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In this work an experiment was made to predict hit and non-hit songs based on audio fea-

tures provided by Spotify. Four different models were compared with the dataset. 

The billboard data was first collected from Kaggle. The collected data did not include a Spoti-

fy id connecting the song from Kaggle to a song in Spotify collections. In order to retrieve the 

audio features of a song, that will be used as input to the models, a mapping had to be im-

plemented. The implementation was done by retrieving songs from Spotify search API and 

matching the name of song and artist to the ones used to make the query. During the match-

ing process, some words in the songs were excluded that were referring to different versions 

of the original song.  

After retrieving the track information, the audio features were collected from Spotify audio 

features API. 

After storing the hit song features, the non-hit songs were collected by using the Spotify al-

bum id in the song information. The non-hit songs were randomly sampled from the album 

and a check to verify the song not being the same as what was used to make the query. Fi-

nally, the audio features for the non-hit songs were collected the same way as for the hit 

songs. 

The data was processed, transformed and hyperparameters were searched. 
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1 Introduction 

Throughout history music has been a way to influence people. It has an affect on humans, 

sometimes also other living beings, from calming and soothing to energizing and madden-

ing. Sounds resonate large groups of people differently in a spectrum of different emo-

tions. Many can say of experiencing that feeling when a song sounds good. Why it does, 

is hard to explain even by the individual having the feeling.  

Humans and other beings interpret sound differently than machines and conversion 

mechanisms to store audio in digital form for machines have been developing a lot from 

the early 70s (Wikipedia, 2021). With the digitalization of audio, came the research field of 

music information retrieval, MIR (ISMIR, 2021; MIRAX, 2021; David Moffat, David Ronan, 

Joshua D. Reiss, 2015).  

For MIR, a developer platform called The Echo Nest was created (The Echo Nest blog 

2021). The Echo Nest was later sold to Spotify (The Echo Nest blog, 6.3.2014; Darrell 

Etherington, 6.3.2014) and the audio features are retrievable from their API for developers 

(Spotify API documentation, 2021). The audio features try to represent the song with just 

a few features, instead of the full spectrum of the digitally converted sound data. 

The purpose of this work is to compare different models that are trained with the Spotify 

provided audio feature data.  

This is not a novel attempt and the whole field of hit song science has been criticized by 

ISMR (François Pachet & Pierre Roy, 2008), but a few publications have later reported 

good results (Dorien Herremans, David Martens & Kenneth Sörensen 2014; Kai Middle-

brook & Kian Sheik 2019). 

Songs are usually charted by multiple institutions based on metrics usually referring to 

sales and streaming performances (Wikipedia, 2021). For example, Billboard magazine, a 

well-known brand in music chart domain, bases its Top 100 chart on measurable radio 

and online streaming and sales metrics in United States (Billboard 2018). 

In (Kai Middlebrook & Kian Sheik 2019) Billboard top 100 chart was used to define a hit 

song. 

The studies done before, chose random sampled songs to act as non-hit songs (Kai Mid-

dlebrook & Kian Sheik 2019). Here, instead of random sampling, the non-hit songs are 

collected randomly from the albums related to hit songs. Intuition is that the audio features 

of the non-hits would be closer to the hit songs as the sound sphere of songs from same 

artist and album is in general closer than the content of different artists. 

As labels are used to train machine learning models, the task will be in machine learning 

jargon, a supervised learning task (Aurélien Géron 2017, Types of Machine Learning Sys-

tems, Supervised/Unsupervised Learning).
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2 Theoretical framework 

(François Pachet & Pierre Roy, 2008) came into a conclusion that “the popularity of a 

song cannot be learnt by using state-of-the-art machine learning techniques with two sets 

of reasonable audio features.” while they were trying to validate claim made by (Ruth 

Dhanaraj & Beth Logan 2005) of finding a way to map features to a hit song. The conclu-

sions were drawn using a comprehensive set of three datasets with different and distin-

guishable feature sets. The total amount of data was 32,000 songs. This was a lot bigger 

than 1700 song dataset used in (Ruth Dhanaraj & Beth Logan 2005). (Aurélien Géron 

2017, Main Challenges of Machine Learning) lists insufficient quantity of training data as 

being an issue when practicing machine learning. Increasing the amount of data like in 

(François Pachet & Pierre Roy, 2008) versus (Ruth Dhanaraj & Beth Logan 2005) and the 

results being unimpressive, would it suggest that the dataset doesn’t have enough repre-

sentative cases. This is called sampling noise and it will render a badly generalizable 

model, meaning it will perform badly with real world data. 

However, in (Meghan Neal, 2015) article writes about a study (Dorien Herremans, David 

Martens & Kenneth Sörensen 2014) that does a decent job of predicting hit dance songs 

of 2015. They used The Echo Nest API to collect features for 697 unique Official Charts 

Company hit listings and 2755 unique Billboard hit listings, between the years 1985-2013. 

Only the audio features were used for the training of the model, concluding that the popu-

larity of dance songs can be learnt from the audio features provided by the Echo Nest. 

Later studies using the Echo Nest audio features have given (Minna Reiman & Philippa 

Örnell, 2018; E. Georgieva, Marcella Suta, N. Burton, 2018; Kai Middlebrook & Kian Sheik 

2019; Adewale Adeagbo, 2020) more mixed results. 

A conclusion can be drawn from the work before that the audio features pulled from the 

Echo Nest can be used to possibly predict hit songs with a decent accuracy in specified 

song domains, because of this and the availability of relevant data, the Echo Nest audio 

features will be used in this study too. 

 

2.1 Hit song definition 

When predicting a hit song, the hit song should be defined. (Dorien Herremans, David 

Martens & Kenneth Sörensen 2014) used singles dance archive from the Official Charts 

Company and Billboard. Later (Dorien Herremans & Tom Bergmans 2017) in a follow up 

study to focus on the impact of early adaptors in hit song predictions, “The Ultratop 50” 

listing was used to define a hit song. 
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The “Billboard hit 100” listing is used in more recent studies (E. Georgieva, Marcella Suta 

& N. Burton, 2018; Minna Reiman & Philippa Örnell, 2018; Kai Middlebrook & Kian Sheik 

2019) where the song “genre” was not more specifically scoped. 

As the scope of the song genre is not taken into consideration in this research, the “Bill-

board Hot 100” listing will be used to define a hit song. 

 

As the songs are labelled as a hit or non-hit song, based on if they are found on the Bill-

board Hot 100 list and these labels are used to teach the model, the task itself can be 

labelled as a supervised learning task. More specifically, because the song can either be 

a hit or a non-hit, it is a binary classification task. 

In machine learning classifier model is usually used for a classification task, although it is 

not uncommon to see a regression model (Aurélien Géron 2017, p. 103) to be used in a 

binary classification like logistic regression in (Dorien Herremans, David Martens & Ken-

neth Sörensen 2014; Dorien Herremans & Tom Bergmans 2017; Minna Reiman & Philip-

pa Örnell 2018; E. Georgieva, Marcella Suta & N. Burton, 2018; Kai Middlebrook & Kian 

Sheik 2019) by defining a threshold for the output value. If the predicted value is over the 

threshold it is said to belong in class 1 and if lower in class 2. 

Also support vector machines (SVM) and neural networks (NN) have been a popular 

choice for the studies before. 

In (Kai Middlebrook & Kian Sheik 2019) random forest rendered impressive results. 

For the empirical section of this work, a logistic regression, SVM, NN and random forest 

model is used via scikit-learn API (Scikit-learn API documentation, 2021) implementations. 

 

2.2 Evolution of pop music 

The sound of music has changed during the years. When hearing the sound of the 80s or 

90s a distinct feature of the sound can be distinguished in pop music even for the non-

musical. (Matthias Mauch, Robert M. MacCallum, Mark Levy, Armand M. Leroi 2015) 

used audio analysis on the billboard hot 100 list songs from 1960s to 2010s to harvest 

audio features they called “topics” and concluded that the topics did vary among different 

time periods. 

 

 

2.3 Datasets & features overview 

This section will define the source of the data used in this work and gives an overview of 

the data available from these sources. 
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In a machine learning problem, the data is the most important factor. No matter how mar-

vellous the machine learning model itself is, badly processed data will alter radically the 

results. There are a couple of well-known weak spots that should always be considered 

when cleaning and sorting the data into different sets for the model’s consumption. These 

processing problems are addressed as well in this section. 

 

2.4 Source data 

The data is collected from two different domains.  

Kaggle is providing the information about songs that are featured in a Billboard list. 

The musical features that define the sound of the song itself and are used to train the 

model are collected from Spotify. 

 

2.4.1 Kaggle 

 

For the source data Kaggle Billboard “The Hot 100” Songs – dataset is used (Kaggle da-

taset, 2021). The songs are from lists between 1958-2021 and it contains 24620 unique 

songs in total 328 487 list song records. 

The information about the songs from this source that are used in the empirical part are: 

 

date;   date of the song being on the list. 

song;   name of the song. 

artist;   name of the song’s artist. 

 

The data is mentioned to be collected from Billboard on their web-site listing. 

In this work all unique songs in this dataset are considered to be hit songs. 

 

2.4.2 Spotify 

Spotify provides an extensive collection of data related to the songs they have on their 

collections. This API is at the time of this writing available for anyone with a Spotify ac-

count.  

All songs are not available for all geographic locations, nor is every single song that is 

featured in the Kaggle Billboard dataset in the collections of Spotify. However, the number 

of songs unavailable is so low that it should not have a significant impact on the study 

done here. 

The Spotify audio_features API provided features used for training the models in this work 

are the following: acousticness, danceability, duration_ms, energy, instrumental-
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ness, key, liveness, loudness, mode, speechiness, tempo, time_signature and va-

lence (Spotify API documentation, 2021 Get track’s audio features). The features are de-

scribed in table 1. 

 

acousticness A confidence measure from 0.0 to 1.0 of 
whether the track is acoustic. 1.0 represents 
high confidence the track is acoustic. 

danceability Danceability describes how suitable a track is 
for dancing based on a combination of musical 
elements including tempo, rhythm stability, 
beat strength, and overall regularity. A value of 
0.0 is least danceable and 1.0 is most dance-
able. 

duration_ms The duration of the track in milliseconds. 

energy Energy is a measure from 0.0 to 1.0 and rep-
resents a perceptual measure of intensity and 
activity. Typically, energetic tracks feel fast, 
loud, and noisy. For example, death metal has 
high energy, while a Bach prelude scores low 
on the scale. Perceptual features contributing 
to this attribute include dynamic range, per-
ceived loudness, timbre, onset rate, and gen-
eral entropy. 

instrumentalness Predicts whether a track contains no vocals. 
"Ooh" and "aah" sounds are treated as in-
strumental in this context. Rap or spoken word 
tracks are clearly "vocal". The closer the in-
strumentalness value is to 1.0, the greater 
likelihood the track contains no vocal content. 
Values above 0.5 are intended to represent 
instrumental tracks, but confidence is higher 
as the value approaches 1.0. 

key The key the track is in. Integers map to pitches 
using standard Pitch Class notation. E.g. 0 = 

C, 1 = C♯/D♭, 2 = D, and so on. If no key was 

detected, the value is -1. 

liveness 
 

Detects the presence of an audience in the 
recording. Higher liveness values represent an 
increased probability that the track was per-
formed live. A value above 0.8 provides strong 
likelihood that the track is live. 

loudness The overall loudness of a track in decibels 
(dB). Loudness values are averaged across 
the entire track and are useful for comparing 
relative loudness of tracks. Loudness is the 
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quality of a sound that is the primary psycho-
logical correlate of physical strength (ampli-
tude). Values typically range between -60 and 
0 db. 
 

mode Mode indicates the modality (major or minor) 
of a track, the type of scale from which its me-
lodic content is derived. Major is represented 
by 1 and minor is 0. 

speechiness Speechiness detects the presence of spoken 
words in a track. The more exclusively 
speech-like the recording (e.g. talk show, au-
dio book, poetry), the closer to 1.0 the attribute 
value. Values above 0.66 describe tracks that 
are probably made entirely of spoken words. 
Values between 0.33 and 0.66 describe tracks 
that may contain both music and speech, ei-
ther in sections or layered, including such 
cases as rap music. Values below 0.33 most 
likely represent music and other non-speech-
like tracks. 

tempo The overall estimated tempo of a track in 
beats per minute (BPM). In musical terminolo-
gy, tempo is the speed or pace of a given 
piece and derives directly from the average 
beat duration. 

time_signature An estimated time signature. The time signa-
ture (meter) is a notational convention to spec-
ify how many beats are in each bar (or meas-
ure). The time signature ranges from 3 to 7 
indicating time signatures of "3/4", to "7/4". 

valence A measure from 0.0 to 1.0 describing the mu-
sical positiveness conveyed by a track. Tracks 
with high valence sound more positive (e.g. 
happy, cheerful, euphoric), while tracks with 
low valence sound more negative (e.g. sad, 
depressed, angry). 

 

Table 1: Audio feature descriptions 

 

Also album_id:s from the Kaggle billboard dataset songs are used to query the Spotify 

album API for the album information of the album in which the song was released. The 

album data is collected to get the Spotify song_id:s from the same album. 

This step is done in order to introduce “non-hit” songs in the total dataset.  

The logic for this is that a song that is released in the same album than the song which 

was featured in the Billboard hit list acts as a good comparison when trying to find the 
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border between a Billboard hit list and non-hit list. Most of the songs in the same album 

are from the same artist so the style and sound should be close to each other, but only 

one of them had the features in musical domain which made it to be appended in the Bill-

boards hit list collection.  

More specified information about the features and different API endpoints in (Spotify API 

documentation, 2021). 

 

2.5 Data quality 

The quality of the data can have a huge impact on the results and as mentioned in (Au-

rélien Géron 2017, p. 25) most data scientist will spend most of their time cleaning up the 

data. Also (Aurélien Géron 2017, p. 25)) mentions that usually clear outliers are in most 

cases just discarded in the resulting dataset and that another general case is that some 

data is missing. 

These cleaning operations are addressed in this work and are mentioned in the above 

section about the source data, by discarding songs from which no audio features are 

available from the final dataset. 

“With few exceptions, Machine Learning algorithms don’t perform well when the input nu-

merical attributes have very different scales” (Aurélien Géron 2017, p.66) 

(Aurélien Géron 2017, p.66) lists feature scaling as one of the most important transfor-

mations of the data in machine learning setting and lists normalization (MinMax scaling) 

and standardization as the two most common ways to apply feature scaling. 

In normalization the feature values are fitted between 0 and 1 based on the original val-

ues. This method is more vulnerable to outliers as one high value will effect on all result-

ing values. 

Standardization is less affected by outliers, but it does not bound the output values be-

tween 0s and 1s, which is a problem for some ML methods. 

In this work some of the audio features are already in a scaled form and they will not be 

transformed in during the cleaning. 

However, all the audio features that are not in scale of 0-1 will be scaled to be between 0-

1 with (Scikit-learn API 2021, Minmax scaler) and in a separate dataset with (Scikit-learn 

API 2021, StandardScaler), these include duration_ms, loudness and tempo.  

In (Aurélien Géron 2017, p. 64) it is showed by example that categorical data could be just 

changed into a numerical form where a number represents a category, but it is pointed out 

that “ML algorithms will assume that two nearby values are more similar than two distant 

values.” and to even out the closeness relation, usually onehot-encoding is used. A 

onehot-encoder will create a list where every category is either 1 or 0 depending on if the 

data instance belongs to it.  
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In this work categorical features like timeSignature, key and mode will be one hot en-

coded with (Scikit-learn API 2021, OneHotEncoder). 

From the album release dates, the years will be parsed into an additional time feature. 

This time feature will be the end of the year. For example, 2021 would yield a time feature 

21. The time features will be scaled between 0 and 1.  

Technically the time features could be also onehot-encoded, but it is decided not to as 

years closer to each other can be seen as being more similar, when thinking about the 

sound in a time period.  

 

2.6 Balancing & sampling 

As put in (Aurélien Géron 2017, p. 24) “It is crucial to use a training set that is representa-

tive of the cases you want to generalize to. If the sample is too small, you will have sam-

pling noise, but even very large samples can be nonrepresentative if the sampling method 

is flawed. This is called sampling bias “ 

Sampling bias is a tricky problem to address. In (Kai Middlebrook & Kian Sheik 2019) the 

not-hit songs were totally randomly sampled from a mentioned song database. The good 

accuracy performance could be explained by this sample being in its musical features so 

far off from the hit song samples that finding the defining line of hits and non-hits could be 

easier.  

As the non-hits in this work should be by nature closer in the feature domain of the hit 

songs, the space between hits and non-hits can be theorized to be less wide. 

(Kai Middlebrook & Kian Sheik 2019) also mentions the same problem which is that there 

are typically a lot more non-hit songs than there are hit songs.  

Therefore, if the training and test songs would be totally randomly picked the resulting 

dataset would probably contain more non-hits than hits.  

As one measure of the performance is accuracy and in this scenario a model is trained 

which will give a prediction of non-hit every time regardless of the input, would this in the 

sense of accuracy be a good model. Even though it is a total garbage. 

To ensure that this does not happen the sample taken from the original data must repre-

sent equally non-hit and hit songs by amount. 

To sample the data like this, another theoretical issue must be raised. As there are more 

non-hit songs than hit songs, how will the decision be made which non-hits songs to in-

clude and which not? 

This kind of sampling process is called undersampling (Undersampling ref) and the key 

with the song data used in this work is to do the undersampling based on the dates. 
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2.7 Training & test split 

As (Aurélien Géron 2017, p. 29) mentions a common practice is to split the data into train-

ing and testing sets and a common strategy is to use 80% as training and 20 % as test 

data. 

The intuition for the validation and test set is to mimic data that the model has not “seen” 

before and measure the model’s performance on unseen data during training. 

 

2.8 Over- & underfitting 

As rounds of searching the right parameters for the model runs on, it could seem that the 

model is getting better the whole time. 

However, usually at some point the model’s performance start to plateau and drop when 

trained too long. This phenomenon is explained in (Aurélien Géron 2017, p. 28) to be due 

to optimizing the model too much or overfitting the model to the data. Some models have 

hyperparameters which are trying to regularize the model to not overfit the data or slow 

the process at least down. 

An opposite name is used when the model is not complex enough to have a good perfor-

mance on the test or real-world data. Main methods to avoid underfitting is to use a more 

complex model or add the complexity. 

 

2.8.1 Validation set & cross-validation 

Cross-validation is a resampling method for machine learning evaluation and performance 

testing. It is recommended to be used when searching for hyperparameters. There are 

multiple implementations of the cross-validation. A version of it is k-fold validation. 

In k-fold the dataset is split into a k number of test and training sets and the model is fitted 

with every set. The final accuracy is the average of accuracies among the iterations.  

 

2.9 Models & algorithms 

The models used in this work were the ones that can be seen in most of the papers on the 

same problem domain. (REFS!) Therefore, mostly the same reasoning applies here for 

this specific set of models. They are not on the same level of simplicity, and they do have 

differing methodologies to crack essentially the same problem. 

Other contributing factor for choosing the models was previously recorded good perfor-

mance on the papers of same problem domain. 
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2.9.1 Logistic regression 

A logistic regression model computes a weighted sum of the input features (plus a bias 

term), but instead of linear regression, which would use the result as output, a logistic 

function is applied to the sum and that is used as output. When the classes cannot be 

linearly separable, logistic regression will fail. (Aurélien Géron 2017, p. 137-138; Ankur. A. 

Patel, 2019, 412). 

 

2.9.2 Support Vector Machines (SVM) 

A very powerful and capable machine learning model capable of performing multiple dif-

ferent machine learning tasks. The basic idea of SVMs in a binary classification set up is 

to find decision boundary, a plane which separates the two classes. There are different 

kind of ways to find a decision boundary and what works depends really on if the data is 

separatable in the way used. For example, linearly separable classes means that you can 

fit a straight line between the two classes in 2-dimensional space. (Aurélien Géron 2017, 

p. 147-167; Ankur. A. Patel, 2019, 484-500). 

 

2.9.3 Neural Networks (NN) 

A simple neural network architecture is a perceptron. A perceptron calculates a weighted 

sum of its inputs, applies a step function and outputs results. If a perceptron would have 

only one output and the step function used would be a sigmoid function, this would make 

the perceptron essentially the same as a logistic regression model. The difference is that 

the output layer can me scaled to be more than one and these layers can be stacked, 

making a multi-layer perceptron. A multi-layer perceptron model uses an activation func-

tion instead of step function to take advantage of backpropagation algorithms it is usually 

trained on. (Aurélien Géron 2017, p. 261-267; Ankur. A. Patel, 2019, 500). 

 

2.9.4 Random Forest 

A random forest model belongs in a group of ensemble methods. An ensemble method 

contains multiple predictors and takes an advantage of them all to make the final predic-

tion. A group of decision tree classifiers trained with a random subset of the original data 

makes a random forest model. A decision tree predictor itself can be though as a logical 

set of binary questions on features in the data. Tree based models’ biggest weakness is 

the tendency to overfit the data, but tree-based ensemble methods like random forest 

helps to keep the model more generalizable. (Aurélien Géron 2017, p. 183, 190, Ankur. A. 

Patel, 2019, 452-484). 
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3 Empirical part 

Code & notes for the implementation: https://github.com/doslindos/billboard-ml-

notes/blob/master/src/thesis_results.ipynb  

 

3.1 The data collection 

Steps defined here are found in the code source material from section “Collecting the da-

ta”. 

 

3.1.1 Collect song information with Kaggle billboard data 

The original source for the data is songs in the Kaggle billboard dataset (Kaggle, Billboard 

dataset, 2022). To retrieve the data, Kaggle python library is used, and the implementa-

tion can be found in data/query/billboard.py, function downloadBillboardData. 

A billboard description is defined in data/types/billboard.py as BillboardSong. 

The target data for machine learning algorithms is the audio features data from Spotify. To 

query it, the Spotify API needs the Spotify song id for the song that is queried. 

The unique Spotify song id is not in BillboardSong information from Kaggle, which 

means that the queried hit songs can not be directly referenced via the API. 

A matching process must be implemented. For every song, its name and artist name is 

used as a query string, when fetching data from Spotify search API. 

The Spotify search API is returning songs that are close match, but there is a possibility 

that the song does not exist in the Spotify collection or is not available in the geographical 

location of the account. 

To handle these cases, the closest returned result is compared with the query string.  

If the query result artist name and song name is close enough to the artist’s name and 

song name in billboard list song that was used to make the search query, the song will be 

added to the final dataset. 

Spotify’s collection contains a lot of “Instrumental”, “Karaoke”, etc. versions of popular 

songs. To keep the song data original, a song that has one of these words are discarded 

from the final dataset. 

Fuzzywuzzy was used to for the matching process. 

Spotipy was used to make the actual queries into the API and the implementation can be 

found in data/query/spotify_api.py function getSpotifyDataFromBillboardSongsV2. 

A song queried from search api is defined in data/types/spotify.py as SpotifySongInfo. 

 

https://github.com/doslindos/billboard-ml-notes/blob/master/src/thesis_results.ipynb
https://github.com/doslindos/billboard-ml-notes/blob/master/src/thesis_results.ipynb
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3.1.2 Collect audio features with song data 

SpotifySongInfo do contain the Spotify song id for the audio features API. In da-

ta/query/spotify_api.py function getSpotifyAudioFeaturesV2 holds code to make the 

queries. 

The audio features API can take total of 50 songs in one query, so first step is to batch the 

songs in sets of 50. The documentation informs that the order of songs should match the 

order of return values, but the resulting features are checked to hold the same Spotify 

song id than the SpotifySongInfo. The SpotifySongInfo and SpotifyFeatures are 

stored in a dictionary defined as SpotifySongData.  

The collected features are defined as SpotifyFeatures and SpotifySongData in da-

ta/types/spotify.py. 

The function returns a dictionary where the key is Spotify song id and value is a Spoti-

fySongData object. 

 

3.1.3 Collect non-hit songs 

At this point all hit songs are collected with audio features. Collecting the non-hit songs is 

straightforward process. First every hit song is iterated, all tracks from the same album are 

queried from Spotify album API with Spotify album id and a random sample of 5 songs 

are selected from that album as non-hit songs in the final dataset. Every sampled song is 

checked not to be the original hit song that was made to query the album API. 

After collecting SpotifySongInfo of the returned and sampled tracks, the audio features 

are collected the same way as defined in section above. 

Code to this step is found in data/query/spotify_api.py function getSongsWith-

AlbumsV2. 

 

3.2 Processing 

The following sections define implementations of processing the data to be ready for con-

sumption of the models. The notes can be found in source under “Song data prepro-

cessing”. 

 

3.2.1 Balancing & sampling the data 

The total track amount in the final dataset is non-hit heavy with over three times more in-

stances. 
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Figure 1: Total amount of non-hit (left) & hit songs (right) in source data used in this report 

 

As you can see from the figure 1, the number of total non-hits is 73 562 and the number of 

hit songs is 19 462. The balancing of the data as described in theoretical part must con-

sider two domains, the label and release year of the song. This is done by taking all hit 

songs by year and randomly sampling the non-hit song dataset by the same year, taking 

out the same amount as there are hit songs for that year. This should result a label- and 

release year-wise balanced dataset.  

It is implemented in this work by looping over every unique release year of the hit songs 

that is between 1965 and 2021, then taking all hit and non-hit songs from the datasets of 

the specified year and sampling the resulting subsets. In year 1965 was smallest number 

of unique hit songs during the year (See figure 2).  

 

 

Figure 2 (By year) 
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This works as a sample size as all other years have at least that amount of unique hit 

songs released within. This balancing method gives the wanted results in label and time 

domain. 

The implementation can be found in data/process/balance.py function sampleByYears. 

The resulting balanced dataset can be seen in figure 3. 

 

 

Figure 3 (Balanced dataset) 

 

3.2.2 Transforming the data 

In source material “Apply transformations” describe the implemented feature transfor-

mations mentioned in the theoretical part. 

Firstly, the balanced datasets are concatenated as one (As in figure 4).  

 

 

Figure 4 (Features) 

 

In figure 4 is the features before any transformations are applied. 
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A scikit-learn librarys ColumnTransformer is used to specify which columns in the data-

frame will be fitted in which transformer. Scikit-learn MinMax scaler & OneHotEncoder are 

used to implement the actual transformation part. 

 

3.3 Models & hyperparameters 

“Modelling” part describes the methods to initialization and execution of model training. In 

the initialization part, the cross-validation grouping helper function GroupKFold from scikit-

learn is initialized. It is used to define the number of splits for cross-validation. 

The data is also transformed. 

For every model used, hyperparameters are searched with scikit-learn GridSearch. The 

range of different sets of values are given as a dictionary called params. 

Finally, the accuracy of the best hyperparameter combination per model is printed out. 

As you can see from table x, the best hyperparameters for Logistic Regression are x, for 

Support Vector Machine are x, Multi-Layer Perceptron are x and finally Random Forest 

are x. Full listing in table 1. 

 

 

   Hyperparameters   

Logistic Re-

gresssion 

Support Vector 

Machine 

Neural Network Random Forest 

C: 0.1 C: 10 Activation: ’relu’ N_estimators: 

800 

L1_ration: 0.4 Class_weight:  

’balanced’ 

Alpha: 0.0001 Max_features: 

’auto’ 

Max_iter: 1000 Gamma: 0.1 Early_stopping: 

True 

 

Multi_class: 

’ovr’ 

Kernel: linear Hidden_layer_sizes: 

(20, ) 

 

Penalty:  

’elasticsearch’ 

Max_iter: -1 Max_iter: 1000  

Solver: ’saga’  Solver: ’adam’  

Warm_start: 

True 
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Table 2: Best found hyperparameter set by model 

 

The hyperparameter search took different amounts of time for different models. The times 

are specified in table 2. As you can see the Multi-Layer Perceptron and Random Forest 

took significantly longer time to search than Logistic Regression and Support Vector Ma-

chine. 

 

   Search time   

Logistic Re-

gresssion 

Support Vector 

Machine 

Neural Network Random Forest 

~3 ~5 ~30 ~20 

 

Table 3: Hyperparameter search time in minutes 
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4 Results & discussion 

   Accuracies   

Logistic Re-

gresssion 

Support Vector 

Machine 

Neural Network Random Forest 

0.55 0.55 0.54 0.56 

 

Table 4: Overall model accuracies on the test set 

  

As the table 4 shows, the model results were far from the impressive numbers recorder in 

some previous studies. To predict hit and non-hit songs for Billboard list featured artists 

seem to need more complex input features than just the audio features used in this work.  

Extensive analysis on the correlations between different features in this dataset with some 

proper feature engineering could yield in more flamboyant results. 

Time used for hyperparameter search left hopes for improvement. It could be easily bet-

tered by adding more parameters in the GridSearch param section and running the search 

again. 

New models could also be introduced, although the ones that were chosen, had already 

proven track record for the same problem.  

For the data gathering and processing part, an even more extensive methodology to 

group the songs, by balancing the songs also by genre or specific feature could produce 

more interesting results. Also, during the work an idea rose of splitting the dataset in sets 

by artist, but the implementation was shown to be to complex to try out. 

In a more positive note of the yielded results by this work, a methodology of gathering 

Spotify audio features were introduced and made publicly available for anyone wanting to 

try out something similar with good amount of documentation. 

The work is also modularized so that the source data of billboard songs are replaceable 

by basically any list of songs with a song and an artist name. 

The public availability means that anyone with Kaggle and Spotify credentials can try out 

to get similar results or extend the work done here, for example with the suggested im-

provements. 

The gathering methods did answer the purpose of this study, which was to understand 

what is available and to experiment with the audio features to find out interesting use-

cases. During the implementation part of this work the availability and new potential usag-

es beyond this experiment were reported to the assigner. 
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