

Static code analysis in Robot Framework

Rules for Robocop

Tatu Alatalo

Bachelor’s thesis

May 2022

Information and Communications Technology

 Description

Alatalo, Tatu

Static code analysis in Robot Framework, Rules for Robocop

Jyväskylä: JAMK University of Applied Sciences, May 2022, 42 pages.

Technology, Communication and Transport. Degree Programme in Information and Communications Tech-
nology. Bachelor’s thesis.

Permission for web publication: Yes

Language of publication: English

Abstract

Static code analysis is becoming part of test automation as it can help to make the code easier to read, re-
view and maintain. Having good practises while making code also makes the code to age slower, reduce
bugs during implementation and increase reusability.

Task was commissioned by Qvantel Oy for the test automation team from a customer program as they
were looking for a static code analysis tool called Robocop for Robot Framework. Objectives were to find
out if Robocop is a suitable static code analysis tool for the test automation team. Secondly, how much
work is needed to edit test suites and resource files if Robocop is taken into use. Finally, it should be found
out what is the current coding standard in the test automation team.

Task was done using applied research strategy and blended research methods including quantitative, quali-
tative and action research. Three files were chosen during the task to test with Robocop, two test suites
and one resource file. All three were ran through Robocop and all the unique issues that were raised by Ro-
bocop were noted and then discussed with the test automation team. During this “rules for Robocop” -
meeting it was agreed how those issues should be handled and a configure file for Robocop was created
from the meeting notes. It was also noticed that two custom rules are needed and those were created be-
fore running all three files again with the configure file that included modified built-in and custom rules.

Results of those both execution measurements were compared, and the results were that the issue amount
was a lot less with the modified rules than with the original built-in rules. Even though there were less is-
sues raised by Robocop and those are effortless to fix, it was also noted that there are excessive number of
issues to be handled that takes quite a lot of time. Robocop tool was taken into use in the test automation
team and created configure file was also started using as a coding standard. A user guide for how to install
and use Robocop was also created as a side product of the task. In the future it is possible to integrate Ro-
bocop with a continuous integration pipeline so it can automatically review pull requests for issues.

Keywords/tags (subjects)

Automation, Static code analysis, Software development, Software testing, Test automation, Testing, Py-
thon, Robot Framework, Robocop, Quality assurance

Miscellaneous (Confidential information)

 Kuvailulehti

Alatalo, Tatu

Staattinen koodianalysointi Robot Frameworkissa, Säännöt Robocopille

Jyväskylä: Jyväskylän ammattikorkeakoulu. Toukokuu 2022, 42 sivua.

Tekniikan ala. Tieto- ja viestintätekniikan tutkinto-ohjelma. Opinnäytetyö AMK.

Julkaisun kieli: englanti

Julkaisulupa avoimessa verkossa: kyllä

Tiivistelmä

Staattisesta koodianalysoinnista on tulossa osa testiautomaatiota ja se voi tehdä koodista helpompaa lu-
kea, katselmoida sekä ylläpitää. Hyvät käytänteet kirjoittaessa koodia myös hidastavat koodin vanhene-
mista, vähentävät vikoja sekä lisäävät koodin uudelleenkäytettävyyttä.

Työn tilaaja Qvantel Oy oli kiinnostunut staattisesta koodianalysointi-työkalusta nimeltä Robocop Robot
Frameworkille, joka mahdollisesti voitaisiin ottaa käyttöön asiakasohjelman testiautomaatiotiimissä. Työn
tavoitteena oli ottaa selvää, onko Robocop sopiva staattinen koodianalysointi-työkalu testiautomaatiotii-
mille, paljonko työtä tarvitaan testikokoelmien sekä resurssitiedostojen muokkaamiseen, jos Robocop ote-
taan käyttöön sekä ottamaan selvää mikä on testiautomaatiotiimin tämänhetkinen koodistandardi.

Työ toteutettiin käyttäen sovellettua tutkimusstrategiaa sekä monimenetelmällistä tutkimusta, joka koostui
määrällisestä, laadullisesta ja kehittämistutkimusmenetelmästä. Kolme tiedostoa valittiin testattavaksi Ro-
bocopin kanssa, joista kaksi oli testisarjoja ja yksi resurssitiedosto. Kaikki kolme tiedostoa ajettiin Roboco-
pin läpi ja yksittäiset ongelmat kerättiin yhteen. Näistä keskusteltiin testiautomaatiotiimin kanssa ”säännöt
Robocopille” nimisessä tapaamisessa, jossa päätettiin kuinka nämä esiin nostetut ongelmat tullaan käsitte-
lemään. Tapaamisen lopputuloksena päätöksistä luotiin konfiguraatiotiedosto, jossa muokattiin Robocopin
sisäänrakennettuja sääntöjä. Huomattiin myös, että sen lisäksi tarvittiin luoda kaksi yksilöllistä sääntöä. Lo-
puksi nämä tiedostot ajettiin uudestaan Robocopin kanssa, joka käytti luotua konfiguraatiotiedostoa sisäl-
täen muokatut sisäänrakennetut ja yksilölliset säännöt.

Molempien mittauskertojen tuloksia verrattiin keskenään ja tulokset osoittivat, että ongelmia oli paljon vä-
hemmän mukautettujen ja yksilöllisten sääntöjen kanssa kuin alkuperäisten sisäänrakennettujen sääntöjen
kanssa. Vaikka Robocopin ilmoittamia ongelmia oli vähemmän ja ne voivat olla suhteellisen helppoja kor-
jata menee kuitenkin tiimin kaikkien testisarjojen ja resurssitiedostojen muokkaamiseen paljon aikaa. Robo-
cop otettiin käyttöön ja konfiguraatiotiedostoa alettiin käyttämään koodistandardina. Sivutuotteena syntyi
myös käyttöohje Robocopin käyttöönottoa varten. Tulevaisuudessa Robocop on mahdollista integroida au-
tomatisoituun julkaisuputkeen, jossa se voi automaattisesti katselmoida sääntörikkomuksia vetopyynnöstä.

Avainsanat (asiasanat)

Automaatio, Laadunvarmistus, Ohjelmistotuotanto, Ohjelmistotestaus, Python, Robot Framework, Robo-
cop, Staattinen koodianalysointi, Testiautomaatio, Testaus

Muut tiedot (salassa pidettävät liitteet)

4

Contents

1 Introduction .. 6

1.1 Research .. 6

1.2 Qvantel Oy ... 6

1.3 Research questions ... 7

1.4 Research strategy and methods .. 7

2 Theoretical basis .. 9

2.1 Software testing .. 9

2.2 Test automation .. 10

2.3 Static code analysis ... 12

2.4 Robot Framework .. 13

3 Assignment .. 18

3.1 Robocop .. 18

3.2 Alternative linter ... 19

3.3 Installing Robocop ... 19

3.4 Test data .. 22

3.5 Rules for Robocop ... 25

3.6 Creating configure file ... 26

3.7 Creating custom rules ... 28

3.8 Running test data with the configured rules .. 31

3.9 Robocop user guide for test automation team... 34

4 Result analysis ... 35

5 Conclusion ... 37

6 Further Development .. 39

References .. 40

Figures

Figure 1. Test Automation Process (Hamilton 2022) .. 12

Figure 2. Example test suite (Robot Framework - Simple example N.d.) 14

Figure 3. Example resource file (Robot Framework - Simple example N.d.) 15

Figure 4. Lower-level keywords in CustomLibrary.py (Robot Framework - Simple example N.d.)16

Figure 5. Console output (Robot Framework - Simple example N.d.) .. 17

Figure 6. Test Execution Log (Robot Framework - Simple example N.d.) 17

5

Figure 7. Robocop flowchart ... 19

Figure 8. Setting up virtual environment .. 20

Figure 9. Installing Robocop .. 21

Figure 10. Amount of built-in rules ... 21

Figure 11. First suite ran with built-in rules .. 23

Figure 12. Second suite ran with built-in rules ... 24

Figure 13. Resource file ran with built-in rules ... 24

Figure 14. Rules for the Robocop wiki-page in Qvantel Confluence .. 26

Figure 15. Config.robocop file ... 28

Figure 16. Custom rule W9999 created in PyCharm ... 29

Figure 17. Completed custom rules in PyCharm ... 30

Figure 18. Completed custom rules flowchart .. 31

Figure 19. First suite with modified rules ... 32

Figure 20. Second suite with modified rules... 32

Figure 21. Resource file with modified rules .. 33

Figure 22. Editing test case names in test suite 2 ... 33

Figure 23. Testing custom rules in test suite 2 ... 34

Figure 24. User guide for how to use Robocop .. 35

Tables

Table 1. Comparing results of test suite 1 .. 36

Table 2. Comparing results of test suite 2 .. 36

Table 3. Comparing results of resource file .. 37

6

1 Introduction

1.1 Research

Coding standards and static code analysis are a key part of software development as that makes

code easier to read, review and maintain by people on all levels. Having good practises while mak-

ing code makes the aging of the code slower, reduces bugs during implementation and increases

reusability. As static code analysis tools have been developed for test automation frameworks,

practises have been also taken in use in test automation.

The subject for this thesis was commissioned by Qvantel Oy as the test automation team in the

customer program are looking for a possibility to take in use a static code analysis tool called Ro-

bocop for Robot Framework. There is also a personal interest in this subject as these kinds of prac-

tises may bring the test automation in general more in line with coding in software development.

It is also noticed that there are none or few existing research about this subject, at least regarding

static code analysis in Robot Framework. It should also be acknowledged that the writer of this

thesis is also working as a test automation engineer in the same test automation team.

Benefits of taking in use a tool for checking test suites and resource files would be that it gives

more time to focus on the test or a keyword itself instead of using time to verify if there is a cor-

rect number of empty lines between test cases or keywords. Test automation team has a coding

standard, but it is not fully documented. It was also discussed what would be the impact for the

existing files if static code analysis tool with rules would be taken in use.

1.2 Qvantel Oy

Qvantel is an IT service company that offers customised business support systems for telecommu-

nication service providers. Currently there are 501-1000 people working in Qvantel and 672 are in

LinkedIn. (Qvantel LinkedIn 2022.)

Qvantel is operating in 23 different countries and its headquarters is in Finland. Customers that

use Qvantel services are Very Mobile, DNA, XL Axiata, European Telco Group, Millicon Group, Al-

tan Redes, MasMovil and WindTre. (Qvantel 2022.)

7

In Techopedia’s article named “Business support system” it is listed that there are eight key BSS

areas in business support systems, which are: product management, customer management, reve-

nue management, customer order management, customer data management, billing and rating,

business-to-business (B2B) and business-to-consumer (B2C) services. BSS is defined as follows:

“Business support system (BSS) helps telecommunication service providers support and extend op-

erations to enhance business services.” (Business support system 2012.) In short, Techopedia’s ar-

ticle states most of the areas that telecom provider needs to run everyday business.

1.3 Research questions

This research aims to answer into following research questions

• Is Robocop suitable static code analysis tool for the test automation team in customer pro-

gram?

• How much work is needed to edit test suites and resource files if Robocop is taken in to

use?

• What is the coding standard in the test automation team?

1.4 Research strategy and methods

How to answer these research questions is then required to choose a suitable research strategy

and a method or methods. Hirsjärvi, Remes and Sajavaara (2013, 132) defines term research strat-

egy as a set of methodological solutions and term research method should be distinguished as a

narrower concept from it (Hirsjärvi, Remes & Sajavaara 2013, 132).

Hirsjärvi et al. paraphrases Robson (1995) to describe the main difference between a research

strategy and a research method with an example analogy called “crossing the river”. Research

strategy is related to the decision should the river be crossed by swimming, walking across the

bridge, flying or sailing over it and research method applies to the type between a boat, a bridge

or a plane. (Ibid.)

8

They also freely reference Robson (1995) and compares main features between applied research

and experimental research as a research strategy. In applied research the aim is to solve practical

problems and predict impact where in experimental research the aim is to gather information and

find the cause. Also, applied research is used to improve and test programs and services alike

where in experimental research it is used to improve and test theories. Applied research is done as

field research where in experimental research is done as laboratory research. It is also noted that

in applied research the research itself is commissioned by an external organisation, such as a com-

pany, where the researcher itself is an expert in the researched field. (Hirsjärvi, Remes & Sajavaara

2013, 133).

Suitable research strategy for this research is then applied research as in this research there is a

problem to be solved, predict impact, and the aim is to improve a process. Research is also done

out there in the field and is commissioned by a private company where the researcher and writer

of this thesis also works as a test automation engineer.

Qualitative research aims to get understanding of the subject and what it is about by asking ques-

tions. These questions give understanding of the subject to the researcher, and it raises more

questions about the researched subject. These answers give a full structure, factors and connec-

tions related to the subject. Qualitative research results are words and sentences when again

quantitative research uses numbers. (Kananen 2015, 34-35)

Quantitative research uses numbers to get results from the research and it is used when there are

multiple units to be researched. Data analyse methods are used to get different statistics and dis-

tributions from the data what that then represents the structure of the subject in a summary.

Quantitative research cannot be used if the subject is not known enough for the researcher. (Ka-

nanen 2015, 38)

Blended research, also known as mixed or multi-research, does not have its own methods but is a

mixture of both qualitative and quantitative research methods. One of these is called action re-

search where the aim is to get a change as a result to the problem through action. Ways to solve

9

the problem is to improve a product, processes or the organization itself. Companies do improve-

ments themselves too, but it should not be compared to action research as it requires research

approach to the problem. (Kananen 2015, 39-40).

Kananen (2015, 43) states that the research itself is regularly involved in the change process mak-

ing, or intervention. He also expresses (2015, 45) that the change should also be proved, and this

is done by comparing before and after measurements. To achieve the change, and intervention is

done between the measurements. Analysis can be done with anything that is quantitative. (Ka-

nanen 2015, 43-45).

This thesis will be using blended research that is a mix of qualitative, quantitative and action re-

search as there is no one method that covers all the defined research questions. Research will be

using action research to compare the results of Robocop, a qualitative method to find out the cur-

rent coding standard and a quantitative method to handle the Robocop results.

2 Theoretical basis

2.1 Software testing

IBM’s article “What is software testing?” gives excellent information what is software testing and

there it is described that software testing commonly as the process of verifying and evaluating

that an application or a software does what it is fit for use. The benefits of it are that it prevents

bugs, improves performance, and reduces the development costs. (What is software testing? N.d.)

Same article also informs that since after the second world war the main method of the software

testing was debugging of the software code but in the 1980s development teams started testing

applications in a real-world setting. That created a quality assurance process that has been part of

the software development life cycle since. IBM’s article quotes Yaroshko (N.d.) from his post to the

uTest developer site that in the 1990s quality assurance started to take shape and started covering

the whole software development cycle. It started the process of planning, designing, creating and

execution of test cases and that led to development of tools for managing testing processes and

test automation. (What is software testing? N.d.)

10

Back then software testing was separated from the rest of the development but nowadays devel-

opment teams use continuous testing where testing is executed while the development of the

software is ongoing. This helps to detect bugs earlier in the process where they are easier and

cheaper to fix. (Ibid.)

IBM’s article states that there are multiple different software test types such as acceptance testing

where it is verified that the whole system is working as intended. Integration testing where it is

ensured that the software components or functions are operating together. Unit testing where the

smallest testable components of an application are performing as they should. Functional testing

where testing is executed by emulating specific business scenarios based on functional require-

ments. Software performance is tested under load in a performance testing and regression testing

is used to test that the new features do not break any previously working functionality. (Ibid.)

Perfecto’s article “Different types of testing in software” adds that there are also more types of

testing such as non-functional testing that is used to verify that the software is ready according to

non-functional parameters such as performance, accessibility and UX. Accessibility testing where it

is ensured that the application is working correctly for users with disabilities. Black box testing

where software code and paths are invisible. End to end testing where it is tested that the work-

flow of the software works from the beginning to the end. Security testing where software is

tested against security vulnerabilities. Smoke testing is used to validate the stability of the soft-

ware and is used on the initial software build to verify that critical functions of the application are

working as expected. (Different types of testing in software 2021.)

2.2 Test automation

Software testing can be divided into two categories, manual and automated testing. In manual

testing a human tester tests the Software Under Testing (SUT) with multiple input conditions and

then compares the results against expected results. If results differ then tester comments and doc-

uments the quality of the software. Manual testing can be either scripted or exploratory. In

scripted testing tests follow a strict test case and follow it step by step. In exploratory testing the

tester tests by discovering and learning just by interacting with the application. (Kumar & Mishra

2016, 9)

11

Kumar & Mishra (2016) articulates that in automated testing automated tools are used to perform

tests on the SUT. This requires writing of code or scripts that will identify bugs by using specified

input conditions and comparing the results against expected results. This way automated testing is

a suitable approach to replace time consuming manual testing, have consistent coverage, to avoid

human errors, and speed up the testing process. (Ibid.)

However, Martin (2017) emphasizes that automated testing does not replace manual testing but is

used to assist. Automation is great for setting up the environments and taking them down, data

entries, form filling, varying data inputs in a repetitive process, backend testing, repetitive and

boring tasks that are prone to human errors, tasks that have high reuse value across many work-

flows, non-functional test types e.g., performance testing. (Martin 2017.)

Hamilton (2022) advises that some test cases are not suitable for automation. Those are newly de-

signed test cases that are executed for the first time manually, test cases that are frequently

changing and test cases that are executed on that purpose basis. (Hamilton 2022.)

In EuroSTAR Huddle article user Anmol (2021) declares that automated testing can be divided into

three categories: (1) automation testing based on the types of testing such as functional and non-

functional testing; (2) automation testing based on the different phases of testing such as unit

testing, API testing and UI testing; and (3) automation testing based on the types of tests such as

smoke testing, integration testing, regression testing, security testing, performance testing and ac-

ceptance testing. (Anmol 2021.)

Automated testing process is following 5 steps (see Figure 1). In the first step the test tool is being

selected and usually it highly depends on the technology that the software is made of. After that

the scope of the automation is defined, usually focusing on areas that have a large amount of

data, have common functionalities, and have complex test cases. Planning, design, and develop-

ment comes next, and it is where the test script is planned and implemented. After that, the test is

12

executed by the tester. Finally, the automated test is kept maintained especially when new func-

tionalities are added to the application. (Hamilton 2022.)

Figure 1. Test Automation Process (Hamilton 2022)

2.3 Static code analysis

Bellairs (2020) states that static code analysis is a debugging method where source code is exam-

ined automatically or manually before a program is run. Analysing is done against a set or various

sets of coding rules. Static code analysis is the same as static analysis or source code analysis but

not to be confused with dynamic analysis where code is examined while executing the program.

(Bellairs 2020.)

On the gains of static code analysis Bellairs (2020) comments that it contends with weaknesses of

the source code that would lead to vulnerabilities and complies the code with coding standards.

Static code analysis is also often faster than dynamic code analysis since a program is not executed

and therefore it identifies defects before a program has been run. (Ibid.)

Static code analyser tools allow analysing source code automatically instead of manually which is

more effective. Bellairs (2020) mentions that manual code reviews have tendency to human errors

and automated tools do not. Although automated tools check with specific rules that are self-

made or defined by standards. (Ibid.)

13

Static code analysis also improves the quality of the code and automates code quality mainte-

nance. Luminousmen’s article “Python static analysis tools” also states that there are seven differ-

ent types of static analysis, which are: code styling analysis, security linting, error detection, UML

diagram detection, complexity analysis, comment styling analysis and unused code detection.

Most of the IDE (an integrated development environment) programs use specific tools automati-

cally depending on the IDE and the coding language. For example, PyCharm uses PEP8 style guide

for python code. (Python static analysis tools 2021.)

2.4 Robot Framework

Robot Framework is a keyword-driven automation framework for test automation and robot pro-

cess automation (RPA). It’s based on Python but also supports Java (Jython) and .NET (IronPython)

if the Robot Framework version is 4.1.3 or older. Robot Framework has built in libraries, and it also

supports user and community made libraries, such as SeleniumLibrary which is a web testing li-

brary. (Robot Framework User guide 2021.)

Prototype for Robot Framework was done by Pekka Klärck when he was doing his master’s thesis

in 2004 and the first version was developed in 2005 when he was working in a customer project in

Nokia Networks. Robot Framework was open sourced in 2008 when 2.0 version came out and its

copyrights were owned by Nokia Network who also did the sponsoring. In 2015 direct Nokia spon-

soring ended and Robot Framework Foundation has been doing the sponsoring and development

since then. (Klärck 2016.)

According to Klärck (2016), Robot Framework has become the de facto standard test automation

framework in Finland and companies that use it include like Nokia, Kone, Metso, Vaisala, Finnish

Centre for Pensions and ZEF (Klärck 2016). Robot Frameworks homepage also lists other compa-

nies (not just from Finland) like Finnish Tax Administration, ABB, Axon, Cisco, and Finnair along

with others (Robot Framework Users). Although, Vaisala, Finnish Centre for Pensions and ZEF are

not listed there.

Keyword-driven testing makes test suites structured and readable. Keywords can be divided into

three types: (1) Higher-level keywords that are used to test a certain part of the SUT; (2) lower-

14

level keywords that keep test cases minimal and succinct; and (3) technical keywords that are used

to access to the SUT and run the tests. (Robot Framework – Test automation the smart way N.d.)

Robot Framework homepage contains an example of a robot test suite where Robot Framework

syntax can be seen (see Figure 2). In the test suite there are two test cases where it is tested that

the user can login to the website with a correct password and another case where the user tries to

login with an invalid password that is expected to fail. (Robot Framework – Simple example N.d.)

Figure 2. Example test suite (Robot Framework - Simple example N.d.)

Test cases use keywords that are defined in a resource file. Here are technical and higher-level

keywords such as “Connect to Server” and “Login User” (see Figure 3). Keywords also take in vari-

ables as an argument e.g., login name and password. (Ibid.)

15

Figure 3. Example resource file (Robot Framework - Simple example N.d.)

CustomLibrary.py contains lower-level keywords that are used in higher-level keywords (see Figure

4). In this example those are python-based keywords that are defined for more complex and spe-

cialized functionality. For example, “Login User” higher-level keyword uses the “Execute Login”

lower-level keyword that is defined in this file. (Ibid.)

16

Figure 4. Lower-level keywords in CustomLibrary.py (Robot Framework - Simple example N.d.)

When executing the example test suite Robot Framework prints progress to the console (see Fig-

ure 5) where can be seen if the test case is PASS or FAIL. Finally, when the test suite is completely

executed the results can be viewed from the log (see Figure 6) where results can be checked

through keyword level. (Ibid.)

17

Figure 5. Console output (Robot Framework - Simple example N.d.)

Figure 6. Test Execution Log (Robot Framework - Simple example N.d.)

18

3 Assignment

3.1 Robocop

Robocop is a linter that performs static code analysis to Robot Framework code. First version of it

was released in September 2020. It has been developed around the same values as the cybernetic

police officer from the movie RoboCop who had 3 prime directives: serve the public trust, protect

the innocent and uphold the law. Robocop tool serves the developers and testers so they can cre-

ate applications that they are able to trust. Testers and developers can produce unacceptable

code and Robocop protects them from that. If developers and testers follow the guidelines from

Robocop they can keep the code in order, comprehensible and logical and thus upholding the law.

(Robocop repository 2022.)

In Robocon 2021 conference Nojek Mateusz stated that Robocop uses Robot Framework parsing

API to parse files, and it checks the code for violations of the code quality standards or potential

errors. Rules are used as a code quality standard and those can be modified with configuration file

by the user if they use different standards. Built-in rules can also be extended by creating new cus-

tom rules. Nojek also mentioned that Robocop reports can be redirected to a different location

and can use different output formats. It can also be set to filter rules out by severity level and is

able to ignore specific files or patterns. (Hirsz, B., Nojek, M. 2021.)

To interpret how the Robocop tool is used, a flowchart was created (see Figure 7). Robocop starts

to examine the file with the rules that it has been given and checks the line of code for issues. If

there is an issue, it is then added to the report. Same steps are then repeated to verify that the

current line does not have any issues before continuing to the next line. If there are no longer lines

to be examined then the report is complete and the test automation person can read the report.

19

Figure 7. Robocop flowchart

3.2 Alternative linter

Before starting assignment with Robocop, it is necessary to look for similar static code analysis

tools, also known as linters, that are intended to be used with Robot Framework. There is at least

one known tool called Robot Framework linter (rflint) that was first released in October 2014 by

Bryan Oakley and current version 1.1 was released in June 2020. Like Robocop, it contains built-in

rules and some of those are configurable e.g., “LineTooLong” that verifies that line of code is

within character limit. It also supports argument file where rules can be listed by what user wants

to e.g., disable some rules, configure a set of rules, or create different argument files for different

robot-files. User can also create custom rules with simple python classes. (Rflint repository 2019.)

Main differences between Robocop and Rflint is that Robocop comes with more built-in rules, can

be integrated to IDE tools, uses official Robot Framework Parsing API, can redirect output to a file

and claims to be easier to extend with new rules (Robocop repository 2022). Rflint was updated

last time in June 2020 (Rflint repository 2019) and Robocop in March 2022 (Robocop repository

2022). Therefore, assignment continues with Robocop as it seems to be a more versatile out of the

box solution for this assignment.

3.3 Installing Robocop

Before installing Robocop, a new virtual environment was needed. Virtual environment (venv) is a

Python environment where Python interpreter, libraries and scripts are installed virtually but are

isolated from other virtual environments that may have different Python versions, libraries and

20

scripts (Venv 2022). Test automation team in the Qvantel customer program uses pyenv for han-

dling virtual environments and python version 3.7.3, so a new virtual environment named the-

sis_robocop was created (see Figure 8).

Figure 8. Setting up virtual environment

After the virtual environment was created, it was necessary to install required libraries such as ro-

bot framework, selenium library and others required to run robot framework tests correctly.

Those were installed using requirements.pip file that is used in the customer program and can be

found from their repository. Following Robocop documentation from their github-page, robocop

was installed afterwards (see Figure 9).

21

Figure 9. Installing Robocop

By default, Robocop has a set of built-in rules that are active. Amount of those rules are 116 which

consists of 40 error rules, 64 warning rules and 12 info rules (see Figure 10).

Figure 10. Amount of built-in rules

22

3.4 Test data

Due to the number of available rules, it was agreed that these rules are run against a set of test

data and see if there are similar errors, warnings or info that are caught with Robocop. This way it

may be found out the common issues that there may be. Customer programs’ main regression set

has over 60 test suites that covers over 2100 test cases and there are also other sets with more

cases for different applications including API regression tests making test suites total number over

100. It was agreed that 3 files will be selected randomly: one regression test suite, one API regres-

sion test suite and one resource file. Those that were selected were “Foreign_address.robot”,

“API_Shopping-basket_with_several_subscriptions.robot” and “salestool_keywords.resource”.

“Foreign_address.robot” (later referred to as the first suite) regression test suite tests how a cus-

tomer with foreign address is handled in customer management (CM), order management (OM)

and self-service applications using graphical user interface. In “API_Shopping-

basket_with_several_subscriptions.robot” (later referred to as the second suite) test suite several

subscriptions are ordered using requests through the application programming interface.

“Salestool_keywords.resource” (later referred to as a resource file) is a resource file where differ-

ent kinds of keywords are stored that are meant to be used in Salestool test cases.

After test data was selected, Robocop could be executed with these files with default built-in

rules. First execution was made with hook report all so the Robocop prints a compilation of the

issues at the end of the console print. In the first suite there were a total of 161 issues (see Figure

23

11) where 160 of those were warnings and one info issue. This first suite is over 240 lines long and

contains 27 different test cases.

Figure 11. First suite ran with built-in rules

After this, the second suite was executed and there were 28 different issues with 28 warnings (see

Figure 12). Second suite is smaller than the first one, with length a of 66 lines and there are 6 test

cases.

24

Figure 12. Second suite ran with built-in rules

Finally, the resource file was executed and there were a total of 272 issues where 256 were warn-

ings and 16 info issues (see Figure 13). Resource file is a collection of keywords with a length of

over 650 lines and over 60 different keywords.

Figure 13. Resource file ran with built-in rules

25

3.5 Rules for Robocop

After test data was executed with built-in rules it was noticed that built-in rules should be modi-

fied for the test automation team as they use different standard (convention) for Robot Frame-

work. E.g., Robocop built-in rule for the number of empty lines between test cases expects only

one empty line and the test automation team’s own coding convention requires two. This was

printed as an issue in the first suite where there were two empty lines between test cases but not

in the second suite where were only one empty line between test cases. To get a clarification what

and how the rules should be modified, it was agreed to have a workshop meeting where the rules

for the Robocop can be decided. It was also necessary to document these as the convention that is

used in test automation team is mostly undocumented and knowledge of it is shared verbally.

To get a list of rules that should be modified, it was needed to find out what unique rules were in

the executions. First suite had 12 different issue ids, second suite 8 and the resource file had 16.

These all were combined into a list and duplicate ids were then removed. After that, it was no-

ticed that there were a total of 26 unique issues.

It was agreed that a wiki-page in Qvantel intranet could be utilized to hold a table where these 26

rules can be added as rows. Table consisted of 6 columns: test suite (1), severity (2), rule id (3),

why (4), question/info (5) and lastly, conclusion (6). In the first column it was written the file name

and the line and the column where Robocop found the issue. Severity column marked the severity

of the issue which could have been error, warning or info. In rule id column was marked the id of

the rule. In the ‘why’ column it was marked why the issue was raised by Robocop and a link to the

Robocop documentation page where the rule can be seen in more detail. Question/info column

holds the question or info to the test automation team that leads to a question what to do with

this issue. In this column it was also mentioned if the rule is configurable. Last column was used to

mark down the conclusion of what to do with the rule.

When all the rules were listed on the page an email invitation to the test automation team was

sent with a link to the rules for the Robocop wiki-page and to the Robocop documentation page.

In the message it was mentioned that every team member should at least glance through all the

issues beforehand to get an idea what will be talked about in the meeting. When the workshop

started in Microsoft Teams, it was shown how the Robocop works and what it is used for with an

26

example run. and then it was started to talk about the rules for two hours. Conclusions were

marked into the conclusion column while the meeting was ongoing (see Figure 14).

Figure 14. Rules for the Robocop wiki-page in Qvantel Confluence

In the meeting it was also discussed about the severity of the issues. It was agreed that info-level

issues are “good to know” and are not mandatory to fix but warning and especially error issues

should be fixed every time these occur. While discussing this, it was also mentioned that severity

of every built-in and external rule can be raised or lowered if wanted. After the meeting it was dis-

cussed that the test automation team would like to try Robocop themselves and it was agreed that

during this assignment there will be a user guide created for that.

3.6 Creating configure file

After the rules for the Robocop were decided in the meeting it was necessary to create a configure

file where the built-in rules can be modified. This file is being used as an argument-file so that

there is no need to list every modified rule in the command line. There were 5 rules that did not

need any modification so there was no need to write them in to the configure file. Report all hook

was added to the end of the configure file so every time configure-file is being used there will be a

clean report.

27

It was agreed that 6 rules can be totally excluded as those either are against current coding con-

vention or are unnecessary. Excluded rules were as follows: not capitalized test case title, under-

score in keyword name, too many arguments, too many calls in keyword, too long test case and

too many calls in test case. These were added into the configure file with exclude hook.

Secondly, every built-in rule severity could be raised or lowered, and it was decided that depre-

cated statements -rule should be error level instead of warning level. Total of 6 rules were decided

to lower into info-level and those were following: section variable not uppercase, missing doc test

case, non-local variables should be uppercase, todo in comment, too long keyword and file too

long. These were added into the configure file with a configure hook where severity level was

given with a letter.

Rules that needed configuring were following 8 rules. Section out of order -rule (1), it was agreed

that sections within the test suite are as follows: settings, variables, keyword and test cases. De-

fault rule expects that keywords introduced in the test suite are at the end of the suite. Line too

long -rule (2) was agreed to extend to 140 characters instead of 120. Empty lines between test

cases (3), empty lines between keywords (4) and consecutive empty lines -rule (5) were raised

from one to two empty lines. Too long keyword -rule (6) name character limit was raised from 40

to 80 characters and file too long (7) -rule was raised from 400 to 1000 lines. Not allowed char in

name (8) -rule needed a new regular expression (regex) pattern as it by default only checks that

suite, test case or keyword name does not have a period or a question mark. It was modified with

a pattern where it is checked that the name only consists of characters that are allowed: period

mark, round brackets, hyphen, word characters and any whitespace characters. These were also

added to the configure file with a configure hook (see Figure 15).

28

Figure 15. Config.robocop file

3.7 Creating custom rules

When creating a regular expression pattern for “not allowed char in name” -rule and period mark

now allowed, it was noticed that Robocop did not notice if the keyword or a test case name has

consecutive period-marks in it. E.g., “1.1. This is a test case name…” was a valid test case name ac-

cording to the Robocop but by test automation team coding convention it is a bad test case name.

For this reason, a custom keyword was needed.

Robocop supports external rules that can be made by the user, and these custom rule python-files

use classes from the Robocop library itself (Robocop external rules 2022). Basics of the rule were

created using classes Rule and RuleSeverity where the rule id, number, name, message to the con-

sole, severity and the documentation for the rule were given. After that the logic of the rule was

created by implementing a class called NameFormatChecker that uses Robocop class Visi-

torChecker as a parameter. Created class has a function called visit_TestCaseName where the reg-

ular expression pattern is used to check that the case name is in the correct format.

29

In the customer program test automation coding convention, it is agreed that test case names can

contain a numbering before the test case name. Therefore, the pattern checks that in the number-

ing it is only allowed numbers and period-marks. After the first whitespace character the pattern

checks that the rest of the name contains only allowed characters. If the test case name is not in

the correct format, a warning is then raised (see Figure 16).

Figure 16. Custom rule W9999 created in PyCharm

After custom rule id 9999 named “incorrect name format” was created it was soon noticed that

the rule does not notice if the numbering does not have a period mark as the last character. And

due to that, a second custom rule was needed. This was done in a similar way as rule id 9999

starting with the basics of the rule. It uses the same function as rule id 9999 and checks that if the

name has numbering then the last character should be a period mark. If not, then a warning

named “name-numbering-missing-period” is raised (see Figure 17).

30

Figure 17. Completed custom rules in PyCharm

For an uncomplicated presentation, a flowchart interpreting the usage of both custom rules was

created (see Figure 18). In the line that is being examined the first thing Robocop does when using

this rule is to check that does the test case name include forbidden characters. If yes, raise a warn-

ing with id 9999 and continue to the next verification where is checked does the test case name

contain a numbering. If yes, get the numbering and verify that there is a period mark at the end of

the numbering. If there is no period mark, then raise a warning with ID 9998 and continue to the

any rule that is next in line.

31

Figure 18. Completed custom rules flowchart

Finally, a folder named robocop_rules was created that contains two folders: configs folder that

contains the config file and external_rules that contains custom_rules.py file. To take in use the

external rules, a path to the custom_rules.py file was added to the end of the config file.

3.8 Running test data with the configured rules

After the config file and the custom rules were created it was necessary to test again with the

same test data but using the config file. It was also mandatory to test that the custom rules also

work as expected.

First suite was executed with the modified rules and there were a total of 49 issues (see Figure 19)

where 16 of those were warnings and 33 info issues. After that the second suite was run through

Robocop and the suite had 19 issues (see Figure 20) where 11 of those were warnings and 8 info

32

issues. Finally, the resource file had 155 issues (see Figure 21) where there were 113 warnings, 1

error and 41 info issues.

Figure 19. First suite with modified rules

Figure 20. Second suite with modified rules

33

Figure 21. Resource file with modified rules

Validity of custom rules was tested by editing temporarily test case names in the second suite to

have a test case name where numbering was missing period and one where there were

consecutive period marks after the test case name. “1. Reserve Three MSISDNs” -test case name in

line 20 became “1 Reserve Three MSISDNs” and “2. Create Shopping Basket With Three Subscrip-

tions” in line 25 became “2. Create Shopping Basket With Three Subscriptions...” (see Figure 22).

After this change, the second suite was run again, and the results contained 2 new warnings with

the identifications W9998 name numbering mission period mark and W9999 incorrect name for-

mat (see Figure 23).

Figure 22. Editing test case names in test suite 2

34

Figure 23. Testing custom rules in test suite 2

After testing that configure file and custom rules work as expected, these new created files and

changes in the requirements file were committed into the robocop branch in the test automation

repository in Qvantels Gitbucket and later merged into the develop branch.

3.9 Robocop user guide for test automation team

User guide was needed so the test automation team could try out Robocop in their daily work. It

was also created as a wiki page in Qvantel Confluence (see Figure 24.), and it is made of 3 main

parts: how to install Robocop, how to use it and how to setup it with PyCharm. User guide is writ-

ten in high level and with links to the official Robocop documentation.

How to install section guides test automation team member to install Robocop from the require-

ments file from the repository or with a command line command. In the how to use section it is

guided how to exclude rules, how to configure a built-in rule, how to edit configure file and how to

create custom rules. In the final section it is guided how Robocop can be used in PyCharm as an

external tool and how to enable plus use it with a keyboard shortcut.

35

Figure 24. User guide for how to use Robocop

4 Result analysis

Robocop seems to be a suitable static code analysis tool for the test automation team as they took

it in use, and it was straightforward to modify as well as extend by creating custom rules. It seems

also to be actively updated compared to rflint.

When comparing the results of test suite 1 (see Table 1.) it is noticed that there are almost 70%

less issues raised by Robocop from 161 issues to 49 issues. It is possible that the default built-in

rules are stricter compared to what was modified and therefore there are a lot more issues raised

with built-in rules. Less issues with modified rules could be explained due to the reason that some

of the rules were decided to be excluded, severities of some rules were lowered, and some rules

were customised accordingly. With built-in rules there were 55 warnings only because Robocop

noticed a period-mark in test case names and that was now allowed. There were also 26 warnings

about numbering of test cases as Robocop expected test case names to start with a letter and now

numbering of test case names are permitted.

36

Table 1. Comparing results of test suite 1

Test suite 1
(built-in rules)

Test suite 1
(modified rules)

Error count 0 0
Warning count 160 16
Info count 1 33

Total issues 161 49

In test suite 2 there were a total of 28 issues with built-in rules and 19 issues with modified rules

(see Table 2) and that is over 32% less issues. This could be due to the same reason as with test

suite 1 that severities of warnings were lowered, and some rules were excluded or customised.

Table 2. Comparing results of test suite 2

Test suite 2
(built-in rules)

Test suite 2
(modified rules)

Error count 0 0
Warning count 28 11
Info count 0 8

Total 28 19

Resource file had 43% less issues from 272 issues to 155 (see Table 3). Same reasons apply here as

with previous files and there is one error issue with modified rules. That is because one rule re-

garding using of deprecated keywords from Robot Framework was raised from warning to error

severity level. Most of the warnings that were not reported with modified rules were empty lines

between keywords (63 warnings) and underscore in keyword name (40 warnings). First mentioned

rule was customised from one empty line to two empty lines and the second rule was excluded.

37

Table 3. Comparing results of resource file

Resource file
(built-in rules)

Resource file
(modified rules)

Error count 0 1
Warning count 256 113
Info count 16 41

Total 272 155

In all test data ran with modified rules it was noticed that there were less warnings, and more info

level issues. This does not mean that there are warning level issues hidden and not reported by

Robocop anymore, but warnings were raised as an info level issue or not at all due to the agreed

rules by the test automation team. Errors and warnings that are now raised with the modified

rules are now valid issues that must be fixed in the test suite. Agreed rules in the configure file also

makes it easier for the test automation team member to check the file for real issues and info level

issues help the user to make improvements to the file.

Taking into account that there are many issues in the test data after taking in use the configured

rules, it is possible that the amount of work that is required to edit all the test suites and resource

files is excessive. Even the smallest test data file had 11 warnings that should be taken care of and

there are at least over 100 test suites in use. Although, all the issues that Robocop reports can be

relatively effortless to fix, as those are only related to the coding standards that were created in

the configure file. By this number of issues, it still takes quite a lot of time to fix all the issues.

Validity of the created coding standard is correct because it was agreed with team members who

are working in test automation and are experts in their field. It is now written down how the test

suites and resource files should look like and that can be verified with Robocop.

5 Conclusion

Objectives of this thesis were to find out if the Robocop is a suitable static code analysis tool for

the test automation team, what is the current coding standard used by the team and how much

there is to fix in the test suites and in resource files after coding standard is found out.

38

All the objectives were met as the Robocop was taken in use by the test automation team, coding

standard was created as a configure file that can be modified and extended by the team itself and

test automation team can now see the issues from the files themselves using Robocop. This gives

them more time during pull requests to focus on the logic side of the tests and not to the syntax

issues. There are quite an excessive number of issues in all the files, and it is up to the test auto-

mation team to decide how and when they decide to fix them.

Chosen research strategy and methods were correct as it was not possible to do this research with

other strategy or with only one method. Qualitative research method was used to gather infor-

mation about what are the current coding standards in rules for Robocop meeting. A quantitative

research method was used to handle Robocop results so they could be utilized and the knowledge

foundation for this was done in the assignment and theory basis. Although, the theory basis was

slightly brief but manages to give a solid ground for the assignment. Action research required that

there is a problem that should be solved, although there was no direct problem to be solved in this

assignment it was still in the background as a driving force for this assignment. Action research

was utilized in full course during the assignment as there were before and after measurements

and intervention between. It was also present when analyzing results.

In the assignment Robot Framework lint tool was not tested with Qvantel files and no other static

code analysis tools for Robot Framework were not found other than that and Robocop. There

could be others but most likely those are not that well known and maintained. It should be also

noted that Robot Framework linter may be suitable for use but as it is not maintained actively

there is a possibility that it is not compatible with the newest version of Robot Framework.

It should be also taken in consideration that are the Robocop built-in rules a standard for the Ro-

bot Framework. So far there is no official code quality standard for Robot Framework, but it might

be that in the future Robocop could become one of the standards as it was promoted in Robocon

2021 and now in the upcoming Robocon 2022. People working on it are also professional quality

assurance and test automation engineers (Robocop 2021). For that reason, it is possible that Ro-

bocop may be maintained for a long period of time.

39

From the ethical perspective it should be examined that is there a problem with personally work-

ing in the same test automation team and doing research for it. Research was done ethically by

discussing with team members and listening their thoughts first before telling personal thoughts,

especially when discussing in rules for Robocop meeting.

Coding standard was created from a small sample of files, but it seems to have caught most com-

mon issues that are present in files. There could have been possibly more files to execute with Ro-

bocop to catch more issue types but discussing with the team indicates that they have not yet

seen issues where built-in rules should be modified. Robocop built-in rules seem to be efficient to

catch new issues in other files that were not present in test data during the assignment.

User guide was an additional task for the assignment as it was agreed to be created at the end of

rules for Robocop meeting. Overall, it did not require that much time to create the page as instal-

lation and usage of Robocop was familiar from the assignment. Feedback from the test automa-

tion team was positive as the user guide that was created was uncomplicated to follow and every-

one got Robocop into use without asking for help. It was also mentioned that a new custom rule

could be implemented that checks if the test suite or a keyword contains a debug keyword from

the Robot Framework debug library and gives a warning issue due to that. The findings from this

research could be utilized in other Qvantel customer programs too.

Thesis supervisor Teemu Somppi from Qvantel gave feedback that the user guide was clear to

read. He also stated that the rules for Robocop meeting were arranged and held skillfully as the

agreed rules were relatively clear to follow. Somppi also mentioned that the modifying of built-in

rules and specifically creating the custom rules were done especially well. (Somppi 2022.)

6 Further Development

Main further development idea that was raised by the test automation team was that after the

team has a continuous integration pipeline tool taken in to use, Robocop could possibly be used

there. That way Robocop could check issues from pull requests automatically so the person that is

reviewing pull request does not need to manually run Robocop against files that are being modi-

fied. Robocop repository (2022) seems to have some guidance how on to take it in use with Jen-

kins, an automation server that is also in use in Qvantel.

40

References

Anmol. 2021. Types of Automation Testing. User named Anmol article on EuroSTAR Huddle page.

Accessed 13 January 2022. Retrieved from https://huddle.eurostarsoftwaretesting.com/types-of-

automation-testing/

Bellairs, R. 2020. Perforce blogpost about what is Static code analysis. Accessed on 6 January 2022.

Retrieved from https://www.perforce.com/blog/sca/what-static-analysis

Business support system. 2012. Techopedia article about what is business support system (BSS).

Accessed on 6 January 2022. Retrieved from https://www.techopedia.com/definition/26873/busi-

ness-support-system

Different types of testing in software. 2021. Perfecto’s article about different types of testing in

software on their site. Accessed 10 January 2022. Retrieved from https://www.perfecto.io/re-

sources/types-of-testing

Hamilton, T. 2022. Automation Testing Tutorial: What is Automation Testing? Tutorial in guru99

page. Accessed 13 January 2022. Retrieved from https://www.guru99.com/automation-test-

ing.html

Hirsjärvi, S., Remes, P., & Sajavaara, P. 2013. Tutki ja kirjoita [Research and write]. 132–133. 18th

ed. Porvoo: Bookwell Oy

Hirsz, B., Nojek, M. 2021. Robocon 2021 – 1.02 How to avoid jail for nasty code. Youtube video ser-

vice. Published 7.4.2021. Accessed on 30 March 2022. Retrieved from

https://www.youtube.com/watch?v=vZoyi2ObM8E

Kananen, J. 2015. Kehittämistutkimus opinnäytetyönä: Kehittämistutkimuksen kirjoittamisen käy-

tännön opas [Action research as a thesis: a practical guide to writing action research]. E-book, 34-

35, 38-40, 43-45. Jyväskylä: Jyväskylä University of applied sciences. Accessed on 8 January 2022.

https://janet.finna.fi

Kumar, D., Mishra, K. K. 2016. The Impacts of Test Automation on Software’s Cost, Quality and

Time to Market. Elsevier B.V. 2016. Accessed on 13 January 2022. Retrieved from

https://doi.org/10.1016/j.procs.2016.03.003

Klärck, P. 2016. Pekka Klärck, Eliga - DEVOPS 2016 Helsinki. Video. Youtube video service. Pub-

lished 12.4.2016. Accessed on 20 March 2022. Retrieved from

https://www.youtube.com/watch?v=-M65Oyk0nLw

https://www.perforce.com/blog/sca/what-static-analysis
https://www.techopedia.com/definition/26873/business-support-system
https://www.techopedia.com/definition/26873/business-support-system
https://www.perfecto.io/resources/types-of-testing
https://www.perfecto.io/resources/types-of-testing
https://www.youtube.com/watch?v=vZoyi2ObM8E
https://janet.finna.fi/
https://doi.org/10.1016/j.procs.2016.03.003
https://www.youtube.com/watch?v=-M65Oyk0nLw

41

Martin, J. 2017. Using Automation to Assist –Not Replace – Manual Testing. Blog post in Smartbear

page. Accessed on 13 January 2022. Retrieved from https://smartbear.com/blog/using-automa-

tion-to-assist-not-replace-manual-test/

Python static analysis tools. 2021. Luminousmens article on their homepage. Accessed 6 January

2022. Retrieved from https://luminousmen.com/post/python-static-analysis-tools

Qvantel. 2022. Qvantels homepage. Accessed on 6 January 2022. Retrieved from

https://www.qvantel.com/

Qvantel LinkedIn. 2022. Qvantels LinkedIn page. Accessed on 6 January 2022. Retrieved from

https://www.linkedin.com/company/qvantel/about/

Rflint repository. 2019. Robot Framework linter repository. Accessed 30 March 2022. Retrieved

from https://github.com/boakley/robotframework-lint

Robocop external rules. 2022. Robocop documentation for external rules. Accessed 20 April 2022.

Retrieved from https://robocop.readthedocs.io/en/stable/external_rules.html

Robocop repository. 2022. Robocop repository readme file. Accessed on 29 March 2022. Retrieved

from https://github.com/MarketSquare/robotframework-robocop/blob/master/README.md

Robot Framework User guide. 2021. Robot Frameworks user guide. Accessed on 27 March 2022.

Retrieved from https://robotframework.org/robotframework/latest/RobotFrameworkUser-

Guide.html

Robot Framework – Simple example. N.d. Uncomplicated Robot Framework example in Robot

Framework homepages code playground. Accessed on 27 March 2022. Retrieved from https://ro-

botframework.org/code/?codeProject=N4IgdghgtgpiBcIDKBLKAHANjABAUQA9os4AaEAExgGcBjA-

JxXQBcUB7MBEEcgMxWzUEAbQC65KowBuMCgAV6bAFYxazBM3oBXGOUUAjNswBqMetXa-

dEAVgB0ABhABfIA

Robot Framework – Test automation the smart way. N.d. Quintagroups article about Robot Frame-

work. Accessed on 27 March 2022. Retrieved from https://quintagroup.com/cms/python/robot-

framework

Somppi, T. 2022. Test Automation Manager, Qvantel Oy. Microsoft Teams message 27.04.2022.

Feedback for Tatu Alatalos thesis.

https://smartbear.com/blog/using-automation-to-assist-not-replace-manual-test/
https://smartbear.com/blog/using-automation-to-assist-not-replace-manual-test/
https://luminousmen.com/post/python-static-analysis-tools
https://www.qvantel.com/
https://www.linkedin.com/company/qvantel/about/
https://github.com/boakley/robotframework-lint
https://robocop.readthedocs.io/en/stable/external_rules.html
https://github.com/MarketSquare/robotframework-robocop/blob/master/README.md
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
https://robotframework.org/code/?codeProject=N4IgdghgtgpiBcIDKBLKAHANjABAUQA9os4AaEAExgGcBjAJxXQBcUB7MBEEcgMxWzUEAbQC65KowBuMCgAV6bAFYxazBM3oBXGOUUAjNswBqMetXadEAVgB0ABhABfIA
https://robotframework.org/code/?codeProject=N4IgdghgtgpiBcIDKBLKAHANjABAUQA9os4AaEAExgGcBjAJxXQBcUB7MBEEcgMxWzUEAbQC65KowBuMCgAV6bAFYxazBM3oBXGOUUAjNswBqMetXadEAVgB0ABhABfIA
https://robotframework.org/code/?codeProject=N4IgdghgtgpiBcIDKBLKAHANjABAUQA9os4AaEAExgGcBjAJxXQBcUB7MBEEcgMxWzUEAbQC65KowBuMCgAV6bAFYxazBM3oBXGOUUAjNswBqMetXadEAVgB0ABhABfIA
https://robotframework.org/code/?codeProject=N4IgdghgtgpiBcIDKBLKAHANjABAUQA9os4AaEAExgGcBjAJxXQBcUB7MBEEcgMxWzUEAbQC65KowBuMCgAV6bAFYxazBM3oBXGOUUAjNswBqMetXadEAVgB0ABhABfIA
https://quintagroup.com/cms/python/robot-framework
https://quintagroup.com/cms/python/robot-framework

42

Venv. 2022. Python Software Foundations documentation about what is virtual environment and

how to create it. Accessed on 3 April 2022. Retrieved from https://docs.python.org/3/li-

brary/venv.html

What is software testing?. N.d. IBMs article about what is software testing on IBMs homepage. Ac-

cessed on 7 January 2022. Retrieved from https://www.ibm.com/se-en/topics/software-testi

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://www.ibm.com/se-en/topics/software-testi

	1 Introduction
	1.1 Research
	1.2 Qvantel Oy
	1.3 Research questions
	1.4 Research strategy and methods

	2 Theoretical basis
	2.1 Software testing
	2.2 Test automation
	2.3 Static code analysis
	2.4 Robot Framework

	3 Assignment
	3.1 Robocop
	3.2 Alternative linter
	3.3 Installing Robocop
	3.4 Test data
	3.5 Rules for Robocop
	3.6 Creating configure file
	3.7 Creating custom rules
	3.8 Running test data with the configured rules
	3.9 Robocop user guide for test automation team

	4 Result analysis
	5 Conclusion
	6 Further Development
	References

