

Development of a NoSQL database with a

client-server model

Bachelor thesis
Bachelor of Engineering, Information and Communication Technology.

Spring semester 2022
Sergio Becerra Flores

Information and Communication Technology. Abstract

Author Sergio Becerra Flores Year 2022

Subject Development of a NoSQL database with a client-server model

Supervisors Petri Kuittinen

This thesis deals with different topics, such as the differences between SQL and NoSQL

databases and the main keys of the architecture used.

For this thesis I have chosen to use a non-relational database, NoSQL, so I can modify

everything I wanted from start to end, this database is focused in a layer system, where

the first layer is the client-server distribution, this is where the communication between

the clients is produced.

Then there is the document store layer, this will be used to store the different types of

documments inside the database.

And in the lowest level layer will be the Key-Value store, which will be the layer in charge

of storaging the information received on the upper layers.

Using this type of organization simplifies a lot the architecture of database.

In order to keep data consistant, the database uses a Write-Ahead Log which supervises

that every data introduced in the database remains safe and also that every single user

has the same information.

For the communication between the client and the server I have chosen passive

replication, this type of communication ensures that the data there will be no lost-data

in the communication process.

This thesis has been mainly inspired because of multiple subjects in my home university

such as cloud computing and distributed storage and processing systems and the result

has been pretty much what I was looking for, even though I still have some more ideas

about that I want to implement in a future.

Keywords Database; NoSQL; Client Server; Write Ahead Log; Replication.
Pages 42 pages and appendices 2 pages

Index

1. Introduction. ... 4

2. Differences between SQL and NoSQL databases. ... 6

2.1. Relational databases. .. 6

2.2. Non-relational databases. ... 9

3. Architecture used in the system. .. 11

3.1. Key-value store .. 12

3.2. Document store... 19

3.3. Server .. 24

3.4. Client ... 28

3.5. Write-Ahead Log (WAL) ... 34

3.5.1 What will be written in the Leader WAL log .. 35

3.5.2 What will be written in the Followers WAL log ... 36

3.5.3 Potential WAL actions ... 37

3.6. Replication ... 38

4. Conclusions ... 40

5. Bibliography .. 41

1. Introduction.

Nowadays, data flow is one of the most important parts of our technology, whether it is
sending an email or making a payment using a bank application, everything requires a
database that can support the workload, as Chris Smith (2019) comments in his article:
“Why databases are so important in our lives”, everything uses a database behind it.

In addition, this data flow increases every day, so the load is greater, and that is why it
is necessary to improve our databases, since not only has the size of the data we use
been growing, but also the amount of data we send and receive every day.
(Khvoynitskaya, 2020)

That is why using technologies such as cloud computing is becoming more and more
common and necessary, since they allow us to host a huge amount of data in a very
simple way and will end up being used by most companies in the not-too-distant future.

A good database has to be able not only to store the data at a high speed, but also to be
able to display it at a high speed.
Also, one of the most important parts of a good database, probably the most important
one is to ensure that the data will not be compromised, that is, it will not be accessible
by anyone we do not want and will not be lost at any time, such as the great information
leak that occurred in 2019 by the Facebook company, which affected 533 million users
filtering a total of 146 gigabytes of information. (Tyas, 2022)

Figure 1.1 Database organization

Lastly, one of the most important characteristics that a database must have is that it
must be easily updatable, since today we live in an environment that fluctuates daily,
and this implies that a database that today is the latest technology tomorrow can be
completely obsolete.

This thesis tries to create a reliable, fast and easily accessible database so that multiple
users can store their data within it, using a NoSQL relational database, with a client-
server model to be able to connect to multiple users.

In addition, it ensures the integrity of this using a Write-Ahead Log (WAL) protocol that
can recover any lost data the moment it is lost.

2. Differences between SQL and NoSQL databases.

What are the differences between these 2 types of databases, and which one should we

use for every case ?

Those are the questions that you should make to yourself if you are thinking about

creating a database.

Just to see a little bit of history, relational databases started being used in the 80´s
whereas the non-relational databases which started being used around 2012
(Bartholomew, 2010), until this day, relational databases are still the most popular type
of database, but it doesn´t mean that it is the best option for every situation as It will
now be explained.

2.1. Relational databases.

Relational databases are a collection of data elements organized into a set of formally

described tables, from which the data can be accessed and reassembled in many

different ways without having to reorganize the database tables.

The standard user and application program interface to a relational database is

Structured Query Language (SQL) (Silva, Almeida & Queirozn, 2016). SQL commands are

used both for interactive queries and for getting information from a relational database

and collecting data for reports.

They are based on the organization of information in small parts that are integrated by

means of identifiers; unlike non-relational databases which, as the name implies, do not

have an identifier that serves to relate two or more data sets.

They are also more robust, that is, they have a greater storage capacity, and are less

vulnerable to failures, these are their main characteristics. (Hammes, Medero, &

Mitchell, 2014)

Other relational databases that are commonly used nowadays are:

Oracle:

Oracle is mainly used for companies to

administrate high loads of data, which makes

employees being able to focus on work

operations and be more efficient (Lahiri, Chavan,

Colgan, Das, Ganesh, Gleeson, & Zait, 2015)

IBM DB2:

IBM DB2 is able to prevent unauthorized access, provides

utilities for data backup and recovery, and offers

performance tools and data management capabilities.

(Haderle & Jackson, 1984)

Figure 2.2 Oracle logo

Figure 3.2 IBM logo

And of course, the most used one is MySQL:

The most common advantages and disadvantages are (Denton & Peace, 2003):

Advantages:

MySQL is free and open to use.

Easy to use and install.

Low cost in requirements for the preparation and execution of the program.

Speed when performing operations and good performance.

Low probability of data corruption.

Environment with security and encryption.

Disadvantages:

Being Free Software, many of the solutions for the deficiencies of the software

are not documented or present official documentation.

Application performance should be controlled/monitored for failures.

It is not the most intuitive of the programs that currently exist for all types of

developments.

It is not as effective in applications that require constant write modification to

the DB, due to the data management.

Figure 2.4 MySQL logo

2.2. Non-relational databases.

Non-relational databases are specifically designed for specific data models and have

flexible schemas for building modern applications. They are widely recognized because

they are easy to develop, both in functionality and performance at scale (Bhat & Jadhav,

2010). They use a variety of data models, including document, graph, key-value, in-

memory, and lookup.

This type of databases are those that, unlike relational databases, do not have an

identifier that serves as a relationship between one set of data and others. As we will

see, the information is normally organized through documents, and it is very useful

when we do not have an exact scheme of what is going to be stored.

This way of storing information offers certain advantages over relational models. Among

the most significant advantages the most important ones are:

1. Horizontal scalability: To improve the performance of these systems, it is simply

achieved by adding more nodes, with the sole operation of indicating to the

system which nodes are available.

2. They can handle a large amount of data which can mutate easily: This is

because it uses a distributed structure, and they are mainly used in fast

growing businesses lacking a data schema.

3. It does not generate bottlenecks: The main problem with SQL systems is that

they need to transcribe each statement in order to be executed, and each

complex statement also requires an even more complex execution level, which

constitutes a common entry point, that before many requests can slow down

the system.

Some of the most common non-relational databases used nowadays are:

Cassandra:

Cassandra's main goal is to be able to

manage a large data load across

multiple nodes. Cassandra replicates

and distributes the information from

the first moment through all its

nodes. (Cassandra, 2014)

This works in a similar way as my

thesis does and has been an

inspiration for some of my

approaches to this project.

Figure 2.5 Cassandra logo

BigTable:

BigTable is mainly used for storaging
large amounts of data with a key-data
structure and very low latency.
It has great scalability, easy
administration and the capability of
changing the cluster size without
downtime. (Chang, F., Dean, J.,
Ghemawat, Hsieh, Wallach, Burrows &

Gruber, 2008)

HBase:

Apache HBase is mainly used to have real-time access to big amounts of data, it runs on
top of Hadoop Distributed File System (HDFS) and provides a fault-tolerant way to store

data sets. (Mehul, 2011)

Figure 2.6 Cloud Bigtable logo

Figure 2.7 Apache HBASE logo

3. Architecture used in the system.

The architecture is composed of 4 layers:

• The files that contain all the data necessary for the key-value store.

• The key-value store will be in charge of storing the information in memory.

• The document store that organizes the information for the clients and allows any
type of document to be stored in the database.

• Lastly, the server-client communication is the key for multiple users accessing
the same database in real time.

Figure 3.1 Architecture layers

The key-value store will be the layer which will be storing as fast as possible in the

database, while the document store will rely on the functionalities of the key-value store

to support any type of file that the user wants to enter.

On the other hand, the Server-Client communication will allow interconnectivity among

the users of the database, ensuring that the data they are using or storing is reliable by

using the Write-Ahead Logging system.

3.1. Key-value store

This store will be based on logs and segments and presents a dictionary-like API to its
clients.

To speed up the process of reading and writing the database, an in-memory index that
points to the key-value pair was implemented. In this index the key is registered with
the position of the file in which the key-value pair is registered.

Figure 3.2 Key-Value Storaging

This way the indexing is faster and simpler, however, this method could lead to a log file
that is too large and would not be useful for a quick search, so using a segmentation
method was the best way to solve it.

Each time segmentation occurs, a new segment linked to the previous one will be
created, creating a chain of segments. Each segment will be made up of an index and a
log file, and each time it is written to the database, it will be written on this new segment
created, leaving the previous segment archived for reading, that reading will be carried
out by searching the segments from most recent to oldest, until reviewing the last one.

This is the list of commands that the API will present:

Connect(Path, opts={})

• Produces the connection against a database.

• With Path we indicate to the database that we want to connect

• With opts we can include additional options

We can either create or connect to the database “Project” with this command:

An index and an empty log will be created, whose name is automatically generated using
the time.time_ns() command that counts the seconds that have elapsed since January
1, 1970, 00: 00:00 (UTC).

Empty index that will later be filled with data.

Empty log that will later be filled with data:

Once the database is created, we can start introducing data into it, we will now see the
put() command to do that.

Put (key, value)

• Creates a new entry on the database associating the key with the value
introduced.

Using the "put" command alone will not update the database index, because it is loaded
into memory and does not need to be saved until the connection is closed for later use,
so using the close() command that we will see later will be necessary.

Entering a new key-value pair updates our database.

Index:

Log:

As we can see, the information entered with the put() command is now reflected in the
log and has the number 0 associated with the index to know where the line begins and
to be able to index it easily.
This number is generated by counting the number of characters before this line, since
there was nothing before, the number of characters is 0.

For example, if we enter another value, the number associated with the second entry
will be 20, since there are a total of 20 characters in the first entry.

Log Index

Get(key)

• Returns the value associated with the desired key

For the use of the get() command, it searches the index for the first word that matches
the entered key and returns its value.

Example:

Delete(Key)

• Removes the key-value pair associated with the given key

When we delete, for example, “key2” which was previously inserted in the database
with this command:

The log will be displayed like this:

And the index will have a null pointer so we can no longer look for it with the get()
command.

Close()

• Closes the connection against the database.

As said before, this command is necessary for the index to refresh, it has to be used
before closing any connection to ensure that no data will be lost

This will be automatically used by the document storaging commands later on.

Segments()
• Start a new segment in the database

When the data starts to be massive, the log and the index become massive too, this will
lead to longer times t oread and write into the database, the solution for this is the
segmentation, which creates a new log and index so the data can be better distributed
into the database, eliminating to entries that we no longer use, such as duplicated keys
or deleted ones.

A new index and log are created:

This new index and log are now empty but will be the one we will be writing on now.

Having multiple logins and indexes in a database is a complicate task, since we want to
have them located in memory so the process is faster, this means that when the
database starts running it has to load every single segment and this can be a really slow
process when the database is very fragmented.

To solve this problem, we can use the next command compacts(), which will create a
single version of all of our segments with no repeated data, keeping it clean and ready
to use for a fast usage.

Compacts()

• Compacts the previously created segments

For the final part, the compact method will be the one that we will use to keep our
database clean. Instead of having lots of segmented parts, we can just compact them
with this method and no duplicated information will be in the compacted version of the
database.

For example:

This is the first index and log we created:

Index:

Log:

And this is the new one on the new segment:

Index:

Log:

We introduced two new keys and values, one new key, “key3”, and updated the second
key, “key2”.

And this is what happens when we compact them:

Only one index and log generated:

New index with no repeated data:

New log with no repeated data:

3.2. Document store

This document store uses the key-value store named above to function, using its own
API, but based on that of the key-value store.

The list of commands or functionalities presented by this store is very similar to that of
the key-value store since it is based on its functionalities and is as follows:

Connect(Path, opts={})

• Produces the connection against a database.

• With Path we indicate the database that we want to connect.

• With opts we can include additional options.

We can create a new database or connect to an existing one using this command:

And it will look like this:

Empty index:

Empty log:

Same base as the key-value storage creation of the database.

Create (col, schema)

• Creates a collection of documents, col, with the properties specified in the
schema, these properties will be chosen by the client as long as they meet
established requirements.

• If any of the properties must be indexed, it must include a “ * ” in front of the
name of the same.

This is where we can choose the type of document we are going to store and how we
want to index it.

For example, if we want to add names, surnames and age of a group of people and also
having their names and surnames indexed we can do this:

.
This will generate this index:

And this log:

Since we can now search for the indexed data, it has to be included in the index and
therefore in the log, but since there is no data for name or surname, they are set to null.

Later on, when we insert in the model “users” we will need to use the correct syntax
that we decided before, so that we can easily search for it whenever we want.

Insert(col, doc)

• The document, doc, is inserted in the collection, col,

• This document will have a unique ID with which it can be identified.

When we have already created a collection, we can start filling it with data like this:

The index will create 3 new entries, since we have 2 indexed variables and the main
entry itself:

And it will be reflected in the log like this:

As we can see this is where the data starts to stack really easily and that is why we need
the segmentation and compact methods to make a little bit easier for the system to
process.

The indexed data like “name” and “surname” in this case will store the users ID since it
is the only secure way to know that it is not duplicated.

Search(col, query)

• Searches the collection col for the documents that match the query.

• The queries will be dictionaries with equality conditions.

• A list with the documents that meet the query will be returned.

Searching can be done multiple ways, either by ID, or by using any of the indexed fields
we determined before.

This is an example of how we can search by name in the collection “users” since we
indexed it when we created it:

Every single entry that contains the name Sergio in it will be shown, since we only have
one entry that contains it, this is what is shows:

Update(col, query, data)

• Modifies existing documents in the col collection that verify the query

• The data previously saved in these documents will be replaced by those specified
in data.

We can also replace any of the data fields we want by matching the query, in this case
I’m going to change every single username which surname is Becerra to Petri:

Only two new entries in the index since we did not create a new one, just modified an
existing one:

The log deleted all the data about the name “Sergio” in the collection users since we no
longer have any named like that and created the new indexed data “Petri” in the name
folder.

As we can also see there is two entries for the surname Becerra, but since it’s the same
ID that will only count as 1 as it will disappear when we segment/compact the data.

Delete(col, query)

• Removes the documents from the col collection that match the query

We can delete any user by matching the query to an associated index, in this case we
are going to delete every user called “Petri”

The index will remain the same:

But the log will delete the data for every user that was in the list of name/Petri, so
whenever we look for the name “Petri” it will lead to an empty array, meaning it doesn´t
exist.

Also, when the log gets compacted, the empty data will disappear making it faster for
the database.

Figure 3.4: Rest logo

3.3. Server

The server is one layer above the document store, so it will use the document store's

methods to serve multiple clients simultaneously, all of which will be able to access the

same database.

To make the server work I have used the Flask framework that uses the RestFul protocol,
which are REST services to work on the web, these specify certain restrictions such as a
uniform interface and induce appropriate properties such as good scalability,

performance, etc. (Fernandes, Lopes, Rodrigues & Ullah, 2013)

 Figure 3.3: Flask logo

On the other hand, speaking of Flask, Flask Python is the version used in this project,
which is a Python module that allow us to easily develop web, in this case, the main

utility that is used is the hosting of a server. (Grinberg, 2018)
Although it also offers many other options such as templates, URL routing...

Flask was created by a small group of programmers called "Pocoo" who mainly work on
a few Python projects like the "Pygments" syntax highlighter and other projects.

Every day Flask becomes more popular becoming in early 2022 the 7th framework with
the most stars on GitHub with a total of 57,584 stars. (Tao, 2022)

The commands we will use to start the server are:

FLASK_APP will tell the server the script it has to use to run the server.
FLASK_DEBUG allows me to see everything that is happening to the server in order to
be able to detect the connections.
And last but not least the server starts with the command “flask run”.

This will initialize the server, which will wait for a petition

That would be the normal use for a flask server, but since we will be using passive
replication (explained in the point 3.6) we have to specify who will be the leader and
who will be the followers for this connection.

In order to create the “leader” we have to use this syntax, specifying the “followers” of
the “leader”, which will be receiving the data after the leader does.

This “leader” will store the data in the database called “test4” and will send the data to
the specified followers: “localhost:9091” and “localhost:9092”.

Also, “server.py” is the script that we will use to run the server.

On the other hand, if we want to create a “follower”, we will have to use this syntax:

Specifying who the leader is, “localhost:9090”, and once again creating a new database
called test5 which it will be using for the passive replication.

The “followers” will work the same way as the “leader”, they will wait for a petition, but
instead of receiving it from a client, they will receive it from the “leader”.

This way, we can a have a set of followers attached to a leader, enabling the passive
replication to work.

Once that is done the server will be running and waiting for petitions from the host.

Example of a “create” petition from the host to the “leader” server

And the petition when it reaches the “followers”

The log of the leader and the followers will look the same for now:

And same thing for the index:

Since it is replicated the data remains similar, but due to the Write-Ahead Log (WAL)

system, there will be some redundant data inside of the followers since it has to check

that every operation was made successfully, this however won’t be a problem because

redundant will be eliminated later thanks to the segments() and compacts() methods.

The inner methods that the server will use are the following:

Run()

• The server boots up and starts listening for connection requests.

Serve(clientSocket)

• Upon receiving a connection request, this method is responsible for analyzing
the request and returning a response to establish the connection.

This process will be carried out through writing and reading requests using JSON format,
which is a format for exchanging data that is intuitive for people and simple to interpret
for machines, this format is based on JavaScript and was created in December from

1999. (Smith, 2015)

Figure 3.5: JSON logo

The main structure of JSON is based on:

• A collection of key/value pairs.

• A set of related values in the form of an array or list.

This way, the communication between client and server that is used in this part of the
project is very simple, in which the client sends access requests to the server, be it
reading, writing, searching, etc.
And these responds confirming if the request has been successful or notifies the error
in case one has occurred.

3.4. Client

The client is the part that corresponds to the end user, which has functionalities similar
to those of the server and is at the same level as the server.

A private connection will be established between each client and the server where we
can access the specified database and use the available features.

The commands that the client will have available will be:

Run(opts={})

• Connects the client with the “leader”

Using this command will allow the client to connect to the database using the “leader”
replica.

Connect(Path, opts={})

• Produces the connection against a database.

• With Path we indicate to the database that we want to connect.

• With opts we can include additional options.

This method will be used by every other method to create a connection every time it is
needed.

Create (col, schema)

• Creates a collection of documents, col, with the properties specified in the
schema, these properties will be chosen by the client as long as they meet
established requirements.

• If any of the properties must be indexed, it must include an “ * ” in front of the
property name.

The usage of this command is similar to the document store, but it will now generate a
collection in the “leader” and all the “followers”

Leader index:

Leader log:

Follower index:

Follower log:

Insert(col, doc)

• The document, doc, is inserted in the collection, col,

• This document will have a unique ID with which it can be identified.

In this example we have introduced some data into the collection “users”.

Same operation as seen in the document store.
Leader index:

Leader log:

Follower index:

Follower log:

There is a duplicated operation in the follower log, due to the WAL system, that
operation will later be deleted for better storaging,

Search(col, query)

• Searches the collection col for the documents that match the query.

• The queries will be dictionaries with equality conditions.

• A list with the documents that meet the query will be returned.

To search for an specific data field we can use:

This will return all the users which email is “SergioMail”

It is important to highlight that the search operation is the only that doesn´t require the
“followers” to send the command to the client, since it is not a write operation, the
“followers” can directly communicate with the client and receive the data directly.

Since the “leader” and “followers” databases are similar they will return the same results
when we try to do the same search process from a “follower”:

Result:

Update(col, query, data)

• Modifies existing documents in the col collection that verify the query.

• The data previously saved in these documents will be replaced by those
specified in data.

In order to update some already introduced data, we can use this:

This will update every email data with age 24 to “newEmail”

This is how the new leader index looks like:

And the new leader log:

And the same process for the followers:

Follower index:

Follower log:

Delete(col, query)

• Removes the documents from the col collection that match the query, query.

If we want to delete any of the data inside the database, we can use this:

This will delete every user with age 24.

Leader index:

Leader log:

Follower index:

Follower log:

The indexes remained the same because there is no need to change them, since they
are now pointing to an empty data, which is the same as being deleted.

At the end, for every operation, a connection will be produced between the client and
the server, in which the client will send a request and wait for a response from the
server, and when it gets a response, it will ensure that the data is consistent using the
WAL system.

3.5. Write-Ahead Log (WAL)

To ensure the integrity of a database, a data recovery system is necessary in case of
failure, for this project I have chosen to create a Write-Ahead Log (WAL).

This method is one of the fastest methods available for low computational machines so
far. (Jhingran & Khedkar, 1992).

This recovery process is of vital importance for a database since a loss of information
due to a power outage can cause the loss of millions of euros in a large company.

Its structure consists mainly of:

1. Create a log before writing to the disk in which the beginning of the operation
will be written, and after writing to the disk, the end of the operation will be
written in the log.

2. Every time an action occurs within the server, be it writing, reading, etc. It will
check that the last operation started is finished and if not, it will be repeated so
as not to lose any action.

Since the operation itself will always be written in the WAL log as soon as it is received,
it is possible to reproduce the request the necessary number of times until it is
implemented correctly.

This process will ensure that the database will remain consistent and that it is a safe
database.

3.5.1 What will be written in the Leader WAL log

When the leader receives a request, it has to send the request to the followers and then

execute the given request.

As soon as the leader receives a request, it will be reflected in the leader WAL log by the
mark “BEGIN” and the ID of the request, Followed by the request itself

When the leader receives the request, it will be sent to the followers, it that process is
successful it will reflected in the wall with the mark “COMMIT” and then the ID of the
request.

Lastly, when the followers have received the request, the leader proceeds to execute it,
it this process is successful, it will be marked in the log as the end of the operation by
writing “END” and the ID of the request.

This will mark the end of the operation, meaning that it was successful.

3.5.2 What will be written in the Followers WAL log

When the followers receive a request, they simply have to execute it.

As soon as the followers receives a request, it will be reflected in the follower WAL log
by the mark “BEGIN” and the ID of the request, Followed by the request itself

When the request is received it proceeds to be executed, when the execution is successful it is

reflected in the follower WAL log by writing “END” and the request ID.

The “END” marks that the operation was successful and there is no need to take any actions.

3.5.3 Potential WAL actions

The WAL will be used when any of this action takes place:

• The request is sent but the receiver do not receive it.

In this case there is not much that the database can do, if the request doesn´t reach
the server there is no way to replicate it.

• The request is received but not executed by the server or sent to the followers.

The leader WAL will look like this:

In this case, since the server has the information about the request, even though it
failed to execute it for some reason, it will be executed as soon as the next incoming
request is received.

• The request is received by the leader and sent to the followers but not executed
by the leader.

The leader WAL will look like this:

If the leader manages to the sent the request to the followers but not execute it
itself, it will reproduce the request when the next request is received.

• The request is received and sent to the followers, but the followers failed to
execute it.

The followers WAL will look like this:

When a follower fails to execute a request, it will reproduce the request when the
next request is received, the same way as the leader would operate.

3.6. Replication

To carry out the communication of multiple users with the same database, the passive
replication strategy is used.

Passive replication is a form of replication that reduces the time it takes for file changes
to be reflected on replicas. The origin server uses a notification system to immediately
inform the client replica that it needs to be updated

This strategy basically consists of two parts, leader and followers, the leader is chosen
randomly from one of the replicas in the store and the rest will be the followers, the
leader is the only one that can receive write requests, while everyone can receive
reading requests, speeding up the process.

This leading replica is in charge of disseminating the information among the other
replicas, either informing of a write or notifying an error produced in the leading replica,
at the same time, the following replicas must also write about themselves when the
leader notifies it or recover if necessary.

Carrying out this extra replication step requires a new check in the WAL to verify that no
information has been lost between the leader and the followers.
.
This is an example of how a writing operation would look like using this technique:

Figure 3.6: Writing Example

Since the follower replicas cannot directly receive a write operation from the client, it

will the leader the one who will receive it, and then the leader will sent the petition to

the followers, which will execute the petition to keep the information consistent.

However, if instead of writing, we just want to read, it is possible directly communicate the client

with the followers and the leader.

This way the client is able to search for information in any of the replicas directly if

needed.

In some cases, this will help to verify the integrity of the database since we can manually

see that the data identical in the leader replicas than in the followers.

Figure 3.7: Reading Example

4. Conclusions

The first time that this thesis idea came to my mind was in a Distributed storage and

processing systems class, while learning about how important a good database is and

how impactful they are on the world we live in.

Investigating a little bit about all the different types of databases I noticed that the type

who had more potential to be improved was the non-relational type, even though they

are not as good as the relational databases for the most part, I feel like in the future this

can change significatively, and that´s why I started this project, so I could learn more and

have a better understanding about how this type of databases works.

Of course, the database I created is not the fastest or the most reliable one, but it

combines some of the ideas that I think are necessary for a database to be useful, being

able to save any type of document, being able to share it in real-time with other users

and being a consistent way of keeping your data safe is definitely the way to go for my

work.

The key-value storaging is my most hated and loved part about this project, even though

I considered it the hardest part to create, it is the part with most potential, being able

to accelerate the speed that the data is introduced is definitely where I have spent most

of my project time working, and it still have a lot of potential to be better.

About the document store, I want it to become more flexible, but for the moment it is a

good base that can handle most of the documents that will be used.

Another part which consumed a lot of time of this project was the server-client

communication, every database has to be able to host more than one user, but since I

did not know much about how to create a server I started from the bases and although

it was not so complicated it took me a long time to create it from start to end.

It still has some work to do, especially the security part, I want to create a login to ensure

that no other user will be able to access the database unless the administrator allows it.

One of the most important parts about creating this database was the consistency, I had

this in mind from the first minute, and changed the security system multiples times, but

in the end, creating the Write-Ahead Log was the right choice, it is not computationally

heave for the system to handle and it is capable of solving every single potential data

loss inside the system.

Overall, I´m still learning about how to improve this project, and I have more ideas that

I want to implement in a future, but so far, I´m happy about how this project ended up

5. Bibliography

Bartholomew, D. (2010). SQL vs. NoSQL. Linux Journal, 2010(195), 4.

Bhat, U., & Jadhav, S. (2010). Moving towards non-relational databases. International

Journal of Computer Applications, 1(13), 40-47

Cassandra, A. (2014). Apache cassandra. Website. Available online at

http://planetcassandra. org/what-is-apache-cassandra, 13.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., ... & Gruber,

R. E. (2008). Bigtable: A distributed storage system for structured data. ACM

Transactions on Computer Systems (TOCS), 26(2), 1-26

Denton, J. W., & Peace, A. G. (2003). Selection and use of MySQL in a database

management course. Journal of Information Systems Education, 14(4), 40

Fernandes, J. L., Lopes, I. C., Rodrigues, J. J., & Ullah, S. (2013, July). Performance

evaluation of RESTful web services and AMQP protocol. In 2013 Fifth international

conference on ubiquitous and future networks (ICUFN) (pp. 810-815). IEEE

Grinberg, M. (2018). Flask web development: developing web applications with python.

" O'Reilly Media, Inc.".

Haderle, D. J., & Jackson, R. D. (1984). IBM Database 2 overview. IBM Systems Journal,

23(2), 112-125.

Hammes, D., Medero, H., & Mitchell, H. (2014). Comparison of NoSQL and SQL

Databases in the Cloud. Proceedings of the Southern Association for Information

Systems (SAIS), Macon, GA, 21-22s

Jhingran, A., & Khedkar, P. (1992). Analysis of recovery in a database system using a

write-ahead log protocol. Acm Sigmod Record, 21(2), 175-184

Khvoynitskaya , Sandra. (2020). Why do we need a database? Available at

https://www.itransition.com/blog/the-future-of-big-data

Lahiri, T., Chavan, S., Colgan, M., Das, D., Ganesh, A., Gleeson, M., ... & Zait, M. (2015,

April). Oracle database in-memory: A dual format in-memory database. In 2015 IEEE

31st International Conference on Data Engineering (pp. 1253-1258). IEEE.

Mehul Nalin Vora, (2011), "Hadoop-HBase for large-scale data," Proceedings of 2011

International Conference on Computer Science and Network Technology, 2011, pp. 601-

605, doi: 10.1109/ICCSNT.2011.6182030

Silva, Y. N., Almeida, I., & Queiroz, M. (2016, February). SQL: From traditional databases

to big data. In Proceedings of the 47th ACM Technical Symposium on Computing Science

Education (pp. 413-418).

https://www.itransition.com/blog/the-future-of-big-data

Smith, B. (2015). Beginning JSON. Apress.

Smith, Chrish. (2019). Why databases are so important in our lives. Available at

https://knowtechie.com/why-databases-are-so-important-in-our-lives/

Tao Christhopher. (2022). Top 30 GitHub Python Projects at the beginning of 2022

Tyas Abi. (2022). The 63 Biggest Data Breaches (Updated for February 2022). Available

at

https://www.upguard.com/blog/biggest-data-breaches

https://knowtechie.com/why-databases-are-so-important-in-our-lives/
https://www.upguard.com/blog/biggest-data-breaches

