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The purpose of the thesis project was to provide a simple way to include
OpenDataPlane in operating system images built from scratch. The goal was to
create a build environment, in which only minimal changes are needed for when the
target platform changes.

For the base operating system and the build environment, the Yocto project and its
reference Linux distribution was chosen. The implementation was tested on three
different platforms, from which two were physical systems on a chip and one being
an emulated target system.

The expected outcome was met. However, the two physical target systems were not
compatible to be used with ODP with full functionality out of the box. In the virtualized
target system, the ODP was functional to the expected extent.

In conclusion, the project goal was met. While the physical target platforms were not
compatible with ODP, it was proven that the build environment created is able to
compile and include an operating system image with the functional ODP included.
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Insinöörityön tarkoituksena oli luoda ympäristö, jonka työkaluilla mahdollistetaan
OpenDataPlane kiihdytysrajapinnan sulauttaminen rakennettuun
käyttöjärjestelmäkuvaan. Tavoitteena oli ympäristö, jossa käyttöjärjestelmäkuvan
luominen eri alustoille onnistuu mahdollisimman vähillä ympäristön
konfiguraatiomuutoksilla.

Käyttöjärjestelmän rakennusympäristöksi valikoitui Yocto Project, jossa
käyttöjärjestelmä on Linuxiin pohjautuva Yocto Projectin referenssidistribuutio, Poky.
Lopullinen implementaatio testattiin kolmella kohdealustalla, kahdella sulautetulla
järjestelmällä ja yhdellä virtualisoidulla kohdeympäristöllä.

Varsinaisena insinöörityönä luotiin käyttöjärjestelmän rakennusympäristö, jossa
käyttöjärjestelmä rakennettiin. Luotuun käyttöjärjestelmäkuvaan sulautettiin
OpenDataPlane kiihdytysrajapinta Yocto reseptin avulla, jonka kautta haluttu
ohjelmisto käännettiin kohdealustalle käyttöjärjestelmän rakennuksen yhteydessä.

Insinöörityössä saavutettiin odotettu tavoite. Käyttöjärjestelmäkuva luotiin
onnistuneesti kolmelle erilliselle kohdealustalle. OpenDataPlane rajapinnan
toiminnallisuus testattiin kaikilla eri alustoilla. Vaikka testauksessa todettiin, että
OpenDataPlane ohjelmisto ei ole täysin yhteensopiva kahden käytetyn sulautetun
järjestelmän prosessoriarkkitehtuurin kanssa, projektin varsinainen tavoite silti
saavutettiin.

Työn lopputulosta voidaan käyttää viitteenä samankaltaisen ympäristön luomiseen.
Käyttöjärjestelmäkuvaan liitettävien ohjelmistojen kirjo on käytännössä loputon, ja
valmiiseen ympäristöön on helppo lisätä haluttuja ohjelmistoja Yocto reseptien
muodossa.

Avainsanat: Yocto Project, OpenDataPlane, Sulautettu järjestelmä,
Käyttöjärjestelmä, Linux
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1 Introduction

A typical embedded system requires an operating system with a minimal

overhead. Basically this means that the operating system in question should take

as little resources as possible from the application the system is being used for.

Building a minimal operating system with only the needed components can be

laborious, especially if the same image is to be provisioned for multiple target

devices and processor architectures.

The goal of the thesis project is to build an environment for providing minimal

Linux operating system images. The operating system image built is to include the

OpenDataPlane hardware acceleration framework. The environment should be

capable of building the operating system image in question for multiple different

target architectures with minimum number of configuration changes.

This project takes different boot flows and procedures into an account, as setting

up the boot environment for each system is also an important part of a practical

build environment. The boot file delivery infrastructure is a requirement for a

functional build system, and these methods and configurations will be described in

detail.

The requirement for a successful implementation is to be able to build an operating

system image with the ODP framework included for various target platforms. With

the requirements met, one could automate software integration process of the

software delivery by referring to the build environment implementation made.
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2 OpenDataPlane

The OpenDataPlane project, ODP for short, was introduced in 2013 by a

non-profit engineering organization Linaro. The initial goal was to create a data

plane application framework to support software mobility across different

networking SoCs. [1.]

ODP is aiming to provide a hardware acceleration layer for high performance

networking applications. It is a library built specifically to the target ISA with GNU

build tools. The implementation is intended to be run on top of Linux, therefore

rendering it cross compatible between different end-system architectures. The

ODP implements an API to be integrated into the software for it to achieve the

best possible portability, scalability and maintainability. One of the focus areas of

the development is the scalability of scheduling across the full range of usable

CPU resources, along with low memory footprint. [2.]

The ODP API has all the needed parts for manipulating and managing the data

flow. The overall flow is depicted in figure 1.

Figure 1: Typical data flow of an ODP application. [3].

As seen in the figure 1, the data is processed through the classification and

scheduling, along with traffic managing for a Quality of Service feature. The

overall system consists of different types of queues and scheduling methods. The

data sent to the flow may loop around the system multiple times before it is sent
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for output. [2.] Parts of the flow can also be replaced with specialized hardware to

offload the processing from the main CPU. [4]

ODP is an open-source project with a BSD-3 license. The included BSD-3 license

means that the source code and built binaries can be distributed freely, as long as

the license is carried over. [5] By the definition of open-source, the source code is

accessible to anyone and is licensed so that it does not restrict its usage to a

specific product or platform, nor does it require a monetary compensation for its

use or redistribution. [6]
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3 Yocto Project

The Yocto Project was launched in April 2011 by a non-profit organization, The

Linux Foundation. The goal of the Yocto Project is to provide a toolchain to

develop an embedded Linux operating system distributions. [7.]

The reference Linux distribution of Yocto Project is Poky. Poky is not a ready-made

Linux distribution one can simply download and run. Poky is a set of instructions,

known as metadata layers and configuration files, for the toolchain to build and

compile a Linux distribution. There are various types of predefined images that

can be built, from core-image-minimal, for a minimal bootable distribution, up to

core-image-sato-sdk, for a Linux Standard Base compliant operating system with

development environment and graphical user interface capabilities. The images

can be further extended with additional packages from metadata layers by

appending the wanted packages to the image build configuration. The packages

in the metadata layers are typically in a form of a source code and its compilation

instructions. The package is compiled at the build time from the source code to

the target architecture. The system is also capable of downloading the source

code files required from, for example, remote Git repositories. [8.]

A typical metadata layer consist of configuration files and package recipes. The

configuration files define the build process, along with the default tasks for certain

recipe instructions. The recipes are a concept of the build instructions for a

package. These recipes, identified with the file extension of .bb, contain the

information, build time and runtime dependencies, source code location, along

with the configuration, compilation, and install instructions of the package in

question. A single recipe can have multiple flavors, which can be used to change

the way the package is to be handled. A recipe can also require other recipes to

be built and included in the resulting image. [9, section 1.3.]

Along with Poky, another core component of the Yocto build system is Bitbake.

Bitbake is a tool responsible for fetching, scheduling, compiling, and verifying the
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build recipes. Bitbake is capable of handling the cross-compilation of the source

files for another architecture, along with different variations of the package in

question. Basically, Bitbake takes the metadata layers from the configuration file,

ranks those by priority level, and utilizes the recipes within the layer for a build.

This introduces an ability to extend and override existing metadata layers with, for

example, additional platform specific metadata layers. [9, sections 1.1, 1.2.]
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4 Build infrastructure implementation

The goal of the project was to implement a Yocto build environment, in which a

Linux image is built with ODP. The image is then to be run and tested to verify

ODP functionality.

The Yocto build environment will be set up in a virtual machine. The host system

for the virtual machine is a 2013 manufactured high-end laptop with four core

AMD APU processor, eight gigabytes of DDR3 RAM and a 256 gigabyte SSD. The

laptop is running a Pop!_OS 21.04 Linux distribution as its operating system.

As the target systems, two embedded systems are used, along with an emulated

target system. The two embedded systems are a BeagleBone Black and a

Raspberry Pi model B. Both of these are equipped with 32-bit ARM processors.

The virtualized target system is to use an emulated 64-bit processor.

4.1 Virtual machine

The hypervisor for the virtual machine provision is QEMU with KVM. This is

managed through libvirt based graphical user interface, Virtual Machine Manager

also known as virt-manager.

The virtual machine operating system was chosen to be Ubuntu 20.04.3 LTS

Linux distribution. Ubuntu has a large variety of software to install in its software

repositories, and it is extendable with the Personal Package Archives, PPAs.

Ubuntu 20.04 LTS is also one of the officially supported Linux distributions of the

Yocto Project [10, chapter 1.1].

This report does not go through the virtual machine creation process, as it is

optional, and the same results can be achieved without the virtualized

environment. The virtualization of the build system was done only for the author’s

convenience, as it provides needed resource management and virtual machine
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snapshots.

The Ubuntu 20.04 LTS virtual machine intended for Yocto build system was

created with two virtual network interface cards. First one was mapped as a NAT

to the wireless network interface of the host laptop to provide internet access for

the virtual machine. The second virtual NIC was created as a Macvtap device for it

to hook itself to the physical Ethernet port of the host laptop.

4.2 Yocto build system

The Yocto build system requires its components to be cloned from Git repositories.

For this, the git package is needed. The git was installed to the Ubuntu virtual

machine with a command sudo apt install git, which calls the apt package

manager as superuser with arguments to install the git package.

The build system files are to be placed to the path /yocto for convenience. The

directory is created with a sudo mkdir /yocto command. As the location is at the

root of the file system, the directory permissions need to be adjusted for a normal

user to be able to utilize it. This was done with sudo chown -R user:user /yocto

command, which instructs to change the owner to user user of user group

recursively for the directory /yocto.

In the /yocto directory, the Poky reference Linux distribution is downloaded. This

is done with git clone git://git.yoctoproject.org/poky command, instructing to use

git to clone the contents of the ”poky” Git repository. With this, there now is

/yocto/poky directory containing the basic build files and scripts.

By using the directory structure above, the environment is easy to manage. The

root directory name yocto represents the intention of the directory. Having

directory poky under /yocto is a future-proof solution in case multiple different

build environments would be needed. With this approach, the different build

environments would be situated under /yocto next to the poky subdirectory.

A build environment is initialized by sourcing the oe-init-build-env script with
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source oe-init-build-env command. This command runs the script and keeps the

environment variables persistent for the current shell session. The output of the

source oe-init-build-env can be seen in figure 2.
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Figure 2: Output of the source oe-init-build-env command.

By running the source oe-init-build-env script, two files are created in the conf

directory of the build environment, as can be seen in figure 2. The local.conf is

used for configuration of the build of the Linux distribution, defining for example

the target system this build is targeted to. The bblayers.conf is used to append the

metadata, such as packages, to the image to be built.

With the build environment and the default template settings set, a build can be

attempted. This is done by issuing a bitbake core-image-minimal command. This

is a command for building a minimal image with necessary components for a

Linux distribution to run. Running this for the first time in a system with no

additional configuration done may lead to a situation, in which some

dependencies are missing. This kind of situation is to be seen in the figure 3.
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Figure 3: Output of the bitbake core-image-minimal command being run at the first
time.

As seen in the figure 3, multiple required packages are missing from the system

attempting the build. Most of these tools are available in the build-essential

package, which is a toolkit for compiling C and C++ software. From the list of

these missing required packages, chrpatch, diffstat, gawk, and zstd are not in the

build-essential package and need to be installed individually. With this, the

command to install all the missing requirements mentioned is sudo apt install

build-essential chrpatch diffstat gawk zstd. With these installed, running the

bitbake core-image-minimal reports that the distutils module is further required for

the Python 3, this was also installed with sudo apt install python3-distutils

command. An expected bitbake core-image-minimal output can be seen in figure

4.
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Figure 4: Output of the bitbake core-image-minimal command when a build is in
progress.

After the required dependencies are installed, a build with bitbake

core-image-minimal is again tested. As can be seen in figure 4, the build is

working and the build tasks are being processed in the output. The initial build

with a default configuration took approximately nine hours.

4.3 Build configuration and recipes

To include an ODP compilation and further the built binaries to the Yocto image, a

Yocto recipe for the process is needed. For the recipe, a new metadata layer will

be created. A typical metadata-layer creation process is depicted in figure 5.
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Figure 5: A metadata layer implementation process.

As the build environment is already set with source oe-init-build-env command,

the command bitbake-layers can be used to create the new metadata layer for

ODP and its dependencies. This is done with a bitbake-layers create-layer

../meta-odp command. After the layer is created, it can be added to the build with

bitbake-layers add-layer ../meta-odp command. With bitbake-layers show-layers

command, it can be verified that the new layer was created, and has now been

added to the Yocto build. As can be seen in the figure 5, the new meta-odp layer

took a higher priority in comparison, as in to ensure that its contents are preferred

over the default layers.

The ODP build recipe can now be implemented to the meta-odp metadata layer.

In the meta-odp metadata layer directory, being /yocto/poky/meta-odp in this case,

a new directory odp is created to contain the recipes. In this
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/yocto/poky/meta-odp/odp directory, a new file is created with a name of

odp_git.bb which is the recipe for the ODP.

1 DESCRIPTION = "Pull and compile ODP"
2 LICENSE = "CLOSED"
3

4 RDEPENDS:${PN} += "openssl libconfig packagegroup-core-buildessential
flex zlib coreutils bash"

5 DEPENDS += "openssl libconfig packagegroup-core-buildessential
flex-native zlib coreutils-native bash"

6

7 PV = "1.32.0.0+git${SRCPV}"
8 SRCREV = "ec78e5305c387cef47be7479d2b9f85482e20b40"
9 SRC_URI = "git://github.com/OpenDataPlane/odp"

10

11 S = "${WORKDIR}/git"
12

13 inherit autotools pkgconfig
14

15 EXTRA_OECONF = 'CFLAGS="-O0 -Wno-error"'

Listing 1: Recipe to download ODP from GitHub, compile, and install it.

On line number two in listing 1, it can be seen that the value of ”LICENSE” is set to

”CLOSED”. This is to avoid possible errors caused by the checksum verification in

the recipe in the development environment. On line number four, there is

”RDEPENDS” variable, which contains the runtime dependencies of the recipe, as

in the additional packages required by the ODP to be present in the built image.

As can be seen the build time dependencies, the value of DEPENDS, the build

time and runtime dependencies are very similar. Some build time dependencies

however use the ”-native” flag to indicate that the packages can be built with host

machine architecture to speed up the build process by avoiding build time cross

compilation. All but package libconfig can be built from the metadata layers

included, the libconfig package needs its own recipe to be implemented.

Unfolding the listing 1 further, there are variables to define where the recipe needs

to get the build files from. Starting from line number seven, there is the version to

be downloaded (the value of PV), the defining commit hash for verification (the

value of SRCREV) and the URL of the remote repository in question (being the

value of SRC_URI). Downloading a Git repository inside the recipe, it is needed to
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set the value of build source variable S as the git subdirectory of the working

directory, which is where the source files are downloaded to by the recipe.

For the build instructions in listing 1, the packages autotools and pkgconfig are

used. These will take care of the build automatically per the Makefile build file

contents of the ODP repository. As additional build instructions, the value of

EXTRA_OECONF passed with the CFLAGS compilation environment arguments,

there are -O0 to disable the compilation optimization and -Wno-error to ignore all

WARNING level errors while compiling. Disabling the optimization ensures that

the compiler does not implement its own optimizations in attempt of making the

ODP faster, as this might potentially cause unwanted behavior. Ignoring

compilation warnings ensures that the ODP is build even in case there would be

build time warnings, which would potentially be caused by compiling different

architectures while using some native packages in build time.

1 DESCRIPTION = "Pull and compile libconfig"
2 LICENSE = "CLOSED"
3

4 DEPENDS += "bison-native"
5

6 SRCREV = "${AUTOREV}"
7 SRC_URI = "git://github.com/hyperrealm/libconfig"
8

9 S = "${WORKDIR}/git"
10

11 inherit autotools-brokensep pkgconfig

Listing 2: The recipe for libconfig package.

The recipe for libconfig, which can be seen in the listing 2, is very similar to the

ODP recipe in listing 1. The libconfig only requires package bison during build

time. The bison package is available in the metadata layers already. For the

source revision of the remote Git repository, a variable of ${AUTOREV} is used for

the recipe to automatically use the latest version available. Also, instead of

autotools, the autotools-brokensep is used to work around the broken out-of-tree

build of the libconfig [10, chapter 5.3].

To prepare a build for the BeagleBone Black, the packages wanted into the image,



15

along with the target system machine, are to be appended in the local.conf

configuration file in the conf directory. The value of MACHINE variable is set as

MACHINE ?= ”beaglebone-yocto” in the configuration file. Along with that, as new

packages need to be installed to the built operating system image, a line

IMAGE_INSTALL:append = ” openssl libconfig packagegroup-core-buildessential

flex zlib coreutils odp” is also needed to include all the runtime dependencies of

the ODP. After this, the bitbake core-image-minimal command is again used to

build the operating system image for BeagleBone Black.

4.4 BeagleBone Black and TFTP boot

The BeagleBone Black requires three cables for required functionality for the

project. The USB-UART cable (FTDI TTL232R-3V3) was connected between the

computer and the UART header of the board. Also, a generic miniUSB-USB cable

was connected between the miniUSB port of the board and the host machine.

Along with that, a CAT6 Ethernet cable was connected between the board and the

host machine. The UART provides console interface, miniUSB is a for power and

USB data connection, while the Ethernet is used for the TFTP boot.

To test out the serial connection from the virtual machine to the BeagleBone Black

board, the program minicom was installed with the package manager. For this to

work, the current user of the virtual machine needs to be in the dialout group, this

can be achieved with a sudo adduser $USER dialout command. From the settings

of minicom, the Hardware Flow Control settings needs to be disabled for the

output to work properly. This was changed within the minicom by pressing

CTRL+A and then pressing O to open the Configuration screen, and selecting the

option in Hardware Flow Control under Serial Port Setup. The serial connection

can be tested with minicom -D /dev/ttyUSB0 command.
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1 bootdelay=3
2 client_ip=192.168.100.141
3 server_ip=192.168.100.140
4 gw_ip=192.168.100.1
5 netmask=255.255.255.0
6 hostname=bbb
7 device=eth0
8 autoconf=off
9 root_dir=/exports/rootfs

10 nfs_options=,vers=3

Listing 3: The new contents of /uEnv.txt in BeagleBone Black Debian file system.

The BeagleBone Black has a preinstalled Debian Linux distribution in its eMMC

persistent storage. To be able to perform a TFTP boot, as in fetching the boot files

needed over a network connection, a TFTP boot environment needs to be

configured in the uBoot bootloader of the BeagleBone Black. The uBoot

environment variables are set in the uEnv.txt file in the Debian file system root

directory. The variables are set per the listing 3. The build environment acts as the

server, and its network configuration is depicted in the figure 6.
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Figure 6: The Ethernet network interface settings of Gnome in the virtual machine.
Values are set per the settings defined in uEnv.txt of the BeagleBone Black.

As seen in figure 6, the virtual network card of the virtual machine is to be given a

static address. The IPv4 Method setting is set to Manual. The IP address is set as

192.168.100.140 with the netmask of 255.255.255.0. This is set as it is for the

BeagleBone Black to be able to connect to the virtual machine network address.

Note that the address used here is the address which was defined in the uEnv.txt

in the listing 3 for server_ip value. The value of gateway is set as 192.168.100.1,

also to match the corresponding uEnv.txt value of gw_ip. With this, the network for

the TFTP is established.

Next step is to set up the locations for file serving to the virtual machine. Using the

mkdir command, directories up to /tftpboot/dtbs and /exports/rootfs are created.

For both of these, the permissions are changed so that the user, which in this case

is yoctouser, is set as the owner of these directories recursively. The change of

owner was done with the sudo chown -R yoctouser /tftpboot and sudo chown -R

yoctouser /exports/rootfs commands.
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From the build done earlier, the files needed for booting up the BeagleBone Black

are located in /yocto/poky/build/tmp/deploy/images/beaglebone-yocto directory.

From there, the needed content is copied to the respective locations for the TFTP

server and the NFS service to deliver those to the BeagleBone Black. The kernel

image, as in the zImage file, is to be situated under /tftpboot directory, and the

device tree file, am335x-boneblack.dtb, is transferred to the /tftpboot/dtbs

directory. Also, the root file system itself, which is packed and compressed as

core-image-minimal-beaglebone-yocto.tar.bz2, is extracted and unpacked into

/exports/rootfs/ directory using sudo tar xf

core-image-minimal-beaglebone-yocto.tar.bz2 -C /exports/rootfs/ command. As

the BeagleBone Black already has a bootloader, this is all it needs to boot into the

Linux distribution built.

The actual file serving system consists of two services. A tftpd-hpa is the TFTP

server, and nfs-kernel-server acts as the NFS provider. While the Linux kernel and

the device tree can be downloaded to the memory of BeagleBone Black once and

used further from there, the lockstep style TFTP server can be used for those. As

the root file system contains of constantly changing files which need to be

synchronized for persistence, an NFS mount is a suitable solution.

The TFTP server was installed with a sudo apt install tftpd-hpa command, and the

NFS was installed with a sudo apt install nfs-kernel-server command. As for the

configuration for the TFTP server, simply pointing to the location of the files to be

shared is enough. In the file /etc/defaults/tftpd-hpa, the TFTP_DIRECTORY

variable was given a value of /tftpboot, resulting in the said line in the configuration

being TFTP_DIRECTORY=”/tftpboot”. For the NFS, the line /exports/rootfs

192.168.100.141 (rw,no_root_squash,no_subtree_check) was appended to the

/etc/exports file, for it to share the /exports/rootfs directory with the given IP

address and options. With this, the configuration of TFTP server and NFS is now

done. The boot process of the BeagleBone Black, along with its utilization of the

TFTP for the retrieving the boot files, is depicted in figure 7.
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Figure 7: BeagleBone Black boot output. The Linux kernel and device tree overlay
built were successfully downloaded via TFTP.

As the necessary services and configurations are now in place, the BeagleBone

Black can be booted with the Yocto built image. Using the serial connection set up

earlier, a serial console to the BeagleBone Black is launched to monitor the boot

process. After powering on the BeagleBone Black by plugging in the power

supply, text quickly starts to fill the serial console. After the typical uBoot version

and configuration messages, the uBoot is informing that it is now trying to connect

to the TFTP server with the network configuration given in the uEnv.txt as the boot

environment configuration. The kernel image starts loading as it should, and the

BeagleBone Black bootloader proceeds to download the device tree file. This

process can be seen in figure 7. After the required files for booting are

downloaded, a connection to the root file system is established. As this is done,

the boot process itself can begin. Linux kernel starts to load, printing its options

and debug messages to the serial console. After loading of the Linux kernel

finishes, the serial console stops at beaglebone-yocto log in prompt. With this, it is

known that the BeagleBone Black has been successfully booted with the Yocto



20

Poky reference Linux distribution image built.

To test that the ODP has been compiled and included in the Yocto image properly,

the shared memory virtual device needs to be implemented and mounted as

/dev/shm block device. In the serial console of the BeagleBone Black, a command

mount -t tmpfs shmfs -o size=400M /dev/shm is used. To unfold this command, a

shmfs style of block is mounted as tmpfs type. The tmpfs is a partition type which

uses the RAM of the system for the storage allocation. This mount is given the

storage allocation size of 400 megabytes and is instructed to be mounted as

/dev/shm, a location which is a typical for shared memory block device. [11.]

After setting up the shared memory block device, the ODP functionality can be

tested. As the ODP has been compiled into the image, simply running one of the

included examples, odp_hello, is enough for a test. Running the odp_hello on the

BeagleBone Black serial console, the terminal window is filled with the command

output. The output of the odp_hello command is depicted in the figure 8.
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Figure 8: Initial output of running odp_hello on the BeagleBone Black.

As can be seen in figure 8, first thing to appear in the output is 256 lines of

warning messages. As the BeagleBone Black has an 32-bit ARM processor, an

architecture which is not officially supported by ODP, this is to be expected. The

ODP is unable to poll for the number of CPU cores and their frequencies, which

results the warning messages to be printed for the ODP configuration default

value of 256 CPU cores. For each of these cores, it is stated that the frequency of

the said core cannot be determined, and the ODP configuration default value of

1.4 GHz is to be used.

Even with the odp_hello outputs warnings about the CPU, the basic ODP

functionality is working as it should. The continuation of the output presented in

figure 8 can be seen in the figure 9 below.



22

Figure 9: Working output of the odp_hello command, printing the usable features
of the ODP, along with the hello message from CPU of index 0. The df command
in the end shows that the /dev/shm is correctly mounted.

As seen in figure 9, the odp_hello prints the basic ODP features usable. Along with

the features available, the odp_hello prints a hello message from the CPU of index

0. Typically, if the odp_hello binary would be executed multiple times, the CPU

index the hello is coming from would change. Yet in the case of the ODP not being

able to correctly poll the CPUs, the hello is always sent from the CPU of index 0

as the ODP interprets this being the only CPU available in this 32-bit ARM system.

4.5 Raspberry Pi and micro-SD card boot

To build a Yocto image for the Raspberry Pi, a meta-raspberrypi metadata layer is

needed. As with getting the original Poky metadata layer, the meta-raspberrypi

metadata layer can also be downloaded from the git.yoctoproject.org repository

management system. This is done with git clone

git://git.yoctoproject.org/meta-raspberrypi command. As with other metadata

layers, the meta-raspberrypi metadata layer directory is to be placed in
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/yocto/poky directory.

With meta-raspberrypi in its correct place, the metadata layer needs to be added

to the bitbake layer configuration. As with the meta-odp metadata layer, this is

done with bitbake-layers add-layer command. The addition can be verified with

the bitbake-layers show-layers command. Also, in the instruction file in the

meta-raspberrypi repository it is said that the meta-openembedded metadata

layer is required for building an image for the Raspberry Pi. Therefore, the

meta-openembedded metadata layer is downloaded with git clone

https://git.openembedded.org/meta-openembedded command. Along with that,

the branch of the local meta-openembedded repository needs to be changed to

match the Poky distribution version used in the project, being honister. The

branch is changed by running git checkout honister in the local copy of the

meta-openembedded repository directory. This metadata layer also needs to be

added to the build layers with the bitbake-layers add-layer command.

The target, as in the MACHINE variable, also needs to be changed to match the

target the built Yocto image is going to be used in. In the local.conf configuration

file of the build environment, the value of MACHINE variable is changed as

raspberrypi3 value. While the project board actually is Raspberry Pi model 2 B,

the board is similar enough for this target to work.

With the layers and configuration ready for the build, the build can be started with

bitbake core-image-minimal command. After the build finishes, the image can be

found in tmp/deploy/images/raspberrypi3 directory as

core-image-minimal-raspberrypi3.wic.bz2 file. This is a compressed container file,

and needs to be decompressed. The container can be decompressed with the

bzip2 tool, with bzip2 -d -f core-image-minimal-raspberrypi3.wic.bz2 command,

which results in a core-image-minimal-raspberrypi3.wic file.

The image is then to be written in a micro SD card, which is attached to the micro

SD card reader of the virtual machine host laptop and then redirected to the virtual

machine. The image can be written to the micro SD card with the rpi-imager tool.
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For the Ubuntu 20.04.3 LTS, the tool was installed with snap install rpi-imager

command. After this, running rpi-imager command starts the graphical Raspberry

Pi Imager program. The graphical user interface and an ongoing writing operation

is demonstrated in the figure 10.

Figure 10: The graphical user interface of the rpi-imager tool.

In the Raspberry Pi Imager tool, the Operating System is set as the

core-image-minimal-raspberrypi3.wic Yocto image generated, and the Storage is

set as the micro SD card to be written. Clicking WRITE button writes the

Operating System Yocto image to the micro SD card in question. A functional

process of writing can be seen in figure 10.

With the image in the micro SD card, the micro SD card can be inserted to the

Raspberry Pi 2 model B project board. After plugging in the power, the board

boots up to the Yocto image. First thing to do is to again mount the /dev/shm with

the mount -t tmpfs shmfs -o size=400M /dev/shm command. Running the

odp_hello command results in the output similar to the case with BeagleBone

Black, with warnings about using the configured CPU frequency default values for
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not being able to properly poll the actual CPU. This also was to be expected, as

similarly to BeagleBone Black, the Raspberry Pi 2 model B also has a 32-bit ARM

processor. With this, it is safe to say that the ODP indeed does not seem to work

properly on the 32-bit ARM boards, or at least not with the two boards tried.

4.6 Nested QEMU virtual machine boot

As the CPU polling failed on both of the 32-bit ARM devices, the BeagleBone

Black and the Raspberry Pi, at least one fully functioning implementation is

needed to show that the project implementation is actually working. This is

achieved by using a QEMU virtual machine in the Yocto build environment virtual

machine. This kind of virtualization in a virtual machine is known as nested

virtualization. In this section, a nested virtual machine with an emulated 64-bit

processor is deployed, and the built operating system image is tested with that.

The Yocto image needs to be again separately built for this machine configuration.

This can be done by simply changing the value of MACHINE variable in the

local.conf to qemux86-64 before running the bitbake command. After the build is

done, some changes are needed for the nested virtual machine configuration. In

build/tmp/deploy/images/qemux86-64/core-image-full-cmdline-qemux86-

64.qemuboot.conf the qb_mem variable is changed to -m 2048 value, being

qb_mem = -m 2048 in the configuration file. This is done to set the nested virtual

machine memory allocation to two gigabytes.

The nested virtual machine is started with runqemu qemux86-64 command. This

is a command introduced by the Yocto build environment. The command in

question runs a virtual machine by the configuration created by the Yocto build,

along with automatically including the qemux86-64 Yocto image built.

After stating the nested qemux86-64 virtual machine, a separate serial console

window opens for the nested virtual machine. Logging in with a user root, the

/dev/shm needs to be mounted with mount -t tmpfs shmfs -o size=1G /dev/shm

command.
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Unlike with the 32-bit ARM architecture target devices, the ODP is able to poll the

CPU properly in the qemux86-64 target environment. Full output of the odp_hello

command issued in the qemux86-64 target is depicted in the figure 11.

Figure 11: The output of odp_hello command in a nested qemux86-64 virtual ma-
chine running the project Yocto image.

The resulting output of the odp_hello can be seen in the figure 11. First thing to

note is that the ODP is unable to get the default size of the hugepages. This is

because the hugepages are not used nor even configured for the Yocto image.

The hugepages are not required for basic ODP functionality. After these warnings

about the hugepages, the expected output of odp_hello in printed, being the

features utilizable by the ODP. In the end of the output in figure 11, it can be seen

that the odp_hello prints a hello message from CPU of index 3. This hello

message being from other CPU than index 0, along with now absent warning

messages about failing to poll for the number of CPUs and their frequencies,

indicate that the CPU can be polled properly in this qemux86-64 nested virtual

machine. With this, it is proven that the ODP in the project Yocto image is properly

implemented and functional.
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5 Conclusion

The goal of the project was to establish a build environment, in which it would be

possible to provision operating system images, for example, for embedded

systems. The images in question would be required to include ODP framework

compiled for the target architecture.

While the project build environment implementation did work, the ODP did not

work on all the end-systems tested. That, however, was due to the ODP being

incompatible with the tested 32-bit ARM architectures.

The operating system images were successfully built with ODP for all tested

platforms. With this, the goal of the project was met. There was no need to change

the Yocto recipes for building the ODP, as all the additional changes were basically

to meet the target platform requirements. Once the basic boot file delivery flow

was set up, the boot file delivery environment was also easy to use for multiple

test builds for each target system. With this, it is concluded that the environment

for building the operating system images with ODP included is functional.

This project utilized as a reference for software development chain would be

beneficial in, for example, testing a software implementation on an actual

hardware or in an emulated environment. As the project results show, the exactly

same software can fail when compiled on different architectures. If this sort of

environment would be implemented as a part of the software testing, the

functional failure witnessed caused by different platform architectures could be

caught early on.

If the reference implementation is to be taken into use as a part of a software

development chain, the changes in build environment target variables could be

automated, along with adding the additional metadata layers needed. An ideal

implementation would require little to no manual interaction from the developer.

One could, for example, create a script to change the target infrastructure
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variables and getting the metadata layer repositories needed, along with setting

the proper bitbake-layers to be used with the build target. Copying the boot files

after the build to the respective file serving locations could also be done by an

automated script after a build is successful.
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