

Thang Nguyen

COMPANY-WIDE ABSENCES VIEW

COMPANY-WIDE ABSENCES VIEW

 Thang Nguyen
 Bachelor’s Thesis
 DIN19SP
 Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Bachelor’s Degree in Information Technology

Author(s): Thang Nguyen
Title of the bachelor’s thesis: Company-Wide Absences View
Supervisor(s): Janne Kumpuoja
Term and year of completion: Summer 2022 Number of pages: 46

With the steady growth in company size and team(s) spanning over the world,
the need to know whether or not a colleague is present is necessary. In this re-
gard, the prime motivation of this thesis is to propose a company-wide ab-
sences view (CWAV) to dynamically have easy access to information and sim-
plify processes.

The first contribution of this thesis focuses on data migration & processing that
is permitted under German Federal Data Protection Act (BDSG). Moreover, op-
timizing data solutions will be beneficial to the application scalability.

In the second contribution, a company-wide absences view is implemented
whereby a list of employees will be displayed clearly and nicely in an out-of-of-
fice calendar at the first glance. Finally, the main search bar with a date-time fil-
ter will help users the best way to find out the information.

Keywords: Company absences view, Out of office tracker

4

PREFACE

This thesis was carried out at The Qt Company (Oulu-Tutkijantie) office, Oulu,
Finland from January 2022. However, this work would not have been done with-
out the patience, encouragement, help, and guidance that I received from many
individuals.

First, I would like to express my sincerest acknowledgment to my company su-
pervisor, Mr. Olli Puurunen, for providing me with the opportunity, the best guid-
ance, the vast knowledge, and inspiring ideas. Without his instructions, the the-
sis could have been unable to be completed.

I would also like to thank my follow-up group, Janne Anttila, Petri Kasper, Nam
Nguyen, Merlin Albert, Manigandan Dhamodagan, Kari Miettinen, Matti
Tuomikoski, and Pasi Kaapolafrom from the Qt Company for the countless pro-
ductive discussions and meetings with invaluable advice and supports. It was
an honor to work with the team.

I would like to express my sincerest gratitude to my parents, for their endless
love, unconditional support, motivation, and guidance in every walk of life.
Thanks to them, I had many opportunities to interact with the advanced modern
technology in the world.

I further wish to express my gratitude to the pre-manager, Mr. Juha Hautala
from Nome Oy, in Finland for his insightful advice and discussions during my
bachelor studies.

Success is best when it’s shared. I wish to thank to Quan Do, Kien Vu, and Tai
Nguyen for their friendships and memorable moments and the rest who are and
were here during the past couple of years. Life in Oulu would not have been as
wonderful without them. My special thanks also go to Juha-Pekka and Mai, Ida
& Timi Valtonen, and Thanh Nguyen for their friendships and for making our
gatherings so memorable.

Last and definitely not least, I would not be standing here without the endless
love, support, and inspiration from Trang, my girlfriend for their love and caring,
and for being the soulmate and strength of my life. Trang, you rock.

5

CONTENTS

ABSTRACT 3

PREFACE 4

LIST OF ABBREVIATIONS 7

1 INTRODUCTION 8

2 DPO STATEMENT 9

2.1 Privacy 9

2.2 DPO Statement 9

3 THEORETICAL BACKGROUND 10

3.1 React.js 10

3.2 Redux 11

3.2.1 Redux Toolkit 12

3.2.2 Redux Toolkit Query 13

3.3 Typescript 14

3.4 Node.js 15

3.5 Express.js 16

3.6 Azure AD SSO 18

3.7 MongoDB 18

4 IMPLEMENTATION 21

4.1 UI design 21

4.2 Data migration & processing 25

4.2.1 Data migration from HR software 25

4.2.2 Data schema 27

4.2.3 Data processing 28

4.3 Server 30

4.3.1 Authentication & authorization 30

4.3.2 Data response with world national holiday 32

4.4 Web client features 37

4.4.1 Azure AD SSO 37

4.4.2 Filtering bar 39

4.4.3 Employee grid calendar 41

6

5 CONCLUSION 44

REFERENCES 45

7

LIST OF ABBREVIATIONS

AD Active Directory

API Application Program Interface

BDSG Bundesdatenschutzgesetz

CEO Chief Executive Officer

CPU Central Processing Unit

CWAV Company Wide Absence View

DOM Document Object Model

DPO Data Protection Officer

HR Human Resource

HTTP Hypertext Transfer Protocol

ID Idem

ISO International Organization for Standardization

JWT JSON Web Token

MSAL Microsoft Authentication Library

NPM Node Package Manager

SPA Single Page Application

SSO Single Sign-On

SWR State While Revalidate

UI User Interface

URI Uniform Resource Identifier

8

1 INTRODUCTION

Nowadays, a company are tracking vacations, sick leaves, and other kinds of

absences in their internal HR system. This data is only accessible to the em-

ployee itself, line manager, and HR admins - colleagues in general cannot see

it. In addition to filing their status to the HR system, the company encourages

people also to notify colleagues of absences themselves, for instance: by set-

ting an Out-of-office status in Microsoft Outlook or blocking out their respective

calendars. Anyhow, this is strictly speaking not required, and quite some col-

leagues forget about it.

People are missing easily accessible out-of-office information for colleagues.

Getting an answer to the simple question 'Is a colleague working today?' is diffi-

cult. The company has been trying with mailing lists or shared outlook calen-

dars, but it is all not really structured, and far away from a single source that is

updated automatically.

Sometimes a business needs to know whether a colleague is available or not.

In such a case the only reliable way currently is to check with HR or the respec-

tive line manager - this is time-consuming though and assumes that HR and the

line manager are available and will promptly reply.

For these reasons, an automated out-of-office view tracker provides a source of

truth to help user easy access information and simplifies processes:

• An employee would be able to correct absence information by them-

selves via a single system.

• Employees would have less informing to do. A phone call to HR would be

sufficient to let co-workers know about their absence.

• An automated absence view would be more reliable than additional data

entry or individual message.

• No traces left behind by email or chat messages that are occasionally

distributed right now.

9

2 DPO STATEMENT

Out-of-office is sensitive information, and the company wants to protect em-

ployee privacy. This chapter describes the privacy of employees and the data

protection officer statements.

2.1 Privacy

The characteristics of the processed data in CWAV:

• No additional data would be collected by the company. Absences need

to be reported by every employee already.

• View to out-of-office data shall be simplified as much as possible: sick

leaves, vacations, or other reasons will be reported as general "out-of-

fice" status.

• The system does not need to display extensive information about the

past, but past information can be limited to the past 6 weeks.

• No statistics about, for example: number of sick days would be exposed.

2.2 DPO Statement

If it is necessary for business processes to find out as quickly as possible

whether a colleague is absent and it is also ensured that no information is given

about the specific reasons for the absence of the respective employee, there is

no problem in the data processing. If the request only applies to the GmbH and

the above criteria are met, it is believed that such data processing is generally

permitted under Section 26 of the German Federal Data Protection Act (BDSG).

Provided that the cooperation between the individual entities is closely struc-

tured, the creation of an overview of employee absences can, in our opinion, be

considered permissible in principle. There is no concern about the migration of

data from the HR system to another tool, as long as this serves the project pur-

poses and the overview of the plans.

10

3 THEORETICAL BACKGROUND

This chapter refers to all knowledges which should be learn before developing a

CWAV product.

3.1 React.js

React.js is a free and open-source front-end library for building components or

user interfaces, maintained by Facebook and a community of developers and

companies [1].

React can be used as a base to develop single-page application or mobile ap-

plications. However, React.js is only concerned with state management and

rendering that state to the DOM, so creating React applications usually requires

using additional libraries for routing, as well as the other certain client-side func-

tionality.

React is described as “the V in MVC.” In other words, React.js components act

as the view layer or the user interface for your JavaScript applications [2]. Fig-

ure 1 shows the lifecycle a React component.

FIGURE 1. React component lifecycle [3.]

11

React components are created by being mounted onto the DOM, they update,

change or grow through updates, and finally, components can be unmounted

from the DOM. These three referred milestones are React component lifecycle.

3.2 Redux

Redux is an open-source JavaScript library for centralizing and managing appli-

cation state. It is most commonly compatible with libraries such as React or An-

gular for building user interfaces, create logic with powerful capabilities.

Redux is a simple and small library with limited API designed to be a predictable

container for application state. It helps developers to write applications that be-

have consistently, run in different environments, and easy to test. Figure 2 illus-

trates a Redux lifecycle.

FIGURE 2. Redux component lifecycle [4.]

12

When an action is dispatched, the root reducer receives it and passes the same

action object to all reducers for them to react to it independently. However, in-

stead of passing the entire state tree to each reducer, Redux will only pass the

reducer’s exclusive state slice. The return value from each reducer is then

merged back into the complete state tree.

This is the basic redux architecture, and it is the most common one as well.

With careful planning and smart division of the application state, most small-

scale apps can work with this architecture without any added complexities. [5.]

3.2.1 Redux Toolkit

Many aspects of Redux involve writing verbose code such as immutable up-

dates, action types, action creators, and normalizing state. There are some be-

hind-the-scenes reasons why those patterns exist but writing that code "by

hand" is difficult. In addition, the process for setting up a Redux store takes sev-

eral steps, and developers have to come up with their own logic for things like

dispatching "loading" actions in thunks or processing normalized data. As the

result, many times developers are not sure what the right way is to write Redux

logic. [6.]

Therefore, Redux team has created Redux Toolkit that contains packages and

functions that are essential for building a Redux app. Redux Toolkit build sug-

gested best practices, simplifies most Redux tasks, prevents common mistakes,

and makes life much easier to write Redux applications. Figure 3 shows a struc-

ture of the basic Redux toolkit

13

FIGURE 3. A basic template of Redux Toolkit

From the figure, create a Redux reducer is simple. A Redux Toolkit reducer in-

cludes utilities to simplify common use cases like store setup, creating reducers,

and immutable update logic.

3.2.2 Redux Toolkit Query

Web applications request data from a server in order to use or display it. Also,

they need to update new data, send those updates to the server and keep the

cached data on the client in sync with the data on the server [7.]. This is made

more complicated by the need to implement UI behaviours:

• Tracking loading state in order to show loading spinners.

• Avoiding duplicate requests with the same data.

• Optimistic updates to make the UI faster.

• Manage cache lifetimes as the interaction of users.

14

RTK Query takes inspiration from other tools that have pioneered solutions for

data fetching, like Apollo Client, React Query, and SWR, but adds a unique ap-

proach to its API design:

• Data fetching and caching logic is built on top of RTK Query, including

how to generate query parameters from arguments and data transfor-

mation for caching.

• Generate React hooks that encapsulate the entire data fetching process,

provide data and is-loading fields to components, and manage the life-

time of cached data.

• Provides cache entry lifecycle options that enable use cases that help

cache updates via WebSocket messages.

• Completely written in TypeScript and is designed to provide an excellent

TypeScript usage experience.

3.3 Typescript

TypeScript is an open-source and free programming language developed and

maintained by Microsoft. It is a strict superset of JavaScript [8.].

TypeScript is an extension of JavaScript intended to address the deficiency and

enable easier development for large-scale JavaScript applications. TypeScript

adds class-based object-oriented programming and optional static typing to the

JavaScript language. The TypeScript programming language adds optional

types to JavaScript, with support for interaction with existing JavaScript libraries

via interface declarations.

TypeScript offers a module system, interfaces, classes, and a rich gradual type

system [8.]. TypeScript provides a smooth transition for JavaScript developers

— well-established JavaScript programming idioms are supported without any

need for rewriting or annotations. Below is an example of functions written in

Typescript.

15

FIGURE 4. Example of First-class functions [9.]

Here function can also be referred as First-class citizen. A first-class function is

treated like any other variable. In this type of programming language, a function

can be assigned to multiple variables, and can be passed as an argument to

another one and also return one from another function.

3.4 Node.js

Node.js (Node) is currently one of the most popular open-source development

platforms for executing JavaScript code on the server-side. Node is said to be

useful for building applications that require persistent connections from the

browser to the server and versa. It is said to be often used for real-time applica-

tions such as chat, news feeds, and web push notifications. [10.]

Node.js is intended to run on a dedicated HTTP server and has a single thread

with one process at a time. Node.js applications are event-based and asynchro-

nous. Code built on the Node platform does not follow the traditional model of

receive, process, send, wait, and receive. Instead, Node processes incoming

16

requests in a constant event stack and sends small requests one after the other

without waiting for responses. A shift away from mainstream models that run

larger, more complex processes and run several threads concurrently, with

each thread waiting for its appropriate response before moving on to the next

one.

One of the major advantages of Node.js is that it does not block input/output

(I/O). Some developers are highly critical of Node.js and point out that if a single

process requires a significant number of CPU cycles, applications will block and

that the blocking can crash the application. Proponents of the Node.js model

said that CPU processing time is less of a concern because of the high number

of small processes that Node code is relied on. Figure 5 shows an example of a

Node.js server written with TypeScript and Express.

FIGURE 5. Simple Node.js server [11.]

From the figure, a simple Node.js with Express framework server setup is writ-

ten in TypeScript. The server initializes routes and subsequently listens to a de-

fined secret port.

3.5 Express.js

Express.js (or Express) is known to be a minimal as well as flexible web appli-

cation framework of Node.js which gives robust features for use of the web as

well as hybrid applications [12]. Express.js is also considered an open-source

17

framework and it was developed and maintained by the foundation of Node.js

as well as varied contributors of open source.

Express.js gives a minimal interface and needed tools in order to make our ap-

plications. It is also flexible since there exist various modules that are made

available on npm and that can be directly plugged into it. Figure 6 shows an ex-

ample of express route and middleware setup.

FIGURE 6. Setup routes and middleware for an Express.js application

Express middleware is executed in order from the request-response cycle.

Every single middleware has access to the request and the response object as

18

well as a next function which are passed from one another to another. Middle-

ware receives the request, executes the code logic, and finally changes the re-

quest and response objects and calls the next function which activates the next

middleware in the queue. An express application can do multiple-access mid-

dleware, such as: application-level middleware, router-level middleware, error-

handling middleware, built-in middleware, and third-party middleware.

In addition, express routes divide the application into several mini express appli-

cations and combine them as a parent express application. The express server

is composed of an HTTP verb (GET, POST, PUT, DELETE).

3.6 Azure AD SSO

Azure Active Directory Single Sign-On (Azure AD SSO) automatically signs us-

ers in when they have identified themself once on their devices. When it is ena-

bled, it is unnecessary to type in any passwords to sign in, and usually, user

only needs to type in their email address. It provides users with very easy ac-

cess to your cloud-based applications without needing any additional on-prem-

ises components.

There are many benefits when using Azure AD SSO:

• The user has a better experience. There is no need for re-typing any

password.

• Users are not only automatically signed into both on-premises, but also

cloud-based applications.

• Application is easy to deploy & administer.

• No additional components are needed on-premises to make the authenti-

cation service work.

3.7 MongoDB

MongoDB is an open-source, cross-platform database document-oriented

NoSQL database that is used for high-volume data storage. Instead of using

19

traditional tables and rows from relational databases, MongoDB makes a new

usage of collections and documents. Documents consist of the pairs of key-

value which are the basic unit of data in MongoDB. Collections contain the num-

ber of sets of documents and functions which is the same as relational data-

base tables. MongoDB is a database that came to popular recently around the

mid-2000s.

There are some major key features of MongoDB:

• Each MongoDB database contains the number of collections which in

turn contain documents. Every single document is different with a varying

number of fields. The sizes and contents of the document can be differ-

ent from each other.

• The document structure fits with how developers construct their classes

and objects in their respective programming languages. Developers said

their classes are not rows and columns but have a clear structure with

key-value pairs.

• The rows (documents in MongoDB) do not need to have a schema de-

fined first. Instead, the fields can be added on the fly.

• The data model available within MongoDB allows developers to repre-

sent hierarchical relationships, store arrays, and apply other more com-

plex structures more easily.

• MongoDB is scalable. Companies across the world have defined clusters

with run more than 100 nodes with around millions of documents within

the database.

Figure 7 illustrates how Relational Database Management System (RDBMS)

maps to MongoDB.

20

FIGURE 7. Mapping RDBMS to MongoDB [13.]

As can be seen from the figure, Collections in MongoDB is equivalent to the ta-

bles in RDBMS, Documents in MongoDB is equivalent to the rows in RDBMS,

and Fields in MongoDB is equivalent to the columns in RDBMS. [13]

21

4 IMPLEMENTATION

Currently the application has come through code, build, and test stages. Three

completed stages would be analysed elaborately. They are self-experiences,

self-perspective, self-obstacles as well as self-research gathered for solution.

Functionalities worth mentioning are user identification, search filtering, data mi-

gration & processing, and visual view. Coming to the development, the workflow

would be step by step: UI design, database creation and server connection, and

application functions.

4.1 UI design

In the scratch and wireframe period, the application design was easy to be uti-

lized covering all the required functions. The user interface was set to be as

minimal and convenient as possible. In addition, when designing the interfaces,

it also needs to be consistent with the brand design system. With the desire to

build professionalism and be aware that colour effects can affect the user's

emotions as well as the impact on the meaning of interactive objects in the ap-

plication, the Qt colour scheme was evaluated. See Figure 8 below.

FIGURE 8. Color Palette, Qt brand book

22

The main screens took the grid out-of-office calendar and the filtering as a piv-

otal point. The UI design circled around the concept called WYSIWYG. This ab-

breviation stands for What You See Is What You Get. The design was also con-

stantly evolving by the time.

Figure 9 illustrates how the initial application design has been made.

FIGURE 9. Application desktop design

The UI was designed in a way that provides a quick and easy way to see the

overall absence status of multiple employees at the first glance.

Everything created was built from small components. Components were interac-

tive building blocks for creating a user interface. There were three main compo-

nents built from the application: Filtering bar, calendar date picker, and em-

ployee grid calendar. The figures below show how these components have

been designed in Figma.

23

FIGURE 10. Filtering bar

From Figure 10, the filtering bar provided a quick filter that users will have the

options suggestion when clicking on the bar. It brought quick data accessibility

and avoided typo mistakes.

24

FIGURE 11. Calendar date picker

As can be seen from Figure 11, the calendar date picker allowed users to select

a specific view date range or flexible month.

The mobile interface needed to minimize the information displayed, otherwise it

would create a negative feeling when being used. The overwhelmed feeling

would reduce the emotions forwards the application. Figure 12 shows the mini-

mal design on mobile view.

FIGURE 12. Application mobile view

25

4.2 Data migration & processing

A human resources software that helps CEOs and HR professionals streamline

employee time tracking, time-off management, and performance. Sympa is a

complete, fully customizable HR software that helps to focus on people and

smart decision-making.

Sympa HR Integration API provides methods for exposing data from the Sympa

HR solution, and for importing data to Sympa HR for integration purposes. An

administrator can dynamically create interfaces that provide access to basically

any data stored in the HR system. Interfaces can, at this point, be configured to

return data from and/or modify data in a specific card base.

Sympa HR API has a throttling limitation. The default throttling level is up to a

hundred requests per hour time per interface. As a result, the need to migrate

employee data is necessary to avoid reaching maximum requests to the Sympa

HR API.

Last but not least, since having huge data from the resource, the need to ar-

range them in a way that can be practically beneficial for the application pur-

pose. It helps to increase productivity and profits, more accurate, and reliable.

Furthermore, cost reduction, and ease in storage. This makes it easy to under-

stand and retrieve the specific information anytime.

4.2.1 Data migration from HR software

A company decided to sync employee data from the Sympa HR system to appli-

cation database by using CronJob. A CronJob creates migrating jobs on a re-

peating schedule. The figure below describes how the CronJob is configured

from the application server.

26

FIGURE 13. Cronjob for data migration

From the described configuration, the cronjob will be triggered at every sixth

hour, that means four times a day. From this context, the function syncData-

FromSympaHR() will run, get employee data from Sympa API, process, and

store it in the MongoDB database.

Figure 14 explains how the request was made from the server to Sympa HR

FIGURE 14. Get employee API

27

Before sending the request to Sympa HR API to get extensive employee infor-

mation, the system started to build the query that limit the history & future data

according to the setting, that are set and can be easily change from the server

application.

4.2.2 Data schema

From Sympa HR API configuration, the possibility to restrict the transferable

fields to only ones required by the calling system and no unnecessary data is

expose. The schema was designed on top of the Mongoose model. See the

Figure below.

FIGURE 15. Employee out-of-office schema

28

The schema was designed in a way close to the original data schema from API.

There are fields that have been transformed and added to use in the applica-

tion, such as Fullname (first name and last name), OoO (out-of-office), IsMan-

ager (Does the person has managerial role?), PublicHolidays (public national

holidays). The referred data transformation made it a better-organized format

that would be useful from the application level.

4.2.3 Data processing

Firstly, anonymize data is a type of information that intends privacy protection,

and that needs sanitization. Considering anonymous data was simplified: A user

without an e-mail address, invalid email domain organization, and all the filtera-

ble fields are missing. Figure 16 below illustrates how the data processing was

made.

FIGURE 16. Data sanitization function

Secondly, all absences of the employee, such as: sick leaves, vacation or other

reasons will be reported as general out-of-office status. Furthermore, the need

of converting data to an organized form is warranted. It makes easy to under-

stand and retrieve the specific information anytime. Data processing is de-

scribed in the Figure 17.

29

FIGURE 17. Employee data processing function

As can be seen from the figure, sanitized data was processed step by step:

group absences to a sorted and non-duplicated single source of truth - out of of-

fice, transform employee full name, and manager state. The result is shown in

the Figure 18.

30

FIGURE 18. Result of data processing

4.3 Server

In this section, the main contributions are focused on Azure authentication & au-

thorization and data responding from the server.

4.3.1 Authentication & authorization

Access tokens allow clients a secure call to protected web API and are used by

web APIs to perform authentication and authorization. Microsoft identity plat-

form uses different token formats depending on how the API's configuration ac-

cepts the token. APIs registered by developers from the Microsoft identity plat-

form can select from two different formats of JSON Web Tokens (JWTs), v1 or

v2.

31

For validation, developers usually decode JWTs using a site like jwt.io. But un-

fortunately, the signature from the Microsoft JWT cannot easily be verified be-

cause the website does not know what kind of key to use to validate the signa-

ture. The header of the JWT does provide information about the algorithm used

and the id of the key used but this by itself is not enough to locate the key to be

used.

Luckily, thank for the library 'validate-azure-ad-token' that makes the validation

steps much easier. Here is the explanation of how the library has made the vali-

dation steps:

• Receive token and all required props are passed in

• Decode token with jsonwebtoken library

• Send a request to Microsoft decode key website with the configuration

settings to receive all public keys unique only

• Verify all required access token claims

• Guarantee whether the token belongs to the application and can be suc-

cessfully sent to Microsoft's Graph API

• Compare the ID received from Graph API with the one from the access

token payload.

An example of token validation setup can be seen as a middleware from Figure

19 below.

32

FIGURE 19. Example of token validation middleware

From the example, the ensureAuth middleware started to get the access token

that linked to the request header. Subsequently, it will be added along with the

validation options to the encrypt library to process. If found user, the middleware

saves user email to the server and calls next(), otherwise returns found error to

the user

4.3.2 Data response with world national holiday

World national holiday

Currently, there were not many tools to detect whether today is a holiday in the

specified country. Usually, users by themself need to look up the calendar or

33

google, and also need to ensure the source is accurate. This was time-consum-

ing work.

The need to know whether the colleagues from the other countries are having a

holiday today is necessary. It brings a business many benefits:

• Employees have fewer things to do. A quick check from the tool will be

sufficient to know about national country holidays of colleagues.

• No holiday notice e-mails or chat messages that are occasionally distrib-

uted from admin countries.

Millions of users use Google Calendar API to track their events. Luckily, it pro-

vides accurate worldwide holidays that can be used for the application. Figure

20 is a high-level conceptual architecture of how to implement worldwide na-

tional holiday.

FIGURE 20. Get national holiday architecture

Table 1 explains the national holiday architecture specification.

TABLE 1. The specification for the national holiday architecture

No. Description/purpose

1 Migrate worldwide national holidays from Google Calendar API to Mon-

goDB database. This also included data processing.

2 Server retrieves employee data that included his/her national holidays

from MongoDB database

34

3 Users see colleague's national holidays along with out of office status

Firstly, Google Calendar API requires a list of countries and an API key from the

Google cloud platform. The worldwide national holiday migration was carried

out by mapping all the world's countries to the requests and send them to the

Google Calendar API. Figure 21 is an example of ISO 3166 two-letter country

codes with description values for using in Google Calendar API.

FIGURE 21. Example of country code and description used in Google calendar

URL

Next, this list is being mapped, and the description value of a corresponding

country will be sent to the Google Calendar API to get the holidays. An example

can be seen from Figure 22.

35

FIGURE 22. Example of Google Calendar API query

After querying worldwide holidays, to minimize the amount of data stored in the

database, it will be collected and translated into usable information. See in Fig-

ure 23.

FIGURE 23. Transformation of holiday

36

From the figure, only the public holidays of the current year are collected and

then converted into a more readable format, giving it the form and context nec-

essary to be interpreted by computers and utilized by employees throughout an

organization. Once the processing of the worldwide holiday is completed, the

application started to save the data into the database, which is going to be used

from the application.

Data response

To show the absence of the employee, the combination of out-of-office data

with the national holiday is carried out. Figure 24 shows how the data combina-

tion is made.

FIGURE 24. Data combination between out-of-office data and national holiday

As the result of the figure, all the colleagues and available national holidays of

the user will be merged and returned to the request of the client. The holidays

will be matched with the country of the user.

37

4.4 Web client features

In this chapter, the author proposes how the main features have been imple-

mented that return the best user experience and performance. The solution can

be extended when the technology has to be changed and updated to a new ver-

sion.

4.4.1 Azure AD SSO

The SSO method depends on how the application is configured for authentica-

tion. Depending on the platform or device the application is targeting, additional

configuration may be required such as redirect URIs, specific authentication set-

tings, or fields specific to the platform. The SSO application settings were cre-

ated from Azure Portal in which the application platform was a single-page ap-

plication. SPA platform is browser client applications and progressive web appli-

cations with modern JavaScript.

Figures 25, 26, and 27 illustrate the basic setup for Azure AD SSO on React.js

FIGURE 25. Azure AD SSO Settings

From the figure 25, there were mandatory variables need to be provided: appli-

cation client ID, redirect URI, and tenant ID to enable the SSO from the applica-

tion level.

38

Subsequently, a new Microsoft identity platform application was created by us-

ing a msal-browser library with the injected Azure setting. See Figure 26.

FIGURE 26. Basic MSAL provider setup

Then, A Microsoft Authentication Library for React was created with a custom

authenticate components. See Figure 27.

39

FIGURE 27. Azure AD SSO Settings

As can be seen from the Figure 27, custom error and authenticate pages were

injected into the MsalAuthenticationTemplate, which created a better user expe-

rience while authenticating.

4.4.2 Filtering bar

Search bar

After receiving data from API, the filtering component starts to classify search

fields and save them into the reducer of the Redux store. Once it is completed,

the search fields are provided to React-select options – a select input control for

ReactJS with multiselect. The example is shown in Figure 28.

FIGURE 28. Azure AD SSO Settings

From the code example, it started to sanitize the raw data and save all the filter

options for the filtering function. The result flow can be seen from Figure 29.

40

FIGURE 29. Application actions from Redux Dev tool

React-select supports customize themes and formatted display options that

bring an important part to UI design and user experience. From Figure 30 be-

low, a custom theme was used for the search filter component.

FIGURE 30. A custom search filter component

Calendar date picker

The calendar date picker was carried out by using react-datepicker - a simple

Datepicker component for React.js. See from Figure 31.

41

FIGURE 31. Example of calendar picker

From the figure, onSelect event handler fires each time some calendar date has

been selected, that triggers to set the current date view to the selected date.

4.4.3 Employee grid calendar

An employee grid calendar is a system to organize absence days. It includes

the current range of days and a list of planned employee out-of-office events

and holidays.

Day’s component

The basic concept to implement the days component was a simple loop, by in-

creasing the start day until it reaches the end day. Figure 32 illustrates the

pseudo code of printing dates.

42

FIGURE 32. Pseudo code of printing dates loop

The first element will be displayed in a month and year format from the current

date range, also the current date was highlighted by the green colour. See in

Figure 33.

FIGURE 33. Day’s component

Employee calendar grid

The solution was made step by step. Firstly, the name of the employee and av-

atar was displayed to give the user a quick glance at the status of the em-

ployee. Subsequently, the logic started to print temporary working days, then

overrides with absences, holidays, and weekends. Figure 34 explains the ren-

dering logic by a pseudo code.

43

FIGURE 34. Rendering absence logic

From the employee grid, by hovering or toggling the grid UI, the annotation will

pop up that display useful information to the user. Figure 35 shows an example

of when the user interacts with the national holiday cell.

FIGURE 35. Employee calendar grid

44

5 CONCLUSION

The aim of this thesis was to create a web application using a modern web de-

velopment framework. This application serves as the company's private tool for

tracking employee absences for the Qt Company. The objective of this project

was to provide a single source of truth provide easy access to absence infor-

mation and simplify processes.

At the end of the project, all the major requirements were met, and the develop-

ment processes were explicated in a shape order. In the process of designing

and implementing, the application is constantly being optimized and evolving.

Subsequently, the final result was much better than was originally expected.

The simple user interface is considered a favourable aspect, not only allowing

the user to find their information the way faster but also a better experience.

The project developed serves as an example to give rise to future works that in-

volve task assignments in a practical way to solve everyday problems. The pro-

duction of this graduation thesis is a process of learning and improving. All of

this not only enriches the knowledge structure but also expands the knowledge

and enhances the potential for analysis and problem-solving. Last by not least,

it creates a potential for self-studying and lays the foundation for future work.

45

REFERENCES

[1] Tutorials Point Pvt. Ltd. "ReactJS – Overview," Tutorials Point Pvt. Ltd,
2022. [Online]. Available: https://www.tutorialspoint.com/reactjs/re-
actjs_overview.htm. [Accessed May 27, 2022].

[2] R. Savaram, “What is ReactJs,” mindmajix.com, 2022. [Online]. Availa-
ble: https://mindmajix.com/introduction-to-react-js. [Accessed Oct. 27,
2021].

[3] K. Guerra, “The Lifecycle of a React Component,” Jan. 5, 2021. [Online].
Available: https://medium.com/codex/the-lifecycle-of-a-react-component-
8e01332a068d. [Accessed Oct. 27, 2021].

[4] M. Bergh, “React Redux: Building Modern Web Apps with the ArcGIS JS
API,” Sept. 8, 2017. [Online]. Available: https://www.esri.com/arcgis-
blog/products/3d-gis/3d-gis/react-redux-building-modern-web-apps-with-
the-arcgis-js-api/. [Accessed May 27, 2022].

[5] S. Zibbu, “Redux Lifecycle,” Aug. 3, 2018. [Online]. Available:
https://hackernoon.com/redux-lifecycle-8e93908af03a. [Accessed May
27, 2022].

[6] “Redux Fundamentals, Part 8: Modern Redux with Redux Toolkit”.
[Online]. [Accessed May 27, 2022]. Retrieved from https://redux.js.org/tu-
torials/fundamentals/part-8-modern-redux.

[7] “RTK Query Overview”. [Online]. [Accessed May 27, 2022]. Retrieved
from https://redux-toolkit.js.org/rtk-query/overview#motivation.

[8] Bhattacharyya. S, Nath. A, “Application of TypeScript Language: A Brief
Overview,” IJIRCCE journal in Computer and Communication Engineer-
ing, no. 1, p. 10585, 2021. [Accessed May 27, 2022].

[9] P. Behera, “Functional Typescript,” Jun. 4, 2021. [Online]. Available:
https://blogs.halodoc.io/functional-typescript/. [Accessed May 27, 2022].

[10] J. Denman, “What is Node.js?”. [Online]. Available: https://www.tech-
target.com/whatis/definition/Nodejs. [Accessed May 27, 2022].

[11] J. Vadgama, “A minimal web application structure with technologies like
node.js, typescript, express,” Apr. 25, 2018. [Online]. Available:
https://www.linkedin.com/pulse/minimal-web-application-structure-tech-
nologies-like-nodejs-vadgama/. [Accessed May 27, 2022].

https://www.tutorialspoint.com/reactjs/reactjs_overview.htm
https://www.tutorialspoint.com/reactjs/reactjs_overview.htm
https://mindmajix.com/introduction-to-react-js
https://medium.com/codex/the-lifecycle-of-a-react-component-8e01332a068d
https://medium.com/codex/the-lifecycle-of-a-react-component-8e01332a068d
https://www.esri.com/arcgis-blog/products/3d-gis/3d-gis/react-redux-building-modern-web-apps-with-the-arcgis-js-api/
https://www.esri.com/arcgis-blog/products/3d-gis/3d-gis/react-redux-building-modern-web-apps-with-the-arcgis-js-api/
https://www.esri.com/arcgis-blog/products/3d-gis/3d-gis/react-redux-building-modern-web-apps-with-the-arcgis-js-api/
https://hackernoon.com/redux-lifecycle-8e93908af03a
https://redux.js.org/tutorials/fundamentals/part-8-modern-redux
https://redux.js.org/tutorials/fundamentals/part-8-modern-redux
https://redux-toolkit.js.org/rtk-query/overview#motivation
https://blogs.halodoc.io/functional-typescript/
https://www.techtarget.com/whatis/definition/Nodejs
https://www.techtarget.com/whatis/definition/Nodejs
https://www.linkedin.com/pulse/minimal-web-application-structure-technologies-like-nodejs-vadgama/
https://www.linkedin.com/pulse/minimal-web-application-structure-technologies-like-nodejs-vadgama/

46

[12] P. Pedamkar, “What is ExpressJS?”. [Online]. Available:
https://www.educba.com/what-is-expressjs/. [Accessed May 27, 2022].

[13] P. Pedamkar, “What is MongoDB?”. [Online]. Available:
https://www.educba.com/what-is-mongodb/. [Accessed May 27, 2022].

https://www.educba.com/what-is-expressjs/
https://www.educba.com/what-is-mongodb/

