

Prakash Sapkota

Action-Based Study and Development of a
Web Service Application in Java for METLA

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

30 January 2014

 Abstract

Author
Title

Number of Pages
Date

Prakash Sapkota
Action-Based Study and Development of a Web Service Appli-
cation in Java for METLA

38 pages + 4 appendices
30 January 2014

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Mika Galkin, Senior System Analyst
Sami Sainio, Lecturer

The primary purpose of the thesis project was to carry out an action-based study of web
services by developing a forestry related web service application for MetINFO.

MetINFO is an information division of the Finnish Forest Research Institute (METLA). It
provides various forest-related information services and tools in order to make forest-
related information more visible and useful. The goal of the project was to develop a web
service application which could be used by Finnish sawmills to upload their roundwood
sales data to MetINFO. The uploaded data is used to calculate statistics about roundwood
sales in Finland by different forestry centers and price areas.

The development of the project involved various steps. Initially, the requirements of the
application were analyzed. Based on the requirements, the application was designed and
developed using feature-driven development methodology. As the outcome, fully function-
ing web services for uploading roundwood sales data and a web based application for ad-
ministering uploaded data were created.

The developed application was tested in a test environment and all the known bugs were
fixed. Technical documentation of the application and a user manual were created and the
application was deployed in the production environment. Finally, the application was
demonstrated to MetINFO and the Finnish sawmills were informed about the service by
MetINFO.

Keywords METLA, SOA, Web services, RESTful services, Java, Spring

Framework, Apache CXF, roundwood sales data

Contents

1 Introduction 3

2 Theoretical Background of the Technologies Used 4

2.1 Markup Languages and XML 4

2.2 SOA and Web Services 5

2.2.1 Web Services Transport 9

2.2.2 Web Services Messaging 10

2.2.3 Web Services Description 12

2.2.4 Web Services Publication and Discovery 13

2.2.5 Web Services Quality 13

2.3 Resource-Oriented Architectures and RESTful Services 14

2.4 Java Platform 17

2.4.1 JAX-WS and Apache CXF 19

2.4.2 Spring Framework 20

2.5 Development Tools 21

3 Analysis, Development and Deployment 23

3.1 Requirements Analysis 23

3.2 Design of the Application Architecture 25

3.3 Development Environment and Project Setup 27

3.4 Web Service Development 30

3.5 RESTful Service Development 31

3.6 Development of Other Features 32

3.7 Deployment 33

4 Results 34

5 Evaluation of Results 38

5.1 Benefits 38

5.2 Challenges 38

5.3 Future Improvement 39

6 Conclusion 40

References 41

Appendices

Appendix 1: A Sample Valid Roundwood Sales Data in XML

Appendix 2: Web Service Implementation Class

Appendix 3: Generated WSDL file

Appendix 4: Implementation of RESTful Service

1

Abbreviations and Terms

AOP Aspect-oriented Programming

API Application Programming Interface

ASP Active Server Pages

CORBA Common Object Request Broker Architecture

DOM Document Object Model

FDD Feature Driven Development

FTP File Transfer Protocol

GML Geography Markup Language

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

JAX Java API for XML

JAXB Java API for XML Binding

JAXP Java API for XML Processing

JDK Java Development Kit

JEE Java Enterprise Edition

JME Java Mobile Edition

JRE Java Runtime Environment

JSE Java Standard Edition

JSON JavaScript Object Notation

JSP Java Server Page

JVM Java Virtual Machine

METLA Metsäntutkimuslaitos (Finnish Forest Research Institute)

MVC Model View Controller

OASIS Advancing Open Standards for the Information Technology

ORM Object Relational Mapping

PHP Hypertext Preprocessor

POJO Plain Old Java Object

REST Representational State Transfer

RDF Resource Description Frameworks

ROA Resource Oriented Architecture

RPC Remote Procedure Call

RSS Rich Site Summary

R&D Research and Development

2

SAAJ SOAP with Attachments API for Java

SAX Simple API for XML

SGML Standard Generalized Markup Language

SMTP Simple Mail Transfer Protocol

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SVG Scalable Vector Graphics

UC University of California

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WADL Web Application Description Language

WS Web Service

WSDL Web Service Description Language

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

3

1 Introduction

Service-Oriented Architecture (SOA) is a software architecture design pattern that sup-

ports self-contained and loosely coupled interaction between various software compo-

nents. The main aim of SOA is to enable easy mutual data exchange between software

components without having to worry about the platform in which the software compo-

nents are developed or deployed. Web service is the technology which can be used to

implement applications and services in SOA. Because of interoperability needs be-

tween different platforms and the availability of development tools and technologies,

web service is widely adopted in versatile applications and services use cases. For

example, large vendors such as Google, Amazon, IBM, Oracle, and Microsoft have

implemented their various applications and services using web service. In this context,

the primary motivation toward the project was to explore service-oriented architecture

and its implementation using web services.

The company, METLA, in which I carried out my thesis project, is a forest research

institute in Finland. MetINFO is one of the METLA divisions which provides information

and statistics services to METLA. As forestry is one significant part of the Finnish

economy, knowledge and research data about forestry becomes crucial for forestry

stakeholders such as forest owners, investors, and paper industries.

In the project, MetINFO wanted to create a service which could be used by Finnish

sawmills to submit their roundwood sales data to MetINFO. This data would be then

used to produce statistics about roundwood sales in Finland. The service had to be

developed in such a way that a software client to the service could be developed in any

computer platform or in any computer programming language. In other words, the ser-

vice had to be implemented in a service-oriented architecture. In addition to the main

service, MetINFO wanted to create a web application that would have different features

to monitor and administer the service, incoming data, and application users.

Analyzing the requirements from MetINFO, two different kinds of applications had to be

developed. The first was a web service application. For the web service application,

both REST and SOAP-based web services were used. In order to implement a REST

based or RESTful service, Spring MVC REST was used. In order to implement a

SOAP-based service, Apache CXF was used. The second kind of application was a

4

normal web application with a user interface. For this kind of application, Java EE and

Spring MVC were used.

The project had two goals. The first goal was to provide a solution for METLA, which

itself has significance to various forestry stakeholders. The second was to gain an un-

derstanding of different software development technologies such as web services, Ja-

va, Spring Framework, and other software development tools and methodologies by

using them in a real world application.

2 Theoretical Background of the Technologies Used

2.1 Markup Languages and XML

A markup language is a system or a computer language for annotating a document in

such a way that will be syntactically different from the text. Generally, in markup lan-

guages, documents are annotated by tags. GML, SGML, HTML, XHTML, XML are

some of the markup languages. HTML is one of the most widely used markup lan-

guages as it is used in document formats for the World Wide Web. Similarly, XML is

also another widely used markup language which is the foundation of various other

technologies.

XML stands for Extensible Markup Language. It is a platform-independent way to rep-

resent data. In other words, any data encoded in XML can be read by any application

on any platform. The specification for XML is defined by W3C. The specification con-

tains a set of rules for encoding a document in a format that can be both machine- and

human-readable. XML does not have a fixed collection of markup tags, but it defines

rules to create tags. As users can define their own tags in a logical structure, XML can

be used as the foundation of other various document formats and markup languages.

The main design goals of XML focus on usability, extensibility, simplicity and generality

over the Internet. [1]

An XML document is an ordered, labeled tree. XML is composed of character data type

or leaf nodes that contain the actual data (text strings) and element nodes. The ele-

ment nodes are also called element types. The element nodes can have a set of attrib-

utes, each consisting of a name and a value. They can also have child nodes. [2]

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.tb6cmzj6s8ky

5

Due to the extensibility nature, XML has been used to develop several technologies

such as RSS, Atom, SVG, and RDF. The web service is also a technology whose

building block is XML. Several components of the web service technology, such as

SOAP, WSDL, and UDDI, are built based on XML. [2]

2.2 SOA and Web Services

In today’s era of the Internet, the majority of software applications are distributed,

meaning that they are required to communicate between applications over the network.

SOA is an architectural style for building software applications in a network environ-

ment, which provides platform-independent communication between interacting parties.

It is a flexible and highly dynamic architecture. Moreover, it is a process-driven model

allowing businesses to adapt quickly to changing market conditions. In SOA, applica-

tions and services are loosely coupled and highly interoperable. [4]

Figure 1 shows the basic architecture of SOA.

Figure 1. Basic service-oriented architecture.

As shown in figure 1, SOA contains three components, namely service provider, ser-

vice directory, and service consumer. The service provider publishes a service to the

service directory following the service standards. The service consumer then locates

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.e5t127xn0ih9

6

the service provider from the service directory, accesses the service from the service

provider, and finally binds to the service. [3]

The SOA model has several benefits over the traditional model. Firstly, as software

components can be reused in the SOA model, there will be a lower software develop-

ment cost. Similarly, because of the model-driven implementation in the SOA model, it

becomes easy to develop new functions rapidly. Moreover, data confidentiality and

integrity, organizational flexibility, ability to expose internal functionality, ability to inte-

grate existing assets are some other benefits of the SOA model to list a few. [5]

As mentioned previously in the introduction section, web services are the building block

of the SOA model implementation. Especially during recent years, the imperative to

connect processes, systems, applications and people has changed the way applica-

tions are being developed. Successful software systems require interoperability across

platforms and flexible service that can be easily maintained, modified and evolved over

time. This has led to the acceptance of XML as a universal language for formatting,

representing, storing and transmitting machine-readable structured data which is inde-

pendent of the hardware, software platform, and programming language. Building on

the wide acceptance of XML, web services are computer applications which use stand-

ard protocols to exchange data over a network. [6]

W3C defines a web service as a software system designed to support interoperable

machine-to-machine interaction over a network. The web service has an interface de-

scribed in a machine-readable format (specifically WSDL). Other systems interact with

the web service in a manner prescribed by its description using SOAP-messages, typi-

cally using HTTP with an XML serialization in conjunction with other web-related

standards. In other words, web service is a method or system of data exchange be-

tween two different systems or processes over the World Wide Web. A web service

can be defined as a software functionality or feature provided on a network address

which can be utilized by other computer systems over the Internet regardless of the

computer language, software platform, and hardware used in that system. [7]

Generally, there are two major classes of web services. One of them is a SOAP-based

web service which is simply known as ‘web service’. Another kind of web service is a

REST-compliant web service. It is also known as RESTful web service. In the following

7

sections, only the SOAP-based web service will be discussed. The RESTful web ser-

vice will be discussed in section 2.3. [8]

Web services provide many advantages for companies and software developers. Some

of the key advantages are listed below:

 Interoperability - because web services follow the use of standard-based com-

munications methods, all web services are interoperable with each other. This

means that a web service developed in any hardware, software platform or pro-

gramming language can communicate to another web service developed in any

hardware, software platform or programming language. This is one of the key

advantages of web services. In this sense, web services are virtually platform-

independent. [9]

 Reusability - loose coupling, autonomy, statelessness, granularity and discov-

erability are the core features of web services. Application of these features en-

ables web services to be reusable. [10]

 Usability - web services use open standards such as SOAP, WSDL, UDDI, and

XML. Not only that, but also web services are enabled and supported by some

of the widely adopted software platforms such as Java, .NET, and PHP. Be-

cause of these reasons, web services are useable for all kinds of companies

and also for a variety of application use cases.

 Based on SOA - web services are specified and standardized for the entire

stack of service-oriented architecture.

On the other hand, web services in some use cases have some disadvantages. Some

of the main disadvantages of web services are listed as follows:

 Heavyweight - as a web service uses only XML, all of the operations of the web

service such as discovering a web service, binding a web service, authentica-

tion, and exchanging core data to another service require XML processing. Be-

cause of that web services are too heavyweight for most of the real-world appli-

cations on the web.

8

 Difficult to a create client in the browser - even though many tools and technol-

ogies are available for several software platforms to create a client of the web

service in an easy way, creating a web service client in browsers generally re-

quires enormous work. Therefore, web services do not seem appealing for use

with web-based client side applications.

To sum up the advantages and disadvantages, web services seem to be weakly suited

for client-to-business solutions, whereas best suited for legacy enterprise systems in-

volving business-to-business communication.

In order for any software technology to be a feasible solution, it has to be supported by

available software platforms. The web service is one of the software technologies

which is best supported by major software platforms such as Java, .NET, and PHP. For

example, Java standard and enterprise edition provide different specifications for de-

veloping web services. JAX-WS, JAXB, JAX-RPC, and SAAJ are some of the specifi-

cations related to web services and XML processing by Java. Java also provides im-

plementations of those specifications in various distributions such as Java Standard

Edition (JSE) distribution, Java Enterprise Edition (JEE) distribution and Glassfish ap-

plication server.

The web service technology itself is a combination of various specifications. We can

view the web service technology as a stack of various components. Each components

of the web service plays a certain role in the web service. The web service stack can

be visually represented by figure 2.

9

Figure 2. An example web service stack showing the relationship between web ser-

vices standards. Reprinted from MC Press online [11].

From figure 2, the bottommost component is a transport layer. On top of the transport

layer, a messaging layer exists. Similarly, on top of the messaging layer, service de-

scription and on top of the service description, publication and discovery layer exists.

Finally, the web service quality layer exists on top of the publication and discovery lay-

er. Web service quality includes specifications related to security, transactions, and

reliable messaging. More details about each web service stack are given below.

2.2.1 Web Services Transport

The web service transport layer is the lowest layer stack on the web services. It is re-

sponsible for the communication of data between machines over a network. Web ser-

vices must be network-accessible to be invoked by a service client or service reques-

tor. Web services which are publicly available on the Internet use commonly used net-

work protocols. Because of widespread use, HTTP is the de facto standard network

protocol for web services that are Internet-available. Other Internet protocols including

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.8ecypn5gkboa

10

SMTP and FTP can also be used by web services as a network protocol. Additionally,

some Intranet domains can use proprietary or platform and vendor specific protocols

such as CORBA and MQSeries. The specific use of the network protocol used in a

given use case mainly depends upon the requirements of application such as availabil-

ity, reliability, security, and performance. This enables web services to take advantages

of the existing network infrastructures and message-oriented middleware infrastructure,

such as MQSeries. [8]

Web services provide a unified programming model for the development and consump-

tion of a private Intranet as well as public Internet services. This is one of the benefits

of web services. If an enterprise uses multiple types of network infrastructures, HTTP

can still be used as a common, interoperable bridge to connect disparate systems. As

a result, the decision of network technology can be totally transparent to the developer

and consumer of the service. [8]

2.2.2 Web Services Messaging

The web services messaging layer works on top of the transport layer. It is the core

layer of web services. It defines the rule or syntax of the data to be communicated.

Similarly, this layer contains the real data to be communicated.

The web services messaging layer uses XML-based SOAP protocol. Based on W3C’s

definition, SOAP is an XML-based lightweight protocol for exchange of information in a

decentralized, distributed environment. It consists of three parts: an envelope that de-

fines a framework for describing what is in a message and how to process it, a set of

encoding rules for expressing instances of application-defined data types, and a con-

vention for representing remote procedure calls and responses. The current version of

the SOAP is 1.2. [13]

As mentioned in previous paragraph, SOAP consists of three parts which are listed

below in more detail:

 The SOAP envelope - this is the core part of SOAP. It defines an overall system

for expressing what a message contains, who should deal with it, and whether

it is mandatory or optional [13].

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.y4v00u8pyjui

11

 The SOAP encoding rules - this defines a serialization mechanism that can be

used to exchange instances of application-defined data types [13].

 The SOAP RPC representation - this defines a convention that can be used to

represent remote procedure calls and responses [13].

A visual representation of SOAP envelope is shown in figure 3 below.

Figure 3. SOAP message with an attachment object. Reprinted from Oracle Java tuto-

rials website [12].

Based on figure 3, the SOAP envelope part contains two parts, namely header and

body. The header part contains information such as control information and quality of

service. This part is an optional part of the SOAP envelope. Header blocks are targeted

at receivers in the SOAP message path. The SOAP body contains application (busi-

ness) data. Also, it may contain fault information if some error occurs in the system. It

is a mandatory part of the SOAP envelope. The body part is targeted at the ultimate

12

receiver in the SOAP message path. Besides the SOAP envelope, the SOAP message

may also contain additional XML or non-XML attachments.

2.2.3 Web Services Description

Web service description is the layer on top of the web service messaging layer in the

web service stack. It provides information about the service such as what information to

send to the service, what information the service is going to send back, and where to

find the service in the first place. Web services use WSDL as a description language.

WSDL is the core technology of web services description. It is based on XML. W3C

defines WSDL as an XML format for describing network services as a set of endpoints

operating on messages containing either document-oriented or procedure-oriented

information. The current version of WSDL is 2.0. [14]

A WSDL document contains five main segments namely types, messages, port types,

bindings, and services. The types segment contains information about the type defini-

tions of the data being involved in the service using some type system such as XSD.

Similarly, the messages segment contains information about the abstract and typed

definition of data being communicated. The port types segment contains information

about abstract set of operations supported by one or more service endpoints. Again,

the bindings segment contains information about the concrete protocol and data speci-

fication for a port type. Finally, the services segment contains information about the

concrete specification of service endpoints. [14]

The main benefit of WSDL is that it is based on a standard and it is machine-readable.

Without WSDL, a service calling syntax must be determined from a documentation that

is provided, or by examining wire messages. With the use of WSDL, it is possible to

generate proxies of web services in an automated way in a truly language- and plat-

form-independent way. This makes any software platform to create tools or libraries for

generating a web service client in an automated way.

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.1d72xrr34y9z

13

2.2.4 Web Services Publication and Discovery

This is another layer of the web services stack. This layer provides specification about

ways to publish a web service in a network and ways to search for those published

services. In most common use cases, there is a web service provider which publishes

a service and a service consumer which uses this service. Both the service provider

and service consumer use standards to publish and search for web services.

2.2.5 Web Services Quality

Specifications of the web services quality layer are generally related to non-functional

aspects of web services such as reliability, transaction, and security. WS-Reliability,

WS-Transaction, and WS-Security are the three most common specifications for this

layer.

WS-Reliability-related specifications define ways to exchange a SOAP message with

guaranteed delivery and guaranteed message ordering. They are defined as SOAP

header extensions and are independent of the underlying protocols [15]. Similarly,

WS-Transaction defines mechanisms for the transactional interoperability between web

services and provides transactional qualities. Mainly, it defines mechanisms which en-

able all the parties of web service to achieve mutually agreed outcome. Web services

transaction related issues are supported by three different specifications, namely WS-

Coordination, WS-AtomicTransaction, WS-BusinessActivity. [16]

Finally, regarding WS-Security, it is enhancement to SOAP messaging to provide quali-

ty of protection through integrity, confidentiality and single authentication. WS-Security

specification provides support for end-to-end message security. It is implemented by

adding a security header in SOAP messages. The security header is composed of

three parts: security token, signature directives, and encryption directives. In the securi-

ty header, the security token is for providing authentication information, signature direc-

tives are for digital signature information, and encryption directives are for encrypted

data. [17]

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.ma5jmzj8m4c5
https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.lyr6vcge0mxx

14

2.3 Resource-Oriented Architectures and RESTful Services

A resource-oriented architecture (ROA) in software engineering is an architectural style

of the software design and programming paradigm for developing software in the form

of resources [19]. In the context of ROA, resources may refer to any entity that can be

identified and assigned a uniform resource identifier (URI). Those resources within the

ROA concept include not only IT infrastructure elements such as servers, computers

and other devices, but also web pages, scripts, JSP/ASP/PHP pages, and other enti-

ties such as database tables. [20]

In other words, ROA is based upon the concept of resource and each resource is a

directly distributed component which is handled through a well-defined standard, com-

mon interface [18]. Roy Thomas Fielding’s doctoral dissertation ‘Architectural Styles

and the Design of Network-based Software Architectures’ [21] outlines four essential

concepts underlying the resource-oriented architecture, which are given as follow:

 Resource - Anything which can be identified and assigned a URI

 Resource name - Unique identification of the resource

 Resource representation - Useful information about the current state of re-

source

 Resource interface - uniform interface for accessing the resource and manipu-

lating its state [21]

Similarly, the same doctoral dissertation of Roy Thomas Fielding summarizes four

properties of ROA, which are given as follow:

 Addressability

 Statelessness

 Connectedness

 A uniform interface [21]

In ROA, the resource interfaces are based on the HTTP operations. Table 1 summa-

rizes the resource methods and how they could be implemented using the HTTP proto-

col.

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.52yfuhwydzeo

15

Table 1. Resource interfaces of ROA, their short descriptions and their corresponding

HTTP operations.

Resource

method

Description HTTP operation

Create Creates a new resource and

the corresponding unique iden-

tifier

PUT

Retrieve Retrieves the representation of

the resource

GET

Update Modifies the resource POST

Delete Deletes the resource (and,

optionally linked resources)

DELETE (only referred resource)

Get meta

information

Obtains meta information

about the resource

HEAD

Based on the principles of ROA, Representational State Transfer (REST) is a light-

weight architectural style for exchanging structured information in a decentralized and

distributed environment. The term ‘representational state transfer’ was initially intro-

duced by Fielding [21]. The initial term ‘representational’ refers that the service manipu-

lates the client state by sending resource representations. The remaining term ‘state

transfer’ refers that a client manipulates service resources by sending state transferring

representations. [22]

As in SOA-based web services, the RESTful service is also composed a stack of dif-

ferent layers. A visual representation of the RESTful service stack is shown in figure 4.

16

Figure 4. RESTful service stack. Reprinted from a lecture slide by Peeter Kitsnik [22].

As shown in figure 4, the bottommost layer of the RESTful service stack is the transport

layer. The transport layer is responsible for data communication on the network. The

HTTP protocol is used for the data communication on the network in the RESTful ser-

vice. Similarly, on top of the transport layer, the messaging layer exists. Messaging

layer is responsible for application data communication. Any data formats such as

XML, JSON can be used in this layer for data communication. Finally, the description

layer is responsible for the description of the RESTful service. WADL is a widely used

protocol for this layer. However, some other technologies such as WSDL or even nor-

mal documentation may be used for the description of the RESTful service. [22]

Considering the advantages of the RESTful service, a lightweight alternative for ser-

vice-oriented-architecture may be the top advantage. Similarly, the REST approach

reduces complexity in development and deployment of services. Additionally, the

RESTful service is naturally oriented to web resources. Last but not least, another ad-

vantage of RESTful service is that it can be easily consumed from web-based client

applications. For example the Ajax technology can be perfectly used as a REST ser-

vice client. [22]

17

Now considering the drawbacks, the RESTful service is not an industry standard; it is

just an architectural style. Similarly, quality and composition of services are not directly

considered in the RESTful service. Moreover, it is not suitable for exposing an existing

procedure-oriented enterprise system. [22]

Analyzing the advantages and disadvantages of the RESTful service, it can be con-

cluded that the RESTful service is best suited for user-to-business solutions on the

web. However, it is less suited for business-to-business solutions.

2.4 Java Platform

Java Platform is one of the software development and deployment platforms. It is a set

of several computer software products providing a system for developing application

software and deploying it into cross-platform computing environment. As of today, the

Java platform is used in wide variety of computing platforms from low-end devices such

as smart phones, embedded devices to high-end devices such as supercomputers and

enterprise servers. [23]

The Java platform consists of three components: Java Runtime Environment (JRE),

Java language compiler and libraries. The JRE provides the Java Virtual Machine

(JVM), basic language libraries, and other components required to run applets and

other components in the Java programming language. In order for programs to run in

the JVM, first they must be compiled into Java bytecode, a standard portable binary

format which typically is in form of .class file (Java class file). A Java program may

consist of many such Java class files. Java provides a standard system for packaging

those multiple class files into a single archive file. Depending on the type of a Java

program, the archive file extension may be .jar, .war, .ear, or some other extension.

Similarly, the Java compiler is a compiler for the Java programming language. The Ja-

va compiler compiles Java source files and produces platform independent byte

code. Then the bytecode is run on the JRE. As part of the Java platform, there exist

several other JVM languages such as Scala, Clojure, Groovy, and Jython. However, as

of today, the Java programming language is the most commonly used programming

language in the Java platform.

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.dyf8bsrw0u41

18

Another important part of the Java platform is Java libraries. In addition to the core lan-

guage libraries, Java provides several other libraries required for different kinds of de-

vices and applications. Similarly, in addition to the official libraries provided from Ora-

cle, Java also has very large base of open sources libraries for variety of devices and

applications.

Java, as a language, is a general purpose concurrent and class based object oriented

computer programming language. The main design goal of Java was to have as few

implementation dependencies as possible. One of the main principles of Java is “Write

once and run anywhere”. As of today, Java is also considered as one of the most popu-

lar computer programming languages in the world. Initially, Java was specifically de-

signed for consumer electronic devices programming. However, after several years,

Java has been adopted in all kinds of devices such as enterprise servers, personal

computers, mobiles, tablets and other embedded devices. In order to address the spe-

cific needs of different kinds of devices and applications, Java releases different distri-

butions of Java which are listed below: [24, 23.]

 JavaFX - it is targeted for creating and delivering rich internet applications that

can run across wide variety of devices.

 Java Card - it is the tiniest of the Java platforms targeted for embedded devic-

es. It is mainly used to run Java applications securely on smart cards and simi-

lar other small memory footprint devices.

 Java Mobile Edition (JME) - it is targeted for low resource electronic devices

such as embedded devices, mobile phones etc.

 Java Standard Edition (Java SE) - it is targeted for developing applications for

general purpose computers and servers.

 Java Enterprise Edition (JEE) - it is targeted for developing enterprise scale ap-

plications running in servers. It uses the Java SE as the foundation for its APIs.

It provides several specifications related to such as web applications, XML pro-

cessing, web services, and the RESTful services.

19

2.4.1 JAX-WS and Apache CXF

Java API for XML Web Services (JAX-WS) is a part of the JEE specifications which

defines programming APIs for building web services and clients that communicate us-

ing XML. Using JAX-WS, it is possible to develop both the message-oriented as well as

the Remote Procedure Call-oriented (RPC-oriented) web services. JAX-WS uses the

technologies defined by the W3C such as HTTP, SOAP, and WSDL. [25]

The main benefit of JAX-WS is that it hides most of the complexity related to a SOAP

message and a WSDL document from application developer and provides an out-of-

box service for creating a web services and a web service client. On the server-side,

application developer specifies web service operations by defining methods in an inter-

face written in the Java Programming language and the developer also codes one or

more implementations for those interfaces. The JAX-WS runtime and the libraries au-

tomatically generate a WSDL file and create necessary parts of the web service to

handle a request from a client. On the client-side, it is also possible to automatically

generate a proxy class (a local object representing service) using JAX-WS related Java

tools and then the web services can be called just by invoking methods on the proxy.

This way, the developer does not have to generate or parse the SOAP message. Simi-

larly, neither the developer has to parse or generate the WSDL file. [25]

JAX-WS itself is built on the foundation of several other Java specifications. In addition

to the Java core libraries, JAXP and JAXB are two main specifications on foundation of

which JAX-WS is built. JAXP is a Java API for XML processing. It provides APIs for

programming several XML technologies such as SAX, DOM, XSLT, XPath, XQuery,

and XML validation. JAXB is a Java API for mapping and binding XML to Java objects

and generating XML from Java objects.

Regarding Apache CXF, it is an open source Java based web services framework by

the Apache Software Foundation. It provides implementation of the Java web service

specifications JAX-WS and JAX-RS. The main feature of Apache CXF is that it sup-

ports a variety of the web service standards including SOAP, WS-I Basic Profile,

WSDL, WS-Addressing, WS-Policy, WS-ReliableMessaging, WS-Security, WS-

SecurityPolicy, WS-SecureConversation, and WS-Trust. Similarly, it supports a variety

of frontend programming models. [26]

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.xdwere430hkx

20

2.4.2 Spring Framework

Spring Framework is an open source application development framework for the Java

platform. It provides a comprehensive programming and configuration model for mod-

ern java based enterprise applications. It enables to build applications from “plain old

Java objects” (POJOs) and to apply enterprise services non-invasively to the POJOs.

This capability applies to the Java SE programming model and to full and partial Java

EE. The core features of the Spring Framework can be used in any kind of Java appli-

cation. [27]

The Spring Framework has a layered architecture, which allows becoming selective

about which of its components to use while also providing a cohesive framework for the

JEE application development. The layered architecture of the Spring Framework is

shown in figure 5 below:

Figure 5. The Spring Framework layered architecture. Reprinted from Tutorialspoint

[28].

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.8rjityqonfn0

21

As shown in figure 5, the component ‘Core Container’ is the core of the Spring Frame-

work. It is Spring Framework’s inversion of control container. It is designed in such a

way that it can be used with other several Java application development frameworks

such as JSF, Struts, and Wicket. The web layer of the Spring Framework provides

simplified programming model for developing Java web applications. One of the im-

portant parts of the web layer is Spring MVC framework. It provides the MVC model for

developing web applications. Some other modules of the Spring Framework are Spring

Test Framework, Spring AOP, Spring Data, and Spring Security.

2.5 Development Tools

Software development tools are the programs or the software applications that soft-

ware developers use to create, debug, maintain, or otherwise support other programs

and applications. IDEs, build tools, version control systems, debugging tools etc. are

generally considered as development tools. There are many alternatives for develop-

ment tools available in market. A short introduction of some of the commonly used de-

velopment tools is given below:

Eclipse IDE

Eclipse is a multi-language software development environment. It consists of a base

workspace and an extensible plug-in system for customizing the environment. Eclipse

is written in Java. It can be used to write applications in Java and, using other various

plugins, other programming languages including Scala, C, C++, PHP, Perl, JavaScript

and some other languages.

Apache Maven

Apache Maven is a build automation tool used primarily for Java projects, but it can

also be used to build and manage the projects written in Scala, Ruby, C# and other

languages. It uses a plugin-based architecture which enables the project (software) to

be controllable using standard input. One important part of Maven is the dependency

management. Based on XML declarations, Maven downloads required dependencies

from different repositories.

Version Control System and Git

Version control, also known as revision control and source control is a management

process of changes made to computer programs, documents, web sites, and other

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.9satz89jg1kc

22

kinds of information. In the version control, every change is usually identified by a revi-

sion number or revision code and each revision is associated with a timestamp and a

person making the change. Based on the revision identifier, the changes can be re-

verted back, or committed to the repository, or merged to the changes made by other

persons. There are many applications which implement the version control system. Git

is one of the version control applications. It is free, open source, distributed and light-

weight version control system.

The working principle of a normal version control system is shown in figure 6 below.

Figure 6. The version control system. Reprinted from WebHostingBillBoard [29].

From figure 6, it is seen that many persons can take the same copy of the document in

different local machines from the central repository. Every person works on different

copy in a local machine, but all of them commit changes to the same remote copy (re-

pository).

23

3 Analysis, Development and Deployment

3.1 Requirements Analysis

As mentioned in the introduction section, the project was carried out in the MetINFO

division of METLA. The MetINFO Statistics Service provides timely and comprehensive

statistics on the Finnish forest sector activities. The primary goal of the project was to

create a web based application which has a service where the Finnish sawmills can

upload their roundwood sales data in a regular basis and thereafter MetINFO uses

those data to calculate statistics which represent roundwood sales in Finland from dif-

ferent forestry centers and by price areas.

Analyzing the requirements of the application in surface level, the application has four

basic requirements which are given in the list below:

1. Web service where the Finnish sawmills can upload their roundwood sales data

in an automated way using a computer program.

2. Web based interface from where some sawmills which do not have a computer

based system can upload the roundwood sales data manually.

3. Web based interfaces from which METLA data manager can monitor and ad-

ministrator the application and the uploaded data.

4. Parsing the uploaded raw data and storing them in a relational database.

Analyzing the first requirement of the application in more detail, the web service has to

be protected. Only authenticated users can upload data. Similarly, the web service can

accept data only in XML format. After ensuring that the data is in XML format, the ap-

plication has to check whether or not the uploaded data is well formed XML data. If the

data is not well-formed XML, the request to upload data should be rejected. If the data

is well-formed, it should be again checked against the XML schema provided by

METLA. If the data is validated successfully against the schema, then it should be

parsed and validated in the application level to check whether it contains some unex-

pected data. Finally, if the XML contains valid data, then the system should return a

success message to the uploader or the client.

For the data analysis, one sample valid XML data which the web service could accept

was provided by METLA. It is shown in appendix 1.

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.3dd9lovjmal5
https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.t7vijqtxc99i

24

Analyzing the second requirement of the application in more detail, the web interface

should have a feature to upload a file where the users can upload the roundwood sales

data in XML format manually. The validation and handling process of the uploaded file

should be same as in uploaded data from the web service. But, only the difference is

that in the web interface, the error or success message has to be displayed in the web

interface.

Now, analyzing the third requirement in more detail, the application should have a

number of features which the data manager could use to monitor the application and

the uploaded data. The features required to be developed in this part of the require-

ments are given below in the list below.

1. A web interface based user management system where data manager can add

a new account, edit the account and change password for the account. Have

two different roles sawmill and admin. Additionally, have a form based authenti-

cation and authorization system where the admin role is able to view all the fea-

tures, whereas the sawmill role is able to view only the upload roundwood sales

data feature.

2. Admin can view the data uploads as a list and the list contains a link to view the

uploaded raw data in details.

3. Admin can remove data uploads, but system should show confirmation dialog to

confirm the remove action.

4. Search data uploads by a company business ID.

Finally, analyzing the fourth requirement in more detail, the application has to parse

the successfully uploaded and validated XML data, and the parsed data has to be

stored in relational database tables in respective relational structure.

In addition to the functional requirements, the application has some technical require-

ments which are given below:

1. The application should use Java as programming language.

2. The application should be deployable on the Tomcat 6 or later versions.

3. The application should use HTTPS for the data communication.

4. All the data being involved in the application, the application files, and the

web pages should be encoded in UTF-8.

25

5. The application should use MySQL database for storing the data.

3.2 Design of the Application Architecture

After the analysis of the functional requirements, the following application components

were needed to be developed:

 Web service module

 RESTful service module

 MVC application module having different web interface based features

 Form based and basic HTTP authentication and authorization module

 Other helper components such as domain model, database related services,

validation module, utility classes, etc.

Based on the required application components, the following application frameworks

were used:

 Spring Framework core as bean container of the whole application

 Spring Security Framework for form based and basic HTTP authentication and

authorization

 Spring Framework MVC REST support for RESTful service

 Spring MVC for MVC application module

 Apache CXF implementation of JAX-WS for web service module

 Hibernate for database related services

Following the recommended programming model and the best practices for the frame-

works used, an overall architecture of the application was designed which is shown in

figure 7.

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.vjz0qtt97rgv

26

Figure 7. Overall architecture of the application.

As shown in figure 7, the bottommost layer of the application is client layer. In the ap-

plication, there are three different kinds of clients. The first is a browser based web

client. It contains user interfaces for several application features required for the

sawmills and the data managers. The other two types of the clients are RESTful ser-

vice client and web service client. Those clients are the programs to be created by the

sawmills.

The browser based client programs interact to the Spring controller classes. Each in-

teraction is secured by the form based authentication of the Spring Security Frame-

work. Similarly, the RESTful service client interacts to the Spring REST controller. In

this interaction, security is handled by the HTTP basic authentication (BA) of the Spring

Security Framework. The web service client interacts to the Apache CXF web service.

The security is handled by the Apache CXF WS-Security implementation.

The Spring controller and the Apache CXF web service modules handle requests by

the respective clients. They use the service module and the domain model for various

27

operations such as reading data from the database, inserting data to the database,

data processing, and data binding. The database operations are handled by Hibernate

ORM. The domain model works as an entity model for Hibernate for the database re-

lated operations. The same domain model also works as the model for Java and XML

binding (for JAXB). Using the JAXB, the XML file uploaded by clients can be automati-

cally bound to the Java object model without having to parse XML manually by the ap-

plication.

3.3 Development Environment and Project Setup

After analyzing the frameworks and the technologies to be used in the project, the fol-

lowing programs were installed in the development machine as development tools and

test runtime environment:

 Java Development Kit (JDK)

 Eclipse IDE for Java EE Developers

 Apache Maven

 Git

 Maven and Git plugin for Eclipse

 MySQL server

 Apache Tomcat server

After installing the development tools and the test runtime environment, creation of the

base project was started. Initially, a maven project type was created by opening Eclipse

and going to create new project option. The Eclipse ‘New Maven Project’ window is

shown in figure 8.

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.j4e3gvebhiw0

28

Figure 8. Snapshot of the Eclipse ‘New Maven Project’ window used to create the new

maven project.

As seen in figure 8, the Group Id field refers to the base java package (base folder) for

the java source files. Similarly, the Artifact Id refers to the name of the project or the

root folder. It is similar to the Name field.

After creating the basic Maven project, some configuration files, language files, re-

sources files etc. were added and the necessary folder structures were created. Then,

a remote Git repository was created and all the local files and the folders were commit-

ted and pushed to the remote repository. The view of the folder structure and the Ma-

ven project file (pom.xml) is shown in figure 9.

29

Figure 9. Snapshot of the folder structure, configuration files and Maven project file

(pom.xml) of the created base project.

Shown in figure 9, metla-rw-ws is name of the root folder of the project. Under the root

folder, the file pom.xml is Maven Project description file. Build related information such

as project properties, plugins, dependencies, and library repositories are configured in

this file. Similarly, the folder target under the root folder contains all the compiled

source files and the war file that is built. The folder src under the root folder contains all

the application source files, configuration files and resource files. The webapp folder

under the src > main folder contains web application related source files such as JSP,

HTML, and JavaScript files arranged and put under different folders. The XML files

under the folder WEB-INF are application configuration files required for the JEE and

the other frameworks Hibernate, Spring Security, Spring Core, and Apache CXF.

30

3.4 Web Service Development

After setting up the development environment and the application base project, the

actual implementations of the requirements was started. The implementation of the

features was done following feature-driven development methodology. Feature-driven

development (FDD) is an interactive and incremental software development methodol-

ogy. It is one of the agile methods for developing software. This methodology is based

on functionality (feature) perspective. The main purpose of this methodology is to pro-

duce and deliver working software functionalities repeatedly in a timely manner. Follow-

ing this methodology, the first feature to be developed was the SOAP based web ser-

vice.

In order to develop the web service, firstly web service specification or interface was

created. The source code of the interface is given below in listing 1.

@WebService(name = "PuukatiService")

public interface PuukatiService {

 @WebMethod

 @WebResult(name = "Message", targetNamespace = "")

 public String uploadWoodSalesData

 (@WebParam(name = "RoundWoodSalesData")

 @XmlElement(required = true)

 RoundWoodSalesData roundWoodSalesData);

}

Listing 1. The web service specification/interface source code.

As illustrated in listing 1, the annotation @WebService tells the JAX-WS runtime that it

is the class or the interface for the web service. Similarly, the annotation @WebMethod

tells the runtime that it is the web service operation. By using the @WebResult annota-

tion, it is possible to specify the element name of response message. In this web ser-

vice, the web service has one parameter, which is the whole roundwood sales XML

data. This data is represented by the Java class RoundWoodSalesData. The

@WebParam of the RoundWoodSalesData type annotated by @XmlElement tells the

runtime that inside the SOAP envelope, there should be respective XML data repre-

sented by class the RoundWoodSalesData. With this declaration, web service runtime

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.au02y2q6m2sb

31

parses the XML inside the SOAP envelope, and if it is valid roundwood sales data, it

binds the XML to Java object model and passes the instance of RoundWoodSalesData

class as method parameter in the implementation of the web service.

After creating the interface of the web service, another essential part of the web service

is implementation of the interface. The source code of the implementation class is

shown in appendix 2.

In addition to the interface and the implementation class for the web service, some oth-

er configurations were made for the web service in various configuration files. Similarly,

WS-Security based on username token was enabled by configuring the Apache CXF.

After running the program on the local tomcat server, the service endpoint was availa-

ble on the URL: ‘http://localhost:8080/secured/services/PuukatiService?wsdl’. A sample

client for the web service was created and the web service and the database opera-

tions were tested.

The WSDL file generated and available on the endpoint of the web service is given in

appendix 3.

3.5 RESTful Service Development

After developing the SOAP based web service, the next feature to be developed was

the RESTful service for uploading the roundwood sales data. The main purpose of de-

veloping this service was to be used with the web interface based client in the applica-

tion. However, it was expected to be used by the sawmills who prefer to create REST-

ful service client over creating SOAP based web service client.

In order to develop the RESTful service, the Spring REST controller was created and

the service was implemented in “/secured/public/services/upload-data” path of the ap-

plication. The method implementation of the RESTful service in the Spring controller is

shown in appendix 4. In addition to the service implementation, HTTP basic authenti-

cation was configured in the Spring Security configuration file for protecting the REST-

ful service. A configuration segment for the RESTful service of that configuration file is

given in listing 2.

http://localhost:8080/secured/services/PuukatiService?wsdl
https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.hpgvfjyqdu1n

32

<!-- For REST service -->

<http pattern="/secured/public/services/**"

useexpressions="true"

create-session="stateless">

<intercept-url pattern="/**"

access="hasRole('WOOD_COMPANY') or hasRole('ADMIN')"/>

<http-basic/>

</http>

Listing 2. Security configuration for the RESTful services.

The configuration shown in listing 2 forces all the HTTP requests having URL starting

with “/secured/public/services/**” for HTTP basic authentication. After the implementa-

tion of RESTful service, the service was tested and finally, a short documentation was

created describing the service and how to create a service client.

3.6 Development of Other Features

Besides the SOAP based web service and the RESTful service, all other features to be

developed are similar in nature. All of those features are the web interface based func-

tionalities. For implementing those features, MVC architecture was used. To implement

the MVC architecture, the Spring MVC framework was used.

A similar approach was used to create all the web interface based functionalities. For

example, one can create the view for the application first and then implement controller

and model later. In this application, each feature was implemented using step by step

approach as given below:

1. Create View

In this step, all the necessary views such as web forms, tables, lists, and menu items

are created. In addition to that, some client side scripts or style sheets may be created.

2. Create Controller

In this step, a controller for handling requests is created. The controller is responsible

for handling requests and preparing necessary responses by using the model.

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.uqw6pr8y4ws6

33

3. Create Model

In this step, model part of the MVC architecture is created. The model part is responsi-

ble for various actions such as processing data, reading, writing, or updating data to

database.

The following functionalities were developed using the step by step approach men-

tioned above:

 Add new user account to system

 Edit user account

 Remove user account

 Change user account password

 View all data uploads

 Remove certain data upload

 View raw data uploaded from data upload

 Search data upload by business ID of company

 Upload roundwood sales XML data from user interface

After the development of the required web interface based features, form based au-

thentication and authorization was configured in the Spring Security to protect the de-

veloped features.

3.7 Deployment

After developing the required features following the FDD development methodology,

the application was deployed in Apache Tomcat in Linux server. Next, the application

was made available on the URL: https://services.metla.fi/. In the end, the application

was demonstrated to the METLA data managers and other stakeholders.

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.j7mwwzbdu0e3
https://services.metla.fi/

34

4 Results

Comparing the concrete results gained in the project with respect to the requirements,

all of the requirements of the application were fulfilled. The main visible results in com-

parison with the requirements are illustrated below in this section.

Firstly, creating a web service to enable sawmills to submit the roundwood sales data

to MetINFO was the first requirement of the application. To fulfill this requirement, a

SOAP-based web service was created. A snapshot of the service endpoint visited in

the browser and a part of the WSDL file of the service is illustrated in figure 10 below.

Figure 10. Snapshot of a part of the WSDL file and service endpoint URL visited in the

browser.

Similarly, creating a web-based interface to upload the roundwood sales data manually

was the second requirement of the project. For this requirement, the view illustrated in

figure 11 was created and an upload functionality was implemented in the backend.

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.9g9s9eeqzngi

35

Figure 11. Snapshot of upload roundwood sales data manually through web interface

feature.

Creating web-interface-based functionalities for the administration of the data and ap-

plication was the third requirement of the project. For this requirement, a number of

web-interface-based features were developed. The front page of the web-interface-

based features is shown in figure 12 below.

-

Figure 12. Front page of the web-interface-based features.

36

As shown in figure 12, the application front page has a menu for several features. The

view shown above is the front page view for a user with the ADMIN role. A user with

the WOOD_COMPANY role will be able to view only the upload data and service doc-

umentation menus.

Additionally, a view from Transaction log is shown below in figure 13.

Figure 13. Transaction log or list of data uploads view. The view shown above is a view

of the test data. The company IDs shown are not real company business IDs.

Finally, the fourth requirement of the project was to save all the unique uploads in the

relational database. For this requirement, four different tables were created. Also, in the

web services implementation, the successfully uploaded XML was bounded to the Java

object model using JAXB and again the Java object model was persisted to the created

tables using Hibernate. The table names and list of their attributes created are shown

in table 2.

37

Table 2. Tables and their list of attributes created for storing roundwood sales data.

Tables Attributes

roundwood_sales_data roundwood_sales_data_id(PK), compa-

ny_id, start_date, end_date

roundwood_sales_row roundwood_sales_row_id(PK), ar-

ea_code, area_type, pur-

chase_mode_code, round-

wood_sales_data_id(FK)

assortment_compact_class assortment_compact_class_id(PK), as-

sortment_class_code, round-

wood_sales_row_id(FK)

assortment_compact assortment_compact_id(PK), assort-

ment_info, currency, quantity, quan-

tity_unit, stem_type, total_price,

tree_species, unit_price, assort-

ment_compact_class_id(FK)

Additionally, the view of the uploaded roundwood sales data, loaded from the database

is shown below in figure 14.

Figure 14. Details view of roundwood sales data loaded from the database. Note that

the data shown in figure above is test data and does not represent the sales data of

any real company.

38

As shown in figure 14, using the feature to view roundwood sales data details, it is pos-

sible to view the raw data uploaded by different companies.

5 Evaluation of Results

5.1 Benefits

The forestry sector plays a significant role in the economy of Finland. Information and

statistics about various sectors of forestry can help the forestry stakeholders such as

government, forest owners, and paper mills to make better decisions to enhance the

competitiveness. Having a web service to collect data about roundwood sales was an

important step to calculate the roundwood sales statistics in Finland. This was the main

benefit of the project.

In addition to the concrete benefit mentioned above, the project provided me several

other benefits for my career and experience in my field of interest or study. The course

module in our school was mainly based on the theoretical aspect of the web services

and service-oriented architecture. The project offered a chance to explore practical

aspects of use cases and implementation of service-oriented architecture and web ser-

vices. Gaining a practical understanding of various Java platform libraries, develop-

ment tools, and design patterns was another benefit of the project. Furthermore, being

practically involved in the lifecycle of software development such as requirement analy-

sis, design, implementation, testing, and deployment was another crucial benefit of the

project for my future career.

5.2 Challenges

Even though the project was successful in the end, some challenges were faced during

the execution of the project. The first challenge faced during the project execution was

regarding the decision of using the right web service implementation framework. The

Java platform provides multiple open source frameworks for web service implementa-

tion such as Apache CXF, Apache Axis2, and Glassfish Metro. Choosing the right

framework from the list of available frameworks was confusing and challenging. Initially

Apache Axis2 was chosen. Due to the lack of good integration of that framework with

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.amttqyketivs
https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.mvmpxoh50u1q
https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.aoy9y9eqmz32

39

other application modules, it was found that it was not the right selection for the project.

For this reason, the Apache CXF framework was finally chosen over Apache Axis2.

Lack of prior practical experience in web service development was another major chal-

lenge for the project. Because of this, web service development took more time than

expected and overall the initial schedule was affected.

5.3 Future Improvement

In addition to the benefits of the project mentioned above, providing some lessons for

future improvement was another important benefit of the project. It was realized that

choosing the right frameworks or libraries for specific kind of project needs was crucial

for the project success. In future projects, allocating more time for this and doing more

study would be one vital ingredient for smooth execution of a project.

After the development of the web service and RESTful service, sawmills were informed

about the services. It was found that all of the sawmills preferred RESTful services over

the SOAP-based web service because of the lightweight nature and ease of client

creation in the RESTful service. Even though it was initially concluded that the SOAP-

based web services were best suited for business-to-business communication, it was

realized that depending the nature of the service, the RESTful service can also be suit-

ed for business-to-business communication.

Initially it was assumed that everything in the project would go normally and as ex-

pected. Mainly in the software development project, even some minor issues in devel-

opment can take much more time than allocated. Additionally, some unexpected issues

may arise in the project. Hence, it was believed that allocating some extra time in the

project for unexpected delays and unknown issues could be a wise decision during

project planning.

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.s7cnnm9l0957

40

6 Conclusion

The primary motivation toward the project was based on two goals. The first goal was

to create an application with a service for collecting roundwood sales data from Finnish

sawmills which had significance to various forestry stakeholders. Another goal was to

gain an understanding of the different software development technologies such as web

services, Java, Spring Framework, and other software development tools and method-

ologies by using them in a real world application.

Having those goals in mind, the project was started by analyzing the requirements from

MetINFO. After the analysis of the requirements, the overall architecture for the appli-

cation was designed. For the implementation of the application, feature-driven devel-

opment methodology was used. Initially, the web service and RESTful service to collect

roundwood sales data were developed and afterwards other web-interface-based fea-

tures were developed following the MVC architecture design pattern. Subsequently,

security rules for the application were configured and the application was deployed in

the production environment.

In addition to the design and implementation of the application, an extensive study was

carried out side by side for various web service technologies and development frame-

works. In this way, with an extensive study and with action-based research, a practical

understanding of the different software development technologies was gained.

To sum up, comparing the initial goals of the project with the results, the main aim of

the project was achieved successfully. Moreover, some valuable lessons about various

aspects of software development such as use of the right framework for a project, the

right use case of SOAP-based and RESTful web services, project planning, and time

allocation were learnt.

https://docs.google.com/document/d/1TxuR2Yi-4tgrXJtqTDSm3VJdZSk6qCOUEqJBaoaxOUY/edit#heading=h.j78uym2sv0l5

41

References

1. Extensible Markup Language (XML) 1.0 (Fifth Edition) [Online]. W3C.
URL: http://www.w3.org/TR/REC-xml/. Accessed 21 September 2013.

2. New to XML [Online]. Developer Works, IBM.

URL: http://www.ibm.com/developerworks/xml/newto. Accessed 21 September
2013.

3. Introduction to SOA and Web services for IT [Online]. InterTech Solutions Inc.

URL: http://www.intertechinc.com/soa_it.html. Accessed 21 September 2013.

4. Understanding Service-Oriented architecture [Online]. Developer Network, Mi-
crosoft.
URL: http://msdn.microsoft.com/en-us/library/aa480021.aspx. Accessed 22
September 2013.

5. SOA features and Benefits [Online]. The open group.

URL: http://www.opengroup.org/soa/source-book/soa/soa_features.htm. Ac-
cessed 22 September 2013.

6. Web Services and Microsoft Platform [Online]. Developer Network, MSDN, Mi-

crosoft.
URL: http://msdn.microsoft.com/en-us/library/aa480728.aspx. Accessed 22
September 2013.

7. Web Services Glossary [Online]. W3C.

URL: http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/. Accessed 22
September 2013.

8. Web Services architecture [Online]. W3C.

URL: http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/. Accessed 22 Sep-
tember 2013.

9. Web services benefits [Online]. Developer Network, Microsoft.
URL: http://msdn.microsoft.com/en-us/library/cc508708.aspx. Accessed 22
September 2013.

10. Gabriel Bechara. What is Reuseable Service [Online]. Oracle; March 2009.

URL: http://www.oracle.com/technetwork/articles/bechara-reusable-service-
087796.html. Accessed 22 September 2013.

11. Rahim Lalani. State-of-the-art Web services [Online]. MC Press online; 22

March 2006.
URL: http://www.mcpressonline.com/internet/general/state-of-the-art-web-
services.html. Accessed 22 September 2013.

12. Overview of SAAJ [Online]. J2EE 1.4 Tutorials, Oracle.

URL: http://docs.oracle.com/javaee/1.4/tutorial/doc/SAAJ2.html. Accessed 22
September 2013.

13. Simple Object Access Protocol (SOAP) 1.1 [Online]. W3C Note, W3C; 08 May

2000.

http://www.w3.org/TR/REC-xml/
http://www.ibm.com/developerworks/xml/newto/
http://www.intertechinc.com/soa_it.html
http://msdn.microsoft.com/en-us/library/aa480021.aspx
http://www.opengroup.org/soa/source-book/soa/soa_features.htm
http://msdn.microsoft.com/en-us/library/aa480728.aspx
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://msdn.microsoft.com/en-us/library/cc508708.aspx
http://www.oracle.com/technetwork/articles/bechara-reusable-service-087796.html
http://www.oracle.com/technetwork/articles/bechara-reusable-service-087796.html
http://www.mcpressonline.com/internet/general/state-of-the-art-web-services.html
http://www.mcpressonline.com/internet/general/state-of-the-art-web-services.html
http://docs.oracle.com/javaee/1.4/tutorial/doc/SAAJ2.html

42

URL: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/. Accessed 22 Sep-
tember 2013.

14. Web Services Description Language (WSDL) 1.1 [online]. W3C note, W3C; 14

March 2001.
URL: http://www.w3.org/TR/wsdl. Accessed 23 September 2013.

15. Web Services Reliable messaging TC WS-Reliability 1.1 [Online]. OASIS

Standard, OASIS; 15 November 2004.
URL: http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-
spec-os.pdf. Accessed 23 2013.

16. WS-Transaction specification by Microsoft [Online]. Developer Network, Mi-

crosoft.
URL: http://msdn.microsoft.com/en-us/library/ms951262.aspx. Accessed 23
September 2013.

17. Web Services Security SOAP Message Security 1.0 (WS-Security 2004)

[Online]. OASIS Standard 2004, OASIS; 1 March 2004.
URL: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0.pdf. Accessed 23 September 2013.

18. Christian Elfers, Roberto Lucchi, and Michel Millot. Resource Oriented Architec-

ture and REST [Online]. Joint Research Centre, European Commission.
URL:
http://inspire.jrc.ec.europa.eu/reports/ImplementingRules/network/Resource_ori
entated_architecture_and_REST.pdf. Accessed 24 September 2013.

19. Jørgen Thelin. A Comparison of Service-oriented, Resource-oriented, and Ob-

ject-oriented Architecture Styles [Online]. Cape Clear Software Inc.
URL: http://research.microsoft.com/pubs/117710/3-arch-styles.pdf. Accessed
24 September 2013.

20. Ivy Wigmore. Resource-oriented architecture (ROA) [Online]. WhatIs.com; July

2012.
URL: http://whatis.techtarget.com/definition/resource-oriented-architecture-
ROA. Accessed 24 September 2013.

21. Roy Thomas Fielding. Architectural Styles and the Design of Network-based

Software Architectures [Online]. Dissertation, University of California, Irvine;
2000.
URL: http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf.
Accessed 24 September 2013.

22. Peeter Kitsnik. Introduction to REST Services. Lecture slide for course Java En-

terprise Technology for Bachelor of Engineering, Helsinki Metropolia University
of Applied Sciences.

23. Learn About Java Technology [Online]. Oracle.

URL: http://www.java.com/en/about/. Accessed 24 September 2013.

24. Java Platform, Standard Edition (Java SE) Technical Documentation [Online].
Oracle Technology Networks, Oracle Corporation; March 19 2013.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/wsdl
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://msdn.microsoft.com/en-us/library/ms951262.aspx
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://inspire.jrc.ec.europa.eu/reports/ImplementingRules/network/Resource_orientated_architecture_and_REST.pdf
http://inspire.jrc.ec.europa.eu/reports/ImplementingRules/network/Resource_orientated_architecture_and_REST.pdf
http://research.microsoft.com/pubs/117710/3-arch-styles.pdf
http://whatis.techtarget.com/definition/resource-oriented-architecture-ROA
http://whatis.techtarget.com/definition/resource-oriented-architecture-ROA
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.java.com/en/about/

43

URL: http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf. Accessed 24 Sep-
tember 2013.

25. Building Web Services with JAX-WS [Online]. The Java EE 6 Tutorial, Oracle

Corporation.
URL: http://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html. Accessed 25 Sep-
tember 2013.

26. Apache CXF: An Open-Source Services Framework [Online]. Apache CXF,

Apache Software Foundation.
URL: http://cxf.apache.org/. Accessed 25 September 2013.

27. Spring Framework Introduction [Online]. Spring, GoPivotal.
URL: http://projects.spring.io/spring-framework/. Accessed 25 September
2013.

28. Spring Quick Guide [Online]. Tutorialspoint.
URL: http://www.tutorialspoint.com/spring/spring_quick_guide.htm. Accessed
25 September 2013.

29. Installing Subversion on Ubuntu [Online]. WebHostingBillBoard.

URL: http://www.webhostingbillboard.com/development/installing-subversion-
on-ubuntu/. Accessed 25 September 2013.

http://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html
http://cxf.apache.org/
http://projects.spring.io/spring-framework/
http://www.tutorialspoint.com/spring/spring_quick_guide.htm
http://www.webhostingbillboard.com/development/installing-subversion-on-ubuntu/
http://www.webhostingbillboard.com/development/installing-subversion-on-ubuntu/

Appendix 1

1 (1)

Appendix 1: A Sample Valid Roundwood Sales Data in XML

<?xml version="1.0" encoding="UTF-8"?>
<RoundWoodSalesData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ac="http://standardit.tapio.fi/schemas/workingsitetrade/assortment/2011
/02/14"
xsi:schemaLocation="http://standardit.tapio.fi/schemas/workingsitetrade/woodp
urchasestatistics/2012/05/08 Working-
SiteTrade_WoodPurchaseStatistics_20120508.xsd"
xmlns="http://standardit.tapio.fi/schemas/workingsitetrade/woodpurchasestatis
tics/2012/05/08">
 <CompanyID>1000000-0</CompanyID>
 <StartDate>2012-10-01</StartDate>
 <EndDate>2012-10-31</EndDate>
 <RoundWoodSalesRows>
 <RoundWoodSalesRow>
 <AreaType>1</AreaType>
 <AreaCode>5</AreaCode>
 <PurchaseModeCode>4</PurchaseModeCode>
 <ac:AssortmentCompactClasses>
 <!--1 or more repetitions:-->
 <ac:AssortmentCompactClass>
 <ac:AssortmentClassCode>1</ac:AssortmentClassCode>
 <ac:AssortmentsCompact>
 <!--1 or more repetitions:-->
 <ac:AssortmentCompact>
 <ac:AssortmentInfo>2</ac:AssortmentInfo>
 <ac:Currency>EUR</ac:Currency>
 <ac:Quantity>20</ac:Quantity>
 <ac:QuantityUnit>3</ac:QuantityUnit>
 <ac:StemType>3</ac:StemType>
 <ac:TotalPrice>200</ac:TotalPrice>
 <ac:TreeSpecies>3</ac:TreeSpecies>
 <ac:UnitPrice>20</ac:UnitPrice>
 </ac:AssortmentCompact>
 </ac:AssortmentsCompact>
 </ac:AssortmentCompactClass>
 </ac:AssortmentCompactClasses>
 </RoundWoodSalesRow>
 </RoundWoodSalesRows>
</RoundWoodSalesData>

Analyzing the given sample data shown above, the raw roundwood sales data contains

the sales data of certain wood type, its unit price, and volume sold by certain assort-

ment class, by certain area, for given company, and for a given period of time.

Appendix 2

1 (1)

Appendix 2: Web Service Implementation Class

@WebService(wsdlLocation = "WEB-INF/wsdl/PuukatiService.xml")
@Component("puukatiServiceImpl")
public class PuukatiServiceImpl extends ServiceSupport implements
PuukatiService {

 RoundWoodSalesDataValidator rwsdv = new RoundWoodSalesDataValidator();

 public String uploadWoodSalesData(RoundWoodSalesData roundWoodSalesData)
 {
 //Validate data
 rwsdv.validateRoundWoodSalesData(roundWoodSalesData);

 //Find if the data is already uploaded by a company for the given
 period
 RoundWoodSalesData rwsd = getRaw
 DataDao().findCompanyRoundSalesDataForDuration(roundWoodSalesData
 .getCompanyId(), roundWoodSalesData.getStartDate(), roundWood
 SalesData.getEndDate());

 //If data is already uploaded then nofity message
 if (rwsd != null) {
 return "Sales data from " + roundWoodSalesDa
 ta.getStartDate() + " to " + roundWoodSalesDa
 ta.getEndDate() + " has been already up load
 ed!";
 }

 //If it is unique data, then save it to database
 getRawDataDao().insertRoundWoodSalesData(roundWoodSalesData);

 return "Success! your data has been uploaded!";
 }

Appendix 3

1 (2)

Appendix 3: Generated WSDL file

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="PuukatiServiceImplService" target-
Namespace="http://ws.puukati.metla.fi/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:mrw="http://ws.puukati.metla.fi/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:rw="http://standardit.tapio.fi/schemas/workingsitetrade/woodpurchasesta
tistics/2012/05/08"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <wsdl:types>
 <xs:schema elementFormDefault="qualified" target-
Namespace="http://ws.puukati.metla.fi/" version="1.0" >
 <xs:element name="uploadWoodSalesData"
type="mrw:uploadWoodSalesData"/>
 <xs:element name="uploadWoodSalesDataResponse"
type="mrw:uploadWoodSalesDataResponse"/>
 <xs:complexType name="uploadWoodSalesData">
 <xs:sequence>
 <xs:element ref="rw:RoundWoodSalesData"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="uploadWoodSalesDataResponse">
 <xs:sequence>
 <xs:element minOccurs="0" name="Message"
type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>
 </wsdl:types>

 <wsdl:message name="uploadWoodSalesDataResponse">
 <wsdl:part element="mrw:uploadWoodSalesDataResponse"
name="parameters">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="uploadWoodSalesData">
 <wsdl:part element="mrw:uploadWoodSalesData" name="parameters">
 </wsdl:part>
 </wsdl:message>

 <wsdl:portType name="PuukatiService">
 <wsdl:operation name="uploadWoodSalesData">
 <wsdl:input message="mrw:uploadWoodSalesData"
name="uploadWoodSalesData">
 </wsdl:input>
 <wsdl:output message="mrw:uploadWoodSalesDataResponse"
name="uploadWoodSalesDataResponse">
 </wsdl:output>
 </wsdl:operation>
 </wsdl:portType>

Appendix 3

2(2)

 <wsdl:binding name="PuukatiServiceImplServiceSoapBinding"
type="mrw:PuukatiService">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="uploadWoodSalesData">
 <soap:operation soapAction="" style="document"/>
 <wsdl:input name="uploadWoodSalesData">
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="uploadWoodSalesDataResponse">
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="PuukatiServiceImplService">
 <wsdl:port binding="mrw:PuukatiServiceImplServiceSoapBinding"
name="PuukatiServiceImplPort">
 <soap:address loca-
tion="https://localhost:8080/secured/services/PuukatiService?wsdl"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Appendix 4

1 (1)

Appendix 4: Implementation of RESTful Service

@RequestMapping(value = "/services/upload-data", method = RequestMethod.PUT)
@ResponseBody
public void doPostConsumeFile(HttpServletRequest req,
 Model map, HttpServletResponse response) throws IOException {

 RoundWoodSalesData rwsd = null;
 String message = "";
 PrintWriter out = response.getWriter();
 response.setContentType("text/xml");
 try {
 rwsd = unMarshalFromIn
 putStream(req.getInputStream());
 rwsdv.validateRoundWoodSalesData(rwsd);
 saveIfUnique(rwsd);
 } catch (Exception e) {
 out.write("<error>" + e.getMessage() +
 "</error>");
 return;
 }
 out.write("<message>We have received your file successful
 ly</message>");
}

