PROGRAM

from svg_to_gcode.svg_parser import parse_file

from svg_to_gcode.compiler import Compiler, interfaces

from read_gcode import*

def main():

########################SET UP GCODE FILE##################################

 #Create window to select svg file

 root = tk.Tk()

 root.withdraw()

 file_path = filedialog.askopenfilename()

 print(file_path)

 """Input the setting parameters of the operation

 - movement speed: speed of the laser head when not operating

 - operate speed: speed of the laser head when operating

 - Number of passes

 - Depth of pass controls how far the tool moves in Z-axis after every

pass"""

 movement_speed = int(input('Movement speed (mm/min): '))

 cutting_speed = int(input('Operate speed (mm/min): '))

 # depth = int(input('Depth of pass: '))

 passes = int(input('Number of passes: '))

 #input Z value for the operation

 Z = float(input('Input initial operating height in mm: '))

 gcode_compiler = Compiler(interfaces.Gcode, movement_speed=movement_speed,

cutting_speed=cutting_speed, pass_depth=0)

 curves = parse_file(file_path,canvas_height=100,transform_origin=False) #

Parse an svg file into geometric curves

 gcode_compiler.append_curves(curves) #Compile the curve to Gcode file

 gcode_compiler.compile_to_file("C:/Users/Welcome/Desktop/thesis/test

unit/new.gcode", passes=passes)

 #create tuple contains g-code lines from the Gcode file

 gcode = open(os.path.join("C:/Users/Welcome/Desktop/thesis/test

unit/new.gcode"),'r')

 a = [x[:-1] for x in gcode.read().splitlines()]

 tuple_of_lines = tuple(a)

#########################EXECUTE MOVEMENT COMMAND##############################

 CON_STR = {

 dType.DobotConnect.DobotConnect_NoError: "DobotConnect_NoError",

 dType.DobotConnect.DobotConnect_NotFound: "DobotConnect_NotFound",

 dType.DobotConnect.DobotConnect_Occupied: "DobotConnect_Occupied"}

 #Load Dll

 api = dType.load()

 #Connect Dobot

 state = dType.ConnectDobot(api, "", 115200)[0]

 print("Connect status:",CON_STR[state])

 if (state == dType.DobotConnect.DobotConnect_NoError):

 #Clean Command Queued

 dType.SetQueuedCmdClear(api)

 #Async Motion Params Setting

 dType.SetHOMEParams(api,250,0,50,0, isQueued = 1)

 dType.SetPTPJointParams(api,200,200,200,200,200,200,200,200, isQueued=1)

 dType.SetPTPCommonParams(api,100,100, isQueued = 1)

 #Async Home

 dType.SetHOMECmd(api, temp = 0, isQueued = 1)

 #Process and execute Gcode

 Gcode_execute(tuple_of_lines,canvas_origin=(300,100), Z=Z)

 #Move back to Home

 dType.SetPTPCmdEx(api,1,250,0,50,0, isQueued=1)

 #Disconnect Dobot

 dType.DisconnectDobot(api)

if __name__=='__main__':

 main()

Appendix 3: LINE SEGMENT CHAIN FUNCTION

def line_segment_approximation(shape, increment_growth=11 / 10, error_cap=None,

error_floor=None)\

 -> "LineSegmentChain":

 """

 This method approximates any shape using straight line segments.

 :param shape: The shape to be approximated.

 :param increment_growth: the scale by which line_segments grow and

shrink. Must be > 1.

 :param error_cap: the maximum acceptable deviation from the curve.

 :param error_floor: the maximum minimum deviation from the curve before

segment length starts growing again.

 :return: A LineSegmentChain which approximates the given shape.

 """

 error_cap = TOLERANCES['approximation'] if error_cap is None else

error_cap

 error_floor = (increment_growth - 1) * error_cap if error_floor is None

else error_floor

 if error_cap <= 0:

 raise ValueError(f"This algorithm is approximate. error_cap must be

a non-zero positive float. Not {error_cap}")

 if increment_growth <= 1:

 raise ValueError(f"increment_growth must be > 1. Not

{increment_growth}")

 lines = LineSegmentChain()

 if isinstance(shape, Line):

 lines.append(shape)

 return lines

 t = 0

 line_start = shape.start

 increment = 5

 while t < 1:

 new_t = t + increment

 if new_t > 1:

 new_t = 1

 line_end = shape.point(new_t)

 line = Line(line_start, line_end)

 distance = Curve.max_distance(shape, line, t_range1=(t, new_t))

 # If the error is too high, reduce increment and restart cycle

 if distance > error_cap:

 increment /= increment_growth

 continue

 # If the error is very low, increase increment but DO NOT restart

cycle.

 if distance < error_floor:

 increment *= increment_growth

 lines.append(line)

 line_start = line_end

 t = new_t

 return lines

Appendix 4: READ G-CODE FUNCTION

import re

import sys

import os

import threading

from G2G3_to_CircularPoint import*

import tkinter as tk

from tkinter import filedialog

import DobotDllType as dType

api = dType.load()

def line2param(line_gcode):

 """This function captures the parameter values in a line of Gcode command

 The input of function is the text form of a Gcode line

 The function outputs the parameters and their values in the dictionary

form"""

 param_list = list(line_gcode.split(" "))

 for item in param_list: #capture G-command

 if all(item[0] != 'G' for item in param_list):

 G = None

 else:

 for i in range(len(param_list)):

 if param_list[i][0] == 'G':

 G = param_list[i]

 for item in param_list: #capture M-command

 if all(item[0] != 'M' for item in param_list):

 M = None

 else:

 for i in range(len(param_list)):

 if param_list[i][0] == 'M':

 M = param_list[i]

 for item in param_list: #capture F-command

 if all(item[0] != 'F' for item in param_list):

 F = None

 else:

 for i in range(len(param_list)):

 if param_list[i][0] == 'F':

 F = param_list[i][1:]

 for item in param_list: #capture S-command

 if all(item[0] != 'S' for item in param_list):

 S = None

 else:

 for i in range(len(param_list)):

 if param_list[i][0] == 'S':

 S = param_list[i][1:]

 for item in param_list: #capture X

 if all(item[0] != 'X' for item in param_list):

 X = None

 else:

 for i in range(len(param_list)):

 if param_list[i][0] == 'X':

 X = param_list[i][1:]

 for item in param_list: #capture Y

 if all(item[0] != 'Y' for item in param_list):

 Y = None

 else:

 for i in range(len(param_list)):

 if param_list[i][0] == 'Y':

 Y = param_list[i][1:]

 for item in param_list: #capture Z

 if all(item[0] != 'Z' for item in param_list):

 Z = None

 else:

 for i in range(len(param_list)):

 if param_list[i][0] == 'Z':

 Z = param_list[i][1:]

 for item in param_list: #capture I

 if all(item[0] != 'I' for item in param_list):

 I = None

 else:

 for i in range(len(param_list)):

 if param_list[i][0] == 'I':

 I = param_list[i][1:]

 for item in param_list: #capture J

 if all(item[0] != 'J' for item in param_list):

 J = None

 else:

 for i in range(len(param_list)):

 if param_list[i][0] == 'J':

 J = param_list[i][1:]

 return {

 'G': G,

 'M': M,

 'X': X,

 'Y': Y,

 'Z': Z,

 'I': I,

 'J': J,

 'F': F,

 'S': S

 }

def XYcoordinate_transform(X_canvas,Y_canvas,canvas_origin):

 """The function transforms the canvas coordinate of the SVG file to the

robot coordinate

 Input: XY_canvas is the coordinate values needed to be transform,

 canvas point (Xo,Yo) is the coordinate of the canvas origin on the

robot coordinate system

 The function return the transformed coordinate"""

 X_robot = -Y_canvas + canvas_origin[0]

 Y_robot = -X_canvas + canvas_origin[1]

 return (X_robot,Y_robot)

def G1_operation(X,Y,Z):#define actions for G1 command

 current_pose = dType.GetPose(api)

 dType.SetPTPCmdEx(api, 2, X, Y, Z, current_pose[3], 1)

 print('run G1 X',X,'Y',Y)

def G0_operation(X,Y,Z):#define actions for G0 command

 current_pose = dType.GetPose(api)

 dType.SetPTPCmdEx(api, 1, X, Y, Z, current_pose[3], 1)

 print('run G0 X', X, 'Y', Y)

def G2_operation(X,Y,Z,I,J):#define actions for G2 command

 current_pose = dType.GetPose(api)

 r = current_pose[3]

 #find the middle point in the Arc

 circular_point =

find_circular_point((current_pose[0],current_pose[1]),(X,Y),(I,J),G23=True)

 #Execute Arc command

 dType.SetARCCmd(api,(circular_point[0],circular_point[1],Z,r),(X,Y,Z,r),1)

def G3_operation(X,Y,Z,I,J):#define actions for G3 command

 current_pose = dType.GetPose(api)

 r = current_pose[3]

 # find the middle point in the Arc

 circular_point = find_circular_point((current_pose[0], current_pose[1]), (X,

Y), (I, J), G23=False)

 #Execute Arc command

 dType.SetARCCmd(api, (circular_point[0], circular_point[1], Z, r), (X, Y, Z,

r), 1)

def M3_operation(S):#turn laser on and set power for M3 command

 dType.SetEndEffectorLaserEx(api,enableCtrl=1,power=500,isQueued=0)

 print('Turn laser ON')

def M5_operation():#turn laser off for M5 command

 dType.SetEndEffectorLaserEx(api,enableCtrl=0,power=0,isQueued=0)

 print('Turn laser OFF')

def linear_speed_setting(F):#setting speed of linear travel

 dType.SetPTPCoordinateParamsEx(api, F, F, F, F, 1)

 print("Setting speed",F)

def circular_speed_setting(F):#setting speed of circular travel

 print("Setting speed",F)

def wait():

 pass

"""Read Gcode testing"""

root = tk.Tk()

root.withdraw()

file_path = filedialog.askopenfilename()

gcode = open(os.path.join(file_path),'r')

a = [x[:-1] for x in gcode.read().splitlines()]

tuple_of_lines = tuple(a)

Z = float(input('Input height in mm: '))

def Gcode_execute(tuple_of_lines, canvas_origin, Z):

 """This function evaluate the parameters of the gcode file line by line

 Input of the function is the tuple of Gcode whereas each item in the tuple

is a Gcode command line"""

 for i in range(len(tuple_of_lines)):

 # print(line2param(tuple_of_lines[i]))

 #G1 command line

 if line2param(tuple_of_lines[i])['G']=='G1' or

line2param(tuple_of_lines[i])['G']=='G01' :

 if line2param(tuple_of_lines[i])['F']:

 F = float(line2param(tuple_of_lines[i])['F'])

 linear_speed_setting(F)

 if line2param(tuple_of_lines[i])['X'] and

line2param(tuple_of_lines[i])['Y']:

 X = float(line2param(tuple_of_lines[i])['X'])

 Y = float(line2param(tuple_of_lines[i])['Y'])

 (X,Y) = XYcoordinate_transform(X,Y,canvas_origin)

 G1_operation(X, Y, Z)

 #G0 command line

 elif line2param(tuple_of_lines[i])['G']=='G0' or

line2param(tuple_of_lines[i])['G']=='G00' :

 if line2param(tuple_of_lines[i])['F']:

 F = float(line2param(tuple_of_lines[i])['F'])

 linear_speed_setting(F)

 if line2param(tuple_of_lines[i])['X'] and

line2param(tuple_of_lines[i])['Y']:

 X = float(line2param(tuple_of_lines[i])['X'])

 Y = float(line2param(tuple_of_lines[i])['Y'])

 (X, Y) = XYcoordinate_transform(X, Y, canvas_origin)

 G0_operation(X, Y, Z)

 #G2 command line

 elif line2param(tuple_of_lines[i])['G']=='G2' or

line2param(tuple_of_lines[i])['G']=='G02' :

 if line2param(tuple_of_lines[i])['F']:

 F = float(line2param(tuple_of_lines[i])['F'])

 circular_speed_setting(F)

 if line2param(tuple_of_lines[i])['X']:

 X = float(line2param(tuple_of_lines[i])['X'])

 Y = float(line2param(tuple_of_lines[i])['Y'])

 (X, Y) = XYcoordinate_transform(X, Y, canvas_origin)

 I = float(line2param(tuple_of_lines[i])['I'])

 J = float(line2param(tuple_of_lines[i])['J'])

 (I, J) = XYcoordinate_transform(I, J, canvas_origin)

 G2_operation(X,Y,Z,I,J)

 #G3 command line

 elif line2param(tuple_of_lines[i])['G']=='G3' or

line2param(tuple_of_lines[i])['G']=='G03' :

 if line2param(tuple_of_lines[i])['F']:

 F = float(line2param(tuple_of_lines[i])['F'])

 circular_speed_setting(F)

 if line2param(tuple_of_lines[i])['X']:

 X = float(line2param(tuple_of_lines[i])['X'])

 Y = float(line2param(tuple_of_lines[i])['Y'])

 (X, Y) = XYcoordinate_transform(X, Y, canvas_origin)

 I = float(line2param(tuple_of_lines[i])['I'])

 J = float(line2param(tuple_of_lines[i])['J'])

 (I, J) = XYcoordinate_transform(I, J, canvas_origin)

 G2_operation(X, Y, Z, I, J)

 #M3 command line

 elif line2param(tuple_of_lines[i])['M']=='M3' or

line2param(tuple_of_lines[i])['M']=='M03' or

line2param(tuple_of_lines[i])['M']=='M106':

 S = float(line2param(tuple_of_lines[i])['S']) * (101/256)

 M3_operation(S)

 #M5 command line

 elif line2param(tuple_of_lines[i])['M']=='M5' or

line2param(tuple_of_lines[i])['M']=='M05' or

line2param(tuple_of_lines[i])['M']=='M107' :

 M5_operation()

Appendix 5: PEN OPERATION PICTURES

Appendix 6: LASER OPERATION PICTURES

