

NEW CSS3 LAYOUT MODES, HISTORY
INTERFACE AND WEB WORKERS

Aki Huttunen

Thesis
May 2014

Degree Program in Software Engineering
Technology, communication and transport

DESCRIPTION

Author(s)
Huttunen, Aki

Type of publication
Bachelor´s Thesis

Date
14.05.2014

Pages
49

Language
English

 Permission for web
publication
(X)

Title
New CSS3 layout modes, History interface and Web Workers

Degree Programme
Software Engineering

Tutor(s)
Peltomäki, Juha

Assigned by
Qvantel Business Solutions Oy

Abstract

The objective of this thesis was to research and study existing and upcoming CSS3 and HTML5
technologies. The technology selected was Flexbox layout which provides an elegant system with
HTML elements inside a container in rows that will ‘flex’ to fill the available space in different ways
specified using CSS properties. Another technology was the grid layout that splits the page into rows
and columns and allows content items to fill the grid built from those rows and columns. The third
technology was History interface which enables the creation of new and the edition of current
browser history events. Lastly, Web Workers were studied that allow the offloading of computation
work into the background into another thread so that they will not block the main DOM thread.

The study describes the basic concepts of these new technologies and their use through examples
and cases.

This thesis describes a field that does not contain many previous research projects; therefore the
examples provided by this study are of value to web developers.

Keywords
Flexbox layout, Grid layout, History interface, Web Worker, Responsive layout

Miscellaneous

KUVAILULEHTI

Tekijä(t)
Huttunen, Aki

Julkaisun laji
Opinnäytetyö

Päivämäärä
14.05.2014

Sivumäärä
49

Julkaisun kieli
Englanti

 Verkkojulkaisulupa
myönnetty
(X)

Työn nimi
Uudet CSS3 layout moodit, historia rajapinta ja web workkerit.

Koulutusohjelma
Ohjelmistotekniikan koulutusohjelma

Työn ohjaaja(t)
Peltomäki, Juha

Toimeksiantaja(t)
Qvantel Business Solutions Oy

Tiivistelmä

Opinnäytetyössä tarkasteltiin olemassa olevia ja tulevia CSS3 ja HTML5 tekniikoita. Näistä valittiin
Flexbox layout joka tarjoaa elegantin tavan laittaa HTML elementtejä säiliön sisälle riveissä, joidenka
kokoa voidaan venyttää erilaisin tavoin joita kontrolloidaan CSS ominaisuuksilla. Grid layout joka
jakaa sivun sarakkeisiin ja riveihin joista rakennetaan ruudukko, joka voidaan täyttää HTML
elementeillä. History interface joka mahdollistaa uusien historia tapahtumine muokkaamisen ja
tämänhetkisen tapahtuman muokkaamisen. Ja viimeisenä Web Workkerit jotka mahdollistavat
laskutyön siirtämisen taustalla pyörivään säikeeseen, jolloinka laskutyö ei pysty lukitsemaan DOM
säiettä.

Työssä käydään läpi eri tekniikoiden perusteet ja käydään esimerkkiä hyväksi käyttäen läpi niiden
toiminta.

Työn tuloksena saatiin tutkimus sellaiselle alueella jolle ei aikaisemmin ole tehty kovinkaan montaa
tutkimusta. Työn tuloksena saatiin aikaan ohjeet ja esimerkit joidenka avulla kehittäjä voivat
lähestyä näitä tekniikoita helpommin.

Avainsanat (asiasanat)
Flexbox layout, Grid layout, History interface, Web Worker, Responsive layout

Muut tiedot

Contents

1 Introduction 7

2 Web Workers 8

2.1 Concepts . 8

2.2 Dedicated Worker example . 8

2.3 Conclusions . 11

3 History interface 11

3.1 General . 11

3.2 Adding new history events . 12

3.3 Changing current history state . 13

3.4 Multistep form example using pushState 13

3.5 Example of updating current session state 16

3.6 Conclusions . 19

4 Flexbox layout 19

4.1 Flexbox concepts . 20

4.2 Basic layout and wrapping . 21

4.3 Ordering . 27

4.4 Alignment . 28

4.4.1 Alignment with auto margins 28

4.4.2 Main axis alignment . 29

4.4.3 Cross axis alignment . 30

2

4.4.4 Alignment of item lines . 31

4.4.5 Example . 32

4.5 Conclusions . 37

5 Grid layout 38

5.1 General . 38

5.2 Concepts . 39

5.3 Example . 40

5.4 Conclusions . 47

6 Summary 47

References 49

List of Figures

1 Calculating primes without a Web Worker. Does not even render

HTML due to calculation being done inside head element 10

2 Calculating primes with a Web Worker 10

3 Order creation default form created by Ruby on Rails default form styles 14

4 Product selection step . 15

5 Contact information step . 15

6 Payment information and order saving 16

7 User comes to web page . 17

8 User scrolls down to Article 2 . 17

3

9 Illustration of the Flexbox concepts when the direction is 'row' (orig-

inally from CSS Flexible Box Layout Module Level 1 W3C Working

Draft) . 20

10 Without Flexbox . 22

11 With simple Flexbox layout . 23

12 Illustration of how �ex-basis. Red and blue numbers are �ex-grow

factors. (originally from CSS Flexible Box Layout Module Level 1

W3C Working Draft) . 23

13 Flexbox automatically �lling the container with its content 24

14 With green element having bigger grow factor 24

15 With 500px wide window . 25

16 With 380px wide window . 26

17 With 500px wide window. Wrapping with green element having bigger

grow factor . 26

18 With the blue third (blue) element ordered to be �rst 28

19 Navigation bar using Flexbox layout 29

20 Navigation bar with auto margin 29

21 Illustration of the di�erent main axis alignment modes. (originally

from CSS Flexible Box Layout Module Level 1 W3C Working Draft) . 30

22 Illustration of the di�erent cross axis alignment options. (originally

from CSS Flexible Box Layout Module Level 1 W3C Working Draft) . 31

23 Illustration of the alignment between lines. (originally from CSS Flex-

ible Box Layout Module Level 1 W3C Working Draft) 32

24 Illustration of the transition of the layout from large screen to small

screen . 33

25 Layout before Flexbox layout . 34

4

26 Flexbox layout on a wide screen . 35

27 The layout of the example on a narrow screen 37

28 Horizontal game layout . 38

29 Vertical game layout . 39

30 Basic layout with simple styles . 41

31 Horizontal layout with red lines showing row splits and blue lines show-

ing column split . 41

32 Vertical layout with red lines showing row splits and blue lines showing

column split . 42

33 Game horizontal layout with grid styles 44

34 Game vertical layout with grid styles 45

35 Horizontal grid layout with Flexbox layout for content divs content . 46

36 Vertical grid layout with Flexbox layout for content divs content . . . 46

Terminology

W3C

World Wide Web Consortium. The main international standards organization

for World Wide Web.

HTML

HyperText Markup Language. The markup language used to build websites.

The standard is maintained by the W3C.

HTML5

The latest version of the HTML standard. Is made up of multiple smaller

speci�cations that are in varying stages of completion.

CSS

Cascading Style Sheets. It is a style sheet language that is used for describing

5

the look and feel of HTML documents. The standard is maintained by the

W3C.

CSS3

The latest version of the CSS standard. Is made up of multiple smaller speci�-

cations that are in varying stages of completion.

JavaScript

JavaScript. A dynamic programming language.The de facto standard program-

ming language client side web programming due to the fact that almost all

browsers have a JavaScript interpreter. Standardized into ECMAScript that is

maintained by Ecma International

Ecma International

An international standards organization for information and communication sys-

tems.

Ruby on Rails

A web application framework written in the Ruby programming language.

SQL

Structured Query Language. A programming language used in relational databases.

SQLite

An implementation of a SQL database written as a library in the C programming

language. Small and lightweight and thus can be easily integrated in to other

programs.

HTTP

Hypertext Transport Protocol. The protocol used for transporting web page

content.

CRUD

Create Read Update Delete. A term describing the basic functionality of storing

data.

jQuery

A very popular JavaScript library for simplifying browser scripting. Mainly helps

working with the DOM.

6

Underscore.js

A JavaScript library that provides a big set of functional programming helpers

to JavaScript without extending any of the built-in objects of JavaScript.

DOM

Document Object Model. It is a convention for representing and manipulating

HTML using methods on its objects.

7

1 Introduction

The aim of the thesis was to research how to use the new and more e�ective

technologies for developing HTML content provided by W3C that works on mobile

devices for Qvantel Business Solutions Oy developers and the global developer

community in general.

The research demonstrates the usage of new parts of the HTML5 and CSS3

speci�cations for creating content that can be viewed on both traditional desktop

browsers and mobile devices e�ectively. The two new APIs were chosen from

HTML5 with the goal of showing how to make more performant web pages for

mobile devices. These two APIs are Web Workers that provide the ability to use the

multiple CPU cores present in todays mobile devices and History interface for its

ability to minimize the amount of roundtrips to the server serving the content and

thus making the page function faster over possibly slower mobile connections while

still maintaining the user experience that users are accustomed to.

The other parts are related to the ability to layout content on a web page di�erently

based on the device viewing the page. This is archieved through the use of the two

new layout modes that are part of the CSS3 speci�cation called Flexbox layout and

Grid layout. These together with Media Queries allow developers to have a single

page that can serve multiple di�erent devices e�ectively.

As a result of the research it should be clear how to move forward in web

development when the aim is to also support mobile devices or any other device that

is capable of showing web content. With the usage of mobile devices growing every

day this should be of the utmost importance to anyone wishing to create new web

content.

Objective

The objective is to show how to support multiple di�erent devices using these new

technologies. To achieve this the basic principles of the technology in question are

discussed and after that a small example application is built using this technology.

After reading this thesis it should be clear to any professional web developer what

these four new technologies are, how to use them and when to use them.

8

2 Web Workers

Web Workers are a way to o�oad processing in to the background when working

with JavaScript in the browser. Normally everything on a page is run in one single

thread so blocking it while doing some resource intensive calculation can be

detrimental to the user experience. There are two di�erent kinds of Workers called

Dedicated Worker and Shared Worker.

2.1 Concepts

When using Web Workers the main thread and the Worker communicate with each

other by passing messages to each other using the onmessage event to listen to

messages and the postMessage method to send the messages. The Worker itself

runs in a di�erent global context from DOM called DedicatedWorkerGlobalScope or

SharedWorkerGlobalScore for dedicated and shared Workers respectively which both

are separate from the current window scope. This allows the Worker to live even

when the current window is closed or sharing it across multiple windows safely when

using a shared Worker. To use dedicated or shared Workers the Worker or

SharedWorker object is used to create the Worker.

A Worker may load other scripts or libraries using the importScripts function. A

Worker can also create other works which are called Sub Workers. Workers

themselves are somewhat heavyweight and it is not recommended to spawn a large

amount of them due to the fact that the startup time and memory costs of a

Worker are rather large.

2.2 Dedicated Worker example

As an example o�oading of an expensive calculation to the background thread so

that it does not block the DOM thread that is used. In this case the expensive

calculation is to �nd all the prime numbers between two and ten million. Calculating

this using JavaScript takes several seconds so running this in the DOM thread locks

up the user interface for that period of time which is detrimental for the user

experience.

9

// On the DOM thread

var primesWorker = new Worker("primes.js");

primesWorker.onmessage = function(event) {

alert(event.data);

primesWorker.terminate (); // terminate the Worker

};

primesWorker.postMessage (10000000);

// primes.js

// calculate prime numbers up to and including max

function primes(max) {

var sieve = [], i, j, primes = [];

for (i = 2; i <= max; ++i) {

if (! sieve[i]) {

primes.push(i);

for (j = i << 1; j <= max; j += i) {

sieve[j] = true;

}

}

}

return primes;

}

onmessage = function(event) {

postMessage(primes(event.data))

};

10

Figure 1: Calculating primes without a Web Worker. Does not even render HTML

due to calculation being done inside head element

Figure 2: Calculating primes with a Web Worker

Running this on a web browser will after a short time show an alert box with the list

of primes between two and ten million. During the time it takes to calculate this the

page will continue to function normally (Figure 2). If Web Worker were not used to

do this kind of a heavy calculation the page would become locked from the user

while this calculation is ran (Figure 1). This is due to the single threaded nature of

11

web browsers.

2.3 Conclusions

In this section it was demonstrated how to o�oad calculations into another thread

using Web Workers to achieve concurrency. The concurrency model of Web Workers

is a very safe one due to the limitations of interaction between the main browser

thread and the Worker thread. This helps to avoid many problems that are common

with traditional multithreaded programming.

Some other use cases for Web Workers are image processing,

compression/de-compression, web crawling and uploading large �les to a server in

the background. The �le upload and web crawling use cases are interesting because

the Web Workers exist out of band with the DOM thread the work would still

continue even if the user changes the page and it does not exhaust one of the

connections to the server which are limited to 2 in the HTTP 1.1 protocol.

The browser support for Web Workers is in general very good. The support of

global client base is at 76% with the only major missing support being old Internet

Explorer browsers (version 9 and below do not support Web Workers).

3 History interface

3.1 General

The HTML5 history interface allows manipulation of browser history through

JavaScript. This can be used for all kinds of e�ects to improve the user experience.

One simple example of this would be to make a complex single page application

using JavaScript while still preserving the back and forward functionality of the

browser. Another example is to transform a complex multi-step form into a single

page while still maintaining the same user experience. This is very useful with

popular web frameworks like Ruby on Rails which prefer to use the CRUD �ow where

a single page load does a single action into the underlying database which becomes

very problematic once the application starts to have complicated data insertion

12

processes with multiple steps. Using a multiple step form is how these kinds of data

insertion processes are generally solved and when using the pushState method form

the history interface it is possible to preserve the back and forward functionality that

the users are used to even though in reality there is only one page load and submit.

3.2 Adding new history events

The pushState method takes three parameters. A state object, title and an optional

URL.

State object The state object is a serializable JavaScript object that is associated

with every new history entry created by the pushState method. When a user

navigates to a history state a popstate event is �red and the state object is

given as the state property of the event object.

Title Currently ignored by most browsers. It is safe to pass an empty string as the

parameter for this. In theory it should change the title of the page in history

but browsers use the title from the current page's headers.

URL An optional URL that the browser will change to. Note that the browser will

not attempt to load this URL when changing the state but the browser may

try to load the URL at some later point in time for example if the user

chooses to reload the page.

Example:

history.pushState ({ foo: "bar" }, "", "next -url");

Calling the pushState method is very similar to setting a new window.location to a

URL fragment in the way that both will create a new history entry. Many helper

libraries used to work with the History interface try to use URL fragments to

replicate this behavior when pushState is not available but it is not always possible

because pushState has some advantages compared to setting the window.location

� With pushState the new URL can be any URL with the same origin as the

current URL. With window.location it is only possible to change the URL

fragment. So, for example, with pushState it is possible to change the URL

13

form foo.com/order/product to foo.com/contact which is not possible with

URL fragments. This makes the implementation of single page apps very hard

with URL fragments.

� The developer is not forced to change the URL to create a new point in

history. With window.location if the fragment is changed from "#foo"

fragment to "#foo" fragment no new entry in browser history is created.

� It is possible to associate any kind of data with a new history entry with

pushState into the state object. With changing the URL fragment the

limitation is the maximum length of URL. Note that some browsers limit the

size of the state object in History interface (for example Firefox has a

maximum size of 640k, Internet Explorer 11 1MB and Chrome at least 10MB)

3.3 Changing current history state

The replaceState method has the same API as the pushState() method except it

modi�es the current entry in the history instead of creating a new one. This is

useful when wanting the URL to respond to some user action on the page. For

example a news site where the user is served with a long (possibly in�nite) list of

new news items as the user scrolls down. Changing the URL to point to the news

item currently visible to the user makes it easier for the user to link to the news

item if he/she wants to. But because new items are not added to the history if the

user clicks the back button he/she would end up where he would expect he should.

This is a functionality that cannot be replicated with URL fragments.

The main problem with the replaceState is that it is not possible to replicate its

functionality with URL fragments like it is possible with pushState. This can limit

the use cases for it if support for old browsers is required. For example Internet

Explorer 9 does not support it. According to caniuse.com, the browser support for

History interface is 73% of global web users.

3.4 Multistep form example using pushState

The goal is to make a simple multi-step order process where information about the

order is collected from the in three distinct steps. The �rst step is selecting the

14

product being bought. The second step is collecting customers address information

and the last step is the payment step.

This example is implemented with Ruby on Rails. The following schema is used in a

SQLite database for orders

sqlite > .schema orders

CREATE TABLE "orders" (

"id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL ,

"product_name" varchar (255),

"price" varchar (255) ,

"street" integer ,

"name" varchar (255) ,

"zip" varchar (255) ,

"payment_details" varchar (255),

"created_at" datetime ,

"updated_at" datetime

);

The default form for creating a record like this could look something like this.

Figure 3: Order creation default form created by Ruby on Rails default form styles

This in itself is a fully functioning form for creating orders into the database,

however what is really wanted is a step where the user �rst selects the device, then

gives his information and as the �nal step gives the payment information.

As a multi-step form

15

Figure 4: Product selection step

Figure 5: Contact information step

16

Figure 6: Payment information and order saving

This way the user gets a better experience and still the model saving can occur as

one single submit. Also, this way generates less requests to the server thus

generating less load. If validation between the steps is wanted that can be easily

handled with JavaScript using AJAX.

This works by adding a small piece of JavaScript code that creates new state or

replacing the current on in browser history. For creating new events this is done

through the pushState method and replacing of current state is done through the

replaceState method from the history object.

3.5 Example of updating current session state

Here is a simple example of a web page with multiple articles. Once user scrolls

down enough that the previous article is no longer visible the URL will change into

the next articles URL. If the user presses the back button on the browser the user

will be taken to the page he was in before navigating to this page. If from that page

the user presses forward he will end up going to the URL of the article he was

reading before.

17

Figure 7: User comes to web page

Figure 8: User scrolls down to Article 2

As can be observed once the user scrolls down to article 2 the URL is changed to

http://localhost/article2. In this case if the user came from http://google.com if he

18

were to press the back button he would be taken there. And if he chooses to press

forward on that page he would be taken to http://localhost/article2

Implementing this functionality itself is very simple. For this example the articles are

located inside the article element with the id attribute being the wanted URL part.

The complete code for this example is here with only using jQuery for handling

DOM and Underscore.js for throttling the actually changes to the URL only

happening once every 100 milliseconds.

// save jQuery window object so we don't

// have to recreate all the time.

var $window = $(window);

// get the current window top and bottom and

// wanted elements top and bottom in px and do

// comparison to find out if the elemnet is in view.

function isInView($el) {

var top = $window.scrollTop (),

bottom = top + $window.height (),

elTop = $el.offset ().top ,

elBottom = elTop + $el.height ();

return elTop >= top

}

// make a throttlet function so we don't

// cause so much load on the cpu

var throttled = _.throttle(function () {

var last;

$('article ').each(function () {

var $this = $(this);

if(isInView($this)) {

// if element is in view save it to last variable

last = $this;

// and break loop

return false;

}

});

// get the id from the element

var id = last.attr('id');

19

// set the state

history.replaceState ({ article: id }, id, id);

} , 100);

// call our thorttlet function on every scroll event

$(window).scroll(throttled);

3.6 Conclusions

The main problems with the History interface is if support for old browsers is

required that do not implement the History interface. There are libraries that

mitigate this problem quite well by using URL fragments, however because it is not

possible to replicate all the functionalities of the History interface with them they do

not always work. The other problem is if the user presses refresh. To �x this the

server should respond to the URLs created by the History interface and the

developer has to somehow the information �lled in the previous steps the client side.

For storing the state usually the state object is good enough but sometimes

resorting to Web Storage and Indexed DB may be necessary if the state would be

too big to save into the state object.

The problem with supporting older browsers is no longer a big problem. The latest

versions of all major browsers except Opera Mini support the History interface which

gives the History interface a very good 78% support of users according to

caniuse.com

4 Flexbox layout

The main idea behind Flexbox is to provide a way to arrange elements in a

predictable way when viewing the content on di�erent screen size and display

devices. In Flexbox layout there are elements that are placed inside a container.

These elements are then laid out in lines inside the container in the way speci�ed

with CSS properties on the container and the items.

20

4.1 Flexbox concepts

Flex container The element containing �ex items. An element is made into a �ex

container by giving it the �ex value to the display property.

Flex line A line of �ex items. This isn't a HTML element but is used as a concept

for the layout logic.

Flex item An element inside the �ex container.

main-size and cross-size The width or height of a �ex container. This depends

on the direction of the Flexbox layout.

main-axis and cross-axis The main-axis is the direction in which elements �ex

items are laid out inside the container. Cross-axis is perpendicular to the main

axis.

main-start Located at the begining of the main-axis. Items inside the container

are placed starting from it towards the main-end.

cross-start Located at the beginning of the cross-axis. Flex lines are placed inside

the container starting from it towards the cross-end.

main-end and cross-end End of the container in main-axis and cross-axis

directions.

Figure 9: Illustration of the Flexbox concepts when the direction is 'row' (originally

from CSS Flexible Box Layout Module Level 1 W3C Working Draft)

Flexbox layout can be laid in four di�erent directions which in turn change the

direction of the axes. These directions also take into account the current writing

mode. What this means is that for example row direction with a western writing

mode places the �ex lines from top to bottom with the main axis direction going

21

from left to right, however then when using a di�erent writing mode like Japanese

the main axis would go from top to bottom and the lines would be laid from right to

left.

row Main-axis is in the same direction as the current writing modes inline axis.

Main-start and main-end directions are the same as the start and end

directions in the current writing mode.

row-reverse Same as 'row' with the main-start and main-end directions swapped.

column Main-axis is in the same directions as the current writing modes block

axis. Main-start and main-end directions are the same as the block-start and

block-end directions of the current writing mode.

column-reverse Same as 'column' with the main-start and main-end directions

swapped.

4.2 Basic layout and wrapping

In this section the basic layout and wrapping in a Flexbox layout is demonstrated

using an example. The following basic HTML and CSS is used for the example,

which will result in page as shown in Figure 10

<div class="Flexbox">

<div>red</div>

<div>green</div>

<div>blue</div>

</div>

/* colors for the elements so we can see them grow/shrink */

div > :nth -child (1)

{

background: red;

}

div > :nth -child (2)

{

background: green;

}

div > :nth -child (3) {

background: blue;

22

}

.Flexbox

{

/* basic styles */

width: 100%;

height: 150px;

font -size: 24px;

}

Figure 10: Without Flexbox

To make an element use Flexbox layout the developer �rst has to specify the display

mode as �ex and give the �ex direction. Here is a CSS snippet setting up a Flexbox

container with �ex direction to horizontal (rows) to elements with the class Flexbox.

This will make the �ex items inside the �ex container be laid out in rows (Figure 11)

.Flexbox {

display: flex;

flex -direction: row;

}

23

Figure 11: With simple Flexbox layout

It is possible to control how the space inside the �ex container is used by the �ex

items using the following CSS properties:

�ex-grow Used to de�ne the �ex grow factor that tells how an element inside a

Flexbox container will grow relative to the other elements inside the container.

By default set to 1.

�ex-shrink Used to de�ne the �ex shrink factor. Works the same way as �ex-grow

except for shrinking the elements. By default set to 1.

�ex-basis Used to de�ne the default size of an element before the free space is

distributed according to the �ex grow and �ex shrink factors. Takes the same

values as the CSS width property. If set to auto uses the elements width or

height property depending on the direction of the Flexbox layout.

Figure 12: Illustration of how �ex-basis. Red and blue numbers are �ex-grow factors.

(originally from CSS Flexible Box Layout Module Level 1 W3C Working Draft)

Now it is possible to give the Flexbox a simple directive to automatically �ll the

container with its content elements (Figure 13). Here is a CSS snippet for that:

24

.Flexbox > div

{

flex -grow: 1;

flex -shrink: 1;

flex -basis: auto;

}

Figure 13: Flexbox automatically �lling the container with its content

It is also possible to control how big of a proportion of the available space each �ex

item inside the �ex container takes by using the �ex-grow CSS property. (Figure 14.)

div > :nth -child (2)

{

flex -grow: 10;

}

Figure 14: With green element having bigger grow factor

This in itself is not something that cannot be done with percentage based layout and

�oats. Next, the wrapping of the �ex items inside the �ex container to multiple rows

is demonstrated. This is something which is not easily replicated using the block

25

model. First, the developer gives the �ex items inside the �ex container a minimum

width or actually have enough content inside the elements to �ll the space and set

the �ex-wrap property to wrap which is done by adding the following CSS rules:

.Flexbox > div

{

min -width: 200px;

}

.Flexbox

{

flex -wrap: wrap;

}

With this if the screen width is less than 600px but more than 400px the user will see

one row with 2 elements and a second one with 1 element (Figure 15). If the screen

is less than 400px wide all the elements will wrap into their own rows (Figure 16).

The �ex-grow property is also taken into account when wrapping to multiple �ex

lines happens (Figure 17). This is one of the features that cannot be replicated by

just using percentage based widths and �oating elements because when �oats there

is no way to tell the items on lines with less items to use more of the available space.

Figure 15: With 500px wide window

26

Figure 16: With 380px wide window

Figure 17: With 500px wide window. Wrapping with green element having bigger

grow factor

27

The wrapping behavior of Flexbox layout cannot be replicated using the block layout

mode without the use of very complicated Media Queries and JavaScript code.

Some very simple use cases could be replicated but when more items inside the

container are added it gets more and more di�cult to get the same layout without

using Flexbox layout. Also, in general having a native way to do the layout in the

wanted way without relying on JavaScript is almost always faster to render.

4.3 Ordering

Flexbox also allows for easy control of ordering of elements inside the container. By

default the elements are in the order they are in the source but this can be

controlled with the order CSS property on the �ex items. For example continuing on

the previous example it is possible to make the blue element appear �rst in the list

(Figure 18) with the following CSS. It should be noted that when using the order

property the ordering number for all elements must be given.

div > :nth -child (1)

{

order: 2;

}

div > :nth -child (2)

{

order: 3;

}

div > :nth -child (3)

{

order: 1;

}

28

Figure 18: With the blue third (blue) element ordered to be �rst

4.4 Alignment

With Flexbox layout the developer is not forced to �ll the whole space with content.

Instead the developer is given with multiple ways of leaving margins around the �ex

items and alignment of them.

4.4.1 Alignment with auto margins

Auto margins in a Flexbox layout are enabled by setting the margin-left or

margin-right CSS properties to right or left. The e�ect itself is very similar to using

auto margins in block layout in that it can be used to push elements to either side

of main-axis. One of the most common uses for auto margins is to split items in a

menu bar into two distinct groups. In this example there is a navigation bar

(Figure 19) which is built using the following HTML and CSS.

<nav>

Home

Forum

Help

Login

29

</nav>

nav > ul

{

display: flex;

list -style -type: none;

border -radius: .2em;

padding: .2em .5em;

background -color: gray;

}

nav > ul > li

{

/* keeps the items from getting too small for the content in

them*/

min -width: min -content;

border -radius: .3em;

padding: 0 .25em;

}

Figure 19: Navigation bar using Flexbox layout

Now to split the help and login items on the navigation bar, only the addition of one

single CSS property on the correct �ex item is required. (Figure 20)

nav > ul > :nth -child (3) {

margin -left: auto

}

Figure 20: Navigation bar with auto margin

4.4.2 Main axis alignment

Alignment over the main axis is implemented with the justify-content property. It is

normally used when �ex items inside a container cannot grow or shrink or they can

grow but have reached their maximum size. Justify-content property also gives

30

some control over the alignment when items over�ow a line. There are �ve di�erent

justify-content modes which are as follows:

�ex-start Items are packed to the beginning of the line.

�ex-end Items are packed to the end of the line.

center Items are centered on the line.

space-between Evenly split the available space between the items but not

between the items and container.

space-around Split the available space between the items and between the items

and container at the beginning and end of the line. The space between the

container and the �rst/last item is half the space that is left between the

items them self.

Figure 21: Illustration of the di�erent main axis alignment modes. (originally from

CSS Flexible Box Layout Module Level 1 W3C Working Draft)

4.4.3 Cross axis alignment

With Flexbox there is also the possibility of aligning in the perpendicular direction of

the main axis (cross axis) in a very similar way as with justify-content. When

aligning on cross axis there are two options. One is for aligning all the �ex items

inside the container using the align-items property on the �ex container and single

items using the align-self property on a �ex item. The same �ve alignment options

are available for both align-items and align-self which are as follows

31

�ex-start Pushes the items cross-start margin to the cross-start of the line. For

example, if using vertical Flexbox �ow all the items would have their top

margin against the top of the container. Over�ows over the cross-end of the

line if container is too small.

�ex-end Pushes the items cross-end margin to the cross-end of the line. Over�ows

over the cross-start of the line if container is too small. In essence it is the

opposite of �ex-start.

center Centers the items on the line. Over�ows in both directions if the container

is too small for the item.

strecth Strecthes the items cross-start and cross-end to the containers cross-start

and cross-end. Will respect the contstraints from min-height, min-width,

max-height, and max-width properties of the item. If content of the item does

not �t the content will over�ow from the item.

baseline Tries to put the content of the items in the same line.

Figure 22: Illustration of the di�erent cross axis alignment options. (originally from

CSS Flexible Box Layout Module Level 1 W3C Working Draft)

4.4.4 Alignment of item lines

With Flexbox layout it is possible to align lines inside the �ex container in respect to

each other. This is done using the align-content property that has six di�erent

possible values as follows.

32

�ex-start Places the lines starting from cross-start edge of the container leaving

the rest of the container empty

�ex-end Places the lines starting from the cross-end edge of the container leaving

the rest of the container empty.

center Centers the lines inside the container. Leaving equal amount between the

�rst item and cross-start and last item and cross-end

strecth Fills the empty space in the container by stretching the lines. If there is no

space left acts like �ex-start

space-between Fills the empty space by leaving empty equal space between the

lines.

space-around Fills the empty space by leaving space between the lines and

between the �rst and last line and edges of the container. The space between

the edges of the container and the lines is half of what used for between items.

Figure 23: Illustration of the alignment between lines. (originally from CSS Flexible

Box Layout Module Level 1 W3C Working Draft)

4.4.5 Example

As an example a simple responsive website layout is implemented. In traditional

desktop size browser windows the nav, content and aside sections should be laid out

33

next to each other. When going from a big desktop size browser window to a small

mobile browser window the nav, content and aside sections should be stacked on

top of each other (Figure 24). A very simple HTML content with a header, content,

nav, aside and footer sections will be used for the website. In this HTML the

content, nav and aside sections will be located inside a Flexbox container that the

Flexbox layout will be applied to. (Figure 25)

<header >Header </header >

<div class="Flexbox"> <!-- the flex container -->

<article >Content </article >

<nav>Nav</nav>

<aside>Aside</aside >

</div>

<footer >Footer </footer >

Figure 24: Illustration of the transition of the layout from large screen to small screen

34

Figure 25: Layout before Flexbox layout

As observed it can be seen that the page looks almost correct already for the small

screen devices except for the fact the nav, aside and content are in the wrong order.

Flexbox layout will now be applied to the �ex container that will make the site look

correct on large screens. This is achieved by setting the correct display and �ex

properties to the �ex container in the style sheet. After that it is possible to set the

appropriate order, grow, shrink and basis values for the nav, article and aside

elements to achieve the look that was wanted (Figure 26)

.Flexbox {

min -height: 600px;

display: flex;

flex -direction: row;

flex -wrap: wrap;

}

.Flexbox > nav

{

background: red;

flex -grow: 1;

flex -shrink: 5;

flex -basis: 20%;

35

order: 1;

}

.Flexbox > article

{

background: white;

flex -grow: 3;

flex -shrink: 1;

flex -basis: 60%;

order: 2;

}

.Flexbox > aside

{

background: blue;

color: white;

flex -grow: 1;

flex -shrink: 5;

flex -basis: 20%;

order: 3;

}

Figure 26: Flexbox layout on a wide screen

Now that the large screen use case is implemented the problem is that if it is viewed

on a small device the middle section of the page will get squashed into a very

36

narrow element. To �x this CSS3 Media Queries are used to apply the appropriate

CSS rules when the screen size gets small enough.

/* apply these rules when screen width is less then 500px */

@media all and (max -width: 500px) {

/* change Flexbox direction from horizontal to vertical */

.Flexbox {

flex -wrap: column;

flex -direction: column;

}

/* Change the order of Flexbox items*/

.Flexbox > nav

{

order: 1;

}

.Flexbox > article

{

order: 2;

}

.Flexbox > aside

{

order: 3;

}

.Flexbox > nav , .Flexbox > aside {

min -height: 35px;

max -height: 35px;

}

}

37

Figure 27: The layout of the example on a narrow screen

As can be observed from Figure 27 the page now shows on small devices as was

wanted. One great advantage of the Flexbox layout is that it is just another CSS

display mode that can be applied to only the parts of the page where it is needed.

In the example the header and footer elements do not use Flexbox layout at all,

which means that it is possible to take Flexbox layout to use into existing pages by

applying it only to the parts it is needed for.

4.5 Conclusions

The main problem with the Flexbox layout for now is browser support because the

spec is still in the candidate recommendation phase of the W3 standardization

process. According to caniuse.com full support for the latest version of the

speci�cation is at 54% while partial is at 26%. This leaves between 46 to 20% of

the users in the world without being able to correctly view a page using Flexbox

layout which can be a big problem in some markets. With no easy way to replicate

the same functionality this can be a stopper in taking Flexbox layout into use. For

example if developing for a corporate customer that still uses an old version of

Internet Explorer or emerging markets with low powered smartphones that don't use

the latest browsers.

38

Still using Flexbox for handling some parts of your web page layout is highly

recommended. While it is possible to replicate some of the functionality of Flexbox

layout using media queries and �oats relying complicated CSS frameworks that are

made of hundreds or thousands of lines of instructions and HTML content that is

speci�cally made for that framework is required. Also the big CSS frameworks

require that they are used everywhere on your whole page while Flexbox can be used

only for the parts it is needed for makes taking them into use for existing projects

very complicated.

5 Grid layout

5.1 General

Grid layout is another new layout mode coming with CSS3. It is heavier weight than

Flexbox layout and is meant for handling the layout of complex online applications.

Grid layout allows the content to be laid in a very di�erent way depending on the

device being used to view the page. Not only can the size and proportions of the

elements be changed so can the ordering of them. In a way grid layout is the �rst

time that CSS is getting close to its old promise of detaching the layout from the

content. It is powerful enough to truly create almost any kind of a layout from just

a group of elements inside a container (where the container can be the body

element of the page).

Figure 28: Horizontal game layout

39

Figure 29: Vertical game layout

Both of these layouts should use the same HTML and CSS with Media Queries

handling the changing of the Grid layout from one form to another.

5.2 Concepts

In some ways Grid layout works in a very similar way to tables, however, it has the

advantage of not being tied to the content structure which allows the layout to

change depending on the screen size, orientation and aspect ratio. It is also possible

to combine cells with grid layout. For example one element could be the �rst three

rows of column one. This is similar to how it is possible to merge columns when

using tables but with grid layout it is possible to do this in both horizontal and

vertical direction without touching the HTML content.

This should be very familiar to anyone who has worked with HTML before the rise

of CSS when a lot of styling on a web page was done using tables. But these table

based layouts were very brittle to di�erent screen sizes and wasted a lot of space.

40

As an alternative many pages were created with �xed layout that did not react at all

to the browser's window size. Grid layout was made to address these problems. It

gives the developer tools to divide the available space into columns and rows which

are then easy to �ll with wanted content. The position of each element in Grid

layout can be changed with only CSS changes so it is possible to have the layout

respond to changes in the screen size just by using CSS3 Media Queries.

To make an element use grid layout inside of it developers give its display property

the value grid. Along with it, developer indicates how many columns and rows

developer wants in the grid. Developer controls these with the grid-columns and

grid-rows properties. Both these properties take a space separated list of how wide

and high columns or rows are wanted. For example, giving the value '100px 100px'

to grid-columns means that the developer wants two 100 pixel wide columns.

After setting up the grid the grid-column and grid-row properties are de�ned on the

elements inside the container. They take a simple running number of the column or

row the element should take. Grid-column-span or grid-row-span properties can also

be given which tell the element to span into multiple columns or rows. The default

value for both grid-column-span and grid-row-span is '1' so if the element is wanted

to spawn two rows the grid-row-span property is the given value '2'.

5.3 Example

As an example the horizontal and vertical game layouts showed earlier are

implemented. For this there is a very simple base HTML with some basic styles

(Figure 30). It should be noted that for all grid layout related CSS the "-ms-" pre�x

is used due to the fact that Microsoft with its Internet Explorer browsers is the only

vendor that has implemented the grid layout.

To implement the example the two wanted layouts (Figures 28 and 29) are observed

for ways to split them into columns and rows. It can be easily seen that it is possible

to split the content into grids of two columns and three rows in both cases (Figures

31 and 32).

<div id="grid">

<div id="title">Title </div>

<div id="stats">Stats </div>

41

<div id="content">Game content </div>

<div id="controls">Controls </div>

</div>

Figure 30: Basic layout with simple styles

Figure 31: Horizontal layout with red lines showing row splits and blue lines showing

column split

42

Figure 32: Vertical layout with red lines showing row splits and blue lines showing

column split

The display mode can be set now for all viewing modes as grid and the grid set up

with two columns where the �rst one is 100px wide and the other using as much

space as needed for its content. The three rows can now be set up with the �rst

and the third row being 100px high and the second row using as much space as

needed for its content.

#grid {

display: -ms -grid;

-ms -grid -columns: 100px 1fr;

-ms -grid -rows: 100px 1fr 100px;

}

Now that the grid layout set is out the grid content needs to be speci�ed in

horizontal (landscape) mode using a media query. In the horizontal layout the �rst

row is set up to contain the title and content, the second row with stats and

content and the third row with stats and controls.

@media (orientation: landscape) {

43

/* title only takes first rows first column */

#title

{

-ms -grid -column: 1;

-ms -grid -row: 1;

}

/* stats starts at second row first

column but spans over 2 rows */

#stats

{

-ms -grid -column: 1;

-ms -grid -row: 2;

-ms -grid -row -span: 2; /* stats to span to third row */

}

/* content starts from first rows

second column but spans 2 rows */

#content

{

-ms -grid -column: 2;

-ms -grid -row: 1;

-ms -grid -row -span: 2; /* content span into second row */

}

/* controls only takes the third rows second column */

#controls

{

-ms -grid -column: 2;

-ms -grid -row: 3;

}

}

Now that the CSS has been applied, when the page is in horizontal mode it can be

observed that the grid layout is working correctly when using a browser that is in

landscape orientation. (Figure 33)

With the horizontal layout working, CSS styles for the vertical layout can be added.

This is done by adding the styles in a similar fashion as before but instead a media

query is used where the orientation is portrait instead of landscape and the grid

setup is modi�ed for the vertical layout.

44

Figure 33: Game horizontal layout with grid styles

@media (orientation: portrait) {

/* title only takes first rows first column */

#title

{

-ms -grid -column: 1;

-ms -grid -row: 1;

}

/* stats only takes first rows second column */

#stats

{

-ms -grid -column: 2;

-ms -grid -row: 1;

}

/* content takes second rows both columns */

#content

{

-ms -grid -column: 1;

-ms -grid -row: 2;

-ms -grid -column -span: 2; /* content span both columns */

}

/* controls takes thord rows both columns */

#controls

{

-ms -grid -column: 1;

-ms -grid -row: 3;

-ms -grid -column -span: 2; /* controls spawn both columns */

45

}

}

After applying this CSS it can be seen that the content layout changes when using a

narrow (vertical) view the page (Figure 34). It should also be remembered that

because of the grid layout itself is just another display mode in HTML the items

inside the grid loyout can use a di�erent layout mode for its content (Figures 35 and

36)

Figure 34: Game vertical layout with grid styles

46

Figure 35: Horizontal grid layout with Flexbox layout for content divs content

Figure 36: Vertical grid layout with Flexbox layout for content divs content

47

5.4 Conclusions

The major problem with adopting the grid layout is that browser support for it is

limited to the versions 10 and 11 of Internet Explorer. According to caniuse.com,

only 10% of the global market share currently support grid layout. The only use

case for now where the use of grid layout could be recommended is building custom

software for a speci�c client's private use where browser version can be controlled.

But as a future technology grid layout can be seen as very promising due to its

ability to greatly simplify CSS styles and help truly separate the HTML content from

the CSS styles. Most of the features provided by grid layout can be replicated by

using popular CSS grid frameworks that split the page into n amount of columns;

these force developers to have their content contain the rows, which makes it very

di�cult to have di�erent layouts for di�erent devices using Media Queries.

6 Summary

The aim of the thesis was to explore some of the new HTML5 and CSS3

technologies and �nd out how they could be used to provide a better experience to

mobile users who have screen sizes and aspect ratios very di�erent from traditional

desktop users. At the beginning, two di�erent ways to make the experience

smoother for slow devices were discussed (which most mobile devices fall into).

With Web Workers it was found out how to o�oad computations to another thread

so that they will not interrupt the main browser thread. This is very important when

doing heavy client side applications like a mapping solution where path �nding

would be done on the client side.

Another technology discussed was the History interface that allows the web

application to maintain the traditional user experience with working back and

forward actions provided by the browser when doing single page applications. This

can also be leveraged when doing multi-step forms if the framework of the server in

the background does not handle them well. For example, this is a huge problem

with stateless high performance web frameworks where developer would have to

resort to storing the information from the previous steps in hidden �elds in the form

when moving from one step to the next one.

48

After these the more visible new CSS3 technologies that provide new and more

e�cient ways to handle layouts on multiple di�erent screen sizes and forms while

still using the same HTML content were discussed. From these the Flexbox layout

gives the ability to have elements inside a container lay out in a predictable way into

rows (or columns if the Flexbox direction is horizontal) even when the screen size

changes. This technology gives good control over all the margins, directions etc.

that control how the content should be laid out. Flexbox layout can also control the

order of the elements inside the container without touching the content of the page

itself.

The last technology was Grid layout which does not yet have a very good browser

support; however, as a technology it looks very promising. It allows the content on

the page to be almost totally detached from the styling which has been very di�cult

without this if the layout is to respond to screen size changes. While similar layout

concepts are present in many popular CSS Grid frameworks they rely on modifying

the content to contain the rows which makes it very hard to do big layout changes

when devices size changes. With them when the screen gets small enough developer

usually relies on making everything stacked on top of each other which might not

always be the wanted result.

In overall all of these technologies are worth taking a good look into when building

new web sites. They allow developers to build applications that work well and look

correct on any device faster.

References

Alexis Deveria. A 2014, Can I use CSS Grid Layout?. Global user stats. Accessed on

9 May 2014. Retrieved from http://caniuse.com/css-grid

Alexis Deveria. A 2014, Can I use Flexible Box Layout Module?. Global user stats.

Accessed on 9 May 2014. Retrieved from http://caniuse.com/Flexbox

Alexis Deveria. A 2014, Can I use Session history management?. Global user stats.

Accessed on 9 May 2014. Retrieved from http://caniuse.com/history

Alexis Deveria. A 2014, Can I use Web Workers?. Global user stats. Accessed on 9

May 2014. Retrieved from http://caniuse.com/webworkers

W3C. P 1999. Hypertext Transfer Protocol � HTTP/1.1. 8.1.4 Practical

Considerations. Accessed on 9 May 2014. Retrieved from

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html

W3C. P 2014. CSS Flexible Box Layout Module Level 1 W3C Working Draft.

Accessed on 9 May 2014. Retrieved from

http://www.w3.org/TR/2014/WD-css-flexbox-1-20140325/

W3C. P 2014. CSS Grid Layout Module Level 1 W3C Working Draft. Accessed on

9 May 2014. Retrieved from

http://www.w3.org/TR/2014/WD-css-grid-1-20140123/

W3C. P 2014. HTML5 Candidate Recommendation. 5.5.2 The History interface.

Accessed on 9 May 2014. Retrieved from http://www.w3.org/TR/2014/

CR-html5-20140429/browsers.html#the-history-interface

W3C. P. 2012. Web Workers W3C Candidate Recommendation. Accessed on 9 May

2014. Retrieved from http://www.w3.org/TR/2012/CR-workers-20120501/

http://caniuse.com/css-grid
http://caniuse.com/Flexbox
http://caniuse.com/history
http://caniuse.com/webworkers
http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html
http://www.w3.org/TR/2014/WD-css-flexbox-1-20140325/
http://www.w3.org/TR/2014/WD-css-grid-1-20140123/
http://www.w3.org/TR/2014/CR-html5-20140429/browsers.html#the-history-interface
http://www.w3.org/TR/2014/CR-html5-20140429/browsers.html#the-history-interface
http://www.w3.org/TR/2012/CR-workers-20120501/

	Introduction
	Web Workers
	Concepts
	Dedicated Worker example
	Conclusions

	History interface
	General
	Adding new history events
	Changing current history state
	Multistep form example using pushState
	Example of updating current session state
	Conclusions

	Flexbox layout
	Flexbox concepts
	Basic layout and wrapping
	Ordering
	Alignment
	Alignment with auto margins
	Main axis alignment
	Cross axis alignment
	Alignment of item lines
	Example

	Conclusions

	Grid layout
	General
	Concepts
	Example
	Conclusions

	Summary
	References

