
Bachelor’s thesis

Information and Communications Technology

2020

Nguyen Hoang Minh Le
Ba Hiep Phung

WEBASSEMBLY:
PORTABILITY AND RISKS

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information and Communications Technology

2020 | 47

Nguyen Hoang Minh Le
Ba Hiep Phung

WEBASSEMBLY:
PORTABILITY AND RISKS

WebAssembly (or Wasm in short) is a new programming language which is supported
by several browsers nowadays and can be run with near-native performance. Web
developers can utilize JavaScript libraries that are using WebAssembly under the
hood without writing low level language such as C/C++, Rust, etc.

The purpose of the thesis was to analyze the portability and the performance of
WebAssembly by researching WebAssembly Ecosystem with Rust, compiling a task
from Rust and TypeScript into WebAssembly and comparing the runtime of this task to
the same task which was written in JavaScript. The authors also aimed to research how
WebAssembly can be abused in the real world to perform illegal activities by analyzing
a cryptominer sample and a keylogger sample which were written in WebAssembly.

The results show that WebAssembly performs the tasks faster than other languages
(Rust, JavaScript and TypeScript). Moreover, the cryptominer and keylogger in
WebAssembly are easy to create and use in any website without any detection.

This thesis provides a basic introduction to WebAssembly, compares the performance
of WebAssembly with JavaScript, explores the usage of Emscripten and discovers how
WebAssembly can be used in cryptomining and keylogging. The thesis aims to help web
developers and security researchers in developing the web environment more efficiently
and safely.

KEYWORDS:

webassembly, malware, cryptomining, rust, c/c++, javascript, keylogger, performance, portability,
risks

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 6

1 INTRODUCTION 8

2 INTRODUCTION TO WEBASSEMBLY 9

2.1 What is WebAssembly? 9

2.2 Structure of WebAssembly 10

2.3 Goals of WebAssembly 10

2.4 “Hello, world!” in WebAssembly 11

3 WEBASSEMBLY PORTABILITY AND PERFORMANCE 13

3.1 WebAssembly Ecosystem with Rust 13

3.2 Portal application 14

3.3 JavaScript performance vs WebAssembly performance 19

3.3.1 JavaScript performance 19

3.3.2 WebAssembly performance 22

3.3.3 Performance comparison 24

3.3.4 Single instruction, multiple data (SIMD) 28

4 WEBASSEMBLY RISKS 29

4.1 Emscripten – A toolchain for compiling WebAssembly 29

4.1.1 Overview of Emscripten compiler 29

4.1.2 “Hello World!” from C/C++ to WebAssembly 31

4.1.3 Using JavaScript in C/C++ 36

4.2 WebAssembly cryptomining 38

4.2.1 Overview of cryptomining 38

4.2.2 Coinhive cryptomining 39

4.3 WebAssembly keylogger 42

4.3.1 Overview of keylogger 42

4.3.2 Create a keylogger in WebAssembly 43

4.3.2 Infection vectors and mitigation 44

5 CONCLUSION 47

REFERENCES 48

APPENDICES

Appendix 1. keylogger_javascript.c

FIGURES

Figure 1. WebAssembly text format. 11
Figure 2. Import WebAssembly to webpage. 12
Figure 3. Initial rust project file structure. 15
Figure 4. Cargo.toml is a manifest file in which can specify dependencies which the
project required. 15
Figure 5. Import library and DOM objects. 16
Figure 6. Select DOM element. 16
Figure 7. Setup Navigator and video’s constraints. 16
Figure 8. pgk folder files structure. 17
Figure 9. Using WebAssembly module. 18
Figure 10. Error message in Using WebAssembly. 18
Figure 12. Access and assign value in JavaScript. 20
Figure 11. JavaScript compile flow. 20
Figure 13. JavaScript (de)optimise flow. 21
Figure 14. WebAssembly compile flow. 22
Figure 15. Looping performance comparison. 24
Figure 16. Prime performance comparison. 25
Figure 17. Invert video colours performance comparison in MacOS. 26
Figure 18. Invert colours function in Rust. 26
Figure 19. Performance comparison. 27
Figure 20. Matrix calculation. 28
Figure 21. Matrix calculation with SIMD. 28
Figure 22. Compiling process of Emscripten. 29
Figure 23. Compiling process from C/C++ to WASM. 30
Figure 24. Sub function in ASM.JS. 30
Figure 25. Sub function in C++. 30
Figure 26. Sub function in WebAssemby Text Format. 30
Figure 27. Emscripten's installation commands. 31
Figure 28. Result of "emcc -v" command. 31
Figure 29. hello_world.c. 32
Figure 30. Process of compiling C/C++ to WebAssembly. 32
Figure 31. Result of the compilation. 32
Figure 32. hello_world.html from the browser. 33
Figure 33. The size of C file and WASM binary. 33
Figure 34. Export section of WebAssembly. 34
Figure 35. Defining Module object. 34
Figure 36. Example of fetching and instantiating hello_world module. 35
Figure 37. Fetching and instantiating the module in Emscripten. 35
Figure 38. Emscipten stores exported function in Module["asm"]. 35
Figure 39. Emscripten assigns Module["_main"] as the "main" function. 36
Figure 40. Import JavaScript file in HTML. 36
Figure 41. inline_javascript_alert.c. 37

file:///C:/Users/Hardison/Documents/Turkuamk/Thesis/thesis_draft.docx%23_Toc48770073
file:///C:/Users/Hardison/Documents/Turkuamk/Thesis/thesis_draft.docx%23_Toc48770083
file:///C:/Users/Hardison/Documents/Turkuamk/Thesis/thesis_draft.docx%23_Toc48770084
file:///C:/Users/Hardison/Documents/Turkuamk/Thesis/thesis_draft.docx%23_Toc48770085
file:///C:/Users/Hardison/Documents/Turkuamk/Thesis/thesis_draft.docx%23_Toc48770086
file:///C:/Users/Hardison/Documents/Turkuamk/Thesis/thesis_draft.docx%23_Toc48770087

Figure 42. An alert with "Hello World!" message. 37
Figure 43. First 8 lines of inline_javascript_alert.wasm. 38
Figure 44. Block of code to execute Coinhive cryptomining. 40
Figure 45. The evidence of Emscripten compiler in Coinhive source code. 40
Figure 46. 2 filenames in the source code. 40
Figure 47. Coinhive call _cryptonight_hash function. 41
Figure 48. VirusTotal result for coinhive.min.js file. 41
Figure 49. An example of JavaScript-based keylogger [34]. 43
Figure 50. keylogger_javascript.html on the browser. 44
Figure 51. The first 10 line of keylogger_javascript.wasm in hex format. 45
Figure 52. Disable all WebAssembly feature in Chrome. 46

LIST OF ABBREVIATIONS

API Application Programming Interface

AST Abstract Syntax Tree

BSON Binary JavaScript Object Notation

CL Command line

CPU Central Processing Unit

CSS Cascading Style Sheets

DOM Document Object Model

GC Garbage Collector

HTML HyperText Markup Language

JIT Just-In-Time

JSON JavaScript Object Notation

LLVM Low Level Virtual Machine

LTS Long-Term Support

MDN Mozilla Developer Network

MVP Minimum Viable Product

SIMD Single instruction, multiple data

SQL Structured Query Language

UI User Interface

W3C World Wide Web Consortium

WASM WebAssembly Binary format

WAT WebAssembly Text format

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

XSS Cross-site Scripting

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

1 INTRODUCTION

The objectives of the thesis are to analyze the portability and the performance of

WebAssembly. The thesis also aims to research how WebAssembly can be abused in the

real world to perform malicious deeds. To analyze the portability and the performance of

WebAssembly, we first research the WebAssembly Ecosystem with Rust, then we use

Rust and AssemblyScript to perform some tasks and compile them to WebAssembly

binary, then we compare the runtime of the same task which was written in JavaScript to

have an overview of WebAssembly performance. The abuse of WebAssembly in the real

world will be researched by collecting, analyzing real cryptominer sample and making a

simple keylogger which can be used directly in a website.

The thesis begins with a brief introduction of WebAssembly (Chapter 2). The first two

sections of Chapter 2 explain what WebAssembly is and the structure of WebAssembly

and they are written by Minh Le. The last two sections of Chapter 2 provide the goals of

WebAssemby and how to write the very basic ”Hello World!” program in WebAssembly

which are written by Hiep Phung. Chapter 3 discusses the portability and performance of

WebAssembly compared to other programming languages (Rust, JavaScript, TypeScript)

and it is introduced by Hiep Phung. IChapter 4 discusses the risks of using WebAssembly

in the wild, how the Emscripten toolchain works and presents a demo of a WebAssembly

keylogger.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

2 INTRODUCTION TO WEBASSEMBLY

2.1 What is WebAssembly?

When we talk about web development, HTML, CSS and JavaScript are the top languages

that a usual developer will think of. JavaScript is great for creating rich and interactive

user interface. However, it is not capable of handling highly computed tasks for example

image editing, video editing, low-latency augmented reality. To tackle this problem,

WebAssembly was first introduced on March 2017. With the high demand for more efficient

web applicattion and the rapid development of web technology, WebAssembly is now

supported in 4 major browsers (Firefox, Chrome, Safari and Edge) and has received the

recommendation from W3C on December 2019 [1].

WebAssembly brings more performancing to web application due to its capability to utilize

computer hardware such as the processor and memory which JavaScript cannot do. Not

only is WebAssembly being used by developer to improve web application but is also being

absused by hackers to perform malicious deeds. There are several cases that have been

found where Webassembly was used to perform crytomining, hide malicious code and log

keystroke without user consent.

WebAssembly was on the initial public announcement in 2015 on Github and recently has

been become a recommendation by World Wide Web Consortium on September 2019. It

is designed to compile code from another low-level languages such as C/C++ or Rust then

run in browser environment but it is not considered as a replacement for Javascript. [2]

There are two types of format in WebAssembly’s specification: WebAssembly binary

(WASM extension) and WebAssembly Text Format (WAT extension). The WebAssembly

binary format is fetched by web application and converted into a Module. On the other

hand, the WebAssembly Text Format is not designed to run in browser but rather for

humans to read. In this thesis, we will use the WebAssembly Text Format for the

explanations and demonstrations.

WebAssembly has a significant impact on website development because it allows a

program which is written in another language (for example C/C++ or Rust) to run on a

website which was impossible previously. Along with EmScripten, which will be introduced

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

in Chapter 4, researchers and developers have carried out several interesting experiments

on different aspects such as computer vision, language detector, and cryptography.

2.2 Structure of WebAssembly

There are two types of format in WebAssembly’s specification: WebAssembly binary

(WASM extension) and WebAssembly Text Format (WAT extension). WebAssembly

binary format is a series of operation codes, which is then fetched by the web page and

converted into a Module. On the other hand, WebAssembly is a human readable format of

WebAssembly binary, it is not designed to be run on the browser.

A module is the basic unit of code in both the binary and textual formats. ”In the text format,

a module is represented as one large S-expression. S-expressions are a very old and very

simple textual format for representing trees, and thus we can think of a module as a tree

of nodes that describe the module’s structure and its code” (MDN Web docs) [3]. It is clear,

therefore, that we can understand and describe the text format of WebAssembly easily in

a tree.

2.3 Goals of WebAssembly

Web application has been evolved and developed rapidly in the past decade. There are a

massive number of JavaScript libraries and frameworks that helps to create rich

and performance web application; however, due to the current user demand for universal

access, web applications have to be more complex and heavier, for example, in video

games, graphic design, and audio processing. To make this possible JavaScript libraries

and frameworks use WebAssembly to reduce the loading and compilation process. There

are some other approaches such as using plugin to achieve near-native performance in

the browser, but they tend to be unstable and insecure. On the other hand WebAssembly

runs entirely within the Web Platform where developers utilized JavaScript libraries that

use WebAssembly handle CPU-intensive calculations [4].

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

2.4 “Hello, world!” in WebAssembly

To start with programming in WebAssembly, firstly, we install The WebAssembly Binary

Toolkit (wabt) [5]. It is a tool to compile WebAssembly text code into Webassembly binary

to run the browser and chose the compile to compile WebAssembly text in this case is

Clang [6].

$ git clone --recursive https://github.com/WebAssembly/wabt

$ cd wabt

$ make clang-release

After that, we create a file name hello-world.wat

Figure 1. WebAssembly text format.

Since WebAssembly is using linear memory [7], it must be specified how many

memory blocks it needs to be allocated. The second line show that 1 memory block of 64

kilo bytes is allocated . The memory block is exported from the module under the name

“memory”.

We want to assign the string “hello, world” to the memory block, therefore, a starting index

is specified. In this case, it is the index zero and this memory block is allocated by

calling (data (i32.const 0) "Hello, world!").

We next compile WebAssembly text to WebAssembly binary using wat2wasm CL

tool which is install earlier.

$./bin/wat2wasm hello-word.wat -o hello-world.wasm

Wat2wasm accepts the hello-word.wat as an input file then the flag “o” is provided

to indicate that the output is in binary format name hello-world.wasm.

https://github.com/WebAssembly/wabt

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

The output hello-world.wasm is the WebAssembly binary. It can be imported to and run in

any browsers that support WebAssembly.

We will follow MDN Web docs to setup and use WebAssembly in JavaScript project [8].

Figure 2. Import WebAssembly to webpage.

The instance return from wasm.exports.memory is the WebAssembly linear memory

object. The bytes array that stored the string “hello world” in that memory block can be

accessed by selecting index 0 to 12 in that memory buffer. The final step is to decode

those bytes array to text format by using the TextDecoder object of the browser [9].

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

3 WEBASSEMBLY PORTABILITY AND PERFORMANCE

3.1 WebAssembly Ecosystem with Rust

WebAssembly is not very practical to be hand-written but most likely to be compiled from

other languages such as Rust, C, C++, Kotlin, etc. Also WebAssembly is not designed to

replace JavaScript. They are expected to work together with some configuration such as a

web application using HTML/CSS/JavaScript to create a UI with WebAssembly controlling

the center canvas, a web application which imports WebAssembly modules to handle the

heavy looped logic, etc.

Rust and toolchains

Rust is an incredible high-performance programming language. It utilizes a new concept

called ownership to handle memory which get rid of runtime and garbage collector, it can

power performance-critical services, run on embedded devices, and easily integrate with

other languages. It is also the one of the most supported language when it comes to

compiling into WebAssembly.

Rustup

Rustup [10] is a Rust installation tool which is recommended by the Rust team for Rust to

compile and run in different operating systems such as Window, Linux and MacOS

Cargo

Cargo [11] is the Rust package manager. Cargo downloads Rust package’s dependencies,

compiles packages, makes distributable packages, and uploads them to crates.io, the

Rust community’s package registry.

Wasm-pack

Wasm-pack [12] is a CL library to generate WebAssembly from Rust that integrates

with JavaScript, in the browser environment or with Node.js in native environment. It can

be used alongside any JavaScript packages in workflows that already used, such as

webpack.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Wasm-bindgen

JavaScript and Rust have complex types. However, WebAssembly specification only

defines four types: two integer types and two floating-point types. Due to those limitation,

come wasm-bindgen [13]. It allows JavaScript and Rust to interactive with each other API

and provides a bridge between JavaScript, Rust and WebAssembly without any

verbose boilerplate.

The js-system crate

The js-sys crate [14] provides Rust the raw bindings to all the global APIs guaranteed to

exist in every JavaScript environment by the ECMAScript standard, and its source lives

at wasm-bindgen/crates/js-sys. With the js-sys crate provides Rust can get access to

Objects, Arrays, Functions, Maps, Sets, etc.

The web-system crate

The web-sys crate [15] provides Rust the raw bindings to all the Web's APIs such as

window object, WebGL, WebAudio, etc.

The web-sys crate and js-system crate are the essential tools for Rust to interact with

JavaScript and the DOM.

3.2 Portal application

This is example of #[wasm_bindgen] showing how using native browser API such as Video

API. We export a function to JavaScript, call it from the browser, and then execute the

functionality from Rust code.

We first initialize project named video-api with Cargo:

$ cargo new video-api

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Figure 3. Initial rust project file structure.

We then configure Cargo.toml file as showed in figure 4.

Figure 4. Cargo.toml is a manifest file in which can specify dependencies which the project
required.

Figure 4 describes the project configuration. The package section shows the project

information such as name, version, author, etc. The dependencies section specifies all the

of required library for JavaScript binding and DOM interaction in Rust. Due to the DOM

specification is massive so that in dependencies. In the web-

sys section must specify which features are required for accessing browser video API.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Figure 5. Import library and DOM objects.

Required libraries are imported on the first 4 line. Since videp_api function interact with

DOM API, therefore it needs #[wasm_bindge] on line 6.

Figure 6. Select DOM element.

Function video_api initialized the window by invoking window function. After we

invoke window function on line 8, Rust does not return the window object immediately but

rather than an Option<Window> due to Rust is a statically typed safe language, it needs to

call unwrap function on Option<Window> to get the window. If window object is

unavailable unwrap function stop will the program. After that we select an element has id

named “video”, since get_element_by_id returns a general HtmlElement type, it needs a

type cast to HtmlVideoElement on line 13.

Figure 7. Setup Navigator and video’s constraints.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

It setups a video’s constraints with 2 properties which audio is set to false and video is set
to true since we only interested in the video. It gets the user media device by calling
method get_user_media_with_constraints which prompts the user for permission to use a
media input which produces a MediaStream [16] object with tracks containing the
requested types of media. That stream can include, for example, a video track such as a
camera, video recording device, etc. Since the result from calling unwrap function
from get_media_stream is a Rust Promise type. This type is different from JavaScript
Promise. Fortunately, there is a JsFuture crate [17] which is imported at the beginning to
convert Rust Promise to JavaScript Promise the result is store in
a variable named media_stream. It then streams the image data which the array the of
bytes to the video object. The image data collected from user camera to the video
element. _play variable indicates that the call play method on video object is used for side
effect.

Working with Rust is very strict and verbose, but those safety checks guarantee that the

compile WebAssembly is run without errors.

We run the CL tool wasm-pack with the build command.

It automatically takes the src/lib.rs file as entry file then compile and

bundle everything in a folder call pkg.

Figure 8. pgk folder files structure.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Wasm-pack has compiled the Rust code into WebAssembly and setup the JavaScript

binding. It generates two TypeScript for documenting and linting when using this module.

There is a video_api_bg.js file which is a bridge code between JavaScript and

WebAssembly. Its setup the error handler wrapper and a Shared Array Buffer [18] for

WebAssembly to access which is highly efficient and secure.

Due the compilation target is to the web. The pkg module can now be export and run in

any browser that supports WebAssembly and in difference operating system without any

installation.

Figure 9. Using WebAssembly module.

Some caveat using WebAssembly are WebAssembly need to be fetched and stream

chunks by chunks to the web. WebAssembly team and Webpack team are working on the

loader to improve this import process. Due to the compact in WebAssembly code,

debugging process is not very straight forward. There are a numerous of proposal

to implement source map to tackle this problem [19].

Figure 10. Error message in Using WebAssembly.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

3.3 JavaScript performance vs WebAssembly performance

3.3.1 JavaScript performance

Browsers do not execute code directly from compiled executable file. Browsers have

to download, parse, interpret, and JIT [20] which compile JavaScript during runtime not a

head of time.

The below code snippet is a valid JavaScript code for accessing and assigning values. A

dynamic object is created, and values can be access using dot notation and assign using

equal sign. Variables and properties can be changed in any time in JavaScript which make

it great to deal with JSON files, learn a language and prototyping. However, JavaScript

compiler has to a lot of works to anticipate what are the types of the variables since the

compiler does not has the blueprint of the object, a single property look has to go to number

of operations such as checking for type error, undefined, look up from the prototype chain,

value location in memory, etc.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Figure 12. Access and assign value in JavaScript.

Figure 11. JavaScript compile flow.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

JavaScript engine first read the source code as text. The text is run through the engine

parser which turn the human readable source code to an AST [21] which is a format design

for computer to read then the compiler takes this AST and generate machine code. The

performance consumed work is at the compiling process of the compiler.

 Compiling process is not one-way flow instead is it a loop that compile and generate a

small pieces of machine code at the time and repeat so on and so forth. By compiling in

repetition JavaScript can collect the runtime feedback to generate fast machine code.

Figure 13. JavaScript (de)optimise flow.

 When a function foo is called with a same object type multiple times.

foo({ x: 1 });

foo({ x: 1 });

foo({ x: 1 });

JavaScript engine bases on the feedback from the runtime to label foo function as hot

then its forward the compiling process of foo function to the optimizing compiler which the

speculation that foo takes in an object which has a property x with a number type. However,

at some point in the code foo is called with another object type.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

foo({ y: 2 });

The JavaScript has to decompile and pass the code back to the base compiler. This is

where the performance dropped.

3.3.2 WebAssembly performance

Figure 14. WebAssembly compile flow.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

WebAssembly is in byte code format therefore it only needs to be decoded which is a

faster process then parsing. Compiling process is also much faster due to most part of the

assembly code is compiled before being served to the client. Due to the strictly

typed, compiler can trust the code then compile to the optimized machine code without the

worries of wrong speculation so that generated machine code does not need to go through

optimize and deoptimize process.

When initialized a WebAssembly module, JavaScript with create new memory object which

is called Shared Array Buffer. It can create by calling Memory instance

in WebAssembly object which is shipped in browser and pass that object in it.

Shared Array Buffer is just a JavaScript object; therefore, JavaScript will also have access

to these chunks of memory. Instead of using a memory address, they use an array index

to access each box.

 Managing memory is also different in WebAssembly from JavaScript. JavaScript

is using GC (garbage collector) [22] which keeps looping and checks for unused memory.

Using GC can make the programming language tend to be easy to use. However, trade-

off is the performance loss. WebAssembly on the other handle is usually compiled from

a supported manual memory management. Removing GC, so WebAssembly does not

need to do the complicated cleaning process during runtime to keep track memory.

In practice, both JavaScript and WebAssembly are equally fast in performance. The

differences are JavaScript code is passed as text to an interpreter then be optimized and

de-optimized by an optimizing complier using analytic to generate machine code. On the

other hand, WebAssembly is streamed to a WebAssembly complier and then to the

optimizing compiler to generate machine code. Since WebAssembly does not go through

several optimization and de-optimization process therefore it has better runtime.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

3.3.3 Performance comparison

Figure 15. Looping performance comparison.

Figure 15 shows the comparison between JavaScript code and WebAssembly

code in three browsers in MacOS operating system. The performed task is a single

function that take an initial input as an integer then perform a count operation add up

to 10000000 times of repetition. WebAssembly is manually compiled from Rust by just

using cargo target to the web. The result shows that replacing a

native JavaScript module with a JavaScript module utilizing WebAssembly can boost web

application running in MacOS operating system from 6 times to 70 times more

performance.

Figure 16 shows the comparison between JavaScript code and WebAssembly code

in Chrome, FireFox and Edge in Window 10 operating system. WebAssembly is compile

using wasm-pack build command target to the web. The performed task is two function,

the first function is checking prime number and the second is finding the index of that prime.

The function takes an input as integer which specify the index of the prime. Figure in the

chart show the runtime calculation of the 20000th prime number. The result shows that

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

replacing a native JavaScript module with a JavaScript module utilizing WebAssembly can

boost web application running in Window 10 heavy calculation times up to 3 times faster.

Figure 16. Prime performance comparison.

The reason for the performance drops from 6-70 times to 2 times is that. In the first test,

the task is quite simple, and it is compiling manual just using cargo. This can benefit the

WebAssembly performance; however, the trade-off are lacking safety check,

compatibilities and error handle wrapper. The second one is using wasm-pack which is a

delicate tool to compile to Webassembly, it automatically generates JavaScript binding and

fallback option for compatibilities. This cause the drop in performance; the WebAssembly

is continuously working this to improve the performance.

By far, WebAssembly outperform JavaScript on heavy task such as looping and

calculation. The figure below shows the comparison between JavaScript code and

WebAssembly code generate by wasm-pack both performing of inverting colors of a video.

The video data in capture from user camera, then being mutated their colors then those

data is stream to the canvas.

Figure 17 show the comparison between JavaScript code and WebAssembly code in

Chrome browser in MacOS operating system. Result shows that Rust generated

WebAssembly code is twice as slow as JavaScript code. We now analyze the below code

snippet to explain the WebAssembly sudden performance drop.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Figure 17. Invert video colours performance comparison in MacOS.

Figure 18. Invert colours function in Rust.

All the task we made so far is looping function and calculating prime number only accept

an integer as an argument. The invert_video_colors function accepts a pointer to the

image array buffer as an argument. Since WebAssembly was release as an MVP so that it

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

is missing some feature. At the moment, communicate between JavaScript and We

Assembly though variables such as number and

string highly efficient, however communicating though pointer to memory is rather

expensive process.

The issue can be actress by serialize the image data stream into string format then

deserialized back to array stream type when it is passed to WebAssembly. This is just

temporary solution due to some performance loss and (de)serialize process might cause

the loss in data integrity.

For instance, BSON format file contain not just text but also data type such as number

types, (de)serialize that will cause the data miss-type which lead to bug and error. In the

near future, there will be more robust binding which and transfer memory from JavaScript

heap to WebAssembly linear memory so solve this issue. It can still be proven that

WebAssembly perform better by only measure the runtime of the specify part from line 2

to line 18 which skip that communication through pointer from JavaScript to WebAssembly.

Runtime performance is shown in the figure below.

Figure 19. Performance comparison.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

3.3.4 Single instruction, multiple data (SIMD)

SIMD enabled computers to perform a single operation on multiple elements. SIMD most

common use case is in heavy task such as contrast in a digital image or adjusting the

volume of digital audio [23]. The basic usage of SIMD is available in Rust in a minimum

use case. For example:

Figure 20. Matrix calculation.

Figure 21. Matrix calculation with SIMD.

Summing two matrices from the first two array slice then assign those new value to the

third argument. The simple solution on figure 20 is looping through individual element from

the array slice then add those value to each block in c array slice. However, with SIMD

now shipped, the same task can be written as in figure 21.

The compilers will apply SIMD to calculate. For instance, both a and b array slice contain

16 elements. Each element is a u8, and so that means that each slice would be 128 bits of

data. Using SIMD, compile put both a and b into 128-bit registers then perform add

operator on those registers at the same times result in much faster perform.

There are some few drawbacks such as: not all CPU has this feature so in practice there

are usually a check for compatibility.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

4 WEBASSEMBLY RISKS

4.1 Emscripten – A toolchain for compiling WebAssembly

4.1.1 Overview of Emscripten compiler

According to Emscripten, “Emscripten is an Open Source LLVM to JavaScript compiler”

[24]. LLVM is a compiler framework, it is briefly a framework to build up the compiler of a

programming language. The initial idea of Emscripten is to compile C/C++ code or any

other code which is translatable to LLVM bitcode into JavaScript (figure 22). The output of

this process is the code in asm.js. Asm.js is not a new language, it is a low-level and strict

subset of JavaScript and it is supported by all major web browsers.

Emscripten not only helps C/C++ developers to improve the backend performance but also

assist Web developers to utilize existing native utilities and libraries. Let’s take a look at

the following examples:

• Example 1: We have a website which has “Find the shortest path” feature. User

will choose the starting point (S) and the destination (D), the website should return

the shortest path from S to D. Normally the process of calculating the path will be

handle in the backend by using any backend language such as Python, Rust,

C/C++,… For instance, we already had the algorithm in C/C++ and now we want

the process to be run on client-side in order to reduce the workload on server-side.

With Emscripten, it is easy for C/C++ developers to porting the code from C/C++ to

JavaScript automatically without having to learn JavaScript.

• Example 2: Handle SQL database directly from the browser. Usually the database

is stored in the backend and any SQL query will be handled on server-side.

Nowadays, with the help of Emscripten, Web developers can process SQL query

directly from the browser with “sql.js” project. “sql.js is a port of SQLite to

Webassembly, by compiling the SQLite C code with Emscripten, with contributed

math and string extension functions included.” [25]

C/C++ ➔ LLVM ➔ Emscripten ➔ JavaScript (asm.js)

Figure 22. Compiling process of Emscripten Figure 22. Compiling process of Emscripten.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Converting C/C++ code into JavaScript is not the only feature that Emscripten can do.

Another powerful feature of Emscripten is compiling C/C++ code into WebAssembly binary

(WASM). Emscripten uses asm2wasm tool, which is a part of Binaryen, to compile C/C++

code into WASM (figure 23). Binaryen is a WebAssembly infrastructure library, written in

C++, it helps the process of compiling to WebAssembly simple, quick and effective. For

example, given the code in figure 24 which describes a sub function in C++, Emscripten

would compile it into asm.js as was shown in figure 25 and finally convert asm.js code into

WebAssembly by using asm2wasm tool (figure 26). From figure 25, we can clearly see that

there is a small difference between asm.js and the original JavaScript which is the bitwise

OR operator. For an easy explanation, the bitwise OR with zero “| 0” converts a value to

an integer and ensures that the type of a value is correctly converted when the function is

called from outside code. As the result the code can simply perform native integer

operations hence significantly improve the performance.

Before we go further, we need to install Emscripten compiler first. In this tutorial, we will

use Ubuntu 18.04 LTS to install Emscripten toolchain. A precompiled toolchain can be

downloaded via GitHub and installed via Bash script. On the terminal, use the commands

in Figure 27 one by one [26].

C/C++ ➔ LLVM ➔ Emscripten ➔ asm.js ➔ asm2wasm ➔ WASM

Figure 23. Compiling process from C/C++ to WASM.

Figure 25. Sub function in C++. Figure 24. Sub function in ASM.JS.

Figure 26. Sub function in WebAssemby Text Format.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Figure 27. Emscripten's installation commands.

We can check the installation result by using command ”emcc -v”. If there is no warning

(yellow color) and error (red color) that means the installation is succeeded. Figure 28 is

an example when the installation is successfully completed.

Figure 28. Result of "emcc -v" command.

4.1.2 “Hello World!” from C/C++ to WebAssembly

In the previous section, we already had a brief understanding about Emscripten compiler

and how to install it. Now we will create our first compiled WebAssembly program with

Emscripten.

From the terminal, we create a new folder “hello_world”. Then we create a simple C

program which will print “Hello World!” to the console name hello_world.c (figure 28). Next

we will compile that code into WebAssembly using Emscripten compiler with the output as

HTML file. All the steps can be done via the terminal as described in figure 30.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Figure 29. hello_world.c.

Figure 30. Process of compiling C/C++ to WebAssembly.

Emscripten will compiled the program into 3 separate files: 1 WebAssembly binary

(.wasm), 1 JavaScript (.js) and 1 HTML (.html) as showed in figure 31. The WASM binary

is the actual compiled program from C/C++ which will be loaded by JavaScript and display

the result to HTML. Check the output by using “ls” command from the terminal.

Figure 31. Result of the compilation.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

In order to observe the result, we will need a simple HTTP server to open the HTML file.
Fortunately, Emscripten compiler provides ”emrun” – a command line tool that helps to
setup a local web server:

$ emrun --no-browser --port 8080 .

Now we can visit the HTML by open the link ”localhost:8080/hello_world.html” from the

browser. Figure 32 shows the content of hello_world.html in the browser. ”Hello World!”

string was printed in the black box which prove that the compiled program is working

sucessfully.

Figure 32. hello_world.html from the browser.

Let’s take a deeper look into the compiled files. First we have a WASM binary which is the

actual compiled code from C/C++ code. The original size of the C file (hello_world.c) is 61

bytes but the compiled WASM binary (hello_world.wasm) has 22 kilobytes in size (figure

33). This is because of the ”stdio.h” import, more specifically the ”printf” function. Since

WebAssembly does not have ”printf” function to call remotely from inside the code,

Emscripten has to compiled the ”printf” module into WebAssembly (including all the

modules that is used by ”printf”).

Figure 33. The size of C file and WASM binary.

We use wasm2wat tool which is part of the WebAssembly Binary Toolkit to convert the

WebAssembly binary into WebAsembly text format. From the converted file, in the Export

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

section, we will see WebAssembly exports ”main” function as funtion number 8 that we can

call from JavaScript later as showed in line 9447 of figure 34.

Figure 34. Export section of WebAssembly.

Now we will discuss about how Emscripten call the ”main” function from JavaScript. In

order to load and use exported functions from WebAssembly, Emscripten authors created

a Module object which they called ”An interface to the outside world”.

Figure 35. Defining Module object.

Before we can use the exported functions from WebAssembly binary, we first need to fetch

the file into memory, then instantiate and run it. Emscripten uses Fetch API and

WebAssembly object to complete this task. ”The WebAssembly JavaScript object acts as

the namespace for all WebAssembly-related functionality”, according to MDN Web docs

[27]. WebAssembly object is currently supported by most major browsers such as Firefox,

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Chrome, Edge… The fastest way to fetch a WASM binary is using

WebAssembly.instantiateStreaming() method, which will compiles and instantiates the

WASM binary from the fetch function’s result. For example if we want to load

”hello_world.wasm” and call the ”main” function, we can simply use the code in figure 36.

Figure 36. Example of fetching and instantiating hello_world module.

The actual code from the compiled JavaScript has a small diffference but the idea is still

the same. The variable wasmBinaryFile is the name of the WebAssembly binary

”hello_world.wasm”. This process belongs to createWasm function.

Figure 37. Fetching and instantiating the module in Emscripten.

The createWasm function returns a list of exported functions and it will be stored in

Module[”asm”].

Figure 38. Emscipten stores exported function in Module["asm"].

The ”main” function now can be called by using Module[”asm”][”main”]. Emscripten assigns

the ”main” function as Module[”_main”] for later usage.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Figure 39. Emscripten assigns Module["_main"] as the "main" function.

Finally the JavaScript will call the main function and return the value of it. In this case we

will have ”Hello World!” string as a result. The last part of the process is importing the

JavaScript in the HTML file as showed in figure 40.

Figure 40. Import JavaScript file in HTML.

4.1.3 Using JavaScript in C/C++

Emscripten toolchain also comes with another powerful feature which allows us to call

JavaScript from C/C++. By importing “emscripten.h” library in the code, we can write “inline

JavaScript” using EM_ASM() macro. According to Emscripten, “EM_ASM() is a convenient

syntax for inline JavaScript. This allows you to declare JavaScript in your C code ‘inline’,

which is then executed when your compiled code is run in the browser” [28].

Let’s create a simple program that will display an alert using EM_ASM() macro. First we

create a new folder for the program with ”mkdir” command.

$ mkdir inline_javascript

Then we create a new source code file name ”inline_javascript_alert.c”

$ touch inline_javascript_alert.c

Next we want to add the code to the file. Figure 41 shows the code that we will use. If the

code is successfully compiled with Emscripten and loaded to the browser, it will display an

alert with ”Hello World!” message.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Figure 41. inline_javascript_alert.c.

Then we use Emscripten to compiled the code into WebAssembly.

$ emcc inline_javascript_alert.c -o inline_javascript_alert.html

As we had discussed in the last section, we will need to serve this HTML over a server in

order to test the result. Emscripten comes with “emrun” tool which helps us quickly create

a local server.

$ emrun --no-browser --port 8080 .

Finally we visit the address http://localhost:8080/inline_javascript_alert.html on the

browser. We should see an alert pops up with ”Hello World!” message as showed in figure

42.

Figure 42. An alert with "Hello World!" message.

The ability of using inline JavaScript with Emscripten library is quite dangerous for the users

because the author can run unwanted activities such as stealing the cookies, capturing the

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

keystroke without the user consent. Since the WebAssembly module that is loaded to the

webpage is binary that means we can only see bytecodes when we open the WASM file.

Figure 43 shows the first 8 lines of the compiled WebAssembly binary

inline_javascript_alert.wasm. Without converting the file into WebAssembly text format

(WAT), we hardly know what the code does that allows malware author avoid detection

from other security products on Web. An example to abuse this feature is that we can

create a keylogger which log the keystrokes of the user and send them back to a remote

server. We will discuss about this topic in chapter 4.3.

Figure 43. First 8 lines of inline_javascript_alert.wasm.

4.2 WebAssembly cryptomining

4.2.1 Overview of cryptomining

In the last few years, “cryptocurrency” has become more and more popular term all over

the world. As stated by Wikipedia, “A cryptocurrency (or crypto currency) is a digital

asset that is used as a medium of exchange wherein individual digital token

coin ownership records are stored in a digital ledger or

computerized database using strong cryptography to secure financial transaction record

entries, to control the creation of additional digital token coin records, and to verify the

transfer of token coin ownership” [29]. Unlike paper money which has physical form,

cryptocurrency exists in a block of code which is generated by solving a complicated

mathematical problem.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Cryptomining is a process of validating and updating the transactions into the database

and in exchange, miners will be awarded an amount of cryptocurrency. To perform the

mining task, we would need a lot of computing power from the hardware and a cryptomining

software. Cryptomining software can be either a computer software or a web application.

Traditionally, miners will use computer software (on Mac, Linux, Windows) because it can

utilize most computing power from the hardware.

The problem of using computer software is that miners have to invest large amount of

money to setup the machine and pay the electricity bills. To solve this problem, web

cryptomining was introduced in 2011. In short, web cryptomining is implementing

JavaScript to a website or a page on the website to perform the cryptomining through the

browser using the local computing resources from the visitors. The advantage of web

cryptomining is that miners do not need high cost hardware or knowledge about

cryptomining. Beginner miners can start mining coins with just the internet connection and

a legitimate cryptocurrency wallet.

The dangerous thing about web cryptomining is that it can be performed without user’s

consent. This type of activity is called “Cryptojacking”. Attackers do cryptojacking in 2 ways:

trick the user to click on a malicious link that loads cryptomining script on the browser or

hack a website and inject cryptomining code to it. The cryptomining script should work in

the background and it is difficult for the user to notice until their machine slows down or

lags in execution. [29]

In 2017, web cryptomining had risen again because of the new programming language –

WebAssembly. WebAssembly bring more performance to web application due to its

capability to utilize computer hardware such as the processor and memory which JavaSript

cannot do. The most popular web cryptomining that utilize WebAssembly is Coinhive

cryptomining.

4.2.2 Coinhive cryptomining

Coinhive is a web cryptomining service which was designed to mine Monero

cryptocurrency. Although Coinhive was annouced to be shutdown on March of 2019, it is

still a need to make a research about how Coinhive implement WebAssembly into their

application.

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Coinhive cryptomining was made so that it is easy to enable the mining on a website. The

user just need to register for a site key and put a few lines of code into the website as

showed in figure 44. [31]

Figure 44. Block of code to execute Coinhive cryptomining.

Thanks to x25 on GitHub, we have a proof of concept for Coinhive cryptomining in

“Coinhive stratum mining proxy” project. The core of Coinhive is in the file miner.min.js [32]

of the project, we will use this file in further analysis. There are several evidences prove

that Coinhive uses Emscripten compiler in their JavaScript program but the strongest

evidence is the appearance of _emscripten_memcpy_big function (figure 45).

Figure 45. The evidence of Emscripten compiler in Coinhive source code.

There are 2 filenames that we need to take notice in the code: cryptonight.wasm and

cryptonight.temp.asm.js. Cryptonight is a hashing algorithm used in cryptocurrency mining

which was first introduced in 2012 by Bytecoin. Coinhive uses Emscripten compiler to

compile Cryptonight algorithm into WebAssembly binary and ASM.JS in order to run the

algorithm on browser with near native speed. The JavaScript code will check whether the

current browser supports WebAssembly or not, if the browser does not have WebAssembly

object it will use ASM.JS file instead.

Figure 46. 2 filenames in the source code.

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Assuming that the browser supports WebAssembly and the WebAssembly binary is
fetched to the website successfully, Coinhive will call _cryptonight_create and
_cryptonight_hash functions from WASM’s exported functions to start running the hashing
algorithm.

Figure 47. Coinhive call _cryptonight_hash function.

The original JavaScript file from the link https://coinhive[.]com/lib/coinhive.min.js is now

detected by several security products in VirusTotal. Fortunately the server of Coinhive is

now dead therefore the user is temporary safe from Coinhive cryptomining. That being

said, it does not mean cryptomining in general is dead, the user always has to be careful

when visit a new website and the web developer need to enhance their security in order to

prevent any code injection from attackers.

Figure 48. VirusTotal result for coinhive.min.js file.

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

4.3 WebAssembly keylogger

4.3.1 Overview of keylogger

A keylogger can be either software or hardware that monitors and records (logs) the

keystrokes on the keyboard without user’s awareness. A keylogger is often used by

attackers to steal password or confidential information (such as bank account, credit card

information, medical data,…). In this section, we will discuss about software-based

keylogger and how it can be extremely dangerous when combining with WebAssembly.

A malicious software-based keylogger is usually a computer program which was dropped

by attackers either via email or website. A software-based keylogger can be classified into

separate categories such as hypervisor-based keylogger, kernel-based keylogger, API-

based keylogger, JavaScript-based keylogger,… [33]

JavaScript-based keylogger is a malicious script which is written in JavaScript and it is

injected into a website (either the malware author’s website or a vulnerable website) to

record the keystroke from the user input. This process can be achieved by listening to the

key events in JavaScript such as onkeydown event or onkeypress event. Figure 28

displays a simple demo of a JavaScript-based keylogger. It listens to onkeypress event

and get the key’s character by converting the keycode into the charcode. For example,

when the user presses key “a”, the onkeypress event will return keycode == 97 (ASCII

value of “a” character) and then it will be converted to the “a” character with

fromCharCode() function. Moreover, the code also pops up an alert every 5 seconds to

display which key the user pressed on the website in the last 5 seconds. The keylogger’s

author may obfuscate the code before they inject it to any website in order to avoid the

detection from other security products as well as the web administrator.

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Figure 49. An example of JavaScript-based keylogger [34].

4.3.2 Create a keylogger in WebAssembly

When WebAssembly was introduced along with Emscripten toolchain, JavaScript-based

keylogger had reached a new stage. The JavaScript-based keylogger is now more difficult

to be detected by security products or web administrator because it does not use a plain-

text JavaScript but uses WebAssembly binary instead. In this demo, we will utilize

Emscripten library which allows us to use inline JavaScript from C/C++ (as we discussed

in part 4.1.3).

First we will create a new folder for our project name “keylogger” and go inside the folder.

$ mkdir keylogger && cd keylogger

Next we will create a C file to store the source code of the keylogger.

$ touch keylogger_javascript.c

With any text editor, we will put the source code into keylogger_javascript.c (Appendix 1).

Here we will use the same code from the last section for the demo.

After that we will compile this C code into WebAssembly binary with the help of Emscripten

compiler.

$ emcc keylogger_javascript.c -o keylogger_javascript.html

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Now we should have 1 WebAssembly binary, 1 JavaScript file that import the WASM binary

and 1 HTML file which we will use to test our keylogger. Once again, we have to setup a

local webserver to serve the HTML file. Emscripten toolchain comes with a convenient tool

emrun which helps us to quickly set the server up.

$ emrun --no-browser --port 8080 .

Finally we visit the address http://localhost:8080/keylogger_javascript.html to check the

result. Figure 50 displays the final result of the keylogger when we input “Testing

Keylogger” string into the black textbox, the page pops up an alert with the message “You

typed: Testing Keylogger”. It proves that the keylogger works as we expected.

Figure 50. keylogger_javascript.html on the browser.

4.3.2 Infection vectors and mitigation

JavaScript-based keylogger is usually distributed via phishing email or a compromised

website. Unfortunately the method of using inline JavaScript in C/C++ is not the only way

to perform stealthy keylogging. Attackers can use a native C/C++ keylogger and compiled

them into WebAssembly which makes the keylogger even harder to be detected by security

http://localhost:8080/keylogger_javascript.html

45

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

products. On the browser, we can only see the binary format of WebAssembly (as showed

in figure 51) and without converting it to WebAssembly text format, we hardly understand

what does the code do or even when have a WebAssembly text format, it is still difficult to

understand the source code.

Figure 51. The first 10 line of keylogger_javascript.wasm in hex format.

To mitigate this issue, the user should use a trusted security product if it is possible or

disable WebAssembly on the browser. With Chrome browser, we can go to

chrome://flags/#enable-webassembly and search for ”WebAssembly” keyword then set

every entries in the result as ”Disabled” as showed in figure 52. [35]

chrome://flags/#enable-webassembly

46

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Figure 52. Disable all WebAssembly feature in Chrome.

On the other hand, web developer need to enhance the security of the website by doing

pentesting for any possible vulnerabilities such as XSS, SQL injection,… Moreover web

administrator need to monitor the website carefully for any suspicious code that appears

on the website. These practices will help to reduce the risks of WebAssembly being abused

by attackers.

47

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

5 CONCLUSION

Firstly, this thesis aimed to analyze the portability and the performance of WebAssembly.

Secondly, the thesis aimed to research how WebAssembly can be abused in the real world

to perform malicious deeds. To analyze the portability and the performance of

WebAssembly, we first research WebAssembly Ecosystem with Rust, then we used Rust

and AssemblyScript to perform some tasks and compiled them to WebAssembly binary,

then we compared the runtime of the same task which was written in JavaScript to have

an overview of WebAssembly performance. The abuse of WebAssembly in the real world

was researched by collecting, analyzing real cryptominer sample and making a simple

keylogger which can be used directly in a website.

As a result in Chapter 3, we proved that with WebAssembly, web application can be run at

near native speed due to its compact and minimal size, hence, the process of decoding

and compiling the code is faster. The task that was compiled to WebAssembly runs faster

than the same task that was written in JavaScript. Moreover, the process of compiling the

code in Rust is easily achieved due to several existing toolkits. On the other hand,

WebAssembly also raises concerns about security. As we had discussed in Chapter 4,

hackers can abuse WebAssembly for malicious purposes, for example, carrying out

cryptomining on the user browser or logging the keystroke of the user to collect sensitive

data without any detection.

We have provided a very basic knowledge about WebAssembly in this thesis. We hope

this thesis would help web developers and security researchers in developing the web

environment more efficiently and safely.

48

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

REFERENCES

[1] World Wide Web Consortium. (n.d.). World Wide Web Consortium (W3C) brings a new language

to the Web as WebAssembly becomes a W3C Recommendation. [online] Available at:

https://www.w3.org/2019/12/pressrelease-wasm-rec.html.en

[2] webassembly.org. (n.d.). WebAssembly. [online] Available at: https://webassembly.org/

[3] MDN Web Docs. (n.d.). Understanding WebAssembly text format. [online] Available at:

https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format

[Accessed 14 Jun. 2020].

[4] webassembly.github.io. (n.d.). Introduction — WebAssembly 1.1. [online] Available at:

https://webassembly.github.io/spec/core/intro/introduction.html [Accessed 14 Jun. 2020].

[5] GitHub. (2020). WebAssembly/wabt. [online] Available at:

https://github.com/WebAssembly/wabt [Accessed 14 Jun. 2020].

[6] LLVM. (n.d.). Clang C Language Family Frontend for LLVM. [online] Available at:

https://clang.llvm.org/.

[7] MDN Web Docs. (n.d.). Using the WebAssembly JavaScript API. [online] Available at:

https://developer.mozilla.org/en-US/docs/WebAssembly/Using_the_JavaScript_API [Accessed 14

Jun. 2020].

[8] MDN Web Docs. (n.d.). WebAssembly.instantiate(). [online] Available at:

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/instantiate [Accessed 14 Jun.

2020].

[9] MDN Web Docs. (n.d.). TextDecoder. [online] Available at: https://developer.mozilla.org/en-

US/docs/Web/API/TextDecoder [Accessed 14 Jun. 2020].

[10] GitHub. (2020). rust-lang/rustup. [online] Available at: https://github.com/rust-lang/rustup.

[11] GitHub. (2020). rust-lang/cargo. [online] Available at: https://github.com/rust-lang/cargo

[Accessed 14 Jun. 2020].

[12] GitHub. (2020). rustwasm/wasm-pack. [online] Available at:

https://github.com/rustwasm/wasm-pack [Accessed 14 Jun. 2020].

[13] GitHub. (2020). rustwasm/wasm-bindgen. [online] Available at:

https://github.com/rustwasm/wasm-bindgen [Accessed 14 Jun. 2020].

49

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

[14] GitHub. (n.d.). rustwasm/wasm-bindgen. [online] Available at:

https://github.com/rustwasm/wasm-bindgen/tree/master/crates/js-sys [Accessed 14 Jun. 2020].

[15] GitHub. (n.d.). rustwasm/wasm-bindgen. [online] Available at:

https://github.com/rustwasm/wasm-bindgen/tree/master/crates/web-sys [Accessed 14 Jun. 2020].

[16] MDN Web Docs. (n.d.). MediaStream. [online] Available at: https://developer.mozilla.org/en-

US/docs/Web/API/MediaStream [Accessed 14 Jun. 2020].

[17] docs.rs. (n.d.). wasm_bindgen_futures - Rust. [online] Available at: https://docs.rs/wasm-

bindgen-futures/0.4.13/wasm_bindgen_futures/ [Accessed 14 Jun. 2020].

[18] MDN Web Docs. (n.d.). SharedArrayBuffer. [online] Available at:

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer [Accessed 14 Jun. 2020].

[19] GitHub. (2020). WebAssembly/proposals. [online] Available at:

https://github.com/WebAssembly/proposals [Accessed 14 Jun. 2020].

[20] Aboullaite, M. (2017). Understanding JIT compiler (just-in-time compiler). [online] Aboullaite

Med. Available at: https://aboullaite.me/understanding-jit-compiler-just-in-time-compiler/.

[21] Picado, J. (2017). Abstract syntax trees on Javascript. [online] Medium. Available at:

https://medium.com/@jotadeveloper/abstract-syntax-trees-on-javascript-534e33361fc7 [Accessed

14 Jun. 2020].

[22] MDN Web Docs. (n.d.). Memory Management. [online] Available at:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management [Accessed 14

Jun. 2020].

[23] doc.rust-lang.org. (n.d.). SIMD for faster computing - The Edition Guide. [online] Available at:

https://doc.rust-lang.org/edition-guide/rust-2018/simd-for-faster-computing.html.

[24] emscripten.org. (n.d.). About Emscripten — Emscripten 1.39.17 documentation. [online]

Available at: https://emscripten.org/docs/introducing_emscripten/about_emscripten.html [Accessed

14 Jun. 2020].

[25] GitHub. (2020). sql-js/sql.js. [online] Available at: https://github.com/sql-js/sql.js [Accessed 14

Jun. 2020].

[26] emscripten.org. (n.d.). Emscripten SDK (emsdk) — Emscripten 1.39.17 documentation. [online]

Available at: https://emscripten.org/docs/tools_reference/emsdk.html#emsdk [Accessed 14 Jun.

2020].

50

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

[27] MDN Web Docs. (n.d.). WebAssembly. [online] Available at: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly [Accessed 14 Jun. 2020].

[28] emscripten.org. (n.d.). Interacting with code — Emscripten 1.39.17 documentation. [online]

Available at: https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-

code.html [Accessed 14 Jun. 2020].

[29] Wikipedia Contributors (2019). Cryptocurrency. [online] Wikipedia. Available at:

https://en.wikipedia.org/wiki/Cryptocurrency.

[30] GitHub. (n.d.). x25/coinhive-stratum-mining-proxy. [online] Available at:

https://github.com/x25/coinhive-stratum-mining-proxy [Accessed 14 Jun. 2020].

[31] Segura, J. (2019). Cryptojacking in the post-Coinhive era. [online] Malwarebytes Labs.

Available at: https://blog.malwarebytes.com/cybercrime/2019/05/cryptojacking-in-the-post-

coinhive-era [Accessed 14 Jun. 2020].

[32] GitHub. (n.d.). x25/coinhive-stratum-mining-proxy. [online] Available at:

https://github.com/x25/coinhive-stratum-mining-proxy/blob/master/static/miner/miner.min.js

[Accessed 14 Jun. 2020].

[33] Wikipedia Contributors (2019). Keystroke logging. [online] Wikipedia. Available at:

https://en.wikipedia.org/wiki/Keystroke_logging.

[34] Stack Overflow. (n.d.). html - Javascript keylogger (for ethical purpose). [online] Available at:

https://stackoverflow.com/questions/53139197/javascript-keylogger-for-ethical-purpose [Accessed

14 Jun. 2020].

[35] Hu, J. (2016). How To Enable WebAssembly In Chrome. [online] Next of Windows. Available

at: https://www.nextofwindows.com/how-to-enable-webassembly-in-chrome [Accessed 14 Jun.

2020].

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Minh Le, Hiep Phung

Appendix 1. keylogger_javascript.c

#include <emscripten.h>

int main() {

 EM_ASM

 (

 var keys = '';

 document.onkeypress = function(e) {

 get = window.event ? event : e;

 key = get.keyCode ? get.keyCode : get.charCode;

 key = String.fromCharCode(key);

 keys += key;

 };

 window.setInterval(function() {

 if (keys != '') {

 alert('You typed: ' + keys);

 keys = '';

 }

 }, 5000);

);

 return 0;

