

JUHA-MATTI KAUNISMÄKI

Automation of Application Server
Installation

BACHELOR’S DEGREE PROGRAMME IN
INFORMATION AND COMMUNICATION TECHNOLOGY

2022

2

Author

Kaunismäki, Juha-Matti

Type of Publication

Bachelor’s thesis

Date

August 2022

Number of pages

29

Language of publication

English

Title of publication

Automation of Application Server Installation

Degree Programme

Bachelor’s Degree in Information and Communication Technology

Abstract

In this thesis we tried to find ways to automate production of application servers in the

VMware server environment. Automating our work made sure that human errors did not

appear and that every project came out similar. This helped with debugging problems

and other people understanding our part in the project. Often in a real work environment

your co-workers might not know what you have done when it comes to configuring

application servers manually.

First, we went over the necessary knowledge to understand what virtualization is and

why it is necessary. Then we investigated what VMware could do in this regard to make

virtualization easier. We looked deeper into vSphere’s two main components, ESXi and

vCenter server appliance.

After that, we investigated application servers and their purpose in this environment.

Learned how important infrastructure as code is in our lives and how both Terraform and

Ansible made it easier to accomplish our goal.

We prepared our Linux running on Windows 10 with the necessary installations. The

next steps required were to get Terraform to create the virtual machine and Ansible to

run our playbook on it. We further investigated the structure of these two programs and

did our ansible playbook run.

Keywords

Virtualization, Automation, Virtual Machine, Linux, Hypervisor, Server, Application

Server

3

FOREWORD

I would like to thank Cimcorp Oy at Ulvila for the opportunity to do my thesis for

them and all my co-workers for their help in making this possible. I would also like to

give my sincerest thanks to my teacher Juha Aromaa for his patience and help during

my studies. Lastly, I would like to thank everybody who helped in the creation of this

thesis.

4

CONTENTS

1 INTRODUCTION .. 6

2 VIRTUALIZATION ... 8

2.1 Virtualization in Servers .. 8

2.2 VMware vSphere ... 9

2.2.1 ESXi Hypervisor ... 10

2.2.2 VCenter Server Appliance .. 11

2.3 Application Server ... 12

3 INFRASTRUCTURE AS CODE ... 13

3.1 Ansible ... 13

3.1.1 Modules and Syntax ... 15

3.1.2 Playbooks and Inventory .. 15

3.2 Terraform ... 17

3.3 Why Use Both Ansible and Terraform Together? ... 19

4 PRACTICAL WORK ... 20

4.1 Preparations .. 20

4.2 Creating Virtual Machines with Terraform.. 21

4.2.1 Operating System and Templates ... 23

4.2.2 Terraform Run and Ansible Integration ... 24

4.3 Ansible Roles Configuration .. 25

4.3.1 Playbook Structure .. 27

4.3.2 Playbook Run.. 27

4.4 Results .. 28

5 CONCLUSIONS ... 29

REFERENCES

5

LIST OF SHORT TERMS

HCL: HashiCorp Configuration Language is HashiCorp’s own language that runs

natively on Terraform.

HTML: HyperText Markup Language is the standard web language for most websites.

HTTP: HyperText Transfer Protocol is an information transfer protocol on world wide

web.

Idempotent: Operation where you run the same inputs on target, and it does nothing if

the state of the target has not changed. A big part of Ansible.

JSON: JavaScript Object Notation is easy to read and write programming language.

SSH: Secure Shell is a network protocol to connect two computers over secure shell

connection. For example, to use remote login and run command on remotely.

VM: Virtual Machine is a virtualized operating system that runs on top of physical

hardware like server or laptop.

WinRM: Windows Remote management is Microsoft’s own remote management tool

to run PowerShell on target and do much of the same as SSH.

WSL: Windows Subsystem for Linux Native compatibility layer on Windows that

allows you to run Linux natively on Windows 10, 11 and Server 2019.

YAML: Yet Another Markup Language is markup language for data. Human-readable

and easy to understand programming language.

6

1 INTRODUCTION

This thesis was made in attempt to understand and improve IT infrastructure

automation at Cimcorp Oy. We will investigate how this is achieved using tools such

as Ansible and Terraform in tandem. This will happen by creating virtual machines

that run specific application servers on them.

Automating your IT infrastructure is becoming increasingly important nowadays. The

reason for this is ever more complex and big IT infrastructures. Focusing the limited

resources that companies have for maintaining such big systems is an important reason

for automating as much as you can. The benefits you get from large scale automation

and the speed in the production environment are crucial factors why it is good for

companies. Automation makes it possible to expand your environment and reduce

costs for companies. It also helps to get rid of human errors while creating the

infrastructure for application servers. This is one of the best reasons for any company

to think about further automating their infrastructure. (VMware, 2022, What is

infrastructure automation?)

Automating IT infrastructure goes hand in hand with virtualizing servers.

Virtualization of servers is a major step in getting rid of limitations of physical

hardware in an ever increasingly connected world. It helps with the speed of creating

such systems and maintenance when you connect to servers from far away. Companies

like Cimcorp which have projects going around the world connecting remotely is

particularly important.

Working at Cimcorp was wonderful opportunity to gain experience in all kinds of new

skills. For instance, a major part of this thesis is running virtual machines on VMware’s

vCenter servers in a production environment. Using Ansible and Terraform on said

virtual servers to understand the creation of the different virtual machines needed to

finish a project.

We are going to use VMware vSphere 6.7 for this thesis and Ubuntu 20.04 running on

Windows 10 as our configuration Linux. The Virtual Machines will have Red Hat

7

Enterprise Linux version 8.6 on them. At the time of writing, Ansible version is 2.9

and Terraform is 1.2.7. We will get to these in more detail at the practical part of this

thesis and the theory.

8

2 VIRTUALIZATION

Virtualization in general means when physical systems get rid of the hardware

limitation and imitate the physical thing on virtual level. This opens many possibilities

for all kinds of different applications, not just virtual machines. We will look at later

in this thesis. When talking about virtualization on the IT side this means getting rid

of specific servers doing just one task for example. Virtualizing these servers, you can

run the same tasks on just one or two hardware servers or on the cloud. In practice,

this means sharing same hardware resources for multiple virtual machines using

hypervisors. We will get into hypervisors later in this thesis. (Red Hat, 2018, What is

virtualization?)

Benefits of virtualization are what drove the change from physical hardware to

virtualization. Some benefits are for example a more effective allocation of resources.

Nowadays, IT does not need to buy different servers for every different operating

system they want to run or application. This saves the company money in the long run.

Another reason is managing and connecting to said resources. These virtual machines

are easy to manage on a virtual environment and can be connected from anywhere. If

said VM for example needs to be rebooted or crashes, it can be brought back online

faster as a virtual version than physical which means less downtime in services. Lastly,

you can scale your infrastructure faster and provision it with tools like Ansible and

Terraform. (IBM, 2019, Virtualization-a-complete-guide.)

2.1 Virtualization in Servers

Server virtualizations tried to solve the problem when running multiple different

operating systems or applications on one hardware. Each server requires their own

hardware to work. When virtualizing said server, you can use both Windows and Linux

servers on the same hardware. They all work like they have their own hardware despite

sharing the same resources. This is achieved using a software layer called hypervisor.

There are many different hypervisors from different companies on offer like ESXi that

we use in this thesis. (Strickland, J, 2008, How server virtualization works)

9

There are two different types of hypervisors. Type 1 which is often called bare-metal

hypervisor. These are such products as Kernel-Based Virtual Machine (KVM) on

Linux, Microsoft Hyper-V, Citrix and ESXi. Type 2 hypervisor on the other hand

needs its own host to run on to. This is usually an existing operating system. In this

work, we will be using Type 1 hypervisor ESXi.

(Marshall, N., Brown, M., Fritz, G. B., & Johnson, R, 2018, Mastering VMware

vSphere 6.7)

2.2 VMware vSphere

VMware’s vSphere is the main concept that drives this thesis. It is a collection of

VMware’s multiple tools that you use to virtualize your infrastructure. Two main parts

of what makes it work are ESXi and vCenter Server. With these two, we can create a

virtual system that can run the needed virtual machines and applications. (VMware,

2022, VMware vSphere documentation.) There are other products and functions that

make the whole package but these two are the most important ones to understand.

Picture 1. How vSphere works. (VMware, 2022)

10

2.2.1 ESXi Hypervisor

ESXi is a Type 1 hypervisor that runs on the physical server. This is run by VMkernel

which is Linux based. It is installed directly on the server and handles the server’s host.

As we can see in picture one, ESXi handles the layer between the virtual machines and

physical hardware. We can connect to the ESXi through the direct service console

(Picture 2) and assign to it an IP address. This way we can connect to it with a browser

from anywhere as long we are in the same network. This is achieved using the host

client site. (Picture 3) (Seaton, J, 2011, What is VMware ESXi server?) We can also

run Linux command line on this direct service console if needed for debugging.

Picture 2. Main page of ESXi 6.7.0 direct service console.

11

Picture 3. Summary page of ESXi 6.7 U3 host client.

2.2.2 VCenter Server Appliance

VCenter Server Appliance (VCSA) is a premade Linux virtual machine that runs the

VMware vCenter server on it. This virtual machine works as the centralized server for

all the other virtual machines that the user wants. It is installed on the ESXi host

directly and works on top of it. The main reason to use vCenter is if there is more than

one ESXi host. VCenter works as the managing and monitoring site for all the

necessary virtual applications running on it. It can also perform other functions like

make templates out of VMs and manage the ESXi hosts that is running on. Other key

features are managing the virtual switches and network interface controllers (NIC) of

the server.

(Marshall, N., Brown, M., Fritz, G. B., & Johnson, R, 2018, Mastering VMware

vSphere 6.7)

12

2.3 Application Server

Putting the application server into context is hard because of how varied and wide the

subject is. Generally speaking, we are talking about servers that provide the server

framework for different applications to run on. Application servers are usually located

between the physical server hardware and the database. Their main tasks are to provide

the business logic for the applications and to query information from the database or

database server. Application servers are often installed on virtual machines or

containers and create dynamic web content on site, pulling that info from the database.

Unlike web servers that only creates static HyperText Markup Language (HTML) web

content. Sometimes these two work together but often times the line between web

server and application server is thin. (Ingalls, S, 2021, What is an application server?)

Basic example of (Picture 4) how the application server could work is that first the

user accesses a certain web page on their browser. They then send out HyperText

Transfer Protocol (HTTP) inquiry to the web server and the web server asks the

application server for help in creating dynamic pages. This is when the application

server sends out inquiry on the database for example. (Phipps, J, 2022, Web servers vs

application servers: What's the difference?)

Picture 4. Basic idea of Application server in use. (Webopedia, 2021)

13

3 INFRASTRUCTURE AS CODE

To automate a lot of infrastructure you need to understand certain basic concepts like

infrastructure as code. (IaC) It is a new idea in the IT automation world which only

came to be coined as a term in the early 2000s. Before that, the idea existed in the

1990s to automate IT with scripts which are still used as part of IaC. (Carey, S. 2021,

What is infrastructure as code?)

Then what is the idea of infrastructure as code? It is quite simple at its core. Everything

is code and getting rid of the manual configurations to set up IT servers and VMs is

the key to saving time for more important tasks. To get reliable and repetitive

infrastructure you need to create it from small easy to handle pieces like modules in

Ansible to make code for the infrastructure. This is usually achieved using languages

like YAML or JSON because they are easy to understand and can easily be changed

for the needs of the new infrastructure. Making these changes at the code is safer than

doing them at the target especially if it is already in production. (Carey, S. 2021, What

is infrastructure as code?)

The benefits that come from using IaC to create your environments is easy to see. It is

faster, safer, and more cost-effective for IT teams to deploy and test their VMs. Using

a provisioning tool like Terraform and a configuration tool like Ansible makes it easy

and safe to test your new ideas at the local servers or even on your own laptop. (Carey,

S. 2021, What is infrastructure as code?)

3.1 Ansible

Ansible is an open-source automation IT tool sponsored and maintained by Red Hat.

The community also contributes a lot. It is agentless which means it does not need any

service or daemon to run on the user’s operating system of choice. Being agentless

makes it easy to use on most systems, servers or PCs. The only requirement that it has

on the operating system side is that the Python interpreter needs to be installed and that

comes default in most Linux distributions. (Verona, J, 2016, p. 120)

14

Running Ansible on Windows is a bit more complicated since Windows does not have

native Ansible support but we will get into Windows Subsystem for Linux (WSL) later

in the practical part of the thesis.

One benefit of using Ansible to configure your IT infrastructure comes from the

communication between the user and the target. Ansible uses Open Secure Shell

(OpenSSH) in most cases when dealing with Linux and Windows Remote

Management (WinRM) when dealing with Windows servers. (Oh, D., Freeman, J., &

Locati, F. A. 2020, p. 10) This makes it easy and safe to connect to multiple targets at

the same time and running needed tasks on them. We will get more into how Ansible

connects over SSH in the practical part of the thesis also how to install and operate

Ansible.

Ansible is declarative which means its user declares the state it wants the target to be

and Ansible tries its best to configure it that way. Compared to the traditional way

where you need to understand coding and the logic behind it, Ansible takes away this

problem. This means you can run Ansible on the target as many times without breaking

anything because if the target is already in the desired state, then Ansible will not make

any changes. Operation like this is officially called idempotent. Being declarative also

gives the benefit that most commands only work on certain operating system like

Windows. If you instead use generic commands, then you can configure different OSs

at the same time. (Smith, S. R. & Membrey, P. 2022, Chapter 2)

Picture 5. Key concepts that make Ansible such a powerful tool. (LinkedIn, 2020)

15

3.1.1 Modules and Syntax

To understand how Ansible works you need to understand how it delivers the tasks

and commands to the target. In this, Ansible uses a clever system called modules which

themselves are like small “programs.” (Ansible & Red Hat, 2022) Modules can also

be called “task plugins” or “library plugins” as Red Hat themselves puts it. (Ansible,

2022, Introduction to modules)

In an actual sense, modules are just small parts of simple YAML code. They are easy

to write and understand even by new people trying to get into writing code. (Ansible,

2022, YAML Syntax) Ansible has many different modules meant for different tasks.

Modules are the reason Ansible is idempotent as we discussed earlier.

As a side note, Ansible can also run ad hoc commands, but they are not relevant to this

thesis right now. Instead, we will soon investigate playbooks that make Ansible the

great automation tool it is.

In picture six, you can see the basic concept of YAML syntax. It is simple and easy to

read. The only part you really need to worry about is that every YAML file starts with

--- and make sure the spaces in the front of the text are correct. Last thing is to make

sure there are no empty spaces after certain parts. (Ansible, 2022, YAML Basics)

Picture 6, Simple example how YAML syntax works in Ansible modules.

3.1.2 Playbooks and Inventory

Playbooks are what makes Ansible special. They are in simple terms a collection of

tasks or just one task running the modules we discussed earlier. It runs these tasks

based on the inventory file. This file has all the target hosts the user wants.

16

Playbook takes the modules as tasks and runs them on the hosts. This is how you can

configure even big infrastructures in no time at all.

(Smith, S. R. & Membrey, P. 2022, Modules and Tasks)

These plays use the same YAML syntax as the modules we discussed earlier because

they are technically the same thing. Playbooks start their play from the top of the code

and run until they complete the tasks needed on target or fail for some error in the

code. It does this one task at a time and by understanding Ansible you can use this to

make sure correct tasks run on correct hosts. (Ansible, 2022, Intro to playbooks)

Picture 7. Example of basic playbook and its syntax.

Inventory is another important part of what makes Ansible work efficiently. It is at its

core just a simple file either in INI or YAML format that contains all the needed hosts

or managed nodes that we have so far called targets. It can contain multiple groups of

hosts or just single one. This is where the playbook gets its hosts: part of the play. We

will get into how inventory works in the practical part.

(Ansible, 2022, How to build your inventory)

17

Picture 8. INI inventory file.

Picture 9. How Ansible works on multiple hosts. (tutorialspoint, 2022)

3.2 Terraform

Terraform is an open-source infrastructure orchestration tool made by HashiCorp. It

can be used to provision cloud and local resources for the IT infrastructure needs. In

this work we will focus on the local part but Terraform is especially adept at

provisioning cloud-based resources like AWS, Azure, and Google Cloud. Terraform

uses its own HashiCorp Configuration Language or HCL for short. It is a unique

language made by HashiCorp themselves, but it is visually like JavaScript Object

Notation. (JSON)

18

Being a declarative language means the state of what the user wants from the target

can be told to Terraform. This makes it easy to understand even by newcomers.

(Howard, M. 2022, Terraform -- Automating Infrastructure as a Service.) Terraform

uses normal text files ending in .tf or .tf.json for JSON syntax. (HashiCorp, 2022, Files

and directories - Configuration language)

Picture 10. Basic principle of Terraform. (HashiCorp, 2022)

Providers and Syntax

Providers are a big reason Terraform works so well with different cloud and other IT

infrastructure providers. Providers are official plugins for different companies like

VMware, Amazon, and Microsoft. They make it easy to run Terraform on their

platform of choice. You can also make your own provider and submit it to HashiCorp

as community provider. (HashiCorp, 2022, August 9, Providers)

We explored earlier that Terraform uses its own unique language called HCL that is

similar to JSON. Now we will look more closely into the syntax of this language. Three

main parts of HCL are expressions, arguments and the block structure that uses them.

Arguments are short parts that give a value to certain part of the code. Blocks on the

other hand use groups of these arguments to deliver what the user wants. Block starts

{ and ends in }. This way you can put blocks inside other blocks and create more

complex code. (HashiCorp, 2022, Syntax) Expressions are the values inside the

argument or values for other expressions and they are the third part of the syntax.

19

(HashiCorp, 2022, Overview - Configuration language) Expressions can be many

things like numbers, strings of text, lists, Boolean value (true, false) etc. They can also

be null if needed. (HashiCorp, 2022, Types and values - Configuration language)

Picture 11. Shows argument inside a block.

3.3 Why Use Both Ansible and Terraform Together?

Based on the earlier theory we can say this. Considering how similar Ansible and

Terraform seem to be, they work better together than alone. As we saw Ansible is a

configuration tool and Terraform is a provisioning tool. In the practical part of this

thesis, we will see how this works. Overall, Terraform works best on a big scale

creating the required infrastructure. Ansible then configures these specific resources

on the virtual machine level. This way both program’s strengths work together to get

rid of repetition in IT work. This makes manual intensive tasks easy and fast.

20

4 PRACTICAL WORK

Now we will get to the actual reason why this thesis came to be. We will try to see if

we can further automate Cimcorp’s virtual machines running application servers. This

is to see if we can make them more dependable with less human errors. That way, we

reduce the required time and manual effort to make application servers. I will not be

showing all parts of the process because most of it is in company production and not

open to the public. What I can show is to prove that automation of IT infrastructure is

possible and to give an idea on how it can be achieved.

4.1 Preparations

First thing we need to do on our laptop running Windows 10 is to make sure Windows

subsystem for Linux has been installed and that it is running your choice of Linux

distribution. In this we do the following. Open PowerShell as admin and type these

commands in it.

• wsl –install

• dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all

/norestart

• wsl –set-default-version 2

• wsl –install -d Ubuntu-20.04

After all that, reboot your Windows a few times. You should have Ubuntu running on

your Windows virtually. We are doing this because Ansible and Terraform run

natively on Linux. Linux is the production operating system in most companies like

Cimcorp.

After you have WSL installed you need to make sure your Linux is up to date. Then

you will install Ansible and Terraform. In this thesis, I am going to use Ubuntu 20.04

as the operating system for the necessary programs. I also recommend installing

MobaXterm which I am using in this work for easier WSL use on Windows 10.

21

It is not needed for the command line work but useful. Other useful programs on Linux

side are nano and tree for example.

Next, we make sure Ansible and Terraform are installed on Ubuntu. Update and install

them using these commands:

• sudo apt update

• sudo apt upgrade

• sudo add-apt-repository --yes --update ppa:ansible/ansible

• sudo apt install ansible

• ansible --version (This checks the ansible is version)

• sudo apt update && sudo apt install terraform

• terraform version

Next, we make an extra user that is to run playbook passwordless over SSH connection

from the WSL. Use ssh-keygen command on this extra user to generate public SSH

keys for it. These will be used later for the target host.

4.2 Creating Virtual Machines with Terraform

We run Terraform against vCenter 6.7 in a local secure development network. You do

this on your local WSL by first making your terraform configuration. This includes

what we want from the target machine. It can even be just one main.tf file in a directory

but it is better to use some variable files with it to make it more modular. This way,

you can use some arguments as variables which helps with making a script to automate

running Terraform commands on WSL.

Main commands for Terraform:

• Init – Prepare your current directory for other commands

• Validate – Check whether the configuration is valid

• Plan – Show changes requited by the current configuration

• Apply – Create or update the infrastructure

• Destroy – Destroy previously created infrastructure

These commands of course require configuration to run against. For this we will use a

simple main.tf (Picture 12) file that has the VM configuration and provider.tf (Picture

13) to connect to vCenter. The provider file will use terraform.tfvars (Picture 14) as its

22

source for passwords and the main file will use vars.tf (Picture 15) for necessary info

it gets from the Bash script that runs Terraform.

Picture 12. Main.tf shows basic VMware terraform provider setup for template use.

23

Picture 13. Provider.tf that is used to connect to vCenter.

Picture 14. Terraform.tfvars for vCenter login.

Picture 15. Vars.tf for variables.

Before we can use the Terraform, we still need to create the Linux template that we

will use as seen on picture twelve.

4.2.1 Operating System and Templates

We are using Red Hat Enterprise Linux 8.6 as the operating system of choice for our

virtual machines that work as application servers. We install Red Hat normally on the

vCenter. Then we register it on our Red Hat account so we can download updates and

other necessary packages. You can do this with command sudo subscription-manager

register --username [username] --auto-attach. This registers the Red Hat without

showing the password on your command line history. Use the sudo subscription-

manager list to see if the virtual machine is registered. After updating, we need to

install perl and vm-open-tools to make sure Terraform works on the template. This can

be achieved using simple command sudo dnf install open-vm-tools perl. Reboot the

virtual machine and remove the subscription with sudo subscription-manager

unregister to also remove the NICs from it. NICs are removed so the template does not

cause MAC problems when cloned. Turn VM off and press convert to template.

24

This template will be used by Terraform to clone new virtual machines when the need

arises. Templates are also easy to convert back to VMs if you want to keep the template

up to date. Updating the template regularly keeps your automation environment faster

when Ansible playbook does not need to check and download updates every time you

run it.

4.2.2 Terraform Run and Ansible Integration

Normally you would go to the Terraform directory on your WSL and run terraform

init to check that the plan works. Then terraform plan to insert needed items like

hostname. After that, terraform apply to apply the plan and write yes on the question.

Instead, we have automated this with bash script. We can run this script on Linux using

sh [script name] [variables] etc. This clones the new virtual machine out of the

template we made earlier and creates a directory of it on our local WSL to manage

later. We move to this directory and use terraform show to see our configuration on

the virtual machine we just made. You can also delete the VM from this directory

given you have connection to the vCenter using terraform destroy. Creating VMs from

templates takes about 1-3 minutes but deleting it with destroy is almost instant and

permanent.

Now we can implement the bash script to the Ansible playbook by making it into a

playbook role called terraform and making a simple main.yml file in the

role/terraform/tasks directory as in picture sixteen.

Picture 16. Simple Ansible tasks that runs the local script on the WSL.

25

4.3 Ansible Roles Configuration

Now that Ansible can call the Terraform script with the role we just made, we can

focus on how to automate the Red Hat registration part. This can also be done with

role task in our playbook. Roles are the basis on how this playbook works in practice.

Ansible goes through them from top to bottom one at a time. The playbook will prompt

variables as questions for the roles as seen in picture seventeen below.

Picture 17. Idea how roles and vars_prompt work in playbooks.

26

Roles take these prompts as variables during the playbook run and apply them to the

right places. As seen in pictures 16 and 17, variables are marked as

“{{ variable }}” in Ansible syntax. Red Hat registration role is made with a simple

main.yml file in roles/rhelsub/tasks. We use variables and the Red Hat activation key

to automate the task.

Picture 18. Red Hat subscription with variables.

SSH role will create the passwordless SSH user we need for the last part of the

playbook that is not shown in picture seventeen. We will not get into this because it is

a production user at Cimcorp, but it simply creates the user at the target VM and gives

it the SSH keys from a similarly named user on our WSL. This way, using this user on

our WSL and having the same user at target makes running the production Ansible

roles easy.

The last role we created for the playbook is simple updaterhel. This will check and

update the target for the latest packages. As we can see, it is easy to add more modules

to playbook as roles.

Picture 19. Updates target Red Hat VM.

27

4.3.1 Playbook Structure

So far, we have seen some parts of Ansible playbooks but we will go through the

bigger picture now. At its core, Ansible playbook can be as simple as just one

playbook.yml and ansible.cfg file in the same directory that has the line:

[defaults]

inventory=inventory

This will direct the default inventory hosts location to our current directory. Then we

need the inventory directory that has the hosts file. We need to edit the hosts file to

connect to desired target VMs. Lastly, the roles directory for all the different roles we

have for playbook such as terraform and rhelsub as mentioned earlier.

4.3.2 Playbook Run

Before we can run our playbook, we still need to make sure the inventory/hosts file

has the right hostname and IP address line for the hosts part in the playbook. When

this is done, we can finally run our playbook on the vCenter. This happens with a

simple command on WSL using ansible-playbook playbookname.yml. This will start

the playbook by first running Terraform locally on the WSL. It prompts the user for

hostname and IP address.

When the Terraform role is done, it will connect remotely to the new virtual machine

as the root user. This will prompt the user for the target root password and Red Hat

activation key name and organization ID. It will register the VM on the Red Hat

account and create the SSH user on the target. Lastly, check for updates in case the

template is out of date.

Playbook will continue to create the application server. I will not be able to show this

because it is part of the current production at Cimcorp, but this part is done in the same

way as the other roles but more complicated modules in the tasks files. All the guidance

to create complicated Ansible playbooks can be found on their official documentation

site.

28

4.4 Results

When the playbook has ran its course, we can see the results at the end. (Picture 20)

The Red Hat virtual machine now has the needed applications running on it so that we

can continue remotely and activate applications giving out needed commands. We can

connect to this VM using SSH on our WSL or using the remote console on vCenter.

Automating some parts like the creation of VMs saved us time and effort that can be

used for other more important work.

Picture 20. Playbook was successful despite a few skipped and unreachable tasks.

29

5 CONCLUSIONS

In this thesis I looked into how to better automate the creation of application servers

at Cimcorp. The results were that the playbook worked but left more questions than

answers. Many things could be improved in the creations of the virtual machines.

Automation is a never-ending task and things could always be simplified for less

likelihood of human errors. Real improvements that could be done to this work are

how to connect to the target host while not using root user and improving the Terraform

and Ansible code. Streamlining to user experience to get rid of the manual parts like

changing the host file. The Terraform script I used for the automation could also be

improved and expanded. The problem with creating and using the template on the

server that goes to the customer needs to be solved too. The solution for all these is

more time and experience with the code and scripts. Unfortunately, in a production

environment, extra time to do development work is extremely limited.

REFERENCES

Ansible, & Red Hat. (2022). How Ansible works. Ansible is Simple IT Automation.

Retrieved August 8, 2022, from https://www.ansible.com/overview/how-ansible-

works

Ansible. (2022, August 5). How to build your inventory — Ansible documentation.

Ansible Documentation. Retrieved August 9, 2022, from

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

Ansible. (2022, May 27). Introduction to modules — Ansible documentation. Ansible

Documentation. Retrieved August 10, 2022, from

https://docs.ansible.com/ansible/2.9/user_guide/modules_intro.html

Ansible. (2022, August 7). YAML syntax — Ansible documentation. Ansible

Documentation. Retrieved August 8, 2022, from
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

Ansible. (2022, August 5). Intro to playbooks — Ansible documentation. Ansible

Documentation. Retrieved August 9, 2022, from

https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html

Carey, S. (2021). What is infrastructure as code? Automating your infrastructure

builds. InfoWorld.Com

HashiCorp. (2022). Providers - Configuration language | Terraform by HashiCorp.

Terraform by HashiCorp. Retrieved August 9, 2022, from

https://www.terraform.io/language/providers

HashiCorp. (2022). Syntax - Configuration language | Terraform by HashiCorp.

Terraform by HashiCorp. Retrieved August 11, 2022, from

https://www.terraform.io/language/syntax/configuration

https://www.ansible.com/overview/how-ansible-works
https://www.ansible.com/overview/how-ansible-works
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/2.9/user_guide/modules_intro.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
https://www.terraform.io/language/providers
https://www.terraform.io/language/syntax/configuration

HashiCorp. (2022). Files and directories - Configuration language | Terraform by

HashiCorp. Terraform by HashiCorp. Retrieved August 15, 2022, from

https://www.terraform.io/language/files

HashiCorp. (2022). Overview - Configuration language | Terraform by HashiCorp.

Terraform by HashiCorp. Retrieved August 15, 2022, from

https://www.terraform.io/language

HashiCorp. (2022). Types and values - Configuration language | Terraform by

HashiCorp. Terraform by HashiCorp. Retrieved August 15, 2022, from

https://www.terraform.io/language/expressions/types

Howard, M. (2022). Terraform -- Automating Infrastructure as a Service.

IBM. (2019, June 19). Virtualization-a-complete-guide. Retrieved August 18, 2022,

from https://www.ibm.com/cloud/learn/virtualization-a-complete-guide

Ingalls, S. (2021, November 5). What is an application server? ServerWatch.

Retrieved August 23, 2022, from https://www.serverwatch.com/guides/application-

server/

Marshall, N., Brown, M., Fritz, G. B., & Johnson, R. (2018). Mastering VMware

vSphere 6.7. John Wiley & Sons.

Oh, D., Freeman, J., & Locati, F. A. (2020). Practical Ansible 2: Automate

infrastructure, manage configuration, and deploy applications with Ansible 2.9

Phipps, J. (2022, July 27). Web servers vs application servers: What's the difference?

Woodsia. Retrieved August 23, 2022, from

https://www.webopedia.com/servers/web-server-vs-application-server/

Red Hat. (2018, March 2). What is virtualization? Retrieved August 18, 2022, from

https://www.redhat.com/en/topics/virtualization/what-is-virtualization

https://www.terraform.io/language/files
https://www.terraform.io/language
https://www.terraform.io/language/expressions/types
https://www.ibm.com/cloud/learn/virtualization-a-complete-guide
https://www.serverwatch.com/guides/application-server/
https://www.serverwatch.com/guides/application-server/
https://www.webopedia.com/servers/web-server-vs-application-server/
https://www.redhat.com/en/topics/virtualization/what-is-virtualization

Rubens, P. (2017). Why Ansible has become the devops darling for software

automation. Cio, Retrieved August 7, 2022, from https://www.proquest.com/trade-

journals/why-ansible-has-become-devops-darling-software/docview/1902032777/se-

2

Seaton, J. (2011, August 10). What is VMware ESXi server? - Definition from

Techopedia. Techopedia.com. Retrieved August 20, 2022, from

https://www.techopedia.com/definition/25979/vmware-esxi-server

Smith, S. R. & Membrey, P. (2022). Beginning Ansible Concepts and Application:

Provisioning, Configuring, and Managing Servers, Applications, and Their

Dependencies. Apress L. P.

Strickland, J. (2008, June 2). How server virtualization works. HowStuffWorks.

Retrieved August 18, 2022, from https://computer.howstuffworks.com/server-

virtualization.htm

Verona, J. (2016). Practical DevOps

VMware. (2022). VMware vSphere documentation. VMware Docs Home.

Retrieved August 20, 2022, from https://docs.vmware.com/en/VMware-

vSphere/index.html

VMware. (2022, August 10). What is infrastructure automation? | VMware glossary.

Retrieved August 21, 2022, from

https://www.vmware.com/topics/glossary/content/infrastructure-automation.html

https://www.techopedia.com/definition/25979/vmware-esxi-server
https://computer.howstuffworks.com/server-virtualization.htm
https://computer.howstuffworks.com/server-virtualization.htm
https://docs.vmware.com/en/VMware-vSphere/index.html
https://docs.vmware.com/en/VMware-vSphere/index.html
https://www.vmware.com/topics/glossary/content/infrastructure-automation.html

