

Pham Huy Quang

ONLINE BANKING WEB APPLICATION

A Study Case of Implementing a Banking Web Application

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Pham Huy Quang
Title Online Banking Web Application
Year 2022
Language English
Pages 50 + 4 References and Appendices
Name of Supervisor Timo Kankaanpää

The main objective of this thesis is to create an elementary implementation
of an online banking application, which are heavily used by present-day
banking organizations world-wide. By studying examples from real world
running instances of e-banking application, this thesis tried to achieve the
characteristics and functionalities of a typical web based online banking
software.

Using popular frameworks and technologies in the web development field
such as Typescript, React, Express, PostgreSQL and many more the project
will combine common features of a web applications, such as login-logout
registration, user-based data management and interactions with basic fi-
nancial solutions that the normal user can expect from a real-world bank-
ing website such as view simulated financial data about account, conduct-
ing transactions and view bank statements.

The application will be deployed onto the cloud and can be tested by any-
one that has access to the website address, approximately under one-year
time frame. This will be the first version of the application, acting as a prac-
tical argument for topic of this paper.

Keywords Web development, web application

CONTENTS

ABSTRACT

1 INTRODUCTION ... 1

1.1 Background & Motivations .. 1

1.2 Objectives... 2

1.3 Scope & Limitations .. 3

1.4 Thesis Structure.. 4

2 REQUIREMENTS & PLANNING ... 5

2.1 Study Cases of Real-world Examples .. 5

2.2 Technical Background ... 10

3 SPECIFICATIONS & ARCHITECTURE .. 13

3.1 Specifications ... 13

3.2 Architecture .. 13

3.2.1 Session-based Authentication and Authorization 13

3.2.2 Features-based folder structure and N-layer architecture .. 14

4 IMPLEMENTATION ... 18

4.1 Diagrams Design .. 18

4.2 Database design.. 21

4.3 UI design .. 26

4.4 Environment Setup ... 28

4.5 Backend .. 29

4.5.1 Configuration ... 30

4.5.2 Entity .. 32

4.5.3 Features .. 32

4.5.4 Application Middleware ... 36

4.5.5 Routing ... 39

4.5.6 Utilities Code.. 40

4.6 Frontend ... 40

5 DEPLOYMENT AND TESTINGS ... 43

5.1 Deployment .. 43

5.2 Testing .. 45

6 CONCLUSIONS ... 50

REFERENCES ... 51

APPENDICES .. 53

FIGURES, DIAGRAMS AND TABLES LIST

Figure 1. Danske Login Page with a small form. .. 5

Figure 2. Danske User Home Page. .. 6

Figure 3. Danske User Statement Page. .. 6

Figure 4. Danske User Transaction Page. ... 7

Figure 5. Eximbank Login Page with two input fields.................................. 8

Figure 6. Eximbank User Home Page show only the most crucial data. 8

Figure 7. Eximbank User Statement Page. .. 8

Figure 8. Eximbank User Transaction Page. ... 9

Figure 9. An earlier technical-based folder structure. 15

Figure 10. Feature-based folder structure.. 16

Figure 11. Class diagram of the application. ... 19

Figure 12. Sequence diagram of the application. .. 20

Figure 13. Deployment diagram of the application. 21

Figure 14. Typings for feature User Info. ... 22

Figure 15. TypeORM entity class for feature User Info. 22

Figure 16. Typings for feature User Account.. 23

Figure 17. TypeORM entity class for feature User Account. 23

Figure 18. Typings for feature Financial Transaction. 24

Figure 19. TypeORM entity class for feature Financial Transaction. 24

Figure 20. Typings for feature Bank Account. .. 25

Figure 21. TypeORM entity class for feature Bank Account...................... 25

Figure 22. Mock up design of the Main Page ... 27

Figure 23. Mock up design of protected User Home Page. 27

Figure 24. Development environment setup. .. 29

Figure 25. Required libraries for the back end. ... 30

Figure 26. A configuration snippet for TypeORM Data Source. 30

Figure 27. A configuration snippet for third-party middlewares. 31

Figure 28. A configuration snippet for express-session. 31

Figure 29. The location of the backend entities. ... 32

Figure 30. The structure of the feature folder. .. 33

Figure 31. The routing configuration of feature Bank Account. 34

Figure 32. Implementation of the repository of feature Bank Account. 34

Figure 33. Implementation of the controllers of feature Bank Account. 35

Figure 34. Implementation of a controller responses to a GET request. 35

Figure 35. Implementation of authentication logic. 37

Figure 36. Implementation of authorization logic. 37

Figure 37. Implementation of validation logic. ... 38

Figure 38. Partial snippet of session handling. .. 38

Figure 39. The app routing with the system routing on top. 39

Figure 40. The business routing. ... 39

Figure 41. A helper snippet that generates feature User Info. 40

Figure 42. Required libraries for the front end. ... 41

Figure 43. The folder structure of the frontend. .. 42

Figure 44. A configuration of Nginx hosting both frontend and backend. . 43

Figure 45. Built server code and running server instance. 44

Figure 46. Structure of the API test suite. ... 45

Figure 47. System testing files. ... 46

Figure 48. Request and response examples of the Login action. 46

Figure 49. Client receives a Cookie with session ID. 47

Figure 50. The session record saved in the database. 47

Figure 51. Typical one User operations testing case. 48

Figure 52. Typical two Users operations testing case. 48

1

1 INTRODUCTION

1.1 Background & Motivations

The exchange of goods, products and services has coexisted with mankind

since about 1800 BC in ancient Babylonia. From a humble beginning such as

using a simple table as a makeshift desk where goods bartering and local

commerce were conducted; which formed the word "bank"; financial and

monetary transactions has become a common activity that take place prob-

ably every second. Furthermore, transactional communications have

evolved with an exponential speed that it now has accepted: from valuable

items such as silver and gold ingots, to metal and paper currency, to now

digitally verifiable records that are stored on the clouds as payments for

goods and services. With the help of a computers and the speed of infor-

mation exchange brought by technologies, monetary authority and banking

institutions can even utilize these advantages to let customers and citizens

conduct a variety of financial transactions "just with a click of a button".

Personal computers and smartphones have revolutionized the idea of per-

sonal banking and brought safety, convenience and speed to the matter. For

instance, a relative could send money to his loved one through an e-banking

application without the need to go to his local bank's branch and notify the

employee with his documents; which may take probably one to two days at

maximum. With the current Corona pandemic, the world is facing right now

that limited mobility, the benefits of using digital technologies for monetary

transactions are tremendous and undeniable. Having studied in the web de-

velopment field and have been familiarized with banking concepts from a

family member, the author took interested in the matter he mentioned

above. A challenging opportunity rose to showcase his knowledge and pro-

ficiency in web related programming languages, libraries and framework by

implementing a web-based application with e-banking characteristics. By us-

ing ideas and inspirations from real world examples of running e-banking

web programs, a web-based banking software was built.

1.2 Objectives

The objective is to create a web application with a typical online banking

characteristic. Table 1 below lists all the necessary features of the applica-

tion.

Table 1. Main objectives of the project.

Use Case Basic Flow

Register User fill in the form with validated data to create a User Account.

Login User fill in the form with validated data to be able to access pro-

tected resources of the application.

Logout User clicks the Logout button to destroy the session and revoking

his rights to access protected resources.

Reload Session By defaults, User can only use the site for a short time (e.g., 10

minutes). User can click the Reload button to confirm the User is

actively using the website and won’t be forced logout.

Authentication

and Authoriza-

tion

User must login if he wishes to access protected resources of the

application. This is done using session ID and/or user ID.

View account

data

User can view and edit his User Information.

3

Earn money User can click Simulate Income Earning to have his bank account's

balance increase as a mock-up way to represent earning credits in

real-life bank accounts.

Send a transac-

tion

User can perform a financial transaction by fill in a form with vali-

dated data.

Receive a

transaction

User can see his balance changed and new transactions if he is in-

volved in a financial transaction.

View bank

statements

User can list all the Financial Transaction records that related to

him.

Some common grounds are needed to be established in this session to fur-

ther avoid misinterpretation. When using the application, the user:

- will interact with the front-end side of the application through a web

browser, Firefox latest edition recommended, on a Windows ma-

chine

- will use mouse the main action initiator when performing operations

through the front-end side

- All actions performed in this application are handled in the HTTP ap-

plication layer with its core methods are GET, POST, PUT and DELETE

1.3 Scope & Limitations

Unfortunately, considering the scope of this thesis's project, not all real life

features could be included in the thesis. Below are the limitations regarding

the contents of the applications:

- some common HTTP actions will not be implemented on some

features of the application due to the limits of time, the complex-

ity or the inexperienced of the author

- using an account as a way for identifications from third parties

- performing any kind of external transactions to other accounts

that is not created in this project (e.g., transferring to other real-

life agencies, institutes and organizations)

- using this program as a mobile web application

1.4 Thesis Structure

Following a common pattern when building software, the thesis's work is

divided into two separable parts that communicate with each other through

the HTTP protocol to form a whole web application experience.

Frontend (FE for short) acts as a presentation layer of the application. The

FE of the application provides graphical user interface of the website for user

interactions and - manages communications between itself and the BE to

form the flow of data.

Backend (BE for short) acts as a data access layer while also handling re-

quests and code flow logic of the application. The BE of the application - re-

ceives HTTP requests from the FE, processes those requests, applies

changes, runs logic code and returns respective responses to FE and inter-

acts and mutates data that would be read, modified and written in databases

and finally, provides basic securities measures to partially imitate real world

solutions.

5

2 REQUIREMENTS & PLANNING

2.1 Study Cases of Real-world Examples

Two study cases of e-banking applications are presented below that are cur-

rently run and maintained by real-life banking organizations: Danske Bank

A/S and Eximbank of Vietnam. All the images, medias, trademarks and intel-

lectual properties used in this section rightfully belong to their respective

owners with all rights reserved.

In the case of e-bank application from Danske Bank, only some of the most

common pages are included to showcase the core points of functionalities

which a regular customer would use an online banking application. These

pages include a public Login Page, three private pages that are the Home

Page, Statement Page and the Transaction Page.

Figure 1. Danske Login Page with a small form.

Figure 2. Danske User Home Page.

Figure 3. Danske User Statement Page.

7

Figure 4. Danske User Transaction Page.

The case of e-bank application from Eximbank gives another example of how

a proprietary software should be implemented and developed. While each

example is taken from different countries, and fall under different jurisdic-

tions and regulations, similarities in designing and behaviors can be seen in

both applications. From Figure 5 to Figure 8, again, shows the common pages

that users would use in an online banking application, which are the Login

Page, the Home Page, the Statement Page and the Transaction Page.

Figure 5. Eximbank Login Page with two input fields.

Figure 6. Eximbank User Home Page show only the most crucial data.

Figure 7. Eximbank User Statement Page.

9

Figure 8. Eximbank User Transaction Page.

Having observed and studied how a real-world online banking application

are researched and developed, some key points and concepts were found

that should be implemented in this application since these features are the

minimum requirements of how a banking web application should be defined

and behave.

In both examples, the users should be able to view the general information

about themselves and their accounts. The users should also be able to order

a bank statement that lists down every financial transaction that they are

related to (received money or transfer money), as well as be able to submit

data to the server to create a transaction. All the sensitive information

should be protected and can only be viewed, and interacted if the user’s cre-

dentials are proven and authorized.

2.2 Technical Background

This segment is dedicated to briefly explain the concepts and the usability of

programming technologies that the author would use to implemented in his

application.

 (TypeScript, 2022) is a modern programming language that contributed a

large part in building the World Wide Web. It is structured based on the

ECMAScript standard, this high-level language provides dynamic typings,

prototype-based object-orientation and first-class functions. It is considered

a popular choice when building web-related products like websites, online

application and so on. Microsoft, seeing the potential growth, developed

Typescript as a strict syntactical superset of JavaScript, improving the possi-

bilities Javascript could bring on the development world, while trying to fix

some of Javascript drawbacks like its ease of errors, unsafe typings and

clearer programming instructions using its rich system of types and inter-

face. One which looking for works in the field of web development is recom-

mended to learn Typescript.

(React, 2022) is a free and open-source front-end Javascript library for build-

ing user-interface with their principles of component-based elements. By di-

viding a website into many small entities called “component”, React can use

the strategy “divide-and-conquer” to separate the points of concerns of each

problem to each corresponding component. Each component should be

written to be reusable and be rendered based on the code logic and handle

all the necessary issues that are related to itself (e.g., fetching data from the

third-party source, rendering based on properties being passed on)

(React Router, 2022) is considered as the second part of “bread-and-butter”

while building web application with React. As the nature of React, which is

11

being a single page application, React Router is created to solve the prob-

lems of routing in modern web app without ever refreshing the page when

navigating.

(Context API, 2022) is a built-in state management system in React, making

it integral when building websites with React, as it provides a way to manage

complex and nested throughout the whole application.

(Styled-components, 2022) is a third-party open-source library giving the

developers a way to create simple and reusable React components that can

dynamically renders and adapting necessary behaviors based on passed

properties to the components.

(NodeJS, 2022) is an open-source backend language written in Javascript us-

ing the V8 Chrome engine that can execute Javascript even outside of the

familiar web browser environment. Born based on a humble paradigm of

“making Javascript writable everywhere”, NodeJS has played a huge part in

unifying a web-application development around a single programming lan-

guage, reducing the needs of learning another new language if one wish to

choose NodeJS as the backend language.

(Express, 2022) is a backend web application framework built on the foun-

dation of NodeJS. Under the MIT license, it is one of the popular choices in

the industry when building server-side web applications and APIs, among

other famous candidates such as NestJS and MeteorJS.

(Nginx, 2022) is, as quoted from the official documentation: an HTTP and

reverse proxy server, originally written by Igor Sysoey. Standing firm at shar-

ing 21.79% of hosting and running some of the busiest websites in the Inter-

net, one could not argue of how much of Nginx have bought onto the table

regarding the standardization of a HTTP server.

(PostgreSQL, 2022) is a free and open-source relational database manage-

ment system, having one of its biggest selling points are the ACID properties:

atomicity, consistency, isolation and durability. It is available in many oper-

ating systems such as Windows and Linux, and can perform a variety of work-

loads from single machines to a data warehouse or web services with many

concurrent users.

(TypeORM, 2022) is a library built based on the data mapper pattern, which

performs bidirectional transfer of data between a typical relational database

and an in-memory data representation.

(AWS, 2022), short for Amazon Web Services, is an integration of many cloud

services provided by Amazon, acting as a building block to create and deploy

any types of applications or services in the cloud. Starting from a humble

data storage cloud provider, AWS at the time of writing, provides on-de-

mand delivery of technologies services and can almost power any cus-

tomer’s infrastructure regardless of the complexity and purposes. EC2 is one

of their main essential features, which stands for Amazon Elastic Compute

Cloud, that provide virtual computers to clients for their personal use.

(Session, 2022), in the scope of this project, is a piece of object data that

contains a minimum of necessary information about a client that are visiting

a server in a client-server protocol. Normally, client will need to provide their

credentials in order to fully use the service to the fullest of their capabilities.

However, the action of providing credentials would be repeated many times,

causing lots of problems, mainly in the security and inconvenience aspects.

But by creating a data object called session, saved it to the server and only

give the session ID back to the client, the truthiness of the client-server rela-

tionship is now maintained, as only authenticated and authorized clients can

have the session ID, thus making them able to use the server.

13

3 SPECIFICATIONS & ARCHITECTURE

3.1 Specifications

This passage describes the purpose and functionalities of this whole project

in a list of short descriptions. The application is built based on how an online

banking application should behave; therefore, these requirements should be

mandatory.

- Authentication: the user can only gain access to protected resources

when they can answer this question: Are they in the database?

- Authorization: the user can only gain access and modify to protected

resources only when they can answer this question: Are they allowed

to do this?

- Login system: the user can perform register, login and logout opera-

tions to receive/remove a session ID, which will be used as a way for

authentication and authorization to work

- Bank statement: the user can order and view a collection of data

pieces that are mimic to represent how a real-world banking applica-

tion would provide a list of data piece of financial transactions

- Perform a transaction: the user can create a financial transaction rec-

ord by filling in all the required data to form a financial transaction

that should behaved accordingly to how a digital monetary transac-

tion would behave

3.2 Architecture

3.2.1 Session-based Authentication and Authorization

This project used session as a proof-of-identity to protect sensitive re-

sources. However, another popular approach when building web application

authentication and authorization would be the usage of JWT, a software de-

velopment standard of how data object should be formed by combining op-

tional encryption, required signature and the main payload; which contains

the required information. While it is tempting to implement JWT for such a

common use case in building web application, the session approach was cho-

sen instead, for the following reasons:

- The session will be handled in the server, whereas JWT is handled in

the client, making the process of handling proof-of-identity much

simpler, considering the logic of the authentication and authorization

is already server-sided.

- The session provides faster reaction times in revoking privileges than

JWT: imagine a User’ account being compromised. The server can

easily mitigate this by destroying the session ID in question that con-

taining the compromised user ID. This would be much more challeng-

ing in JWT case, as JWT is saved in the client, not the server’s data-

base

- The session suits better in the scope of the project. There is only one

server maintaining all the resources, the authentication and the au-

thorization, making many advantages JWT bring to the case wasted.

3.2.2 Features-based folder structure and N-layer architecture

Admittedly, this thesis is limited due to the author’s knowledge. However, a

mediocre implementation organized in a sound and battle-tested rules and

regulations could still make the application easier to read, improve, maintain

and fix.

Regarding some of the earlier versions of the BE code, the code and logic

were categorized based on their technical roles. However, there were trou-

bles when maintaining the code or fixing a peculiar bug. Figure 9 gives an

15

example of a bug presented in feature UInfo. The fix would be to jump

around the code base and fix each related bugs on every single folder in the

code base, making it much harder to track and visualize the code control

flow.

Figure 9. An earlier technical-based folder structure.

However, after some considerations and good insights, the approach of fea-

ture-based folder structure was seen a better choice to avoid the previously

mentioned problems, while also dividing the whole BE application into

nearly self-contained readable size chunks of code which helps lower the

software complexity. In Figure 10, if an error was found in the feature UInfo,

a revision and fixing would probably occurred only inside the UInfo compo-

nents, as of now, nearly all features and attributes of the resource are being

grouped together, making navigation between related files much easier.

Figure 10. Feature-based folder structure.

Another meaningful issue the author wishes to discuss together with the

readers is the N-Layer Architecture. In software development, the N-Layer

pattern is used to categorize the presentation, the application logic handling

and data management functionalities into their own points of concern. Using

this template, parts of the web application could be reusable, while devel-

opers could become more flexible and focus on each separate tasks at hand.

The author tried to mimic the concepts, but errors and the inaccuracy un-

derstanding of the concepts are probably presented strongly in the thesis’s

work. He divided both the FE and the BE into three segregated blocks:

17

- The presentation layer: acts as the portal of interactions and interac-

tions between the data consumers and what behinds the system

(e.g., user interface in FE and the API routes in BE)

- The business layer: acts as the prime unit handling all the coordina-

tion, redirecting commands, produces logical decisions, calculations

and processing data between the other two layers (e.g., controllers

and middlewares in BE)

- The data access layer: acts as a direct communication between the

application and the database to read and write information. (e.g.,

custom hooks with API folder in FE and entities with repositories in

BE)

4 IMPLEMENTATION

This section presents the details of the implementation of the application.

The following sections give explanations, the reason and concerns of the

chosen approach, with pictures containing main snippets of the code that

visualize the logic behind how each part was implemented.

4.1 Diagrams Design

Any good software should be started based on blueprints and templates

making phase. The Unified Modeling Language (UML for short) is a general-

purpose, developmental, modeling language in the field of software engi-

neering that is intended to provide a standard way to visualize the design of

a system. Three diagrams are proposed in this section: the class diagram cap-

turing how the static structure and classifiers of the system, the sequence

diagram describing how interactions are produced when the Users use the

Create Financial Transaction action, and the deployment diagram depicting

how the thesis is maintained on an EC2 instance in Amazon Web Services.

The class diagram seen in Figure 11 depicts how all the features are interact-

ing and relating to each other. This helps to speed up the writing of code, as

there was a clear vision of how the web banking application should be built,

and developers can reference Figure 11 when new features are materialized

or modifications are needed.

19

Figure 11. Class diagram of the application.

One of the most important actions in this online banking web application is

the action of creating a Financial Transaction. To further solidify the logic

flow of how such an operation should be performed, Figure 12 depicts a se-

quence diagram. Basically, the Users must login first, to receive the user ID

and the session ID from the backend. They would also receive a Cookie,

which is a key-pair dictionary, containing the session ID inside. From there-

after, any requests during the duration of the session’s expiration property,

must contain a Cookie key in the header with the session ID as the value.

Only then would the backend mark the authentication and authorization as

passable and proceed further. The User will then do the Create a Financial

Transaction action with the request body sending to the server containing

the amount property, the sender and the receiver bank account ID. If every-

thing so smoothly, the server will return the data of that newly created Fin-

Transaction record, and the User could see it later in the bank account state-

ment.

Figure 12. Sequence diagram of the application.

One of the final steps of finishing the project is the manual deployment to a

virtual computer in AWS. The EC2 services were used with dynamic IP pro-

vided by Amazon to serve his application online. In Figure 13 shows how, the

deployment was implemented.

21

Figure 13. Deployment diagram of the application.

4.2 Database design

As previously mentioned in the Caveats, there are four main features in this

thesis’s work: the Bank Account feature (BAcc), the Financial Transaction

feature (FinTransaction), the User Account feature (UAcc) and the User In-

formation feature (UInfo). Being written using NodeJS and Express, the

server would use PostgreSQL as the relational database of choices, while us-

ing TypeORM as the data access layer, acting as the communicator between

the Express server instance and the database instance. Following the official

instructions at TypeORM, a database driver is required (this project used pg

as it was recommended also in the documentation when using PostgreSQL

with TypeORM). Being a relational database, the data will be stored as rela-

tion models, organized in their own relevant tables of columns and rows,

possibly with a unique identifier alongside. Below are the detail figures de-

picting how each feature should be constructed, formed and related to each

other (two figures for each feature, one for the typings used internally by

Typescript and one for the class mapping directly to the database table by

TypeORM):

Figure 14. Typings for feature User Info.

Figure 15. TypeORM entity class for feature User Info.

23

Figure 16. Typings for feature User Account.

Figure 17. TypeORM entity class for feature User Account.

Figure 18. Typings for feature Financial Transaction.

Figure 19. TypeORM entity class for feature Financial Transaction.

25

Figure 20. Typings for feature Bank Account.

Figure 21. TypeORM entity class for feature Bank Account.

4.3 UI design

One objective of the thesis was to learn more about the world of UI/UX de-

sign. Using the approach of “reinventing the wheels”, which may be tedious,

helps in understanding the core principles and concepts of how UI are

drafted, built and combined together between HTML elements. Thus, the

front-end of the thesis could be considered a weak point that needed much

improvements, as styled-components were only used as assistance in build-

ing the design of the online banking application.

When visiting the website, the user first sees the Main Page. This page acts

as a newsletter that contains all the links and anchors elements that are re-

lating to the subject of the web application. This page, considering the real-

life examples, contains information related to the banks that own the web-

site, while it also offers some insights that are financially beneficial to the

bank and the customers, such as promotions, deals, contracts, loans and sav-

ing information. While all the links in this page would be ghost links acting

for demonstration only, please note the header that contains all the im-

portant anchors that will helps user navigate throughout the whole applica-

tion.

27

Figure 22. Mock up design of the Main Page

By clicking the Register link in the header, the User will navigate to the Reg-

ister Page. The design of this page is kept simple, so the User sees a form

with some input fields and many elements that are associated to them to

help the User to understand which input field is for what data they provided.

By design, after done registering, the User should move to the Login Page by

clicking the Logic link in the header. Now, the User will also see a similar form

like what they saw earlier in the Register Page. However, they only need to

provide their user account name and the user account password in order to

perform the login operation.

Figure 23. Mock up design of protected User Home Page.

Hypothetically speaking, if the Users provide their credentials with no mar-

gin of errors, they would be introduced to the User Home Page. From here

onwards, all the pages of the application will be protected. As in, only when

the Users web browser contains the user ID and/or the session ID, would

they be allowed to reach these pages. The Users should also note that the

contents of the header have changed, as now there are four links corre-

sponding to four services that this thesis’ brings. The purpose this page is to

provide the Users with a simple interface that contains all the information

about a typical customer would use an online banking web application: a

small section containing data about their bank account, some recent finan-

cial transaction they made and other minor matters that relate to all the fea-

tures this web bank application provides. By default, every web application

should have some kind of a Profile page or sorts. This application is not an

exception. To view the personal data of the service User Information, the

Users are advised to click the Profile link in the header, which will lead the

Users to the Profile Page of the web app. In this page a small form is also

presented that contains input fields of the all the non-volatile properties of

the feature User Information that the Users can update.

4.4 Environment Setup

For the sake of simplicity and synchronousness, a similar developing envi-

ronment was created which are used both in the FE and the BE with only

minor modifications to serve its of their own purposes. Basically, each part

of the thesis is handled by a repository tracked using Git, a popular version

control system using “commits” to records changes made to the repository

over time. The coding process is being done on the Visual Code Editor with

helpful plugins, such as ENV, ESLint, Prettier, husky and lint-staged. All the

libraries used to smooth and enhance the development experience can be

29

seen in Figure 24. For more information, please visit their respective docu-

mentation online, as the explanation of those libraries are outside the scope

of this thesis.

Figure 24. Development environment setup.

4.5 Backend

The environment of the backend is a combination of the previous section

and some specific JavaScript modules that are designed to help developing

backend system. All libraries in Figure 25 are a must installation for the pro-

ject to run properly.

Figure 25. Required libraries for the back end.

4.5.1 Configuration

The configuration folder contains the allocation of all the environment vari-

ables used in both the application and all the third-parties middleware.

These can be wrapped as properties of an object and exported to the global

scope for usage in other code segments. Below are examples of some third

libraries used during the development.

Figure 26. A configuration snippet for TypeORM Data Source.

31

Figure 27. A configuration snippet for third-party middlewares.

Figure 28. A configuration snippet for express-session.

4.5.2 Entity

The Entity folder contains the blueprint of how each feature of the online

banking application should be constructed. All features should be extended

from the BaseEntity class to inherit the characteristics of a TypeORM entity

while making easier to write code using the Repository’s API provided by

TypeORM. For more information, please refer to Database design section.

Figure 29. The location of the backend entities.

4.5.3 Features

Features are arguably the most important part of the whole thesis’s

backend. All the features of the web banking application are grouped to-

gether here. When the client sends request to the server, it will be routed to

its designated features and will be proceeded under the controllers and the

repository file. The controller part analyses the request and decide if it

should pass it down to others middleware, such as the error handler. Other-

wise, the request should be valid and be accepted. The repository file will

jump it to interact with the database to mutate and modify data which would

comply with the subject of the request. Finally, the controller would take

data from the repository, create a response and send back to the client. Fig-

ure 30 shows how features are categorized in the application.

33

Figure 30. The structure of the feature folder.

Due to size and length of code, only one feature is presented in detail: the

Bank Account feature. Other features will be built using the same strategy

mentioned in the above paragraph, with their own distinct logic handlings.

There are three public APIs that are connected to the Bank Account feature:

- The POST HTTP action to “/api/” to create a bank account

- The GET HTTP action to “/api/:bAccIdHere” to fetch data about a par-

ticular bank account, a bank account ID is required

- The DELETE HTTP action to “/api/:bAccIdHere” to delete the bank ac-

count, an ID is required to figure out what bank account record

needed deleting

Figure 31. The routing configuration of feature Bank Account.

Each public API will be handled by appropriate controllers, whose names can

be seen as the second arguments in all the action callers in Figure 31.

Figure 32. Implementation of the repository of feature Bank Account.

Figure 32 presents all the possible data acquisition and modifications availa-

ble to the Bank Account resources in the database. Common CRUD opera-

tions can be seen at the top of the figure such as create, delete and read

(through finding using ID or other properties). However, there are also

unique operations that are limited in the feature Bank Account’s scope only,

such as updating by changing properties of the bank account’s record such

as balance. In the end, all operations will be wrapped inside a JavaScript ob-

ject, ready to be exported to be used by the controllers.

35

Figure 33. Implementation of the controllers of feature Bank Account.

In Figure 33, the controller names can be seen, the same as in Figure 34. As

mentioned above, each controller will handle its own specify API and use the

exported repository to form the data, and send back the request if every-

thing runs smoothly.

Figure 34. Implementation of a controller responses to a GET request.

This paragraph and Figure 34 will demonstrate how the logic in the controller

was carried out, handling the fetching data operation of one bank account’s

record. At first, the path parameter must be extracted from the URL to get

access to the ID of the bank account in question. If it does not exist, or being

evaluated to a false value in JavaScript, the controller would “throw” an Er-

ror with details information of how it happened, then pass it down to the

Error handling middleware for consumption. Trying to mimic the N Layer Ar-

chitecture, the duty of the controller is only to only proceed data from the

client’s request, produced an error data, pass it down to other middleware

in chain, or return a proper response if everything is correct. The handling of

errors and the validation of data will be performed by middleware before or

after the chain of operations, resulting writing, reading and debugging code

much simpler and rapidly.

4.5.4 Application Middleware

In Express’s terminology, middleware is a function that has access to the

data sent from the client, the data that will be sent back to the client and the

forwarding logic to other functions if necessary. Any middleware that does

not serve its purposes of handling requests and returning responses regard-

ing to the core features of the project will be placed here, in the middleware

folder. They are the authentication and authorization middleware, the ses-

sion handler middleware, the validation middleware and many more.

37

Figure 35. Implementation of authentication logic.

Figure 36. Implementation of authorization logic.

Figure 37. Implementation of validation logic.

Figure 38. Partial snippet of session handling.

39

4.5.5 Routing

The routing logic was divided into two parts: the system parts and the busi-

ness part. The system part will contain the code logic that handles common

operations that can normally be seen other backend application: register,

login, logout, authentication and authorization. The business part contains

the code logic that handles specific operations that are only cater to this pro-

ject and will probably not be available in other kinds of application such as

creating an UAcc, create an UInfo, make a BAcc, or create a transaction.

Figure 39. The app routing with the system routing on top.

Figure 40. The business routing.

4.5.6 Utilities Code

The code that does not belong to a distinct point-of-concern will be grouped

here. Usually, they are helper functions that compute and calculate data so

that other sections of the code base do not need to rewrite themselves every

time the same operation is needed. One of the most important aspects of

this folder has been extracted below.

Figure 41. A helper snippet that generates feature User Info.

Note that all the other features have a similar kind of functions like this, but

due to the code’s length, the whole file is not posted here.

4.6 Frontend

Similar to the backend, the environment of the frontend is also set up in the

way described in the Environment Setup section, while having some differ-

ent libraries to help the development of the user interface. Figure 42 pre-

sents all the necessary JavaScript libraries are being used to build the front

end of the application.

41

Figure 42. Required libraries for the front end.

Acting as the data consumer, the frontend development was kept uncompli-

cated, to demonstrate the capabilities of the backend API. Figure 43 below

depicts how the frontend is structured. The API folder contains code estab-

lishing communications to the backend, and returns the corresponding data

for usage in frontend, regardless of failure or successful operations. The

components folder, meanwhile, consists of many “building blocks” of the

whole application, categorized in the frequency of reusing purpose. The lay-

out folder holds code that directs how the order of those previously men-

tioned components, in this case will be wrapped between a footer and a

header. The pages folder comprises all the core pages of the whole applica-

tion. They are also divided based on N-Layer architecture to smoothen the

developing experience. The routes folder handles the forwarding of path

navigation when using the application. Regarding the styles and types folder,

they will limit the code base to follow styling and code developing properly.

Finally, the main entry point of the application belongs to the app and the

index files.

Figure 43. The folder structure of the frontend.

Due to complexity and length of the source code, detailed discussions of the

implementation of the frontend will not be mentioned in this report. In

short, the frontend is built with simplicity in mind, as the author emphasised

his knowledge on the backend part of the thesis’s work; while the frontend

merely acts as the data consumption, the endpoint where data will be final-

ized and rendered. The Axios library is used to fetch data from the backend

by encapsulated and extracted only the important parts, while also serve all

HTTP requests with the credentials flag enabled to allow the usage of the

session functionality provided from the backend. The website used Hooks

and Context API to store required and sensitive data such as the session ID

and the user ID to perform requests to the backend.

43

5 DEPLOYMENT AND TESTINGS

5.1 Deployment

A Linux-based machine was created on the EC2 instance and Nginx set up as

a proxy server to handle all the incoming internet traffic to the EC2 machine

and to redirect them to appropriate processes, either the FE or the BE. Figure

44 demonstrates how the Nginx was configured.

Figure 44. A configuration of Nginx hosting both frontend and backend.

Due to knowledge limitation, the whole application could only be deployed

manually, instead of using automation scripts provided by Amazon com-

mand line or automation and deployment tooling such as Docker. A Win-

dows user can send folders and files to a Linux machine by using WinSCP

program, which uses the File Transfer Protocol (FTP) to transfer files and

folders on a computer network. Next, the BE server process and the FE client

process can be initiated by connecting to the EC2 bash windows through

Putty with the private PGP key signature provided by Amazon when creating

the EC2 instance.

Figure 45. Built server code and running server instance.

The BE full source code can be pushed to the EC2 and being built and initial-

ized there. However, the FE had be built on the author’s own machine, as

the EC2 instance are t2-micro, having limited capabilities and processing

power, resulting in lagging and blocking behaviors when trying to produce a

bundled, deployable React build files. As the time of writing, the application

could only be accessible through a dynamic IPv4 address that was granted

from the Amazon DNS. However, due to budget limitation, it may not be

available in the foreseeable future.

45

5.2 Testing

Following recommended principles when developing applications, every

software is required to be tested, regardless of the complexity or rigorous-

ness of the test cases. Even a simple manual testing should suffice. Due to

lack of experience, an automated testing script could not be successfully cre-

ated. Instead, the idea of the API testing through Postman came up, an API

platform with high usage in the developer community for consuming and

testing backend API system. Figure 46 shows how the test case was struc-

tured:

Figure 46. Structure of the API test suite.

Before any operations, the application needed two bank account records

acting as the “lender” and the “spender” so that all financial transactions

could be traced and regulated as general concepts in trading. This operation

was performed in Populate folder testing.

One of the first services that are mandatory to be tested in every software

application is the registration, login and logout system. Figure 47 shows the

testing files placed for previously mentioned services, while also testing the

feature User Info action and the extension action on the session record. A

detailed analysis on the Login action will be given in Figures 48, 49 and 50

respectively. After registration, the client will send a POST request, with the

request’s body being a JSON object, as shown in Figure 48. Checking only the

positive testing (aka all data inputs are valid), the server would return a user

ID and the session ID in the response body. Furthermore, the client would

also receive a Cookie containing the session ID which are referenced to a

session record in the database, as depicted in Figure 49 and Figure 50.

Figure 47. System testing files.

Figure 48. Request and response examples of the Login action.

47

Figure 49. Client receives a Cookie with session ID.

Figure 50. The session record saved in the database.

The next two crucial testing folders are the One User default operations and

Two Users default operations. They contain all the testing scripts for which

actions that what a user would interact in such a website, and what two us-

ers would do also in the same website. Figure 51 and Figure 52 illustrate how

the test for what actions was prepared.

Figure 51. Typical one User operations testing case.

Figure 52. Typical two Users operations testing case.

49

A quick summary to explain what this test will behave: First, all requests

must contain a session ID in the request headers to be able to continue.

Then, data extracted from the request parameters and body would be eval-

uated if they are acceptable. Any failures occurring in the previous steps will

fire the controllers to create a response with consequent errors. On the

other hand, the business layer of the system would handle the requests, and

output corresponding results. Those data from what the server returns will

be used for rendering and displaying in the FE part of the project.

6 CONCLUSIONS

The thesis attempts to answer the question “How should an online banking

web application be designed and an adequate illustration was developed of

how a system should be researched and designed. However, during the re-

search and development period, it became apparent there are much to be

improved upon, such as the introduction to the credits systems, the multi-

tier account features offered from real-world banking applications and the

simulation system of trading stocks and bonds directly from the web app

interface. Following that, the technical aspects and the coding paradigm of

the project could be seen as immature, convoluted and imperfect if the code

base are under reviews from an experience developer. To make marginal

improvements on those factors, working experience is a must, which is lack-

ing in this case. Having said that, comparing to what is being maintained and

used in real life, the project has implemented most of the crucial require-

ments what should be expected from a banking web application: the man-

agement of a bank account and monetary transactional operations; combin-

ing with usual web application characteristics, such as session-based authen-

tication and authorization and the login system. The project would still be

developed after the evaluation as the author wishes to use it in his portfolio

for future employment opportunities.

51

REFERENCES

MDN. Javascript. Accessed 15.05.2022. https://developer.mozilla.org/en-

US/docs/Web/javascript

Typescript. Accessed 15.05.2022. https://www.typescriptlang.org/

React. Accessed 15.05.2022. https://reactjs.org/

React Router. Accessed 15.05.2022. https://reactrouter-

dotcom.fly.dev/docs/en/v6

Styled Components. Accessed 15.05.2022. https://styled-components.com/

NodeJS. Accessed 15.05.2022. https://nodejs.org/en/

Express. Accessed 15.05.2022. http://expressjs.com/

Nginx. Accessed 15.05.2022. https://nginx.org/en/

PostgreSQL. Accessed 15.05.2022. https://www.postgresql.org/

TypeORM. Accessed 15.05.2022. https://typeorm.io/

 AWS. Accessed 15.05.2022. https://aws.amazon.com/

Financial Transaction. Accessed 15.05.2022. https://en.wikipe-

dia.org/wiki/Financial_transaction

NodeJS Best Practices. Accessed 15.05.2022. https://github.com/goldber-

gyoni/nodebestpractices

Stop using JWT for sessions. Accessed 15.05.2022.

http://cryto.net/~joepie91/blog/2016/06/13/stop-using-jwt-for-sessions/

https://developer.mozilla.org/en-US/docs/Web/javascript
https://developer.mozilla.org/en-US/docs/Web/javascript
https://www.typescriptlang.org/
https://reactjs.org/
https://reactrouterdotcom.fly.dev/docs/en/v6
https://reactrouterdotcom.fly.dev/docs/en/v6
https://styled-components.com/
https://nodejs.org/en/
http://expressjs.com/
https://nginx.org/en/
https://www.postgresql.org/
https://typeorm.io/
https://aws.amazon.com/
https://en.wikipedia.org/wiki/Financial_transaction
https://en.wikipedia.org/wiki/Financial_transaction
https://github.com/goldbergyoni/nodebestpractices
https://github.com/goldbergyoni/nodebestpractices
http://cryto.net/~joepie91/blog/2016/06/13/stop-using-jwt-for-sessions/

Stack Overflow. Authentication: JWT vs Sessions. Accessed 15.05.2022.

https://stackoverflow.com/a/45214431/8834000

Wikipedia. Multitier Architecture. Accessed 15.05.2022. https://en.wikipe-

dia.org/wiki/Multitier_architecture

https://stackoverflow.com/a/45214431/8834000
https://en.wikipedia.org/wiki/Multitier_architecture
https://en.wikipedia.org/wiki/Multitier_architecture

53

APPENDICES

Acronyms & Abbreviations Descriptions

E-bank/e-bank Online banking web application.

Netbank Same as above.

FE Front-end, the user interface of a web application.

BE Back-end, the data handle and access layer of a web

application.

API Application programming interface, where parts of

programs can interact with each other to exchange

data.

REST Representational state transfer, a common software

architecture for distributed systems.

CRUD Create, read, update and delete; basic functions of a

computer database.

SQL Structured Query Language, a language to interact

with data in a relational database management sys-

tem.

AWS Amazon Web Services, an integrated service by Am-

azon that provides many helpful features for devel-

opers.

EC2 Amazon Elastic Computer Cloud, a service from AWS

that provide renting virtual computers.

ID Identifier, used as a way to classify and determine

each unique object, class, entity or records.

BAcc Bank Account (BAcc for short): a data object that

contains information that a typical bank account

would normally have.

FinTransaction Financial Transaction (FinTransaction for short): a

data object that contains information of what a mon-

etary transaction should legally have.

UAcc User Account (UAcc for short): a data object that

contains sensitive information about a user’s creden-

tials such as account name and password.

UInfo User Information (UInfo for short): a data object that

contains information about a typical user when using

a website.

