

Mikko Suhonen

TEST AUTOMATION IN AN RNC ENVIRONMENT

TEST AUTOMATION IN AN RNC ENVIRONMENT

 Mikko Suhonen
 Bachelors Thesis
 Spring 2014
 Information Technology
 Oulu University of Applied Sciences

 3

TIIVISTELMÄ

Oulun ammattikorkeakoulu
Tietotekniikan koulutusohjelma, Langattomat laitteet

Tekijä: Mikko Suhonen
Opinnäytetyön nimi: Testausautomaatio RNC ympäristössä
Työn ohjaajat: Veijo Korhonen, Markku Jurmu
Työn valmistumislukukausi ja -vuosi: Kevät 2014
Sivumäärä: 35 + 1 liitettä

Työn tilaajana toimii Oy L M Ericsson AB, ja työn tarkoituksena on kartoittaa
mahdollisia vaihtoehtoja tukiaseman testausautomaation toteuttamiseksi RNC -
ympäristössä. Testausta tehdään järjestelmätasolla.

Työn tavoitteena on tutkia eri vaihtoehtoja automaation toteuttamiseksi, jonka
jälkeen ratkaisut implementoidaan järjestelmään. Työn aikana myös
rakennetaan järjestelmä jossa testejä ajetaan.

Avaintekijät joiden ehdoilla järjestelmää kehitetään ovat luotettavuus sekä
käytettävyys. Koska järjestelmää ohjaatavat työkalut käyttävän kometoriviin
pohjautuvaa käyttöliittymää, järjestelmä kehitetään Linux ympäristöön. Suurin
osa tiedosta on kerätty yli vuoden kestäneen harjoittelujakson aikana.

Automaatiojärjestelmä rakennettiin onnistuneesti, ja testauksen laajuutta
kasvatettiin kehitystyön aikana. Tämä vaikutti järjestelmän kompleksisuuteen,
joten suunniteltua testiympäristöä jouduttiin laajentamaan. Järjestelmän
stabilisuuden kehittäminen jatkuu edelleen. Järjestelmä toimii kuitenkin niin
vakaasti, että se on otettu käyttöön uusien ohjelmistopakettien testauksessa.

Järjestelmä suunniteltiin niin että siihen voidaan lisätä vaativampia testejä
tarvittaessa.

Asiasanat: WCDMA, RNC, Testiautomaatio

 4

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology, Option of Wireless Devices

Author: Mikko Suhonen
Title of thesis: Test Automation in an RNC Environment
Supervisors: Veijo Korhonen, Markku Jurmu
Term and year of completion: Spring 2014, Pages: 35 + 1 appendices

This Bachelor’s thesis was ordered by Oy L M Ericsson AB Oulu to help to
investigate possible solutions for a base station test automation development in
an RNC environment, covering the system testing area.

The objective was to research different methods of execution and how to
implement the most practical solution into the test set. This includes building an
environment in which the test cases were executed.

The key factors in deciding the platform on which to build the system were
accessibility and reliability. Since most equipment can be controlled via
command-line interface, Linux based environment is the main target of
research. Most of the information was acquired as a trainee over a 1-year
period and from experienced engineers working in the company.

The automation system was successfully built and the scope of the tests to
include into the automation was expanded during the process. This increased
the complexity of the test environment from the original plan. The development
of system stability is still ongoing, as there are some issues regarding certain
user equipment. Even though there are issues with the system, it is deemed
stable enough for a daily test execution.

A further development of the automation system is possible, as the basic set is
created in such a way that it is easy to implement into more complex test cases.

Keywords: WCDMA, RNC, Test automation

 5

CONTENTS

TIIVISTELMÄ 3

ABSTRACT 4

CONTENTS 5

LIST OF ABBREVIATIONS 6

1 INTRODUCTION 8

2 BASIC TEST ENVIRONMENT AND TERMINOLOGY 10

2.1 Terminology and network components 10

2.2 Description of the development environment 11

2.3 Different UE’s used 13

2.3.1 Android UEs 13

2.3.2 Nokia UEs 15

2.3.3 3G USB dongles 15

3 ESTABLISHING PS- AND CS-CALLS 17

3.1 Establishing PS connection using dial-up 17

3.1.1 Basic FTP commands 19

3.1.2 Performing simultaneous file transfers 21

3.2 Establishing CS connection 21

3.3 Verifying the connection and node feature availability 23

4 TEST SET 24

4.1 One user cases 25

4.2 Several user cases 26

4.3 Node feature testing 26

4.4 Interpreting the results 26

5 EXPANDED TEST ENVIRONMENT 29

6 SUMMARY 32

REFERENCES 33

APPENDICES 35

 6

LIST OF ABBREVIATIONS

ADB = Android debug bridge

CLI = Command-line interface

CS = Circuit switched

dBm = Decibel-milliwatts

FTP = File transfer protocol

GUI = Graphical user interface

HO = Handover

HSDPA = High-speed downlink packet data access

HSPA = High-speed packet data access

HSUPA = High-speed uplink packet data access

HW = Hardware

IMSI = International mobile subscriber identity

IP = Internet protocol

MRAB = Multi radio access bearer

OS = Operating system

PPP = Point-to-Point protocol

PS = Packet switched

R&D = Research and development

RAB = Radio access bearer

RBS = Radio base station

 7

RNC = Radio network controller

SDK = Software development kit

SHO = Soft handover

SSH = Secure shell

SW = Software

UARFCN = UTRA absolute radio frequency channel number

UMTS = Universal mobile telecommunications system (3G)

UTRA = UMTS terrestrial radio access

UE = User equipment

WCDMA = Wideband code division multiple access

 8

1 INTRODUCTION

This thesis work was ordered by L M Ericsson Oulu to help to investigate

possible solutions for test automation system in an RNC environment. The

company was founded 1876, and the global headquarters are located in

Stockholm, Sweden. There are over 110,000 people working in the company, of

which 25,300 are working in R&D (Research And Development) [1]. The Oulu

site was founded in early 2012, and the site houses a small WCDMA (3G) and

LTE (4G) R&D team.

The main aim of the thesis was to develop a test automation system for test

case execution when testing an RBS (Radio Base Station) in a WCDMA

network. The basic test set includes testing voice calls (CS-call), data

performance (PS data access) and RBS features (HSPA etc.). If a valid method

for executing the test set is discovered, it will be studied further for

implementation into the automation system.

Since most of the software tools controlling the network side of the system are

command line based, the decision to develop the automation on a Linux

platform was made. Choosing to develop the automation in a Linux environment

has certain advantages. First, Linux has an impressive amount of different

command line tools already integrated to the system, and the diversity of free

tools available for Linux is huge. Those tools are open source software and

freely distributed, so using the SW to develop the automation does not cause

any problem regarding licenses or copyrights. Second, Linux is a robust

environment that does not require much processing power from the system.

These points allow the automation system to be operated with shell scripts.

More on the basic functionality scripts can be found in chapter 3.

The automation system is controlled by using shell –scripts. Android devices

need to be controlled via ADB (Android Debug Bridge), which is an interface

tool between the UE and Linux machine. Without it, the UE is not accessible

from the shell. 3G dongles have also special conditions that need to be taken

 9

into consideration. More detailed information about controlling different UEs can

be found in chapter 2.3.

While the system was developed in an OTA (Over The Air) environment, the

final system is implemented in a cabled system. This does not change how the

system is controlled, so the basic model introduced in chapter 2.2 can be used

in building the final setup.

When the basic system was nearly completed, the decision to add handover

support to the automation system was made. This extended the scope in which

the automation is developed, and brought more challenge to the work. The

system needed to be remodeled to include a second node and more complex

tracking of the system.

The focus of this thesis is in the system testing area of a base station, so the

WCDMA network and its features are not described in detail. The basic mode of

the network is depicted in the second chapter in the extent that is necessary for

the developed automation environment to function. This is done to help the

reader to understand the functionality of the whole system.

 10

2 BASIC TEST ENVIRONMENT AND TERMINOLOGY

There are several abbreviations and terms that appear regularly in this thesis.

Therefore the basic terms and network elements should be made known before

starting to study the automation system.

2.1 Terminology and network components

Below is a basic depiction of a WCDMA (Wideband Code Division Multiple

Access) infrastructure:

FIGURE 1. Basic structure of a WCDMA network

The infrastructure of a WCDMA system consists of an RNC (Radio Network

Controller), an RBS (Radio Base Station), a PS (Packet Switched) and a CS

(Circuit Switched) core networks. The RNC is responsible for controlling the

RBSs that are connected to it. This includes controlling e.g. feature availability,

transmission power, cell size. The RBS, also known as node, relays the

 11

information to and from the network via a radio connection to an UE (User

Equipment), meaning phones and 3G data dongles. PS and CS cores are the

backbone of the network in which the information is transmitted from one user

to another. The PS core handles the data packet transfers of the UE, while the

CS core handles normal voice calls.

An RAB (Radio Access Bearer) means the connection type the UE has in the

network, covering both PS and CS access. There are several different RABs

available in the testing environment, but only a handful of them are

implemented for testing. The automation covers basic functionality tests, so the

more complex RAB combinations are not included in the test set.

MRAB (Multiple Radio Access Bearer) means that the user has several active

connections simultaneously. The possibilities are limited to what kind of RAB

combinations are supported by the RNC.

This description of the network components is the extent of the environment in

which the automation is developed. And since the focus is on the test

automation development, the WCDMA network and its features are not covered

in more detail in this thesis.

2.2 Description of the development environment

The development environment includes:

- UE (User Equipment)

- RBS (Radio Base Station)

- RNC (Radio Network Controller)

- PC (Personal Computer)

- Server (Linux platform)

 12

FIGURE 2. Development environment

Figure 2 describes the test environment where the development process was

started. The setup can be further expanded by adding nodes, UEs, a remote

controlled attenuator, a spectrum analyzer, etc. depending on the test case.

The Linux server environment was the only thing that needed to be set up, as

the RBS and RNC were pre-configured and the PC had necessary tools

installed.

The UEs that are tested are connected to the Linux server, and the server is

controlled via a remote connection from the PC. The PC also has the required

tools to control the RNC and node remotely. The remote access for all

components is necessary while developing the automation system. This is to

ensure that all devices are working properly.

The test environment was expanded during the development phase to include

more complex test cases. A description of the extended environment will be

given further in the thesis, after the basic functionality has been introduced.

 13

2.3 Different UE’s used

While creating the automation system, several different UEs were tested to see,

which would be best suited to use in the test set. These include different Nokia

Asha devices, Android devices and 3G data dongles.

One key requirement for all UEs is that there is an external antenna port

available as the devices and the RBS will be connected via an RF-cable. The

final system has its connectivity done via cables as the radio spectrum is

limited, and susceptible to interference. This also ensures that the UEs used are

connected to the correct node and will not interfere with other test

environments. This was not a requirement for the development environment as

the system is constantly monitored, and the solutions can be implemented to

the cabled environment without any modifications.

For the PS data performance USB dongles were used, while phones were used

to establish basic CS calls and MRAB connections. The reason for separating

the connectivity and data performance to separate UE types is that USB

dongles are designed solely for a PS data access, as the device cannot perform

CS calls, therefore usually having better data performance.

The next step is to take a look of pros and cons of different types of UEs.

2.3.1 Android UEs

The Android UEs that are considered for automation are Samsung Galaxy S2,

Galaxy SIII mini and Sony Xperia V.

The Android platform itself has some limiting factors which need to be taken into

consideration when planning and setting up the system: the platform limits the

usability of the modem, the reason being the way it communicates with the

hardware. This means that the hardware is not freely accessible through a

serial connection. Also, the system is fairly complex compared to e. g. Nokia

phones, and can cause problems when bypassing the core system to control

the HW directly.

 14

One additional feature has to be enabled from the UE: the device has to be

rooted. This enables the root-user account in the phone, which means that the

user has administrator rights in the system. Without rooting some of the

functions cannot be accessed remotely via a command line.

The Galaxy S2 has a few system impacting flaws we came across while testing

with it. First, the upload from a phone to an FTP server is malfunctioning when

performed via a dial-up connection. Second, the phone disconnects CS-calls

seemingly randomly. The second problem was investigated thoroughly, and it

was found to be UE initiated and it had nothing to do with the network or the

RBS under testing. Therefore the usability in long CS stability tests is limited.

The Galaxy SIII mini performed well on preliminary tests. Data can be sent

successfully both in upload and download directions while using a dial-up

connection, while throughput values are not as good as when using a 3G USB

dongle.

While configuring the Sony Xperia Z for use with Wvdial, the modem could not

be recognized by the program even when the vendor ID was added, so this

phone type was discarded as a possible candidate for the automation system. It

might be possible to get the UE working with Wvdial, but the time and effort that

would be needed was not feasible, as there were different models available that

can be used.

One common factor for all tested Android models is that the UE needs to be

rebooted occasionally, because the modem stopped answering the AT

commands sent by the dial-up program. Fortunately the ADB (Android Debug

Bridge) connection can be used to issue a reboot command remotely. The ADB

is a command line tool that can be used to communicate with an Android device

[2]. After restarting the device, the connection functioned normally. This instabil-

ity needs to be taken into account when controlling the Android devices in the

final system. The reboot command is easy to adapt to the execution of the test

case, and the device can be rebooted in a problem situation, after a test set,

and if necessary, after a single test case. The downside resulting from this re-

boot is that the time needed to run the whole test set will be longer, as the re-

 15

boot and reconnection of the device takes on average about 1 minute, depend-

ing on the device.

2.3.2 Nokia UEs

The different types of Nokia phones were limited to the most basic models using

Nokia Asha OS e. g. Nokia 311.

Nokia phones have certain advantages over Android phones while used

remotely. The Asha OS does not interfere with the direct connection to the HW

as the Android platform does, and the devices are more stable.

While testing the Nokia UEs, the downlink throughput values were lower than

when using Android devices, but were still at a good level. Considering that the

devices are of more basic model compared to the Android devices under

testing, the lower throughput value is not an issue, at least not from the testing

standpoint. The reason for this is that the Android devices are used primarily in

the automation system. If more users are needed, then the Nokia phones can

be taken into use.

2.3.3 3G USB dongles

The different types of dongles tested for usability are manufactured by Sierra

and Huawei, and were limited to a few models.

One major complication arose while testing the 3G dongles. The dongle itself

has its onboard flash memory divided into two partitions. The mounted partition

depends on the detection of the installed drivers. If no driver is detected, the UE

mounts the partition which has the needed files for a device driver installation.

Otherwise the functional partition is mounted, which enables the device to

function as a modem for the connected system. To use the dongle for testing,

we needed to find a way to change the mode of the device from an installation

to a functional. To achieve this, a program called USB mode switch [3] was in-

stalled in the Linux system. The program switches the UE from the installation

mode to a functional mode so that Wvdial will recognize the device as a

 16

modem, and a data connection can be made. This procedure had to be done to

all devices

The first Sierra model performed extremely well in the data performance,

usability and stability. The only drawback being that the model is discontinued,

and that there was only one device available.

The second tested Sierra model is more compact, but the reliability is poor.

While trying to get the UE to perform well enough to use in the automation

system, it caused more problems than solved them. The data connection was

severed while connected to the system, and the modem did not respond to

further dialing attempts. The throughput achieved with the devices was also of

poor quality, so the device was not taken into use.

The Huawei dongle used in the testing performs well when measuring the data

performance. The stability was not as good as in the first Sierra model, but a

solution was found to circumvent this problem. Rebooting the platform to which

the UE is connected reboots the device. This eliminates the problems with the

stability over a long period of time, so the device can be taken into use.

Selecting the UEs for further development

Once the UEs have been deemed usable in the automation environment, the

next task is to use the required features while controlling the device remotely via

a command line.

Before the features can be tested, we need to find out how to configure different

UEs in the Linux environment, and what possible control issues the selected

development platform has.

 17

3 ESTABLISHING PS- AND CS-CALLS

Before controlling multiple UEs in various test cases, we need to establish a

PS-call and a CS-call with 1 UE. The reason for doing this is that we have a

reference point from which to expand the automation to include more complex

tests e.g. the MRAB and several UEs. The link direction in the thesis is used

from the UEs standpoint, meaning that a downlink (download) is used when the

UE receives information from the network and uplink (upload) when sending

information to the network.

3.1 Establishing a PS connection using a dial-up

There are several different software applications available which can be used to

create a dial-up connection. However most of them are GUI (Graphical User

Interface) based and therefore not suitable for the automation as the main goal

is to perform all needed functions through a command line interface. One

program which uses the command line to function is Wvdial [4]. The program

has a fairly large database of supported modems pre-configured including but

not limited to:

- several Nokia phones

- 3G dongles from different manufacturers

Android devices are not supported by default, so to get the modem operational,

Android platform developer forums have a list of vendor IDs, which can be

added manually to a Linux USB device database [5]. After adding the vendor

type to the database, the modem is recognized by Wvdial. All Nokia phones

used while developing the automation were supported by Wvdial by default.

Once the UE is successfully connected via the USB to the platform, the

configuration for the modem is done giving a ‘wvdialconf’ -command. This

configures the correct ports, modem type and baud rates which the modem

uses to communicate. Then the correct APN (Access Point Name) and dial-up

settings, meaning the user name, password and the number to dial, are

configured to the ‘wvdial.conf’ file located in /etc/ -folder in the Linux system.

 18

Different dial-up profiles can be created to the file, so several UEs can be used

on the same platform. Below is a basic configuration example for a Samsung

Galaxy S2:

[Dialer S2]

Init1 = ATZ

Init2 = ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0

Init3 = at+cgdcont=1,"IP","<APN-name>"

Stupid Mode = 1

Modem Type = USB Modem

ISDN = 0

New PPPD = yes

Phone = <phone number to dial>

Modem = /dev/ttyACM0

Username = '<user name>'

Password = '<password>'

Baud = 460800

In the above example, the first line defines the name of the profile for this

specific setup (Dialer S2). The following lines are the necessary configuration

information for the modem, PDP context information [6] and user information for

the network access.

Once the configuration is done, the program itself is easy to use. In the example

the configuration was named [Dialer S2], so the configuration is recognized as

S2. By giving command ‘wvdial S2’ causes the program to try and create the

dial-up connection with the specified configuration. The program uses a PPP

(Point-to-Point Protocol) connection to establish internet connectivity. If the

connection is established successfully, the device is assigned an IP address by

the network DHCP (Dynamic Host Configuration Protocol) server. The UE uses

the acquired address to communicate in the network e.g. data transfers. The

created data connection is usable via the platform to which the phone is

connected, in this case, the server.

 19

3.1.1 Basic FTP commands

Once the data connection is established, we can use a command line FTP to

execute the basic data transfer tests. The format can be fairly simple:

#!/bin/bash

HOST=<host IP address>

USER=<user name>

PASS=<password>

ftp -inv $HOST << EOF >> /<path>/<log file name>

user $USER $PASS

cd <folder>

get <desired file on FTP server>

bye

EOF

This is the basic model for a shell script used to execute a single file data

transfer. As the scrip is done using a bash shell command set, the program can

be used in UNIX and Linux environments. The required user account details

and server IP address are saved to variables that can be called in the login

process further down the script. The first operation is to open a FTP connection

to a desired server, and to start the logging of the session. The FTP program

has three options enabled when the program is started:

- i: disables interactive prompts from the server during multiple file

transfers

- n: disables the auto-login feature upon an initial connection

- v: shows all responses from remote server and reports data transfer

statistics

Then the user account details are sent to access the server file system. Once

connected, the path is changed (if needed) to where the desired file is located,

and finally ‘get’ command is sent to retrieve the specified file. After the transfer

is complete, the FTP session is terminated by the ‘bye’ command. EOF (End Of

File) is used to restrict the captured information to include only the messages

 20

from the FTP session and to save them to the designated log file. For the log

file to be useful the v-option is crucial, as the data transfer statistics are

necessary to determine if the test case is successful or not.

The script can be run in the Linux server by giving a command ‘./<name of

script>.sh’, where .sh is the file extension used for shell scripts. Before the script

can be run though, the script file needs to have execution privileges. This can

be accomplished with a ‘chmod’ command e.g. ‘chmod +x <file name>’.

The FTP program used reports the average data transfer rates from the session

after the file transfer is completed to the log file specified in the script above.

If the user wants to upload a file into the server, the ‘get’ command is replaced

with ‘put’:

#!/bin/bash

HOST=<host IP address>

USER=<user name>

PASS=<password>

ftp -inv $HOST << EOF >> /<path>/<log file name>

user $USER $PASS

cd <folder>

put <desired file to be uploaded>

bye

EOF

The designated file has to be in the current working directory, which is the folder

from which the FTP program was started by default and the user account has to

have the necessary access rights to write the file to the server. The working

directory can be changed with an ‘lcd’ command, using basic Linux directory

commands e.g. ‘lcd ..’, which changes the working directory to the previous

folder in the local machine e.g. from ‘/<folder1 name>/<folder2 name>/’ to

‘/<folder1 name>/’.

 21

3.1.2 Performing simultaneous file transfers

Once the basic script has been tested so that it performs the required function

properly, it can be run in the background by adding an ‘&’ character after the

script execution command. Once the script is running in the background,

another transfer can be started by executing another script. Below is an

example of a script file which performs 2 separate transfers both from a script

file:

#!/bin/bash

for i in {1..n}

do

./<download script file>.sh &

sleep n

./<upload script file>.sh &

sleep n

wait

done

The script starts with a for loop counter, which causes the script to run the

transfers n times. The ‘sleep’ action makes the system wait n seconds before

executing the next command. This is done to give the ftp program time to log in

and begin the transfer before opening the next connection. In the end the ‘wait’

command is issued to tell the system to wait that both actions have finished

before starting the next loop. This way both transfers are finished before the

system repeats the script so that there are not any complications from

downloading or uploading the same file from the same FTP server.

3.2 Establishing a CS connection

Placing and ending a call is simple to perform in Nokia phones, as the phones

accept an AT command for dialing. The baud rate in which the modem

communicates needs to be known when issuing AT commands, which can be

found using ‘wvdialconf’. When placing a call, a serial connection is opened to

the phone and a number is dialed using ‘ATDT<receiving phone number>’. The

 22

D stands for ‘Dial’ and the T for ‘Touch tone’. When ending the call command

‘ATH’ is sent, where the ‘H’ stands for ‘Hang up’

Creating a CS-call via a command line using an Android phone is a bit trickier

than giving the modem basic AT commands. The modem does not directly

accept commands to create a basic voice call, so the use of the ADB (Android

Debug Bridge) is needed to send the voice call command to the phone.

The ADB can be found in the Android SDK (Software Development Kit), which

is a freely distributed open source software [7].

The command to establish a voice call using a command line is:

‘adb_rpi shell service call phone 2 s16 "<phone number>” ‘

This uses the ADB to send a command to the phone using a Linux shell, on

which the Android platform is based upon. The ‘service call’ command is a

command that we want to use a certain service located in the phone, in this

case ‘phone’ which means a voice call, and ‘2’ which means an outgoing call.

‘s16’ means that the message is sent using UTF-16 Unicode format which the

phone can interpret. The phone number to which the call is made is the last

parameter in the command.

The receiving phone needs to be configured to automatically answer calls;

otherwise the call will never be successfully connected with the other UE. The

current generation of mobile phones usually has an auto answer option

available in the phone configuration menu.

Terminating the call on an Android phone can be done via the ADB by

simulating a key press event. The command is as follows:

‘adb_rpi shell input keyevent 6’

Again the shell command is used as before when making the call. In this event,

we only send the command to terminate the call, which is in the above example

‘keyevent 6’.

 23

3.3 Verifying the connection and node feature avail ability

After either the PS or CS connection is established, we need to verify that the

UE is connected to the correct node. This can be accomplished by connecting

to the RNC and verifying that the correct IMSI (International Mobile Subscriber

Identity) is registered to the cell of the node under test and the correct RAB has

been achieved. The IMSI is a unique identifier for every single user in the

network.

The interface tools used to control the RNC are private information of the

company, and therefore cannot be demonstrated here.

Since the tool is command line based, the results can be parsed using a ‘grep’

command in the Linux shell environment. The basic principle is that the ‘grep’

function returns a printout from a certain IMSI number connected to the correct

node and has the correct RAB combination enabled. If the string was found, the

connection is successful.

While testing different features supported by the node, the same procedure can

be used. When certain features e.g. an HSDPA PS RAB availability is activated

or deactivated, the information can be parsed from the command line response

sent by the RNC if the action was successful or not.

 24

4 TEST SET

Now that the basic control scenarios are explained, we can look at the test

cases that are a part of the automation system. Below is a description of basic

test cases:

TABLE 1. Descriptions and pass criteria of basic test cases

Test case Pass criteria

Voice call RAB enabled in RNC

PS Uplink
Measured throughput

greater or equal to X

PS Downlink
Measured throughput

greater or equal to X

PS Uplink & Downlink

simultaneously

Measured throughput

greater or equal to X

Voice + PS Uplink

RAB enabled in RNC,

Measured throughput

greater or equal to X

Voice + PS Downlink

RAB enabled in RNC,

Measured throughput

greater or equal to X

Voice + PS Uplink &

Downlink

simultaneously

RAB enabled in RNC,

Measured throughput

greater or equal to X

Enabling feature N

from RNC

Node cell up, feature

enabled, PS and CS

tests successful

 25

Disabling feature N

from RNC

Node cell up, feature

disabled, PS and CS

tests successful

One common requirement for all cases is that the UE is registered to the correct

node. This information is available from the RNC, and is confirmed before the

test case is executed.

4.1 One user cases

These cases include the basic functional test cases that can be executed with

one UE, which include several different data performance tests, basic CS tests

and MRAB test cases.

The data performance tests include downloading, uploading and performing

both uplink and downlink transfers simultaneously. The throughput of the UE is

measured from different file transfers, and the performance is evaluated from

the collected information. Certain limits are set which the throughput needs to

achieve for the test case to be passed.

The network in which the tests are run has an automated answering machine

available that keeps the connection active for 5 minutes at a time, so the basic

CS call test can be executed with only one UE. The system supports several

connections simultaneously. Depending on the UE which is used to make the

voice call to this machine, the connection is either a CS RAB or an AMRWB

(Adaptive Multi-Rate Wideband) which is a 3GPP specified speech encoding

[8]. The AMRWB has a better speech quality than basic CS calls and it uses

more bandwidth to achieve this. One reason why the automation system uses

older Android UEs is that those models do not support the AMRWB. This allows

the automation test set to include a larger variety of test cases.

Data performance tests are cases where different features are verified to

function properly. This means measuring the throughput values on a specific PS

RAB. Although some of these features are not used in live networks, the

 26

redundancy needs to be fully functional in case the network has some malfunc-

malfunctions where the most current features cannot be activated.

4.2 Several user cases

Most of the several user cases cover data performance in the node when two or

more users are connected, and transfer data in different directions e.g. the first

one downloads data using the HSDPA access, and the other UE uploads using

the HSUPA feature.

4.3 Node feature testing

The system also performs node feature tests, including a robustness test set,

which performs a node reboot, an SW upgrade and feature enabling and

disabling tests in succession. After every action, the UE connected to the node

checks that the connection can be made and active features are functioning.

Once this is confirmed, the script performs the next action listed.

4.4 Interpreting the results

Once the individual scripts have finished the task, the result from the log can be

parsed using the ‘grep’ –command. The log contains information of the FTP

session. Below is an example of a download log file:

Connected to <server IP>

220 Welcome message

331 Please specify the password.

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

250 Directory successfully changed.

local: <file name on user system> remote: <file name on FTP server>

200 PORT command successful. Consider using PASV.

150 Opening BINARY mode data connection for <file name on FTP server>

 (XXXXXXXXX bytes).

226 File send OK.

 27

XXXXXXXXX bytes received in XXX.XX secs (XXXX.X kB/s)

221 Goodbye.

The necessary information from a successful transfer is the throughput value

‘(XXXX.X kB/s)’. This can be collected from the log by using ‘grep’:

‘grep “kB/s” <FTP log file name> >> <grep log file name>’

The ‘>>’ parameter writes the throughput information to the next line in the log

file instead of overwriting the existing information. If several loops are run in

sequence, the loop counter can be used to separate the different runs from

each other:

‘echo “Loop $i results” >> <grep log file name>’

where ‘$i’ is the counter value in the current loop. This is done before the results

are saved into the log file, so that the values received from ‘grep’ are saved

after the ‘echo’ –command.

The collected information of the transfer is compared to the limit set for the

throughput of the test case. If the value is higher or equal to the limit set, the

test case is passed. Each case has the limit evaluated separately, as the

throughput varies depending on the features enabled in the node. The limits

with which the results are compared are according to 3GPP specifications [9].

The information from all test cases can be saved into a common log. This way

the results are easier to interpret, as all required information is stored in a single

file. When this is done, a filter can be added. It performs checks if the

throughput is high enough for passing a test case. The pass and fail reasons

can be added to further help in interpreting the results e.g. a low throughput or a

carrier not available, so the tester can decide which tests need a more thorough

investigation.

The same method can be used to check that the RNC has the UE or node are

performing certain functions successfully, e.g. RAB selection for an UE, a

feature activation for the node.

 28

The results from the tests cannot be introduced in this document, as the

performance results cannot be shared externally.

Expanding the test set

Once the system was implemented to a daily execution, another test site was

decided to be built, where SHO cases can be implemented to the automation.

This is done to free testers to focus on other more demanding tasks.

The setup is similar to the basic environment described in the beginning of the

thesis, but the SHO test site has two nodes and a remote controlled attenuator

added to the system. In the next chapter the test environment is explained, and

the added test cases are described further.

 29

5 EXPANDED TEST ENVIRONMENT

The basic test setup was expanded to include SHO (Soft Handover) tests;

therefore a remotely controlled attenuator, a second node and several UEs

were added to the setup:

FIGURE 3. Depiction of extended test environment

A soft handover happens when a UE is switching between two nodes which

operate on the same frequency. The remote controlled attenuator can be

configured to slowly dial the attenuation up on one node, causing the signal

strength on that node to decrease simulating a user walking away, and to dial

down on the other node, causing the signal from that one to get stronger, as if

the user walked towards that node. Once the UE connected to node 1

measures that the signal from node 2 is stronger, the handover is performed so

that the active connection is maintained by node 2 instead of node 1.

 30

First, the attenuator has to be configured into the network for the remote access

to work. The initial configuration is done via a serial port connection, where an

Ethernet control mode, a designated IP-address and network parameters are

set. When this procedure is done, the attenuator can be controlled remotely

from the network.

The attenuator has a handover support built in. This makes adapting the

handover test cases to the automation much easier. The needed attenuation

values were measured, to see in which level the UE has strong signal, and in

which value the other nodes signal cannot be received anymore. These values

are then adapted to the script. When indicating signal strength or attenuation,

the unit is dB or dBm. The difference between the two units is that dBm means

the measured power relation in decibels to one milliwatt (mW), and dB to one

watt (W).

The nodes were configured to function in the same frequency, as is required in

SHO tests. This is done from the RNC by setting the UARFCN (UTRA Absolute

Radio Frequency Channel Number) [10] to the same value for both node

configurations.

While controlling multiple UEs simultaneously, the devices are recognized by

the PPP device number created by the dial-up program, the serial number by

the ADB program or by the serial port on which the UE is connected.

The dial-up program creates the connections incrementally, the first being ppp0,

the second ppp1 and so on. The system also gives the UE a local IP address

and the remote IP address is given by the network DHCP server. This

information can be used to add a route to which the traffic is forwarded to:

‘ip route add <destination IP address/subnet mask> via <local device IP

address/subnet mask> dev pppX’

After adding the route to the device, where X is the number of the PPP

connection, the traffic from the destination address is forwarded to the local

address on the device ‘pppX’.

 31

The information from the executed test set can be retrieved with the same kind

of procedure as described earlier in the thesis, the only difference being an

increased individual log file count. The parsing can be done in the same way, so

the end results are deposited into a single file.

 32

6 SUMMARY

While developing the automation system, there were several difficulties in

controlling the devices. Stability issues in the whole system arose in the final

steps of the current development cycle. The scripts have to be fine-tuned by

changing the timing aspects of a command execution. This way the system

robustness can be increased.

In retrospect, in the start of the development phase, a larger variety of different

UEs would have helped with the stability issues. This can be carried out later

on, and the UEs can be changed with only a small effect on the created scripts

which control the system. Some of the current stability issues are circumvented

by powering the system down and starting it up again. This does not solve the

issue completely, but it allows the system to operate at an acceptable level, the

downside being an increased run time for the entire test set. At the moment, the

increased time needed is not an issue, but when the system will be expanded to

include more tests, it needs to be in a more stable state to increase the time

efficiency.

While comparing the achieved results to the ones set when this thesis was

started, we achieved what we aimed at: creating an automated node feature

test environment. Currently the basic test set has been implemented to a daily

execution set. The development of the system still continues inside the

company, but the criteria of the system functionality were met.

 33

REFERENCES

1. Ericsson. 2013. Facts & Figures. Date of retrieval 16.5.2014. Available:

http://www.ericsson.com/thecompany/company_facts/facts_figures.

2. Android Debug Bridge. Available:

http://developer.android.com/tools/help/adb.html. Date of retrieval 10.5.2014

3. USB_ModeSwitch - Handling Mode-Switching USB Devices on Linux. 2014.

Date of retrieval 10.5.2014. Available:

http://www.draisberghof.de/usb_modeswitch/.

4. Freecode: Wvdial. 2007. Date of retrieval 10.5.2014. Available:

http://freecode.com/projects/wvdial.

5. Android Developers. 2014. Using Hardware Devices. USB Vendor IDs. Date

of retrieval 2.5.2014. Available:

http://developer.android.com/tools/device.html.

6. Stenlik, 2007. Nokia Developer Wiki. Packet Data Protocol (PDP) Context

Activation. Date of retrieval 10.5.2014 Available:

http://developer.nokia.com/community/wiki/PDP.

7. Android Developers. 2014. Android SDK. Date of retrieval 2.5.2014.

Available: http://developer.android.com/sdk/index.html

8. 3GPP TS 26.204. 2012. 3GPP Specification detail, Speech codec speech

processing functions; Adaptive Multi-Rate - Wideband (AMR-WB) speech

codec; ANSI-C code. Date of retrieval 10.5.2014. Available:

http://www.3gpp.org/DynaReport/26204.htm

9. Wannstrom, Jeanette 2014. 3GPP Keywords & Acronyms, Maximum

channel rate, Date of retrieval 10.5.2014. Available:

http://www.3gpp.org/technologies/keywords-acronyms/99-hspa

 34

10. 3GPP TS 25.104. 2014. 3GPP Specification detail. Base Station (BS) radio

transmission and reception (FDD). Date of retrieval 12.5.2014 Available:

http://www.3gpp.org/DynaReport/25104.htm

 35

APPENDICES

Appendix 1 Memo of initial data (in Finnish)

LÄHTÖTIETOMUISTIO LIITE 1

