

Integrating Order Management System

Simulator in HCL Commerce

Ákos Mándi

Bachelor’s thesis

May 2022

Information and Communication Technologies

Degree Programme in Information and Communications Technology

 Description

Ákos Mándi

Integrating Order Management System Simulator in HCL Commerce

Jyväskylä: JAMK University of Applied Sciences, May 2022, 53 pages

Information and communication technologies. Degree Programme in Information and Communications
Technology. Bachelor’s thesis.

Permission for open access publication: Yes

Language of publication: English

Abstract

The author of this thesis participated in an internship at Solteq Oyj during his Erasmus studies in Finland,
where he was looking for a solution to a real development problem in HCL Commerce (formerly Web-
Sphere Commerce). The paper describes the popular eCommerce platforms of today and the role of an
Order Management System, which is vital for the operation of an eCommerce system. In addition to these,
the main focus is on integrating the OMS Simulator system provided by HCL in the project development
environment, solving compatibility issues. Java, Spring Boot, and Apache Camel technologies are also men-
tioned in the solutions and their practical use and results are presented in this thesis. Besides presenting
the communication between the eCommerce project systems, the messages and their states are also dis-
cussed in the paper.

At Solteq, HCL Commerce software is used extensively every day while developing eCommerce solutions for
customers. There was a need to find an answer to the following question: how an order management sys-
tem could be simulated during development, and how could it be integrated into the existing systems while
also discovering the possible compatibility issues. The task was to find possible solutions for this question
and overcome the challenges by searching for different methods and techniques to solve the communica-
tion between the OMS Simulator and the existing eCommerce site. The final result is a thesis presenting
several solutions that can be a solid basis for future system integration in the project development envi-
ronment.

Keywords/tags (subjects)

eCommerce, HCL commerce, WebSphere Commerce, Order Management System

Miscellaneous (Confidential information)

None

1

Contents

1 Introduction ... 6

1.1 Background of the work ... 6

1.2 Objectives ... 6

1.3 Research methodology ... 7

1.4 Solteq .. 7

1.5 About the author .. 8

2 eCommerce ... 8

2.1 In general .. 8

2.2 How it works ... 9

2.3 Impact of COVID-19 pandemic on eCommerce .. 9

2.4 Business Models ... 10

2.4.1 Business to consumer ... 11

2.4.2 Business to Business .. 11

2.4.3 Consumer to Consumer .. 11

2.4.4 Consumer to Business ... 12

2.4.5 Business to Government ... 12

2.4.6 Government to Business ... 12

2.4.7 Government to Citizen .. 12

2.5 Platforms ... 13

2.6 Headless commerce .. 16

3 HCL Commerce ... 17

3.1 Introduction .. 17

3.2 Version 8 – HCL WebSphere Commerce .. 18

3.2.1 WebSphere Commerce Professional .. 18

3.2.2 WebSphere Commerce Enterprise .. 18

3.3 Version 9.1 – HCL Commerce ... 19

3.4 Common architecture ... 19

4 Order Management Systems .. 21

4.1 Introduction .. 21

4.2 Distributed Order Management ... 22

4.3 Dataflow .. 23

2

4.4 OMS Simulator .. 24

5 Technical background .. 26

5.1 Java ... 26

5.2 XML ... 27

5.2.1 Introduction ... 27

5.2.2 Structure .. 27

5.3 SOAP messages ... 28

5.3.1 In general ... 28

5.3.2 Structure .. 28

5.4 WSDL ... 29

5.5 Integrated Development Environment .. 30

5.5.1 Loading WSDL in IDE ... 31

6 Solutions .. 33

6.1 Setting up the Simulator ... 33

6.1.1 In general ... 33

6.1.2 Messages of the simulator .. 35

6.1.3 Messages of the OM System ... 38

6.2 Solution 1: Using a mediator with provided mediation module 39

6.2.1 Introduction ... 39

6.2.2 Dataflow .. 40

6.2.3 Mediation module ... 40

6.3 Solution 2: Building a custom mediator using Apache Camel .. 42

6.3.1 Introduction ... 42

6.3.2 Technologies .. 42

6.3.3 Creating a starting project... 43

6.3.4 Generating classes with Apache CXF .. 44

6.4 Solution 3: Rewriting the code of the OMS Simulator ... 45

6.4.1 Introduction ... 45

6.4.2 Development ... 47

6.5 Reviewing the solutions .. 49

7 Conclusion ... 50

References .. 52

3

Figures

Figure 1. eCommerce revenue in Europe (Statista, 2021) ... 10

Figure 2. Types of E-Commerce (Investopedia, 2020) ... 11

Figure 3. Ecommerce Platforms’ Market Share (Datanyze, 2022) ... 14

Figure 4. Headless commerce components (CB Insights, 2021) .. 17

Figure 5. Software components of HCL architecture (IBM, 2022) ... 20

Figure 6. Communication while placing an order in HCL commerce ... 23

Figure 7. OMS dataflow inside the production environment .. 24

Figure 8. Dataflow between UI and OMS Simulator .. 25

Figure 9. Sample of a Java code with classes ... 26

Figure 10. Structure of an XML file ... 27

Figure 11. Structure of SOAP message ... 29

Figure 12. WSDL example file ... 30

Figure 13. IBM Rational Application Developer ... 31

Figure 14. Web Service Explorer inside IDE .. 32

Figure 15. Opening WSDL URL in IDE ... 32

Figure 16. The result after opening WSDL URL in IDE .. 33

Figure 17. Importing an EAR file in IDE ... 34

Figure 18. Request sent to OMS Simulator .. 36

Figure 19. Response sent by OMS Simulator ... 37

Figure 20. Request sent to OM by site ... 38

Figure 21. Response sent by OM to site ... 39

Figure 22. Dataflow when using a mediator module ... 40

Figure 23. Using Spring Initializr ... 44

Figure 24. Generated classes by Apache CXF ... 45

Figure 25. Structure of ExtOMSSimEJB package .. 46

Figure 26. Part of the simulator’s source code .. 47

Figure 27. Modified source code of OMS Simulator .. 48

Figure 28. SOAP response after the code modification ... 49

4

Tables

Table 1. Comparison between leading eCommerce platforms .. 15

Table 2. Transport chain properties for OMS Simulator setup .. 35

Acronyms

AI Artificial Intelligence

API Application Programming Interface

BI Business Intelligence

DOM Distributed Order Management

EAR Enterprise Archive

eCommerce Electronic Commerce

EJB Enterprise Java Bean

HTTP HyperText Transfer Protocol

JAR Java Archive

JMS Java Message Service

JSP Java Server Pages

JVM Java Virtual Machine

OMS Order Management System

PaaS Platform-as-a-service

POM Project Object Model

RAT Runtime Analysis Tools

RAD Rational Application Developer

REST Representational State Transfer

SaaS Software-as-a-service

SKU Stock Keeping Unit

SOAP Simple Object Access Protocol

UI User Interface

5

URL Uniform Resource Identifier

WSDL Web Services Description Language

XML Extensible Markup Language

6

1 Introduction

1.1 Background of the work

The author’s employer, Solteq Oyj provided the basic concept and research topic for this

work. Until July 2022, the author is completing his practical training as a Software Trainee in

the Omni commerce team. This project helped the author to understand and get familiar

with the fundamental ideas of eCommerce systems, particularly HCL commerce, as well as

the day-to-day development duties of a webstore containing thousands of items to offer.

While researching this topic, the author learned about the architecture and dataflow of an

existing commerce project while also analyzing and assessing the possible methods of im-

proving the development environment.

1.2 Objectives

The project’s main aim was to find answers to how an Order Management System could be

simulated during the development and testing steps of an eCommerce webstore for one of

the clients of Solteq and set up the OMS Simulator server in the development environment.

During developing and testing a website, it is essential to simulate the behaviour of a Dis-

tributed Order Management (DOM) system with which we can create inventory levels and

use them in the storefront to show stock availability. The external OMS Simulator serves as a

placeholder for a functional DOM system, where generic inventory levels are generated and

used to integrate into the storefront stock availability features. Without this, the ordering

process cannot be thoroughly tested as a new feature can contain possible bugs which

would be discovered only after the solution is used inside the test or production environ-

ment. This could prolong the development and testing phase of releasing a new feature and

could cause a disruption in the day-to-day operation of the client’s business. With the inte-

gration of an OMS Simulator, this risk can be easily mitigated while creating more stable and

well-tested solutions.

Before answering these questions, it is essential to understand the basic architecture and

technical building blocks of the eCommerce site, in our case a site that is based on Version 8

7

of HCL WebSphere Commerce software. This work also addresses the concepts of Order

Management Systems while showing the communications and messages between an OMS

Simulator and a functional website. The main objective is to establish and introduce the pos-

sible options for solving compatibility issues between these two while also making the read-

er familiar with the theory and dataflow behind these systems.

1.3 Research methodology

During this work, the main aim was to provide solutions for an issue while researching the

available technologies and best practices in the industry. The implementation method of this

project was the development of a service or product as the primary goal was to provide

software solutions for integrating an OMS Simulator to an existing eCommerce project’s de-

velopment environment while solving compatibility issues.

During the first phase of the project, the initial issue and technologies around it were inves-

tigated while looking at existing solutions that could be used as possible candidates to solve

the compatibility issues between the OMS Simulator and the existing site in the develop-

ment environment. The next phase was to define the solutions and the technologies which

are used to implement them while also making a piece of software that can be a promising

starting point to continue the implementation after the development team at Solteq choos-

es the best solution.

1.4 Solteq

Solteq is a Nordic IT services and software solutions company specializing in digitizing busi-

ness and industry-specific software. The firm has offices in Sweden, Norway, Denmark, Po-

land, and the United Kingdom, in addition to Finland. Trade, industry, energy, and services

are the core sectors in which the organization has a strong experience. Solteq’s key skills

include artificial intelligence, robotics, deep vision, service design, business intelligence and

analytics, online services, eCommerce, and cloud services. Artificial intelligence and machine

learning are all being integrated into the core of the company’s products and services. Cur-

8

rently, around 650 IT specialists are employed at the company, and Solteq’s revenue ex-

ceeded 69 million euros in 2021 (Solteq, 2022).

1.5 About the author

The author started his studies at JAMK University of Applied Sciences in August 2021 as a

participant in the IT-Pro Double Degree Programme between JAMK and the University of

Debrecen (Debreceni Egyetem) while also completing his degree at his home university.

In January 2022, the author began his practical training at Solteq as part of a 6-month Train-

ee program. The task of the author includes participating in the development and support

work of the Omni commerce team while also being an active member of daily meetings and

learning how to work and collaborate in an agile workflow. Learn the use of version control

and other development tools.

During the training, the author learns how to use the broader range of tools of an HCL Com-

merce website, including order management, scheduled jobs management, and server

maintenance works through several real-life tasks. Furthermore, he learns how to document

the development process and how to communicate with the client regarding new features

or fixes.

2 eCommerce

2.1 In general

The selling and purchase of products and services via the internet, as well as the online ex-

change of data and money for these transactions, is known as ecommerce (also known as

electronic commerce or internet commerce) (Shopify, 2022). Ecommerce is frequently used

to refer to the online selling of tangible products, although it actually refers to all online

business activities. The development of eCommerce solutions has been made possible by the

development of computer technology and technologies such as electronic payment, internet

marketing, online transaction processing, electronic data exchange between businesses, and

9

automated inventory management technologies. It is a subset of the wider electronic busi-

ness (E-Business) sector, which covers all aspects of running a company online.

2.2 How it works

Customers may browse and purchase things or services from an online shop using their own

devices that are linked to the servers through the internet.

When a customer places an order, their web browser starts a connection with the server

that hosts the online store's website. The data from the order is given to the order manager,

which then transmits it to databases which job is to track the levels of inventory, a merchant

system that holds the information of payment details, and a bank server before returning it

to the order manager. This is done to ensure that the business has enough merchandise and

that the consumer has enough money to finish the purchase.

The order manager notifies the store's web server when the order has been confirmed, and

the web server shows a message which purpose is to notify the customer about that the

order has been processed and it will be shipped. To ensure that the product or service is

delivered on time, the order manager will send order data to the warehouse or fulfillment

center.

2.3 Impact of COVID-19 pandemic on eCommerce

Over the last two years, the global eCommerce sector has experienced a radical transfor-

mation. Many analysts agree that this shift in consumer behaviour has propelled the eCom-

merce industry forward by at least five years (Zidane, 2021). Consumers have become used

to purchasing goods from the comfort of their own homes due in part to strict lockdowns

and movement limitations. Furthermore, this change in buying habits appears to be long-

term rather than temporary.

According to Statista’s research, eCommerce sales in Europe climbed by 20% in 2020, more

than double the pre-pandemic gain from 2018 to 2019. By 2022, revenues are expected to

approach $500,000 million (Figure 1). By 2025, revenue is estimated to expand at an annual

10

rate of 11.35 percent, resulting in a market volume of US$5,726,101 million worldwide (Sta-

tista, 2021).

Figure 1. eCommerce revenue in Europe (Statista, 2021)

Observing all the historical and forecasted data, they show that the pandemic accelerated

the annual growth of sales through electronic channels, which was caused not only by the

restrictions and social distancing rules. However, as more consumers tried this easy way of

shopping, they realized the convenience of purchasing through these channels so they got

used to this way of shopping.

2.4 Business Models

An eCommerce business model is a method of an eCommerce organization is fundamentally

built to reach clients and increase revenue. Ecommerce business models come in various

shapes and sizes (Figure 2), allowing diverse types of enterprises to successfully position

themselves in the market and reach out to their customers. In the next section, many types

of business models are addressed in terms of who is the seller and the buyer counterpart

throughout the transaction.

11

Figure 2. Types of E-Commerce (Investopedia, 2020)

2.4.1 Business to consumer

The B2C business model refers to a website that sells its items directly to customers. Cus-

tomers can go over the products available on the website. When a consumer selects mer-

chandise and places an order, the website sends an email notice to the business, which

eventually ships the product to the client.

2.4.2 Business to Business

When a business is selling its goods to an intermediate buyer, who subsequently sells the

product to another consumer, it is known as a B2B business model. For example, a wholesal-

er can put an order on another business own site, and then the goods are sold to a final cli-

ent who visits one of the company’s retail stores or websites.

2.4.3 Consumer to Consumer

Users may sell their assets, such as residential property, automobiles, motorcycles, or even

rent a property. To do that they publish their information on a website that follows the C2C

12

business model where they may or may not be charged for the service offered by the web-

site that serves as a middleman between the parties. After seeing the advertisement on the

website, another buyer may opt to purchase the first product in the search results. There-

fore, there is a competition to be presented as first by the search engines.

2.4.4 Consumer to Business

During using a C2B business model a consumer checks out a webpage that displays various

company listings that provide a specific service. The consumer can also determine how much

approximately they want to spend for a particular service. Websites may be used to com-

pare interest rates on personal loans or vehicle loans from different lenders. If a corporation

can satisfy a customer’s demands while staying under budget limits, it approaches the con-

sumer and offers its services.

2.4.5 Business to Government

Businesses who are using the B2G business model provide products, services, or information

to governments or agencies connected to a government. Through B2G networks, companies

can offer different quotes for government projects or products that governments may pur-

chase or use for their companies, making the process more competitive and lowering the

price.

2.4.6 Government to Business

G2B’s goal is to ease corporate difficulties by providing one-stop access to information and

enabling digital communication. Furthermore, the government should make effective use of

the data supplied and utilize commercial electronic transaction procedures.

2.4.7 Government to Citizen

To approach citizens in general, governments use G2C model websites. Auctions for auto-

mobiles, machinery and other items are supported by such websites. A website like this also

offers services, including birth, marriage, and death certificate registration. The primary goal

13

of G2C websites is to shorten the time it takes for citizens to get a wide variety of govern-

ment services.

2.5 Platforms

Several platforms provide eCommerce solutions for customers with different needs and

business models. Before building a commerce solution, one of the key steps is to compare

the available platforms while comparing their features and prices regarding the owner’s

needs. These features can be the following: business model, marketing campaigns strategy,

target audience, future vision, and price range.

The three fundamental types of eCommerce platforms are SaaS (software-as-a-service) plat-

forms, PaaS (platform-as-a-service) platforms, and on-premises platforms. The internet is

used by both SaaS and PaaS systems to provide eCommerce solutions. Software-only plat-

forms are known as SaaS platforms. PaaS platforms are defined as software-as-a-service

platforms with a hardware component (Adobe, 2021).

On-premise eCommerce systems are hosted locally by the merchant and managed by their

IT staff, rather than just being set up by another supplier and accessible via the cloud. Small-

er companies and those just getting started in eCommerce frequently look at SaaS and PaaS

options. They offer professional setup and support, but they frequently demand a monthly

fee for site access as well as transaction fees on each purchase. Businesses using on-premise

solutions have more control over their eCommerce sites and may create unique storefronts

(Adobe, 2021).

The market share of platforms providing these types of solutions can be seen in Figure 3. The

data shows that Squarespace Online Stores and WooCommerce are the two leading ones,

followed by Woo Themes and Shopify. The eCommerce business has risen considerably in

recent years, resulting in higher adoption rates for various platforms. It is good to mention

that WooCommerce can dominate the market thanks to it is being open-source and provid-

ing a highly flexible development environment.

14

Figure 3. Ecommerce Platforms’ Market Share (Datanyze, 2022)

As Table 1. shows there are significant differences between the features of the most popular

platforms as well as they have different approaches to pricing. Magento and HCL Commerce

are among the more expensive choices, so they are widely used only by nationwide or mul-

tinational corporations with a more significant stream of revenue and wide product range.

As it was mentioned before, WooCommerce is an open-source platform, so it is easy to find

the appropriate solution from the extensions made by the community. Its use is also free to

use and features over 1,000 plugins and hundreds more extensions. There are hundreds of

premium add-ons available for different price rates. Many premium themes now include

WooCommerce support as well as plugins that enable theme framework compatibility.

1.54%

4.63%

13.39%

18.44%

19.24%

21.25%

21.51%

M A G E N T O

W I X S T O R E S

S H O P I F Y

W O O T H E M E S

S Q U A R S P A C E O N L I N E S T O R E S

W O O C O M M E R C E

O T H E R

Magento WixStores Shopify
Woo

Themes

Squarspace
Online
Stores

WooComme
rce

Other

Market share 1.54% 4.63% 13.39% 18.44% 19.24% 21.25% 21.51%

MARKET SHARE

15

Table 1. Comparison between leading eCommerce platforms

It is worth mention the solution of Shopify, which is a subscription-based platform that al-

lows anybody to develop an online shop and sell their products. With the support of Shopify

POS, a point-of-sale program, and accompanying hardware, Shopify store owners may also

 WooCommerce Shopify WixStores Magento HCL Commerce

Pricing Free Basic:

$29/month,

Shopify:

$79/month,

Advanced:

$299/month

Free, Combo:

$19/month,

Unlimited:

$25/month,

Business Basic:

$30/month

Magento Open

Source: Free,

Other versions:

Custom pricing

Custom pricing

Flexibility Customizable

themes, Self-

hosted, works

with Woo

Themes, can be

used only with

WordPress

Customizable

themes, secure

hosting and

domain setup

is included

Customizable

themes on

Wiz, contains

basic ecom-

merce tools

Highly customi-

zable, self-

hosted, best for

big online stores

Customizable

storefronts, cloud

and self-hosting

Extensions Massive library of

WordPress ex-

tensions

Huge library of

extensions

Possible exten-

sions, but

limited com-

pared to oth-

ers

Massive library

of extensions,

recommended

to be installed

by developer

Widget extensions

Ease of

use

Easy to use with

minimal

knowledge of CSS

and HTML

Can be man-

aged by non-

technical staff

Drag and drop

configuration

PHP developer

or Magento

consultant is

needed

Java developer is

needed

Customer

Support

Limited support 24/7 support

(phone, mail,

live chat)

Support avail-

able (phone,

tickets)

Limited support Support availa-

ble(ticket), forum

community

16

sell in physical locations. Merchants with online and physical operations may integrate their

inventory and items to run multiple shops from a single account (Shopify, 2021).

2.6 Headless commerce

One of the newer trends in this market is called headless commerce. It is an eCommerce

solution that stores, maintains, and delivers content without involving and concerning the

frontend layer. A headless commerce platform decouples and removes the front end (or

“head”), which is usually a template or a theme, leaving just the backend part. Developers

may then utilize APIs to distribute things like items, blog entries, and customer reviews to

any screen or device. At the same time, frontend developers can work on presenting the

content material using whichever framework they choose. Basically, all the system’s func-

tional aspects can be handled programmatically. The production and maintenance of con-

tent components are included in this. The objective is to encapsulate business logic in cloud-

deployed microservices. Then these microservices can be wrapped in whichever frontend

user interface the user chooses. The customer could have different user interfaces for a re-

tail store’s point of sale, another for an eCommerce website, then another for a mobile app,

and so on. Modern selling solutions are based on the notion of headless commerce

(Honaman, 2021).

In Figure 4, the basic architecture of headless commerce can be observed. The backend layer

has the connection with the databases (like Product Information Management – PIM data),

while on the other side, there is an API layer between it and the frontend layer. With this

architecture, the frontend development can be independent of the backend logic. Further-

more, different devices (like desktop, mobile, or even kiosk systems) can use the same

backend system using API calls.

17

Figure 4. Headless commerce components (CB Insights, 2021)

Developing systems like this requires more sophisticated setups that frequently require the

creation of unique code. To put it another way, standard functionalities must be rewritten to

operate with the headless eCommerce system. Despite all of the advantages of an eCom-

merce system, it is not ready to use as a traditional system right away, but it requires quite a

lot modification and custom features.

3 HCL Commerce

3.1 Introduction

HCL Commerce is one of the popular platforms of eCommerce, which is extensively used by

Solteq. It includes flexible catalog management, multi-site implementation, order pro-

cessing, and marketing capabilities.

It can be used to do business directly with consumers (B2C) and also with other businesses

(B2B). It provides a unified management system for both types of stores lowering the total

costs of ownership. In the past, it was a product of IBM (called WebSphere Commerce), and

18

it was sold to HCL Technologies in July 2019. In December 2018, IBM and HCL Technologies

signed an agreement under which HCL would purchase IBM’s WebSphere Commerce soft-

ware line. The latest version (Version 9.1) was released in 2020. However, Version 8.0 was

used for this project and called HCL WebSphere Commerce, referring to its former developer

company.

3.2 Version 8 – HCL WebSphere Commerce

With IBM Web-Sphere Commerce V8.0 improvements, merchandisers and marketers may

enhance consumer engagement, sales, and profitability by providing a better business user

experience. It is improved to provide better customer service and assistance compared to

earlier versions, while it incorporates prior WebSphere Commerce V7.0 feature pack capabil-

ities and delivers a software platform update to the newest web application server, data-

base, and integrated development environment. Version 8 has two released editions: Com-

merce Professional and Commerce Enterprise (IBM, 2022).

Version 8 was being used in the project’s environment at the time when this research and

work was made.

3.2.1 WebSphere Commerce Professional

Midsized businesses may utilize this full business-to-consumer (B2C) cross-selling solution to

create a tailored and consistent buying experience. The Professional edition includes capabil-

ities such as precision marketing and merchandising, flexible business procedures, multivari-

ate testing, search engine optimization, and personalization. These features may be used by

businesses to attract, motivate, and understand their consumers at all stages of the custom-

er experience. The Professional edition of WebSphere Commerce also supports the Extend-

ed Sites architecture, which was previously only available in WebSphere Commerce Enter-

prise (IBM, 2022).

3.2.2 WebSphere Commerce Enterprise

It is an omnichannel eCommerce platform that lets consumers buy from a business via

online channels, on mobile, on social media, in stores, and over the phone. The Enterprise

19

edition provides companies with merchandising tools, precision marketing, site search, cus-

tomer experience management, catalog management and social commerce capabilities al-

lowing them to engage consumers in a tailored and consistent way. The comprehensive B2C

and B2B starter store has a responsive and optimized storefront for various platforms and

formats, including web, mobile, and tablet (IBM, 2022).

3.3 Version 9.1 – HCL Commerce

Version 9.1 of the software enables a cloud-native architecture by using microservices and

improved scalability options. It supports the continuous delivery (CD) model, while Continu-

ous Delivery Update Packages help to install fixes and new functionalities easily. Migrating

from Version 8 is also easy and is also supported from the code level. Version 9.1 improves

on Version 9’s containerized cloud-native architecture and adds support for Kubernetes de-

ployment. The HCL Software Factory can also be used to create and preview a software solu-

tion before creating a basic Helm Chart, which is a solution designed to make managing Ku-

bernetes applications easier. This version includes new logging and performance

optimization apps, making it easier to manage and troubleshoot the webstore and its per-

formance.

3.4 Common architecture

In Figure 5 the fundamental components of an HCL WebSphere Commerce (v8) site can be

seen, showing the dataflow between the different software building blocks, including the

web server, the WebSphere Application Server, and WebSphere Commerce Developer.

20

Source: HCL Product Documentation

Figure 5. Software components of HCL architecture (IBM, 2022)

The Web server is the initial point of interaction for inbound HTTP requests to an eCom-

merce application. It utilizes the WebSphere Application Server plugin to handle the connec-

tions between the two components in order to communicate efficiently with the WebSphere

Application Server. HCL Commerce uses WebSphere Application Server (WAS) under the

hood as it provides the connection between the users with the Java applications and

servlets.

Because the WebSphere Commerce Server operates within the WebSphere Application

Server, it can take advantage of many of the application server’s functionalities. The data-

base server is where most of the application’s data, such as product and client information,

is stored. Extensions to the application are often accomplished by altering or expanding the

WebSphere Commerce Server base code. Furthermore, it may be required to store data in a

database that is outside the scope of the WebSphere Commerce database model.

A development database is used in the WebSphere Commerce development environment.

To perform database changes, developers can utilize their preferred database tools. Be-

tween the WebSphere Commerce instance and the WebSphere Commerce database Web-

21

Sphere Commerce offers a one-to-one mapping. It is not possible to run several WebSphere

Commerce instances with the same database.

WebSphere Commerce is multichannel capable, which means it can handle transactions

across several sales channels. Multiple presentation layers (which are responsible for show-

ing views) are supported by the framework additions, which isolate control code from busi-

ness logic.

WebSphere Commerce offers two channels: the web channel and the sales channel. The

presentation for the web channel is composed of JSP pages, while the web controller layer

utilizes Apache Struts. The Eclipse client technology is used for the sales channel. Eclipse

views and editors are used to render the presentation layer. Controller calls use the business

logic facade, a generic interface implemented as a stateless session bean, to invoke control-

ler instructions regardless of the channel. To activate controller instructions independently

of the channel, the business logic interface (a generic interface implemented as a stateless

session bean) is used. WebSphere Commerce commands are used to implement the com-

mand layer. EJB 2.0 is supported by the persistence layer (IBM, 2022).

4 Order Management Systems

4.1 Introduction

A platform that tracks sales, orders, inventory, and fulfillment is known as an order man-

agement system. Order management allows the people, procedures, and partnerships re-

quired for products to reach their intended customers. It begins when a customer places an

order and finishes when the goods are delivered to the buyer.

It allows a business to manage the whole fulfillment process, from order collection to inven-

tory management to delivery visibility and service availability. The workflow of the process

varies based on the business’s needs, but a typical order management procedure has fun-

damentally three parts. The first is when the customer places the order (placement), and the

company confirms it after checking the ordered items. The second is fulfillment when an

22

employee from the warehouse verifies shipping information and packs the chosen items.

During the third step (Inventory management step) the company keeps track of the invento-

ry levels when they vary in response to company demands (IBM, 2022).

An Oder Management System can digitalize and automate all of the operations outlined

above. It records all data and operations, including order entry, inventory management, ful-

fillment, and customer service after the sale. The visibility delivered by an OMS

can benefit both the company and the buyer. Customers may check what time their order

should arrive, and organizations can keep track of inventories in almost real-time.

4.2 Distributed Order Management

Distributed Order Management is a more complex part of the OMS that distributes order

fulfillment to the most optimal place. It improves the OMS process’ second stage (fulfill-

ment). After examining each selling location’s inventory (like each shop or warehouse what

items has on hand), optimization happens through this management system.

This strategy is used to improve fulfillment so that purchases arrive on time and at the low-

est possible cost to the client. Order splitting, order routing, shipping, inventory forecasting,

reordering, and inventory management are all automated by distributed order management

systems, which assist in coordinating the process and optimizing the whole supply chain

(Skubana, 2019).

In Figure 6, the dataflow and the route of the messages can be observed between the store-

front, the eCommerce system (marked as HCL Commerce in figure) and the Distributed Or-

der Management System (OMS). After placing an order, the details of the items, the cus-

tomer and other necessary information are transferred to the OMS system, which processes

the order while also updating stock information for the selected items.

23

Figure 6. Communication while placing an order in HCL commerce

Integrating a DOM system can mean several advantages for an eCommerce IT project. For

example, as orders are maintained in a single system, whether the product is bought online,

in-store, or via call centers customers have more control over their purchases, whether they

are purchased online, in-store, or through customer service. Order centralization improves

fulfillment efficiency by expanding fulfillment alternatives and increasing order and supplier

visibility. Because of the increased visibility, DOM systems may prioritize supply requests

based on particular client requirements. To suit changing client demands, purchases may be

completed via any channel. Furthermore, improved monitoring capabilities allow for the

creation of reports that are tailored to both business and consumer requirements. Defining

the essential criteria allows for modifications and improvements to the existing fulfillment

strategy, assuring future efficiency in completing orders successfully (IBM, 2022).

4.3 Dataflow

When the item’s Product Detail Page (PDP) is created, the current stock information is need-

ed to show the item’s availability to the customer.

Inside the test and production environment of the project, when inventory data is needed it

is first checked from the Dynamic Cache, which can store the inventory data for frequently

visited items. This means that it is not required to check the OMS, which accelerates the

speed of obtaining inventory information. When data is requested by the Dynamic cache,

24

the system checks if it exists in the Cache database. If the required information is not pre-

sent neither there, a call is transmitted to the OMS, which responds with the required data.

This is stored in the cache database and also transmitted to the UI, which now can display

the current stock information regarding the item selected by the user. During this process,

the messages are in the form of XML files. The visual representation of this dataflow can be

seen in Figure 7.

Figure 7. OMS dataflow inside the production environment

All in all, the data is acquired from the OMS, which is not present in the development envi-

ronment. This makes the testing of several features hard, for example the process of updat-

ing the inventory and even placing an order with simplified inventory data. In Figure 7 the

Dynamic Cache, the DB Cache, and OMS can be regarded as one unified system, which al-

lows real-time data regarding stock information to be displayed on the website.

4.4 OMS Simulator

The external OMS simulator acts as a placeholder for a fully complete DOM system, with

generic inventory levels created and integrated into the storefront stock availability features.

For this project it was provided by IBM and it was written using Java language. After HCL

25

purchased the WebSphere commerce software from IBM, there was a compatibility issue

between the site that uses HCL Commerce and the OMS Simulator provided by IBM.

As described in Section 4.3, the test and production environment have their own dedicated

OM system, while the SOAP messages are transported between the site and OM (including

cached data), but this process is not implemented in the development environment of this

particular Solteq project, making it quite challenging to test features regarding stock and

items’ availability.

In Figure 8 the flow of messages between the site’s UI and OMS Simulator can be seen. For

example, when a product detail page is opened, the UI sends a message to the OMS Simula-

tor about checking the inventory details for a specific product. It processes that request and

sends back the response to the UI containing inventory details.

Figure 8. Dataflow between UI and OMS Simulator

26

5 Technical background

5.1 Java

Java has long been one of the most widely used programming languages. It is not considered

a true object-oriented since it allows basic data types, despite the fact that it is object-

oriented. The programs are first compiled into byte code (machine-independent code) and

then run on the Java Virtual Machine (JVM), which is unaffected by the underlying architec-

ture.

Although the syntax of Java (Figure 9) is similar to that of C/C++, it lacks low-level program-

ming capabilities like pointers. Java applications are also always specified in terms of classes

and objects. It is used in a variety of applications, including mobile apps (Android is built on

Java as well), desktop apps, web apps, client-server apps, commercial software, and more. In

this project it is used in the development of the HCL commerce site, and the OMS Simulator

is also based on Java language.

Figure 9. Sample of a Java code with classes

27

5.2 XML

5.2.1 Introduction

During this project, XML-based files are widely used to communicate and transport data be-

tween the OMS and the HCL commerce site and acquire the allowed fields of the SOAP re-

quests for the OMS Simulator described in WSDL files.

The Extensible Markup Language (XML) is a text-based format for encoding structured data,

such as documents, data, configuration, transactions, and invoicing. It was created from an

older standardized format known as SGML in order to make it more Web-friendly (W3C,

2008).

XML offers a broad spectrum of applications: it is now used by several apps and devices to

manage, organize, store, transfer and display data. It is commonly used in both B2B and B2C

data transfers. Office file formats, such as Microsoft Office and Google Docs, are likewise

based on XML. As XML maintains data in plain text format, it is unaffected by the platform

which is used to open it, and it can be exported, imported, or even relocated considerably

more quickly.

5.2.2 Structure

Element trees are utilized to build XML documents. An XML tree starts with a root element

and then branches out to child elements as it can be seen in Figure 10. They may all have

subcomponents or child elements. The labels parent, child, and sibling are used to indicate

component relationships. In an XML document, there can be only one root element.

Figure 10. Structure of an XML file

28

Starting from the root, all subsequent branches and sub-branches can be visited by applying

tree structure. The parsing process begins at the root, then continues down the first branch

to an element, then down the second branch and so on to the leaf nodes.

5.3 SOAP messages

5.3.1 In general

Microsoft designed the Simple Objects Access Protocol (SOAP) in 1998 as an online commu-

nication protocol. Today it is often used to offer web services and transfer data via HTTP or

HTTPS protocols. It is not limited to them, however. Unlike the REST style, SOAP only accepts

XML data and follows predetermined standards such as message structure, encoding re-

quirements and a process request and response pattern.

5.3.2 Structure

A traditional SOAP document includes a SOAP envelope, a SOAP header (which is optional)

and a SOAP body. As mentioned, the header part is optional and it carries information re-

garding routing, which allows it to be transferred through the intermediate node before it

arrives at the final destination (Oracle, 2022).

The root element of the XML document that represents the message is the envelope (Figure

11). It establishes the structure for how and by whom the communication should be han-

dled. The SOAP processor recognizes that the XML is a SOAP message once it finds the Enve-

lope element and may then search for the message’s subcomponents.

29

Figure 11. Structure of SOAP message

A SOAP message’s header is a basic approach for adding features. It can have any number of

child components, each of which defines a protocol extension. The header child elements

can specify authentication, transaction, and localization information, among other things.

Without a previous agreement, the software that handles the message may utilize this ap-

proach to designate who should interact with a component and whether it is required or

optional. The message’s body is a container containing necessary information meant for the

message’s final receiver.

5.4 WSDL

Web Service Description Language (WSDL) is an XML-based describing language for web ser-

vices. It is used to define the capabilities of a SOAP-based web service. It provides a simple

way for service providers to declare the basic syntax of requests to their systems, independ-

ent of the runtime technology utilized. WSDL files are frequently used while testing SOAP-

based services. SoapUI uses WSDL files to produce test requests, assertions, and mock ser-

vices. WSDL files provide a variety of SOAP message features, such as whether elements and

attributes are required or optional, whether an element or property may appear many times

30

and, if necessary, the specific arrangements and sequences of components (SoapUI, 2022).

The structure and composition of an example WSDL file are shown in Figure 12.

Compared to REST, SOAP employs WSDL for consumer-provider communication, whereas

REST uses only XML or JSON to deliver and receive data. WSDL is a static document that

specifies a connection information between a client and a service.

Figure 12. WSDL example file

5.5 Integrated Development Environment

During development, an Eclipse-based IBM Rational Application Developer (RAD) for Web-

Sphere was used as the Integrated Development Environment with Runtime Analysis Tools

(RAT) which helped to analyze the performance and find the possible bottleneck in the pro-

31

ject of the client’s eCommerce store. The IDE includes visual design, construction, testing,

analysis and deployment capabilities for a variety of applications, including Java, Java EE and

web/REST services. The user interface of IBM Rational Application Developer can be seen in

Figure 13.

Figure 13. IBM Rational Application Developer

5.5.1 Loading WSDL in IDE

Eclipse has a built-in tool called Web Service Explorer, which is a JSP Web application that

runs on Eclipse’s Apache Tomcat servlet engine. It is integrated into Eclipse on two levels:

visually as it runs in the embedded browser and logically because it is a thread in the Eclipse

JRE. To open in Eclipse: Click Run > Launch the Web Services Explorer.

32

After opening it click the WSDL Page icon in the top right of the Web Service Explorer

page, after this a window like in Figure 14 should appear.

Figure 14. Web Service Explorer inside IDE

After this, click WSDL Main on the left panel. This displays Open WSDL in the Actions pane of

the Web Service Explorer, where the URL to the WSDL file can be copied into the WSDL URL

field as it can be seen in Figure 15.

Figure 15. Opening WSDL URL in IDE

33

After clicking the Go button, the next window can be seen as it is shown in Figure 16.

Figure 16. The result after opening WSDL URL in IDE

Here the different SOAP requests are loaded from the WSDL file and can be used to send

requests to the server, including different values to the changeable fields. The response is

also shown under the Status section if it is received.

6 Solutions

6.1 Setting up the Simulator

6.1.1 In general

One type of the found solution is to simulate an OM inventory with randomized items and

quantities, including the name and part numbers.

34

During this process, the simulator provided by IBM is used as it is described in the official

documentation of HCL WebSphere Commerce, which was introduced in Section 4.4. Before

observing how it works, it is needed to be installed in an environment that already contains

the servers which are needed to run an HCL commerce site. The installation should take

place in a development environment as the simulator does not provide actual data, it is only

for testing purposes.

The first step is downloading the IBM-provided file from their documentation site. The file’s

name is ExtOMSSim.ear, which is a compressed enterprise archive (EAR) file containing the

libraries, enterprise beans, and JAR files that the application requires for deployment.

After this step, it was imported into RAD workspace: File > Import > Java EE > EAR file

Here the file path to the OMS Sim was selected, as can be seen in Figure 17.

Figure 17. Importing an EAR file in IDE

35

The next step was to set the properties inside the WebSphere Application Server

Administrative Console. For this, navigating to Servers > Application servers > server1 was

done. After expanding the Web Container Settings and selecting Web container transport

chains, a new transport chain was created with the properties shown in Table 2.

Table 2. Transport chain properties for OMS Simulator setup

Property Value

Transport chain name ExtOMSSimWeb

Port name ExtOMSSimWeb

Host *

Port 9980

Then the server should was and the external OMS Simulator was successfully enabled. To

ensure that the set up process was done successfully, the following URL was used to access

the WSDL file provided by the running simulator:

http://localhost:9980/ExtOMSSimWeb/services/ExtOMSSim/wsdl/ExtOMSSim.wsdl

6.1.2 Messages of the simulator

As mentioned earlier, the external simulator uses Soap messages for communication. First, it

listens on port 9980 for requests from any source on the localhost. One of the messages is

about sending a request for getting information about the inventory of a selected product

(getInventory request from WSDL file). Its structure is shown in Figure 18.

36

Figure 18. Request sent to OMS Simulator

Firstly, an array of Stock Keeping Unit (SKU) numbers should be specified, which in the ex-

ample above contains only two strings/items (si-0125, si-0126). After that, an array of ful-

fillment center Ids should be specified (ffmcIdArray), on the example above it is specified as

”sample-ffmc”.

After the request is sent, the following reply message arrives from the OMS Simulator,

shown in Figure 19. The inventory data (like the quantity inside the fulfillment center and

unit of measurement) is generated randomly according to the used strings, so these re-

turned values can change from request to request in case of the input strings are changed.

When the request is received by the OMS Simulator it processes the input fields and gener-

ates the output values based on the input values. The return value for the date of availability

changes according to the given date and time used in the request.

37

Figure 19. Response sent by OMS Simulator

As mentioned above, the returned data is different for every unique input string as the HCL

site does not require fixed data, this is only needed for simulating a constantly changing in-

ventory and order management system imitating the real world.

The information, which is encoded in SOAP responses (like in Figure 19) is meant to be di-

gested and processed by the HCL storefront to show real-time data on the detail page of

each item regarding the availability and quantity on each pick-up point, store or fulfillment

center.

38

6.1.3 Messages of the OM System

After observing the SOAP messages of the OMS Simulator, the messages of the actual OM

was looked at to compare the simulator messages to the real-life communication regarding

getting inventory information for a specified item. The request sent by the site to OM can be

seen in Figure 20.

 Figure 20. Request sent to OM by site

Comparing the two types of SOAP messages, it can be noted that there is a significant differ-

ence in the structure of both the requests and responses between the site and the OM sys-

tems. The field names and values are different and the OM’s message contains more infor-

mation regarding an inventory item. To solve this, there should be some kind of translation

between the messages when the OMS Simulator is used to solve the display of inventory

data in the development environment.

Just like the request, the response (Figure 21) is also hugely different compared to the mes-

sages used by OMS Simulator. This compatibility issue is needed to be solved to integrate

the OMS Simulator into the development workflow seamlessly and to show the inventory

data inside that environment. As it can be seen in Figure 21 the response contains different

fields which have the “ContextData” tag. These contain significantly more information com-

39

pared to the message of the OMS Simulator regarding the currency, locale, and language.

Also, content personalization IDs are transmitted, holding information about the customer

based on their activity history (like browsing or earlier orders).

Figure 21. Response sent by OM to site

6.2 Solution 1: Using a mediator with provided mediation module

6.2.1 Introduction

The first possible solution is about creating a mediation module for transforming and trans-

lating the SOAP messages in a way that the OMS Simulator and the site are able to recognize

and digest the information that the XML carries. By doing so, the compatibility problem can

be solved without altering any source code on both sides and creating a solution that can be

tested separately from the standalone modules in the project.

40

6.2.2 Dataflow

In the following figure (Figure 22), the dataflow of this type of solution can be seen. Com-

pared to Figure 7 there is a module between the UI and the OMS Simulator which continu-

ously listens for messages from both sides. When a message is received, it translates the

message based on which direction did it come and forwards it to the other side. It carries the

same data but in another format complying with the required structure by the specification

of the currently used messages on the test and development environment.

Figure 22. Dataflow when using a mediator module

6.2.3 Mediation module

According to the documentation provided by IBM and HCL for version 8 of the used soft-

ware, there is a possibility to use a mediation module that helps to translate the messages

between the site and the simulator.

The following steps should be completed to make the mediation module work:

41

In WebSphere Commerce Developer, the WebSphere Commerce test server needs to be up

and running, while a new workspace has to be also created for setting up the module. Im-

port the ExtOMSSimMediationModule.zip file as a project interchange into the workspace.

Import the Foundation-Core.jar and Foundation-Server.jar files by doing the following: right-

click the ExtOMSSimMediationModule project. Click Properties > Java EE Module Dependen-

cies. Set the project as a dependent Java project. In the Dependencies section of the media-

tion module project, select the following projects: Foundation-Core.jar, Foundation-

Server.jar, then click the OK button.

Go to the Business Integration view and expand ExtOMSSimMediationModule. Open the

Assembly Diagram. In the diagram, right-click the ExtOMSSim and select Show in Properties.

In the Properties view, select the Binding tab and change the endpoint address to the follow-

ing URL: http://hostname:9980/ExtOMSSimWeb/services/ExtOMSSim

Save the changes, then select the Servers view. Right-click WebSphere ESB Server 6.1 and

select the Start button. After the server starts and synchronizes, right-click the server and

select Add and Remove Projects. Add the mediation module to the server by selecting Ex-

tOMSSimMediationModuleApp and clicking Add button. Click Finish and wait for the media-

tion module to publish and the server to synchronize.

After completing the following steps, the mediation module should be up and running while

translating the messages between the UI and the Simulator.

To complete this method a specific software product called WebSphere Integration Devel-

oper is needed. However, Solteq does not have that particular product in the technology

stack of this project and does not plan to obtain it due to underutilization and efficiency rea-

sons. Therefore, another solution is needed for this project, but it is worth to note this is the

easiest option regarding development and integration. Nevertheless, on the downside the

benefits do not outweigh the necessary cost.

42

6.3 Solution 2: Building a custom mediator using Apache Camel

6.3.1 Introduction

The basic concept behind this solution is similar to Solution 1 as both the dataflow and the

business logic are the same. The main difference is the use of a custom-built mediation

module by using Apache Camel and Spring Boot. In the following paragraphs the primary

technologies are introduced as well as a custom-built starting project is presented with the

feature of generating Java classes from the WSDL file provided by the OMS Simulator.

6.3.2 Technologies

Apache Camel is a Java object-based implementation of the Enterprise Integration Patterns

that uses an application programming interface to specify routing and mediation rules. It is a

rule-based routing and mediation engine for message-oriented middleware software that is

free and open-source (Apache, 2022). Connectivity to a wide range of transports and APIs

makes integration easy as at both ends, all that is required is the specification of the proper

endpoints. Camel is extensible, so it is simple to add new endpoints in the future.

Apache Camel works directly with any type of transport or message mechanism, including

HTTP, as well as pluggable Components and Data Format choices using URIs. Apache Camel

is a simple library with few dependencies that can be easily integrated into any Java pro-

gram. Regardless of which kind of transport is utilized, Apache Camel can function with the

same API. This implies that the API only has to be learned once, after which it is simple to

interact with all of the Components that come pre-installed. Apache Camel supports Bean

Binding and integrates well with popular frameworks such as Spring. Camel also offers a lot

of help with unit testing the routes an application uses during data transfer (Apache, 2022).

The Java Spring Framework is a well-known open-source enterprise framework for creating

standalone, production-ready Java Virtual Machine applications. Spring Boot is a solution

that combines three essential features: an opinionated approach to configuration, autocon-

figuration, and the ability to build independent apps to accelerate and simplify the develop-

ment of web applications and microservices using Spring Framework. These capabilities

43

combined to provide a tool that allows to build up a Spring-based application quickly and

easily (IBM, 2022).

In this solution, Spring Boot and Camel are used together to create a module that accepts

SOAP messages and transforms them according to their destination. Camel supports Spring

Boot with auto-configuration and starters for a variety of Camel components, but the trans-

formation of messages requires a good amount of development time. Due to time limita-

tions, only setting up the Camel environment and catching SOAP messages with the help of

the WSDL file was done during this work. However, this can create a perfect basis for future

work if this solution is chosen by the company to implement OMS Simulator.

Apache CXF is an open-source service framework for designing and developing services using

frontend programming APIs. These services may interact using a variety of protocols, includ-

ing XML, HTTP, SOAP and RESTful HTTP, and can transmit data via HTTP or JMS (Apache,

2022). It also supports the use of Spring framework, so it is suitable to use in this work as it

helps to solve the SOAP communication between the endpoints.

Maven is a Java-specific build automation tool that assists in the download of dependencies,

such as libraries or JAR files. Since there may be different versions of different packages, the

tool helps in locating the appropriate JAR files for each project, making the development

process easier and faster.

6.3.3 Creating a starting project

Spring Initializr (Figure 23) helped to generate a Spring Boot project by adding the necessary

dependencies to start. During this solution, Maven was used for package management and

Java 11 is the base version for the application. For dependencies Camel was also added

along with Apache CXF, which helps to use and translate the SOAP messages.

44

Figure 23. Using Spring Initializr

6.3.4 Generating classes with Apache CXF

The Apache CXF was configured in the pom.xml to read the WSDL file from the OMS Simula-

tor and process it by creating corresponding classes. Project Object Model (POM) provided

project and configuration information that was used by Maven to create the project, which

was described in pom.xml. After running the project the corresponding Java classes were

generated, so the WSDL file was successfully loaded and processed. The classes and the con-

tent of the GetInventory.java file (which was created from the GetInventory message) can be

seen in Figure 24.

45

Figure 24. Generated classes by Apache CXF

Now the application can create and receive SOAP messages containing elements similar to

the structure described in the WSDL file. If this solution is decided to be followed during the

practical implementation of the OMS Simulator this application provides a solid base to con-

tinue on this path with development.

6.4 Solution 3: Rewriting the code of the OMS Simulator

6.4.1 Introduction

After setting up the simulator from the compressed enterprise archive (EAR) file, its source

code can be observed and even modified. Through rewriting the part of the code where the

message is constructed the compatibility issue could be solved.

After the EAR file was added to the project three packages were imported for running the

simulator: ExtOMSSim, ExtOMSSimEJB and ExtOMSSimWeb. The ExtOMSSimEJB contains the

business logic of creating the response messages for the requests and putting together the

46

XML structures by populating the different properties with data. In Figure 25, under the

package named ’test’ a similar structure can be seen as in Figure 24, which was created by

Apache CXF from the WSDL file.

Figure 25. Structure of ExtOMSSimEJB package

After observing the source code of the OMS Simulator files it can be seen that the Enterprise

JavaBeans (EJB) are used to encapsulate the business logic of the application. For the devel-

opment and deployment of component-based enterprise applications, EJB is the server-side

component architecture. Based on Java EE technology, this technology allows for the quick

and easy creation of portable, transactional and distributed applications (Oracle, 2022).

In Figure 26 part of the Inventory_Ser class can be seen. It extends the BeanSerializer class,

which helps with the serialization of the data which carries the information for the SOAP

messages and generates encoded SOAP messages. There are also classes for deserialization

(for example: Inventory_Deser.java), which is the opposite serialization process. Its purpose

is to get the data from SOAP messages.

47

Figure 26. Part of the simulator’s source code

6.4.2 Development

The purpose of this development work was to show the possibility of modifying the source

code of the OMS Simulator provided by HCL and IBM in a way that the messages and proper-

ties can be altered to meet the requirements of the OM messages, which the site expects to

digest and process.

The first task was to decide which command should be used for this process. It was essential

to choose a message which is similar to a frequently used OM message. During this work the

earlier introduced GetInventory message was chosen. For implementation, the part for seri-

48

alization of this message was modified by changing the property names and structure in the

corresponding class, which is responsible for the GetInventory message. In Figure 27 part of

the modified code can be seen in the Inventory_Ser.java file.

Figure 27. Modified source code of OMS Simulator

After the development was finished and the servers were restarted, the newly created code

inside the IBM-provided OMS Simulator processed the SOAP message and created the new

response, which can be observed in Figure 28.

49

Figure 28. SOAP response after the code modification

The result of this prototype was a successful modification of the IBM and HCL provided OMS

Simulator’s source code by changing the properties to meet the requirements for OM mes-

sages making the messages sent by the simulator similar to the messages which are current-

ly used in test and production environment. Now it is proven that the source code can be

altered, and this could be a possible solution to make the simulator compatible with the ex-

isting systems and formats used in the project.

6.5 Reviewing the solutions

Reviewing all the three solutions, both advantages and disadvantages can be observed. The

least time-consuming solution is to use the mediation module provided by HCL Commerce as

the mediator between the site and the OMS Simulator. However, to use this solution a spe-

cific software product called WebSphere Integration Developer is needed, which is owned by

IBM. To obtain the license for this software is costly and a complicated process so another

solution is needed for this particular project. However, it is good to note that this possibility

can be useful for other projects where the same issue exists.

50

In contrast, building a custom mediation module could solve this issue that would operate

on a similar principle to the solution discussed above. The positive side of this approach is

the use of Apache Camel, which is open-source software, and there are thousands of ready-

to-use packages that can help process the SOAP messages and the communication. The

downside is that it is time-consuming as the translations have to be done by code written

from scratch.

The third and last solution introduced in this thesis uses a different approach. It is based on

rewriting the OMS Simulator's existing Java code and solving the compatibility issues without

any mediation module. Similar to Solution 2, this approach is also time-consuming, but no

new software is needed to run in the background.

All in all, these advantages and disadvantages are needed to be considered when the final

decision is made about which would be implemented inside the project environment.

7 Conclusion

The purpose of this work was to find answers and solutions to the question of how the OMS

system could be simulated or implemented in the development environment for one of the

projects at Solteq, so the local testing of new features and lines of codes could be easier and

more reliable before deploying it to test or development environment. One of the main im-

pediments to completing this task was solving the compatibility issue between the OM mes-

sages sent by the website and the messages sent by the OMS simulator. This work also tried

to offer alternative solutions to this question while summarizing the possible advantages and

disadvantages.

As this was the first eCommerce project it was challenging to start the work as the basic con-

cepts, systems, and workflow had to be understood before digging deeper in the sub-

systems and understand the connections between them. During the first month, familiariza-

tion with development tools, systems, databases, and dataflows was done. After that, the

problem and the current state were assessed, and the work started by searching for solu-

51

tions to solve the main issue of this project. While researching the existing architecture and

dataflow, new ways of possible implementations were discovered by using the existing

toolkits and systems.

This thesis work went through the possible solutions and implementations for solving this

issue while introducing the basic concepts and trends in the field of eCommerce. As a result

of looking for answers and doing research, three possible solutions were presented: using a

mediation module between the eCommerce site and the HCL provided OMS Simulator with

WebSphere Integration Developer, creating a custom mediation module with Camel and

Spring Boot, and altering the source code of the OMS Simulator to solve the compatibility

issue between the components. Furthermore, the reader was familiarised with how to set

up the IBM-provided OMS Simulator on an existing WebSphere Application Server, while the

technology in running in the background was also presented.

With this work, the author has a well-established knowledge of working with eCommerce

while also understanding the structures and processes which are connected to an HCL web-

site and the messages between OM, the OMS Simulator and the website.

The result of the project is a collection of possible solutions, while those ideas are also ana-

lyzed by time sensitivity and complexity. With this work, the team working on this project at

Solteq can select the most efficient idea. Furthermore, the author and his teammates can

continue the implementation phase while having a starting point of solutions using the find-

ings and project files of this work in the near future.

52

References

Adobe. (2021). E-commerce platforms. Retrieved February 14, 2022, from adobe.com:
https://business.adobe.com/au/glossary/ecommerce-platforms.html

Apache. (2022). Apache Camel Product Documentation. Retrieved February 10, 2022, from
camel.apache.org: https://camel.apache.org/manual/faq/what-is-camel.html

Bloomenthal, A. (2020). Electronic Commerce (Ecommerce). Retrieved April 28, 2022, from
investopedia.com: https://www.investopedia.com/terms/e/ecommerce.asp

Datanyze. (2022). E-Commerce Platforms Market Share. Retrieved January 28, 2022, from
datanyze.com: https://www.datanyze.com/market-share/e-commerce-platforms

Honaman, J. (2021). Headless Commerce. Retrieved March 21, 2022, from aws.amazon.com:
https://aws.amazon.com/blogs/industries/headless-commerce-what-is-it-and-why-
does-it-matter-to-cpgs/

IBM. (2022). Java Spring Boot. Retrieved April 6, 2022, from ibm.com:
https://www.ibm.com/cloud/learn/java-spring-boot

IBM. (2022). Order Management. Retrieved March 3, 2022, from ibm.com:
https://www.ibm.com/topics/order-management

IBM. (2022). Product Documentation. Retrieved March 2, 2022, from HCL Commerce:
https://help.hcltechsw.com/commerce/8.0.0/index.html

Insights, C. (2021). What Is Headless Commerce? Retrieved March 24, 2022, from
cbinsights.com: https://www.cbinsights.com/research/report/what-is-headless-
commerce/

Oracle. (2022). Software documentation. Retrieved March 3, 2022, from docs.oracle.com:
https://docs.oracle.com/cd/E19798-01/821-1796/aeqex/index.html

Skubana. (2019). Distributed Order Management. Retrieved January 31, 2022, from
skubana.com: https://www.skubana.com/blog/distributed-order-management

SoapUI. (2022). Working with WSDLs. Retrieved March 17, 2022, from soapui.org:
https://www.soapui.org/docs/soap-and-wsdl/working-with-wsdls/

Solteq. (2022). Strategy and focus. Retrieved January 30, 2022, from solteq.com:
https://www.solteq.com/en/investors/solteq-as-an-investment/strategy-and-focus

53

Statista. (2021). Digital Market Outlook. Retrieved February 2, 2022, from statista.com:
https://www.statista.com/outlook/dmo/ecommerce/worldwide

Voidonicolas, R. (2021). What is Shopify? Retrieved February 17, 2022, from shopify.com:
https://www.shopify.com/blog/what-is-shopify

WorldWideWebConsortium. (2008). XML Essentials. Retrieved March 4, 2022, from w3.org:
https://www.w3.org/standards/xml/core

Zidane, O. (2021, November 24). Global E-Commerce and the Impact of COVID-19. Retrieved
February 15, 2022, from InfoMineo: https://infomineo.com/global-e-commerce-and-
the-impact-of-covid-19/

