

LEADING SOFTWARE PROJECTS

Applying agile principles

Master’s thesis

Degree Programme in Strategic Leadership of Technology-based Business

Visamäki 23.05.2014

Anssi Aamurusko

ABSTRACT

VISAMÄKI

Degree Programme in Strategic Leadership of Technology-based Business

Author Anssi Aamurusko Year 2014

Title of Master’s thesis LEADING SOFTWARE PROJECTS

Applying agile principles

ABSTRACT

Agile methods are commonly used in software development and teams are

encouraged to apply those methods. Training courses and literature to

increase understanding about agile methods is widely available for

software developers but the offer for project managers is not that wide.

This thesis is commissioned originally by Nokia to find out how the

project managers are leading agile software development teams and how

the team applying a specific method should be leaded. Nowadays the

researcher and the target group of this study belong to Microsoft.

The theories utilized in this study are related to agile project management,

leading self-organizing teams, leading subcontracted teams and the theory

of agile software development methods.

Research method used was focused interview. Interviews were recorded

and partially littered. The data was categorized and further analyzed by

grounded theory method.

The target groups were mainly applying agile methods so freely that it was

not possible compare management practices against certain method.

Instead the practices from whole group were analyzed against agile

principles to define general guidance for project management in the target

group.

Main obstacles for applying agile methods in the teams were for example

mixed and distributed team structure and too wide customer base. Instead

supporting and encouraging team for self-direction and continuous

improvement are examples of actions that assist agile methods applying.

Keywords Agile methods, software development, project management

Pages 60 p. + appendices 4 p.

 TIIVISTELMÄ

VISAMÄKI

Teknologiaosaamisen Johtaminen

Tekijä Anssi Aamurusko Vuosi 2014

Työn nimi LEADING SOFTWARE PROJECTS

Applying agile principles

TIIVISTELMÄ

Ohjelmistosuunnittelussa käytetään yleisesti ketteriä menetelmiä ja

suunnittelutiimejä rohkaistaan näiden menetelmien soveltamiseen.

Ohjelmistosuunnittelijoille on runsaasti tarjolla koulutusta ja kirjallisuutta

ketterien menetelmien omaksumiseen mutta tarjonta projektiesimiehille on

huomattavasti vähäisempää.

Tämän opinnäytetyön on alun perin tilannut Nokia selvittääkseen kuinka

projektiesimiehet johtavat ketteriä ohjelmistosuunnittelutiimejä ja kuinka

tällaista tiimiä, joka soveltaa tiettyä menetelmää, tulisi johtaa. Nykyään

tutkija ja kohderyhmä työskentelevät Microsoftin palveluksessa.

Teoria, jota tässä työssä sovelletaan, sisältää ketterää projektijohtamista,

itseohjautuvien tiimien johtamista, alihankitun työn johtamista ja ketterien

ohjelmistosuunnittelumenetelmien käytäntöjä.

Tutkimusmenetelmänä tässä opinnäytetyössä on käytetty

teemahaastattelua. Haastattelut nauhoitettiin ja litteroitiin osittaisen

litteroinnin menetelmällä. Aineisto purettiin luokittelemalla ja edelleen

analysoitiin ankkuroitu teoria menetelmää käyttäen.

Tutkimuksen kohderyhmässä ketteriä menetelmiä sovellettiin niin

vapaasti, ettei ollut mahdollista verrata johtamistapoja tiettyä menetelmää

vasten. Sen sijaan toimintatapoja analysoitiin ketteriin periaatteisiin

verraten tavoitteena määritellä yleinen ohjeistus kohderyhmän

projektiesimiehille.

Tuloksista esimerkkeinä ketterien menetelmien soveltamista haittaavina

asioina olkoon hajautettu ja sekava tiimin rakenne ja liian laaja

asiakaspohja. Sen sijaan tukeminen ja kannustaminen itseohjautuvuuteen

ja jatkuvaan kehittymiseen ovat toimia jotka edistävät ketterien

menetelmien soveltamista.

Avainsanat ketterät menetelmät, ohjelmistokehitys, projektijohtaminen

Sivut 60 s. + liitteet 4 s.

 TERMS AND ABBREVIATIONS

ASD Adaptive Software Development

Crystal An agile software development method

DSDM Dynamic Solutions delivery model

FDD Feature Driven development

Genchi-Genbutsu Japan, means "go and see"

IIBA International Institute of Business Analysis

IID Iterative and Incremental Development

Kaizen Japan, means "improvement" or "change for the best"

Kanban software development process

Scrum An agile software development method

TPS Toyota Production System

WIP Work-In-Progress

XP An agile software development method, Extreme

Programming

TABLE OF CONTENTS

1 INTRODUCTION .. 1

 Background for this research .. 1 1.1.

 Research problem and outlining ... 2 1.2.

 Structure of the research ... 3 1.3.

 Source criticism .. 4 1.4.

2 THEORY .. 6

 Modern software development ... 6 2.1.

2.1.1. Agile software development .. 6
2.1.2. Lean software development ... 9

 Agile Project management ... 11 2.2.

2.2.1. Responsibilities of an Agile Project Manager 12
2.2.2. Scope of Agile Project Management ... 13

 Leadership .. 13 2.3.

2.3.1. Lean management .. 14
2.3.2. Leading Self-managed teams .. 15

2.3.3. Leading subcontracted development and testing teams 16
 Software development methods ... 19 2.4.

2.4.1. Waterfall process ... 19

2.4.2. Scrum ... 21
2.4.3. XP .. 23

2.4.4. Agile methods summarized ... 25
2.4.5. Kanban process .. 25

3 EMPIRICAL RESEARCH ... 28

 Research problems ... 28 3.1.

 Research method selection ... 28 3.2.

 Implementation of the interview .. 30 3.3.

3.3.1. Interview support material ... 30

 Analysis of the interview results .. 32 3.4.

3.4.1. Structure of the teams .. 32

3.4.2. Applied agile method in teams .. 33
3.4.3. Agile principles implementation in teams ... 35
3.4.4. Problem areas against agile working methods 51

3.4.5. Good work practices to success with agile working methods 53

4 DISCUSSION ... 55

 Research results .. 55 4.1.

 Reliability and validity ... 55 4.2.

 Reflection on research process ... 56 4.3.

 Possible future studies .. 56 4.4.

5 CONTRIBUTION .. 58

REFERENCES .. 59

Appendix 1 Agile Methods Properties

Appendix 2 Interview support material

LEADING SOFTWARE PROJECTS: Applying agile principles

1

1 INTRODUCTION

This chapter introduces the reader to the background and ordering

organization of this study. Also the structure of this study is represented.

 Background for this research 1.1.

Deployment of agile methods in software development is nowadays very

common habit and in many cases software development teams are even

required deploy some of agile methods in their projects. Background for

this kind requirement could be that by implementing agile methods

projects can be finalized faster or with less resources, when compared to

earlier popular software development methods, like waterfall process and

its’ variations.

Agile method trainings for software developers are widely available and

also a lot of literature about the issue has been written by several authors.

Anyway dedicated literature about project management practices have not

been so well covered by the authors of the agile software development

books.

Running a software development project is newer a predicted series of

action. It cannot be compared to a manufacturing process, which is in most

cases predictive and controlled process. Controlling the output of that kind

of process is mainly controlling the flow of materials and scaling the size

of manufacturing operations.

Software development is made by human people with their intelligence,

not by machines and the operators, thus leading software development

teams and managing software projects needs different management skills

than running a factory manufacturing some products.

This study is ordered by Nokia and by the group which develops software

applications for cellular device manufacturing and aftermarket operations

and research and development applications running on cellular device

itself. Teams and their work products will be anonymous as request by

Nokia. It is possible that until this study is finished the hosting company

will be Microsoft, but it should not have any impacts to this study and the

target teams.

In 2012 Koivusalo made a thesis about measuring the maturity for teams

in the same target group than this study is now done. Actually most of

people working in teams are the same but organization and responsibilities

has changed quite a lot. The findings in Koivusalo research are still

relevant.

Findings on study where, that management suffered practical knowledge

of agile methods, even though they have had training and their teams are

LEADING SOFTWARE PROJECTS: Applying agile principles

2

applying agile methods. Also making schedules and work amount

estimates was difficult for management. Management was also tempted to

manage the work of the developers, which was against agile principles.

(Koivusalo 2012, 61-63)

Researcher itself has experience of software project management for about

10 years from the beginning of the 2000 until today. It has mainly been

leading a team using waterfall method, with strong requirement for up-

front design and planning. Implementation was executed incrementally

and also in maintenance phase software design was improved iteratively.

Researcher has experience about working in projects partially using agile

methods. It has been a team leader activity in a large scale global software

project. In that setup some teams were planning and executing by

following waterfall method and some other were applying agile Scrum

method. That setup worked pretty well, but in some cases those agile

teams had resistance to change their iteration content to correct an error

causing problems on dependent software components. Waiting to next

iteration was frustrating for other teams.

Researcher worked as a product owner for a team using Scrum method.

First was a trial of three moths which ended with the collective decision to

go back to waterfall model. There were problems with sharing

implementation responsibilities and chopping requirements to small

enough tasks. Even the idea of changing to agile development was

initiated from team itself it did not succeed. The main reason for failure in

applying of the agile method was that the expertise within team was so

specialized to individuals and knowledge and responsibilities could not be

shared.

At the time when the researcher started to plan this study the researcher

was also starting in role of product owner of one scrum team. It sounded a

good idea to improve own knowledge about agile methods and leading the

teams applying those methods. The team started to work pretty well and

iteration after iteration the process was settled comfortable for developers

and customers. Unfortunately after few months of working on this role of

a product owner, a big organization change in company caused this team

to be split and integrated to other teams. Thus it was the end of the product

owner role within that team.

 Research problem and outlining 1.2.

The target of this study is to find out how the product owners or the

project managers are leading and managing their software development

teams from agile software development point of view. Agile values and

principles formulate basis for project manager behavior in agile

environment. Two research questions for this study are:

-How the agile values and principles are applied in project management?

LEADING SOFTWARE PROJECTS: Applying agile principles

3

-What are the management practices suitable to particular agile software

development method?

This research is outlined to six selected application software development

teams. The environment in those teams might not be comparable to

different software development environments. Although these teams are

developing computer applications the work has similarities to embedded

software development. These applications have dependencies to very low-

level layers of the software in the mobile devices. This study can’t be

generalized in other industries than software development. Anyway the

leadership parts are quite general.

 Structure of the research 1.3.

The research was initiated in December 2012 by creating a research plan.

The research then continued actually September 2013 and continued then

actively by theory studies. On February 2014 it was time to start empirical

research and after that the work continued with research result analysis

and finalizing this study report. Report was finished on May 2014. This

report document is divided into five parts which are described in the

following subchapters.

1. Introduction

First chapter open describes the background for this research. The

questions to be answered are described in this chapter. Also there is

mentioned previous research on the same working environment. Research

outlining is described in technical wise and also the teams to be studied

are introduced. The structure of study is explained here and the sources for

theories are criticized, both literature and researcher own experience in

subject area.

2. Theory

The target in this study is to study agile software development

management, thus it is obvious to find information about agile software

development methods and about leading agile software development

teams. XP and Scrum methods were assumed to be used at least in some

of the target teams, thus those methods were studied thoroughly form the

point of management and other methods were just went through by their

characteristic properties. Some teams were using Kanban process, which

required studying that process and also Lean Software development,

which is the basis for the Kanban process.

From the management and leadership point of view there is information

about Lean management and leading self-management teams. All except

one team were using subcontracting at least for testing and many also for

development. Thus it is clear that some background information is needed

from that area as well.

3. Research and analysis

LEADING SOFTWARE PROJECTS: Applying agile principles

4

Ontology, the fundamental categories of being, used in this research is

intersubjectivity. A common understanding of the research area is required

between the researcher and target person of the research. Epistemology,

the theory of knowledge, used in this research is antipositivism, as the

understanding of the person behavior is based mental processes and by all

means is subjective. Paradigm, a distinct concept or thought pattern, used

in this research is interpretative hermeneutics, as the research requires

human understanding. Logic is inductive reasoning as the target is to

generalize the research results. (Niiniluoto 1997)

The research method family is qualitative and from that family an

interview is selected as a research method. More precisely a semi-

structured or focused interview is method to implement empirical

research. Rationale of the method selection is described in the beginning

of the research chapter. The implementation and the practicalities of the

interview are explained there, too. The actual slides used for supporting

the discussion are presented in Appendix 2.

The interview recordings are transcribed by using partial littering,

meaning only remarkable sentences are littered and all non-meaningful

words and sentences from discussions are left out. The actual littering is

not included into this document.

The Analysis of littered interviews is made by categorizing and using

grounded theory method.

4. Discussion

Discussion chapter includes reliability and validity evaluation of this

research. There is also researcher’s reflection to whole research process

and how well the targets were reached. Possible future study subjects are

also evaluated there.

5. Contribution

Contribution chapter gives a view how the research result can be utilized

and what is the value of those for the company, the target group and the

researcher itself.

 Source criticism 1.4.

The main sources for the theory are described in this chapter. Sources are

also criticized if it is seen necessary.

Craig Larman is an advocate for iterative and agile development methods.

He is not dedicated to any specific method, but handles several different

methods in his books. David J. Anderson is a pioneer of utilizing Kanban

technique in software development and nowadays he leads his company of

consulting, training and publishing business promoting evolutionary

approaches for managers of the knowledge workers. Alistair Cockburn is

one of the authors of the Agile Manifesto and thus known and trusted

LEADING SOFTWARE PROJECTS: Applying agile principles

5

source of information. Cockburn has described the Crystal method family

for agile software development. Mary and Tom Poppendieck are the

originators for lean software development, as well as Jesper Boeg is

known to be an advocate for it. IIBAs’ Agile extension provides an

independent view for agile software development methods. Their view

point is in business analysis, not in the methods comparison.

Tutorialspoint has a large collection of training materials related software

development. They do not provide sources for their materials, thus it is

researcher decision to trust that information. Auer and his co-writers in the

book Ketterää Kehitystä are writing about their own experiences and

opinions and there are no source references in that book.

Michael Hackett is one of the founders of Locigear company specialized

for software testing services. He has been authoring two books about

software testing and has long career on that subject area. Steve McConnell

is a famous software consult for many global companies and has been

authoring several books software development area. Jeffrey Liker is well-

known writer and consultant for TPS.

For empirical research implementation the theory and guidance is mainly

from the book authored by Sirkka Hirsjärvi. She is a professor and

researcher on pedagogics area and has been authoring several books about

qualitative research methods and about research work overall.

One source of information is the researcher itself and his experiences.

Researcher has participated training for Scrum product owners and agile

management training. And like mentioned earlier in this chapter also in

practice Scrum method has become familiar. Some of the experiences

grew some resistance against agile software development in the mind of

the researcher. Anyway the last experience gave a positive feeling about

agile software development and it should balance the attitude of the

researcher between traditional and agile development methods.

LEADING SOFTWARE PROJECTS: Applying agile principles

6

2 THEORY

The theory chapter first introduces agile software development and lean

software development. Then the agile project management practices are

presented. Next there are leadership principles for self-organized teams

and subcontracted teams are discussed and also lean management. Then

the agile software development methods are described, mainly XP and

Scrum methods, but also few others are shortly explained.

 Modern software development 2.1.

Iterative and evolutionary development (IID) is a foundation for modern

software development methods in which also agile methods belong. IID is

an acronym for Iterative and Incremental Development. Development and

requirements are handled in an evolutional manner. Planning is adaptive

and driven by the priorities from customer or by the requirement risk

level. Releases are scheduled with time-boxes. (Larman 2007, 9-13)

The target of single iteration is to release stable, integrated and tested

partially working system. Single iteration can contain in addition to coding

also requirement analysis and design activities. One can say that the

product grows incrementally iteration after iteration. (Larman 2007, 10)

2.1.1. Agile software development

In 2001 The Agile Alliance created a manifesto and statement of

principles, also known as manifesto of the Agile Alliance. Agile project

management is guided by these principles and agile practices reflect to

these principles. (Larman 2007, 27)

Agile manifesto reads as follows:

“We are uncovering better ways of developing software by doing it and

helping others to do it. Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more." (Agile Alliance 2001)

The first value can be understood like undocumented with good

interactions is better than a documented process with hostile interactions.

The second value expresses that running the code is the only visible proof

of the progress of the project. Documentation is something that can be

used to support the team work. The third value highlights the joint

decision making between the team and customer. Contract may be needed

to establish collaboration, but not needed any longer. The fourth value is

LEADING SOFTWARE PROJECTS: Applying agile principles

7

explained like every project needs a plan, but within agile methods

planning and development cycle is short to be able to respond changes

quickly. (Cockburn 2007, 371-372)

And the twelve principles of agile software deepen the meaning of values

in practice:

“

 Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.

 Welcome changing requirements, even late in development. Agile

processes harness change for the customer's competitive advantage.

 Deliver working software frequently, from a couple of weeks to a

couple of months, with a preference to the shorter timescale.

 Business people and developers must work together daily

throughout the project.

 Build projects around motivated individuals. Give them the

environment and support they need, and trust them to get the job

done.

 The most efficient and effective method of conveying information

to and within a development team is face-to-face conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace

indefinitely.

 Continuous attention to technical excellence and good design

enhances agility.

 Simplicity--the art of maximizing the amount of work not done--is

essential.

 The best architectures, requirements, and designs emerge from self-

organizing teams.

 At regular intervals, the team reflects on how to become more

effective, then tunes and adjusts its behavior accordingly.

” (Agile Alliance 2001)

Delivering early gives possibility for quick wins and early feedback about

the requirements, the team and the process. Delivering frequently enables

continuous wins for the team, fast feedback and up-to-date priorities.

(Cockburn 2007, 373)

Software delivery frequency should be as short as possible. It is a matter

of customer, how often one can take in the new delivery for their review.

If the frequency is months, it is suggested to use intermittent, light mid-

reviews. (Cockburn 2007, 373-374)

Working software proofs to the customers how the project is progressing.

It tells more about the situation than plans and documents. Working

software has to main functionalities, the user interface and the algorithms.

Both can be evaluated by customer and valuable feedback can be gathered.

(Cockburn 2007, 374)

LEADING SOFTWARE PROJECTS: Applying agile principles

8

Agile processes are able to take on late-changing requirements because of

early and frequent delivery of working software, iterative and incremental

delivery and iteratively evolving architecture and design. (Cockburn 2007,

374)

Daily cooperation with developers and business people or end user

representatives is one success factor for the project. Daily availability is

not practical in most of the projects, but it can be said that stakeholders

need to be available on short notice when a discussion is needed.

(Cockburn 2007, 375)

Motivated individuals are keys to success in projects. Management should

provide the tool and training and support to get their work done and then

keep out from their way to leave them space to express themselves.

(Cockburn 2007, 375)

When people are working near each other and easily accessible,

information can be shared immediately and problems can be solved

without any delays. There is no need to arrange a meeting and move

people to common meeting room. Face-to-face conversation possibility

removes the delays from communication.

Self-organizing teams are able to adjust the architecture and design during

the project life-cycle. Architecture can’t be predesigned too strictly,

otherwise it can’t adapt to changing requirements during implementation.

(Cockburn 2007, 375-376)

Sometimes one must make shortcuts on design to get things done and

build working software. When this happens it is called technical debt and

has to be paid back later. It means the design needs to be fixed later when

the team has better understanding of what is the correct or optimal design

approach. (Cockburn 2007, 376)

Overtime working is sometimes needed, but if it is continuous it will cause

people to get tired and ineffective. It will lead increased errors in

implementation and more work effort is needed to fix errors. If continuous

overwork is needed, then one should start evaluating the project layout and

find the problem areas which are causing the overload. (Cockburn 2007,

376)

Simplicity in design and implementation makes it easy to understand for

everyone in the team. It is important to accomplish a requirement by

implementing only the most important features and may be the rest are not

even needed by the customer anymore. (Cockburn 2007, 377-378)

Improving the team work habits regularly can be said to be agility in work

methodology. If the team does not evolve its working methods, it is not

effective and adaptive and it will stay on where it is. (Cockburn 2007,

378)

LEADING SOFTWARE PROJECTS: Applying agile principles

9

2.1.2. Lean software development

Mary and Tom Poppendieck have translated Toyota Production System

(TPS) original Lean principles into Lean software development principles

presented in table 1. Lean software development has its ground in Kanban

thinking, which is customer-oriented manufacturing model. Lean software

development shares many principles and ideas with those presented in

agile manifesto, but lean is giving more weight to continuous

improvement of delivery process and change management.

 Lean software development principles target to minimizing and

eliminating waste, which can be for example unnecessary documentation

or implementation. Too early decisions in requirement processing or in

implementation can lead to producing waste into final product, as well as

negligence of thorough testing produce unnecessary rework.

(Poppendieck M. and T. 2003, 2-4)

It is very important to recognize these wastes like work or phase product

which do not bring any additional value for the customer. When the

wastes are recognized, those will dropped out, starting from the ones

which eat the most work effort. Finally when all the waste is removed, it

comes obvious that even some mandatory process parts or phase products

were only included for extra certainty, not for the customer value

Poppendieck M. and T. 2003, 2-4)

Fast delivery needs early decisions, but delivering fast gives an

opportunity for fast feedback and fast learning. To make decisions

individually and deliver fast teams need to be enough empowered.

(Poppendieck M. and T. 2003, XXV-XXVII)

LEADING SOFTWARE PROJECTS: Applying agile principles

10

 Seven Lean Software Development Principles as defined by Mary and Tom Table 1.
 Poppendieck with the DELIVER mnemonic (Equinox, 2011)

LEADING SOFTWARE PROJECTS: Applying agile principles

11

 Agile Project management 2.2.

Project management for agile software development requires good

understanding of agile development process. Picture 1 illustrates generally

an agile development process.

 Agile development process (Tutorialspoint 2013) Picture 1.

There are many differences in agile development model when compared to

traditional models. Tutorialspoint lists four of them:

 The agile model emphasizes on the fact that entire team should be a

tightly integrated unit. This includes the developers, quality

assurance, project management and the customer.

 Frequent communication is one of the key factors that make this

integration possible. Therefore, daily meetings are held in order to

determine the day's work and dependencies.

 Deliveries are short-term. Usually a delivery cycle ranges from one

week to four weeks. These are commonly known as sprints.

 Agile project teams follow open communication techniques and

tools. These techniques and tools enable the team members

(including the customer) to express their views and feedback openly

and quickly. These comments are then taken into consideration

when shaping the requirements and implementation of the software.

(Tutorialspoint 2013)

LEADING SOFTWARE PROJECTS: Applying agile principles

12

2.2.1. Responsibilities of an Agile Project Manager

ASD method creator Jim Highsmith has listed nine principles for agile

project manager:

“

1. Deliver something useful to the client , check what they

value

2. Cultivate committed stakeholders

3. Employ a leadership collaboration style

4. Build competent, collaborative teams

5. Enable team decision making

6. Use short, time-boxed iterations to quickly deliver features

7. Encourage adaptability

8. Champion technical excellence

9. Focus on delivery activities, not process compliance

activities”

(Larman 2007, 29)

Two managers, Augustine and Woodcock, with experience in projects

applying XP method, have listed six recommended practices for agile

project managers.

“

1. Establish a guiding vision for the project and continuously

reinforce it through words and actions

2. Facilitate collaboration and teamwork through relationship

and community

3. Establish and support the team’s set of guiding practices,

such as Scrum and XP

4. Provide visible and open access to project management

and other information

5. Apply just enough control to foster emergent behavior of

self –directed team

6. Reinforce the vision, follow or adapt the rules, listen to the

people”

(Larman 2007, 29)

According to Tutorialspoint following are the responsibilities of an agile

project management function. From one project to another, these

responsibilities can slightly change and become interpreted differently.

 Responsible for maintaining the agile values and practices in the

project team.

 The agile project manager removes impediments as the core

function of the role.

 Helps the project team members to turn the requirements backlog

into working software functionality.

 Facilitates and encourages effective and open communication

within the team.

 Responsible for holding agile meetings that discusses the short-term

plans and plans to overcome obstacles.

 Enhances the tool and practices used in the development process.

LEADING SOFTWARE PROJECTS: Applying agile principles

13

 Agile project manager is the chief motivator of the team and plays the

mentor role for the team members as well.

(Tutorialspoint 2013)

And the following are manners to avoid by agile project manager:

 Manage the software development team.

 Overrule the informed decisions taken by the team members.

 Direct team members to perform tasks or routines.

 Drive the team to achieve specific milestones or deliveries.

 Assign task to the team members.

 Make decisions on behalf of the team.

 Involve in technical decision making or deriving the product

strategy.

(Tutorialspoint 2013)

2.2.2. Scope of Agile Project Management

In agile projects, it is everyone's (developers, quality assurance engineers,

designers, etc.) responsibility to manage the project to achieve the

objectives of the project. It is not just the project manager's responsibility.

The common sense is used over the written policies, like processes and

procedures.

Agile project manager plays a key role in agile team in order to provide

the resources, keep the team motivated, remove blocking issues, and

resolve impediments as early as possible. In this sense, an agile project

manager is a mentor and a protector of an agile team, rather than a

manager.

The agile project management function should also demonstrate the

leadership and skills in motivating others. This helps retaining the spirit

among the team members and gets the team to follow discipline. Agile

project manager function facilitates and coordinates the activities and

resources required for quality and speedy software development.

(Tutorialspoint 2013)

 Leadership 2.3.

This chapters introduces lean leadership and the leading the self-managed

teams. This should give some ground for the management of the self-

organized teams like agile teams should be. Subcontracting is said to be

used in the teams that will studied, thus leading the subcontracted teams is

also an issue which needs some background information.

LEADING SOFTWARE PROJECTS: Applying agile principles

14

2.3.1. Lean management

Liker writes about Toyota way of lean leadership. It is actually a model of

continuous development of leadership. There are five core principles of

which the leadership development is based on. These principles are:

1. Challenge. We form a long-term vision, meeting

challenges with courage and creativity to realize our

dreams

2. Kaizen. We improve our business operations continuously,

always driving for innovation and evolution

3. Genchi-Genbutsu. Go to the source to find the facts to

make correct decisions to build consensus and achieve

goals at our best speed.

4. Teamwork. We stimulate personal and professional

growth, share the opportunities of development and

maximize individual and team performance

5. Respect. We respect others, make every effort to

understand each other, take responsibility and do our best

to build mutual trust

(Liker & Convis 2012, 30-33)

According to Liker and Convis leaders do grow by continuously

improving four aspects.

1. Self-development. Managers actively develop themselves

and their skills with the help of a mentor, a more

experienced leader.

2. Developing others. Manager should participate mentoring

and coaching of all ones subordinates. The best measure of

your success as a leader is what was accomplished by the

people you coach.

3. Supporting daily Kaizen. Teach the correct application of

maintenance Kaizen, to cope with daily problems, and

improvement Kaizen, to find better ways of working. As a

trainer and coach, like you experienced yourself as a

trainee, you challenge people to improve, but you do not

force them to accept your own solutions.

4. Creating vision and aligning goals. Manager and

organization together set the targets for the long-term

development and decide the division of the effort and

resources for reaching those targets.

After the managers have reached the high level of lean leadership, they are

capable of adapt to continuous and vast changes provided by their

business or working environment. (Liker etc. 2012, 33-37)

These lean management principles support project manager with agile

teams. Managers can develop themselves in the areas of agile processes

and leadership, and they can also coach their team members and other

managers on these skills.

LEADING SOFTWARE PROJECTS: Applying agile principles

15

Managers should create and communicate the vision of team and together

with team set the targets. Division of the effort and resources is interesting

as usually it is higher level management who decides the resources for

project. It is project manager responsibility to indicate these needs to

higher management to get the resources and environment for successful

execution.

2.3.2. Leading Self-managed teams

Self-directed and self-organizing are the words used to describe agile

development teams. Thus it is worth to find some information about

leading self-managed teams. Yeatts writes about the roles of management

in his book about the self-managed teams. These roles include providing

support and encouragement to the team. Also there are mentioned roles

like assisting team’s dimensions and acting as a team resource and coach.

Managers usually observe their team’s performance and whenever they

see low scores measures they are keen on why it has happened. In case of

self-managed team the manager should rather ask what are going to do to

improve the situation and how management could support the initiatives.

It is important to make clear message that the team is responsible for their

performance and productivity by itself and the manager is always

available for supporting the team on its actions. (Yeatts 1998, 190-191)

Team members need encouragement in setting own performance goals, to

establish high expectations for themselves. They need encouragement for

self-criticism on the decisions they have made, before they start

implementation on the basis of those decisions. Also the encouragement is

needed for team members to evaluate their performance and take actions if

it is low. And in positive case when performance is in good level they

need to take care of rewarding themselves. (Yeatts 1998, 192)

Assistance from manager is important, not only making decision and

solving problems. A manager should be able to give tools and methods to

team for decision making and problem solving. It is also important to

assist team by searching and sharing information which could improve the

performance of the team. One more important assistance task for manager

is seeking and providing training and education programs for team.

(Yeatts 1998 193-194)

A manager being a resource for team, means helping the team to have

enough resources they need. Coaching is important to be provided early

enough, before any failures happen. Self-managed teams need coaching in

both technical and management responsibilities. Usually team member are

motivated to learn needed skills and thus do not need coaching from

manager anymore. (Yeatts 1998, 195-196)

LEADING SOFTWARE PROJECTS: Applying agile principles

16

2.3.3. Leading subcontracted development and testing teams

Hackett writes in his article about the ten risks rising from leading an

offshore software testing teams. Despite the background in the software

testing service company his findings are true also in case of software

development outsourcing or subcontracting.

1. Work effort measuring.

To be confident about the work effort the other company workers are

investing to your project you need to have proper metrics in place to

follow up the progress. Hackett (Hackett 2014) writes about test cases,

how many of those are run and their results. In software development that

amount of implemented or released task can give the information needed

to follow up the effort of the developers.

2. Visibility to daily work

It is important to be aware of every developers and testers daily tasks and

progress. This can be achieved by having a daily reporting from every

team member to project leader (Hackett 2014). This might sound like

micro management, but in case of remote team one does not have

possibility to easily observe the progress of the team located near the

manager.

3. Competent contact point

When the remote team is large or consists of several teams, it is essential

to have a single, competent and reliable contact point to represent the

effort of the whole team or project. This person should not be business

account manager, but rather a technical lead. (Hackett 2014)

4. Plans for downtime

Remote teams, especially when located on developing countries can

experience problems which can prevent them to perform the tasks they are

supposed to do. Power outages, network problems, viruses and lack of

needed equipment are such problems. Most important thing to do is to do

all possible preventive actions to avoid this kind of problem. (Hackett

2014)

For such cases a contingency plan is anyway good to have. If it is

impossible to do software development and testing work, it will be

possible to do for example brainstorming for improving processes and

tools.

5. Access to host company network and services

Like already mentioned in previous chapter, network problems can

prevent remote teams to work. Especially in software development remote

teams and host company exchange data in many ways and the databases

and tools might common or provided by hosting company.

To avoid problems caused by network breaks or slowness there few things

to improve the situation, for example databases can be replicated locally to

LEADING SOFTWARE PROJECTS: Applying agile principles

17

remote team. This minimizes the delay caused by occasional network

breaks. Sometimes it is still possible to use e-mail even the development

tools do not have connection between two sites. Of course you need to be

sure that this kind of substituting method is secure enough. (Hackett 2014)

6. Trustful partner

When the distance between team and project manager is long, it can

happen that remote team does not report the full truth about their progress

on the work. They may want hide problems or lack of competence they

may have. There is no other way to avoid this problem than having a

contact person who you can trust. (Hackett 2014)

7. Attrition

When the work is done in the country with booming economies, it is

natural that staff is frequently searching for better job opportunities and

higher salary. And those really are available if economics are growing. It

is also possible that subcontracting company reassigns best resources to

another customer with better contract. (Hackett 2014)

To avoid attrition it needs to be built into contract that project personnel

should not be changed. It should be also possible increase the

compensation of the employees to be competitive. (Hackett 2014)

8. Culture and personality differences

Personality conflicts are possible inside any team or working environment.

With remote there are certain things which make possibility for such

conflicts even higher. Those are differences in culture, lack of face-to-face

communication, inequality in task distribution and possible hostility as a

consequence of outsourcing. Personality and culture differences hinder

communication between remote team and hosting company project

management. (Hackett 2014)

Cultural training for both parties is the most common means to minimize

the risk of conflicts. Another good way is to gather the remote team and

local people to same location to work together and get to know each other

better. It can take a couple of weeks of time, but it helps on knowledge

transfer and it also makes people closer to each other and by that way

easies the communication.

9. Time for communication

When teams are distributed, communication has a big role in keeping all

parties up-to-date. And communication in that case is more difficult due

cultural and personality issues. This leads to situation that the

communication takes a big share of the daily working time. The problems

in communication cause easily the feeling that no one is listening. Proper

listening takes time. (Hackett 2014)

Time difference makes effective communication harder, as it means that

someone has to move out from comfort zone. It is important to have a

LEADING SOFTWARE PROJECTS: Applying agile principles

18

person on remote team who can effectively communicate both inside the

team and to other parties outside. (Hackett 2014)

10. Language barrier

Language skills are different in different countries. In software

development programming languages are the same globally. All technical

documentation should be written in one common language, preferably

English. This helps the communication as at least the words for technical

issue are then familiar. Of course, if possible, providing language trainings

helps the situation. (Hackett 2014)

Steve McDonnell has been writing several books about software

development and he lists following things to keep in mind when

outsourcing abroad.

1. Communication

In target country it is possible that services and connectivity are not in

same level as in company home country. Common language is essential.

Sometimes subcontracting companies provide a contact point on your

language, but it is still possible that foreign languages are found from final

delivery. (McConnell 2002, 496)

2. Time difference

Communication outside of office hours due time difference requires

flexibility from either hosting company or sourcing company. If the

communication takes place mainly by e-mails, the time difference gives

more time to answer questions to both parties. Still the communication is

slow. If both parties are using same services, like software building

servers, those are in more efficient use around the clock. (McConnell

2002, 496)

3. Travelling

When cooperating with the team abroad, one must prepare for travelling.

All things can’t be handled by e-mails or phone calls. Face-to-face

negotiations are the most effective way to communicate. It is suggested

have on-site meetings at least in the beginning of the project and in the

end during the project with couple of month’s interval. (McConnell 2002,

496)

According to McConnell outsourcing has couple of well-known risk.

1. Losing visibility

Manager need to have means and tools for following up the progress of

the project. . (McConnell 2002, 499)

2. Losing expertize

Expertize on the product or development transfer to outsourcing provider.

And expertize on ordering company decreases. It may not wise outsource

core competencies. . (McConnell 2002, 499-500)

LEADING SOFTWARE PROJECTS: Applying agile principles

19

Often the subcontractor work on other town or other country than local

developers and in large companies there sites where development takes

place. Auer writes in his book that in this kind of setup it is best to

formulate own Scrum teams to each site and share the same product back

log. If the teams still need to be distributed to separate sites, the more they

have opportunities to work together face-to-face, the more they converge.

(Auer etc. 2013, 18)

 Software development methods 2.4.

This chapter introduces the traditional waterfall software development

process and agile software development methods. Scrum and XP methods

are explained more precisely and other methods properties are briefly

discussed. Kanban process is also introduced.

2.4.1. Waterfall process

In waterfall process implementation phase can happen iteratively and

incrementally, but the difference is in up-front design and predictive

planning.

Waterfall has got its name from article written by Winston W. Royce in

1970. In that article he was originally demonstrating that a single-pass

sequential approach can’t work in software development.

 Implementation steps to develop a large computer program for Picture 2.

delivery to a customer (Royce 1970)

LEADING SOFTWARE PROJECTS: Applying agile principles

20

Picture 2 illustrates the idea of the waterfall process. Previous step needs

to be finished before continuing to next one. And the planning and

scheduling of those steps in waterfall process is predictive.

According Haikala etc., the first phase, system requirements, also known

as system architecture defines the software relationship to hardware in

embedded systems. Second phase defines the requirements for the

software, how the software is divided to components and how those

connect to each other. Also the performance requirements can be defined.

(Haikala 1997, 24-25)

Analysis phase includes definition of software features, external

requirements and restrictions, communication methods with other systems.

(Haikala 1997, 25-26)

Design phase outcomes following work products: architectural design,

module design, detailed design. This phase is mainly answering to

question – How the software is implemented. (Haikala 1997, 26)

 V-Model illustration (Software Testing Class 2013) Picture 3.

Coding, or programming phase includes writing all the program code

needed. Next phase, testing, links to coding and these two phases are

commonly called implementation phase. Testing takes place in all the

levels above the implementation phase, too. This is illustrated by the V-

model in picture 3. In that model the testing is divided to module testing,

integration testing and system testing. System testing is driven by system

LEADING SOFTWARE PROJECTS: Applying agile principles

21

design and requirements, integration testing is driven by architectural

design and module testing is driven by module design. (Haikala, 1997, 26)

The last phase, called operation in picture 2, includes deployment and

maintenance of the software product.

2.4.2. Scrum

Scrum is may be most famous agile development method. According to

Larman (Larman 2007, 109) the key practices of Scrum method are:

 Self-directed and self-organizing team

 No external addition of work to an iteration

 Daily stand-up meeting with special questions

 Usually 30-calendar day iterations

 Demo to external stakeholders at the end of each iteration

 Each iteration, client driven adaptive planning

 Avoidance of prescriptive process

(Larman 2007, 109)

Three different roles can be defined for Scrum method: Product owner,

Scrum master and the team. Fourth one is customer. Product owner is

responsible for maintaining the list of work to be done and keeping in

touch with customers and other interfacing parties. Scrum master

responsible for managing the Scrum process and related ceremonies. The

team is responsible for development delivery of the working product.

(IIBA 2011, 9)

Iterations are called sprints and the result of the sprint is a working

software release, which can be delivered or demoed to customer. Software

requirements are listed on the product backlog. Backlog includes both

technical and customer requirements. Items in backlog are kept in priority

order which gives guidance for the team for selecting most important tasks

for development. (IIBA 2011, 7-9)

In scrum there are four formal meetings: sprint planning, the daily scrum,

sprint retrospective and sprint review. In the beginning of each sprint a

sprint planning meeting is held. The purpose of the meeting is to select

highest priority items from the product backlog which can be implemented

and finalized during the sprint. These selected items constitute a sprint

backlog. Product owner should not affect to these selections even one

usually participates the meeting. During the sprint the team refines these

items and divides them to smaller tasks. (IIBA 2011, 7-9)

Every day during the sprint the development team meets in daily scrum

meeting. It is short meeting where developers discuss their current work

items and possible blockers for work continuation. Product owner

presence is not mandatory on these meetings.

(IIBA 2011, 7-9)

LEADING SOFTWARE PROJECTS: Applying agile principles

22

At the end of the sprint team delivers working and tested software which

implements all backlog items selected to that sprint. Sprint review is held

with customer and the delivered software functionality is demonstrated to

customer. Customer has opportunity to give feedback in review meeting

and propose new items to product backlog. Sprint retrospective is held

mainly within development team and its purpose is to improve the product

or the processes used for delivering the product. Retrospective can also

produce new items to product backlog. (IIBA 2011, 7-9)

 Scrum development life-cycle (IIBA 2011, 10) Picture 4.

Picture 4 illustrates Scrum life-cycle development team point of view and

picture 5 from management point of view. Populating product backlog and

keeping it in the priority order, is away how product owner or project

manager controls the work of the team. Scrum framework itself does not

give too much guidance for backlog management. Product backlog is built

through identifying gaps and new capabilities to fulfill organizational

goals. Also the customer feedback about latest delivery generates new

items to backlog. And the solution assessment and validation gives

improvement ideas from the existing solution. (IIBA 2011, 9-10)

 Scrum management life-cycle (IIBA 2011, 10) Picture 5.

LEADING SOFTWARE PROJECTS: Applying agile principles

23

2.4.3. XP

XP is a well-known agile method. It has 12 practices which are

characteristic for this method. According to Larman these practices are:

 Planning Game

 Small frequent releases

 System metaphors

 Simple design

 Testing

 Frequent refactoring

 Pair programming

 Team code ownership

 Continuous integration

 Sustainable pace

 Whole team together

 Coding standards

(Larman 2007, 137)

Main roles in XP are Customer, developer, and tracker. The customer is

responsible for creating user stories and outlines the risk analysis for

those. Developers communicate directly with customers and develop only

what is necessary for next iteration. Tracker is responsible for schedule

updates and metrics gathering and presenting.

In XP requirements are defined as user stories. They are created by the

users of the system to define features and functionalities of it. User stories

do not give detailed description of wanted feature or functionality but they

will help prioritizing work in iterations and identifying risks estimating the

needed effort and opening the conversation between development team

and product owner to get common understanding what really needs to be

implemented. (IIBA 2011, 11)

 XP development process (IIBA 2011, 13) Picture 6.

LEADING SOFTWARE PROJECTS: Applying agile principles

24

Team development work and output is planned in three phases, illustrated

in picture 6. Those are: release, iteration and daily planning. Release plan

describes what features and functionalities compose a product release,

which can be delivered to customer. User stories related to next release are

ordered on priority based on importance for customer. Team chops the

stories to tasks and next iteration content is built about these tasks.

Common agreement about the tasks to fit into next iteration needs to be

settled down with the whole team. It may take several iterations to reach

the release delivery phase and get customer approval. (IIBA 2011, 12)

(Larman 2007, 143)

The project manager within XP is mainly responsible for tracker duties

like collecting metrics and making them visible as well as giving feedback

on estimations. Also the process conscience and customization is a

management responsibility in XP method. (Larman 2007, 145)

LEADING SOFTWARE PROJECTS: Applying agile principles

25

2.4.4. Agile methods summarized

Kainulainen has made a very good summary of agile methods and their

properties. Appendix 1 is the original table from his thesis and a

translation is provided here in table 2. In his thesis Kainulainen

(Kainulainen 2008) has studied agile software development method

strictly and critically, without getting influenced with marketing sentences

of the method creators. Scrum and XP are described in more detail earlier

and those others are only summarized in this table.

 Agile method properties Table 2.

Method

 /Property

Scrum XP ASD Crystal FDD DSDM

Design phase

length

Partly

defined, short

but adequate

Partly

defined,

nearest to

short but

adequate

Strictly

defined,

thorough and

long

Not defined Strictly

defined, fairly

thorough and

fairly long

Strictly

defined,

thorough and

fairly long

Iteration

usage

Light design,

iterative

implementati

on

Light design,

iterative

implementati

on

Cyclic design

phase,

iterative

implementati

on

iterative

implementati

on

Cyclic design

phase,

iterative

implementati

on

Cyclic design

phase,

iterative

implementati

on

Length of

Iteration

30 days 2-4 weeks 4-10 weeks 2-4 months 2 weeks Not defined

Customer

participation

Design,

iteration

planning,

reviews

Daily, as an

active team

member

Design,

Iteration

review

Not defined,

but active

Design, not

defined for

iterations

Design,

Iteration

review

Customer

technical

knowledge

Not required High Not required Not defined Not defined Not required

Process

definition

level

Strict process

definition,

methods

freely

selectable

Superficial

process

definition,

phase

products and

methods

strictly

defined

Process

defined,

methods

freely

selectable

Not defined Process and

phase

products

defined in

detail,

methods

freely

selectable

Process and

phase

products

defined in

detail,

methods

freely

selectable

Phase

products

4 6 5 Not defined 5 7

Size of team Not limited,

scalable

Small, below

ten members

Not limited,

scalable

Different

process for

different sizes

of teams

Not limited,

designed for

large projects

Not limited,

used for large

projects

2.4.5. Kanban process

On the basis of these Lean software development principles Kanban

method was established. Kanban is Japanese word meaning a signboard or

billboard and in TPS it model for customer oriented manufacturing model.

Kanban is not actually a software development method, it can be thought

like a change management process focusing on the following principles

mentioned by Boeg:

 Visualize Work - Visualize every step in your value chain from

vague concept to releasable software.

LEADING SOFTWARE PROJECTS: Applying agile principles

26

 Limit Work-In-Progress (WIP) - Set explicit limits on the amount

of work allowed in each stage.

 Make Policies Explicit - Make the policies you are acting

according to explicit.

 Measure and Manage Flow - Measure and Manage Flow to make

informed decisions and visualize consequence

 Identify Improvement Opportunities - Create a Kaizen culture

where continuous improvement is everyone’s job.

(Boeg 2012, 13)

Kanban is often combined with other agile methods. It relies on the work

queues to manage the flow of activities towards final working product.

Backlog can be used as a source for inbox items in work flow. As the

amount of work-in-progress items is limited a technique called grooming

is used to optimize the items waiting in the queue. If those are too large to

be completed for the next release, project team can analyze them and

break them down to smaller items. Those smaller items are then prioritized

and reordered to queue. (IIBA 2011, 15)

The Kanban board is the communication method for the team to manage

their work. Picture 7 illustrates such board. It gives very clear

visualization about what is going-on in team and implements the principle

‘visualize work’. Work-In-Progress is very clearly visible in every step of

development as are the explicit policies. Measurement of flow takes place

after every release.

Kanban board gives visibility to whole process. When the work flow is

transparent everyone can see the bottlenecks and change the process to

flow smoother. It supports identifying improvement opportunities.

(Anderson 2010, 60)

The method of pulling the work from requirement repository, Inbox in

picture 7, empowers developers to make decisions without supervision or

direction from supervisor. (Anderson 2010, 60)

In addition to a Kanban board or a card wall, it is preferred to use some

application to track the work in Kanban process. Those make it easier to

get metrics for retrospective use. And also with those applications it is

easier to control the limits and barriers set for the work in progress.

(Anderson 2010, 81-82)

Kanban is suitable for situation where that team has many customers but

only few resources. It does not mean that Kanban solves the problems

caused by broad customer base. By using Kanban the team can control

their current work load and in due course they learn how to optimize work

flow. Kanban process needs to visible to customers as well and project

management needs to communicate with the customers about release

contents and priorities. (Auer etc. 2013, 63-64)

LEADING SOFTWARE PROJECTS: Applying agile principles

27

 Example of Kanban board (Boeg 2012, 15) Picture 7.

LEADING SOFTWARE PROJECTS: Applying agile principles

28

3 EMPIRICAL RESEARCH

 Research problems 3.1.

The goal of the empirical research is to find out answers for the research

questions:

 How the agile values and principles are applied in agile project

management?

 What are the management practices suitable to particular agile

software development method?

Agile values are pretty sublimed and agile principles provide more

practical approach to those values. Agile principles should be used as a

guideline for project manager to enable a working environment which is

suitable for agile development.

The second question requires knowledge about the method the team is

using. The third question or actually the first question is then:

 What is the agile method the team is using?

 Research method selection 3.2.

Ontology, the fundamental categories of being, used in this research is

intersubjectivity. A common understanding of the research area is required

between the researcher and target person of the research. Epistemology,

the theory of knowledge, used in this research is antipositivism, as the

understanding of the person behavior is based mental processes and by all

means is subjective. Paradigm, a distinct concept or thought pattern, used

in this research is interpretative hermeneutics, as the research requires

human understanding. Logic is inductive reasoning as the target is to

generalize the research results. (Niiniluoto 1997)

The original idea in research plan was to create a survey and try it out with

target persons. A survey with predefined questions and predefined choices

for answering sounds easy to do. Pretty soon after studying some theory

about agile methods, it became clear that there won’t be too many possible

questions which can be answered with Yes or No or simple with a number.

And what comes to management or leadership questions there will so

much variation caused by the personality and environment that there is has

to be room for discussion and wider explanations. Because there is no

need to prove the theories studied in this thesis but rather study the

behavior of the target persons against the theory, this kind quantitative

research method is not suitable. According to Hirsjärvi (Hirsjärvi S. &

Hurme H. 2004, 27) the quantitative methods are more suitable for the

situations where one wants to prove a theory with some measurable

results.

LEADING SOFTWARE PROJECTS: Applying agile principles

29

More suitable method family for this research is qualitative. Hirsjärvi says

that qualitative methods are typically used in research which tries to reveal

personal experience or behavior. (Hirsjärvi etc. 2004, 27)

Historical study, group discussion or focus groups, observation, case study

and interviews are known qualitative research methods. Historical study is

mostly meant for the studies where one wants to understand the present

state and plan for future on the basis of the historical phenomenon. Group

discussion is good for getting a lot of answers while investing only short

amount of time for interview. The main difference to a person-to-person

discussion is that the communication happens also between the

interviewees and thus impacts the information. Observation is listening

and learning about person behavior in natural environment. Case study is

mostly used for building new theories usually from unknown research

area. Interviews are always person-to-person discussions and commonly

known as the best methods for the acquisition of the information. (Eskola

J & Suoranta J. 2012, 86-95, 99-104, 128)

For this research the group discussion, observation and interview sound

like the most suitable methods. The teams of target persons are so

different to each other and there it is hard to get all persons to a common

session, group discussion can be left out as method. Observation could

work in this case but it would take consume too much time of researcher

itself. Interview is left as the most suitable way of implement the research.

According to Hirsjärvi there are four different types of interviews used in

researching. Those are: structured -, semi-structured -, unstructured - and

in-depth interview. In structured interview questions and categories for

answers are standardized and interview event is similar for every

interviewees. Unstructured interview leaves a lot of freedom for

interviewee to discuss about reactions, behavior and opinion about issue at

hand. Interviewer’s task is to guide the discussion with leading questions

and record the discussion for later analyzing. In case of semi-structured

interview the interviewer must have defined the subject matter, the

questions and interviewees. Still there is flexibility ask other questions and

discuss freely. In-depth interview gives more information about

interviewee’s statement and behavior as the questions are open and the

interviewee has freedom to answer according to one’s own will. (Hirsjärvi

etc. 2004, 43-47)

Semi-structured interview seems to be the most suitable method for this

research, since there will be certain question which needs to be answered,

but at the same time there needs to be freedom to discuss beyond the

questions. According to Hirsjärvi this method is also known as The

Focused Interview (Hirsjärvi etc. 2004, 47)

LEADING SOFTWARE PROJECTS: Applying agile principles

30

 Implementation of the interview 3.3.

The interviewees were invited personally to this interview. All participants

agreed without hesitation. Formal invitation was send by e-mail two

weeks before scheduled time for interview. The interviews were executed

during February and March on 2014.

The interviews were facilitated in a meeting room to have enough peace

and isolate interviewee from daily work environment. Two hours of time

was reserved for discussing through the subjects. Interviews were

facilitated by the researcher itself. Interviews were carried through in

Finnish as all interviewees were Finnish speaking. Interviews were

recorded and permission for that was confirmed with interviewees

beforehand. Transcription of the recordings is done in English. Method for

transcription is selective littering were only meaningful sentences are

littered. Full content of littering is not included to this research.

3.3.1. Interview support material

Six slides were used as a teaser or background for discussion. These slides

are presented in Appendix 2.

First slide has a generic picture of agile software project life-cycle. It

helped to discuss what happens during the whole project and also daily

and weekly practices. Interviewees were also asked to describe their team

structure and roles in the team.

The second slide listed four agile software development values and the

target of the discussion was to find out how these values are applied in

interviewees’ work and how the team is applying those.

The third slide was about agile software development principles and the

target of the discussion was to find out how these values are applied in

project interviewees’ work and how the team is applying those.

Table 1 was represented as the fourth slide. It was about Lean Software

development and was used to deepen the discussion about principles and

practices used inside the team and by the interviewee.

The fifth slide was about leading self-managed teams and management

development. The idea was to find out what the interviewee thinks about

self-organizing and self-directing teams and how interviewee supports the

team in this context. In addition it was discussed how the interviewee has

developed own skills in the area of agile management.

The sixth slide was about working with outsourced remote resources.

There were listed main problem areas when working in this kind of

situation. There was only one team which did not have any remote

LEADING SOFTWARE PROJECTS: Applying agile principles

31

subcontracted members. The target here was to collect experiences with

remote resources.

LEADING SOFTWARE PROJECTS: Applying agile principles

32

 Analysis of the interview results 3.4.

In this chapter the interview results are analyzed to find answers or

solutions to research problems. The analysis is performed by the

researcher itself. No one else has studied the littered material as a whole.

Time spend on interviews varied between 75 and 124 minutes, average

being 101 minutes. Thus the reserved time of two hours was enough for

interview.

All participants had a positive attitude against the interview and discussion

about the topics. Some free comments to mention from participants:

 “This was a good reminder about agile principles”

 “Good discussion which made me think these issues”

 “Interesting discussion about team leading”

 “this was a good retrospective for own working methods”

First in the analysis the team structure is clarified to better understand and

categorize the opinions from interviewees. This information is available

directly from littered material as it was directly asked in the beginning of

the interview.

Then the agile method used in the team is tried to clarify by comparing to

table 2 from theory chapter. The Interview results are then categorized

against agile principles. Even there was an own slide for agile principles,

the relevant answers and opinions from the whole interview are mapped

those principles. A table for each principle and findings for each team is

created to make it easier to combine or compare the results. The analysis

method used here is called classification according to Hirsjärvi (Hirsjärvi

etc. 2004, 147-148). On the basis of these results it is possible to find

obstacles and success factors for agile project management with certain

agile method and in general the information about agile principles

appliance in the teams.

It turned out that only one team was applying an agile method purely, in

this case Scrum. Other teams were applying methods freely and it became

obvious that method specific management practices are not possible to

define from these results. Instead the target will be to gather general good

leadership practices for target teams and also things to avoid in their daily

work. The method for analysis is grounded theory and it is explained more

detail in chapter 3.4.3.

3.4.1. Structure of the teams

Overall description of team structure and the product those are delivering

is given in this chapter. It is important to understand the lay-out of the

team and the product it is delivering.

Team A is developing one application running in computer and an

application running in mobile device. Team has subcontracted one testing

LEADING SOFTWARE PROJECTS: Applying agile principles

33

person and two software developers from Poland. In addition there is a

local software architect and three developers and one engineer for testing

and integration.

Team B is developing several computer applications for aftermarket

customers, typically operators and service companies. Team has a local

product owner and subcontracted development team. There are a Scrum

master, seven design engineers and two engineers for testing and

integration in the team. Team is utilizing Kanban process.

Team C is developing a software tool for cellular network operators. The

team consists of local technical lead developer and one developer and two

half time resources for development work. Subcontracted resources in

Poland are one test engineer, one user interface designer and one software

developer. Team is applying scrum method.

Team D develops toolkit which is released separately for cellular device

manufacturing and for care operations. Team D consist of local product

owner and three local developers and six subcontracted members, one

developer in Tampere and four developers and one test engineer in Poland.

Team E develops a software module for cellular device manufacturing. In

addition to product owner team consists of scrum master and four software

developers and one test and integration engineer.

Team F is developing three software tools for aftermarket service points.

The team has a local product owner and a subcontracted development

team consisting of a scrum master, three developers, a build manager and

three test engineers in Poland.

3.4.2. Applied agile method in teams

In this chapter researcher tries to find out if a certain agile method is

applied by the team. Table 3 collects characteristics related agile methods.

By comparing to table 2, it can be seen that teams E and C are applying

Scrum method pretty well. In team C the roles were not optimal for Scrum

method, the Product owner and Scrum master roles were combined.

LEADING SOFTWARE PROJECTS: Applying agile principles

34

 Agile method characteristics by team Table 3.

Team

 /Property

A B C D E F

Design

phase length

Inherited

code

Short 3 moths short 4 months Inherited

code,

framework

driven

Iteration

usage

daily builds daily builds,

small

increments

Requiremen

ts , design,

implementat

ion

Daily builds,

small

increments

Daily builds

small

increments

Daily builds

, small

increments

Length of

Iteration

Not defined, No sprints ,

bi-weekly

release

3 weeks Not defined 2 weeks Not defined

Customer

participation

Weak Regular

meetings

with PO

Regular

meetings

with PO

Weekly

meetings

Daily when

needed

Varies

Customer

technical

knowledge

Weak Weak Good Weak weak Good,

varies

Process

definition

level

No process Low,

Kanban

High,

Scrum

Low, big

tasks

High ,

Scrum

Low

Phase

products

Predictive

plan,

backlog

Demos,

backlog,

roadmap,

releases (5

products)

Release,

product and

sprint

backlog

Two

products,

product

backlog,

stories, test

cases

Weekly, bi

weekly and

official

release,

product and

sprint

backlog,

demos

Product

backlog,

release plan,

demos

Size of team 11 10 5+ 2xhalf

time

9 6 7

Original pre-assumption before interviews was that scrum is mainly used.

Many of the teams were saying they are using scrum method and roles

were named like in scrum. But still there seems to be quite a lot of

freedom in implementation of method and it looks like only team E is

applying Scrum method purely. And it also came visible that Scrum has

been promoted by the company as five of these six interviewees have been

participating in Scrum product owner training. Also other scrum trainings

where mentioned as well as agile management trainings. In theory part of

this study it was noted that there is not such agile method which fits to

every project and environment and it is not wrong to combine best parts

from different methods.

Only one team is not enough to start define good leadership practices for

certain agile development method in this software development

environment. Thus the target will be to gather general good leadership

practices for target teams and also things to avoid in their daily work.

LEADING SOFTWARE PROJECTS: Applying agile principles

35

3.4.3. Agile principles implementation in teams

The grounded theory is commonly known methodology for developing

new theories from systematically gathered and analyzed data. Theories

evolve from continuous analysis and data gathering. When using grounded

theory for interview material analysis, the data is categorized by coding.

There are three defined types of coding. Open coding is the first and it

happens already during data gathering by observation and evaluation. The

second is axial coding, which means that certain characteristics are

selected for further analysis and categorization tiers to these

characteristics. The third is selective coding which is targeting to find the

core category from the whole research material. (Hirsjärvi etc. 2004, 164-

165)

In this chapter the interview results are first categorized against agile

principles. All the opinions from each interviewee related to each principle

were collected to tables and then summarized. After each table there is

collective analysis where these findings are compared and combined to

find useful practicalities supporting agile principle and also point out

working methods or circumstances which are breaking against the

principle and ideas behind that principle. These summaries provide the

results for the research question about applying agile principles. From

these collective analysis can be found features for and against agile

development process. These features can be special to one or several agile

principles. This kind of analysis can be said to be grounded theory with

axial coding.

LEADING SOFTWARE PROJECTS: Applying agile principles

36

 Our highest priority is to satisfy the customer through early and continuous Table 4.

delivery of valuable software.

Team Findings

A Concurrent integration of the new implementation and daily software

builds makes it possible to deliver the latest version of software to

customer whenever needed.

B The product is developed for customer, and delivering first version for

customer fast is a way to get confidence that we are doing the right

thing. Developing with small increments which do not break the whole

are a way to provide customer new functionality frequently.

C Customer release can be done whenever there is need for it, manual

testing takes some time though. After two months from coding a first

draft release to customer was ready and an official release in five

months. Quick and continuous delivery prevents implementing wrong

things. Implementing the most risky items first makes the challenges to

get the first working version out. Incremental implementation and early

delivery helps customer to fine tune the requirements and unnecessary

work can be avoided.

D Early delivery to customer and continuously with small increments is

target for team. Anyway, unclear priorities given by customer lower the

value delivery sometimes. Wrong things and done in wrong time.

E Four months lead time to first customer release. Currently weekly

delivery for customer review. Sprint length is 2 weeks and official

customer releases are made when the needed functionality requested by

a customer ready.

F Internal release can be built and delivered to customer for testing

purposes whenever needed. External release is tested and verified

official release, which is done when a new feature is ready for

publishing.

According to table 4 all teams are targeting early delivery of valuable

software to customer. It still has been two to four months for the first

delivery, where this value was recorded. It does not mean that it is

perfectly working release, but customer can evaluate solutions and give

feedback. It is important to be sure that the requests are understood

correctly and they are still valid. There seems to be some variation how

often customer can get a new delivery. Most teams are making automated

daily builds and integration, which gives possibility to make an unofficial

test release to customer whenever needed. Those teams which are using

sprints are usually providing delivery according to sprint cycle. Official

release always needs more testing and integration effort and those are

made only when there is a need by a customer and the requested

functionality is fully implemented.

LEADING SOFTWARE PROJECTS: Applying agile principles

37

 Welcome changing requirements, even late in development. Agile processes Table 5.

harness change for the customer's competitive advantage.

Team Findings

A Maintaining options open to the latest decision point gives room for late

changes. Changes are usually caused by changes in depended other

entities and the interfaces to those, anyway requirements are pretty

stable. But requirements are quite big and it takes pretty long time to

implement, thus surrounding environment can change during

implementation.

B Team welcomes changes, usually customer does not know in the

beginning of the project what actually is needed. Responding to change

quickly prevents late phase changes, which are always harder to

implement.

C Late changes are acceptable, if those benefit the customer. Sprint plans

change sometimes against scrum principles, approval is handled in

extended daily scrum meeting with customer. It is possible to implement

sudden changes in next sprint and get those released. When code design

needs to be changed, also the automated testing requires test

environment changes. This causes change resistance sometimes inside

the team.

D Changes in requirements happen all the time, but those are rather small

interface changes and can be responded easily. Those do not overload

team. Changes in priorities between customers and their requirements

cause context switching in development work. These priorities are not

clear and product owner needs to put a lot of effort to find out correct

order for the requirements.

E Changes happen all the time and customer and developers collaborate to

make last minute changes to delivery.

F It has happened that customer requirements were not valid anymore

when finally implemented. Situation has improved by having more

discussion with customer. Also the project has moved to maintenance

phase, thus there are not so many new risky features to implement.

Features are implemented incrementally towards a release, but no

sprints used for iteration.

According to table 5 the changes are often caused due different working

environment. The team can have multiple customers and priorities

between those may have not been clear when prioritizing requirements and

tasks. That causes priority changes to team implementation order. Team

can have more than one product to deliver. In that kind of case there are

usually more than one customer as well and risk for sudden changes rises.

In agile processes usually that kind of changes are added to backlog and

prioritized for next iteration. Those teams which are not using frequent

iterations it is possible to respond to changes fast, but it causes context

switching for developers and unfinished implementation.

When a team has only one customer and one product to develop it is quite

clear to make quick changes and satisfy the customer. Canceling the

iteration and re-planning a new one can be a way to go.

LEADING SOFTWARE PROJECTS: Applying agile principles

38

 Deliver working software frequently, from a couple of weeks to a couple of Table 6.

months, with a preference to the shorter timescale.

Team Findings

A Dependencies to other entities are blocking working software deliveries,

three different entity software deliveries needs to be integrated together.

Thoroughly tested and verified software release takes several days to

prepare.

B Release cycle is two weeks and daily builds can be delivered to

customer for testing and demonstration purposes. Developing with small

increments which do not break the whole are a way to provide customer

new functionality frequently.

C Three weeks sprint frequency is used. Official customer releases are

made only when applicable. Unofficial releases are possible to do with

short warning.

D Continuous integration and daily builds makes it possible to have a

demo version for customers every day. Official customer releases are

done when there is need for those.

E Release is delivered weekly, but bi-weekly a fully tested release is

delivered. Testing round takes about a week to get feedback from final

integration. In theory a release can be done whenever needed but there

has not any need for that. Grooming meetings were held weekly to fine

tune release content. Not needed currently as there are not so many new

requirements coming in.

F Internal release made from daily build can be done to demonstrate

customer an unclear requirement. Official release is done when a new

feature is ready for publishing.

Table 6 tells that official, tested and verified releases for customer are

made only when needed. This means that customer needs the stabile

release and also the needed implementation is finished. Building an

official release takes time from couple of days to two weeks, depending on

team. Unofficial releases are available for testing even daily. Team E is

delivering bi-weekly an official release. There has been also grooming

meetings with customer to agree final release content.

LEADING SOFTWARE PROJECTS: Applying agile principles

39

 Business people and developers must work together daily throughout the Table 7.

project.

Team Findings

A Project manager collaborates with customer, not the team. New ideas

arising from the team are verified against customer needs.

B Product owner collaborates with business people about planning and

new requirements and delivers info to team and vice versa. That can

happen even in daily phases. With the subcontracted team direct

communication with customer and developers did not work too well.

Some customer representatives tried to manage too much team work and

pushed through their own ideas.

C Customer representative is available every day and customer can contact

directly developers and architects. Product owner has regular customer

collaboration, usually before sprint begins. Customer is involved in

release content planning.

D Customer collaboration happens weekly by requirement status follow-up

meeting. Demonstrations for customers and end users have been held

but useful feedback was hard to get. Customers do not have clear

understanding about end-user needs. Local developers can contact

customers and even end-users, if those are known, but subcontractor

developers are not that well networked.

E Scrum meetings are held daily by scrum master and developers. Product

owner takes part meetings couple of times in a week. Developers and

end users are in contact daily, whenever it is needed. Sometimes new

requirements are gathered from end user and customer feedback.

F Product owner handles high level collaboration with customer for plans

and new requirements. Technical details are fine-tuned by customer and

developers. Some customers are more active and have more knowledge

than the others.

From table 7 one can see that only one team had contacts to business

people and the others are thinking here the customer co-operation. None of

the teams are working with customer daily throughout the project, but

occasionally it can happen and customer representative is available

whenever needed. It seems that when team has both local and

subcontracted developers, the customer collaboration goes mainly through

product owner. It is possible for customer to contact subcontractor

developers directly, but they may not have access to all information

needed for proper decision making. That makes it almost mandatory to

have product owner or other local team member assistance in

subcontractor developer and customer co-operation. Regular participation

of customer is seen in demonstrations, but results of those are highly

depending on customer activity.

LEADING SOFTWARE PROJECTS: Applying agile principles

40

 Build projects around motivated individuals. Give them the environment and Table 8.

support they need, and trust them to get the job done.

Team Findings

A Motivation is hard with inherited code base, if error correction only

takes so much time that certain developers can’t finish any development

tasks. Working environment is anyway motivating and learning new

things is encouraged. Also developers have autonomy for development

tools and environments. Work has a clear meaning and huge end user

group help to realize it.

B Team has the responsibility to design and implement the requirements

which are pre-described in high level. They do chop the requirement to

smaller work items for implementation. The team has full trust from

product owner to get the job done. Test engineers are responsible for

developing and optimizing the test system, not only running the tests.

Testing is valued inside the team and everyone understands how

important it is to find bugs in early phase.

C Part time allocated resources and remote team members are not equal

compared to fulltime and local team members. Those usually get the

challenging task and thus get motivation. Senior level specialists are

comfortable with broader perspective tasks and easily take

responsibility. Team internal feedback is given in retrospectives and it is

emphasized to be positive. It brings up success stories which have not

been recognized by product owner. Coaching is provided for positive

feedback and active participation in meetings and for team working.

D It is not always possible to select team members and vice versa

developers can’t always work in the team which makes most interesting

development. Team members have different skill levels and some needs

technical mentoring more than the others. In some cases tasks need to be

assigned to developer. Especially subcontractors have top-down

management mentality. Environment for growing is available, but it is

marketed enough by management. Product owner drives and encourages

team to make decisions autonomously. Mixed and scattered team

structure seems to be bottleneck for effective working and causes

leadership challenges. Solid and centralized subcontracted development

team was easier to manage according to earlier experiences.

E Team has a good spirit and a face-to-face conversation possibility helps

to solve all problems immediately. Product owner supports team by

providing tools environment and contacts. Coaching available for agile

processes.

F Product owner trusts developer and they are motivated. Subcontracted

team needs quite a lot of support by means of arranging tools and

materials. Motivation is kept up by providing challenging tasks.

Anyway resources have been lost by attrition, because of better salary.

When reading through table 8, it can be seen that in three teams there

where nothing negative mentioned about motivation. Common for those is

that all members are located in same area, no matter is it a local team or

subcontracted. In these cases it seems to be easier for product to trust the

team and its’ deliveries. Thus it seems that working together improves

motivation. It is also mentioned that compared to current situation, earlier

experience with a team located in one place was much better. The teams

were members are divided to different sites and to local and subcontracted

resources, seem to suffer equality in challenging tasks distribution. Local

LEADING SOFTWARE PROJECTS: Applying agile principles

41

resources seem to get the most interesting things and remote developers

get straightforward jobs, which are of course easier to follow-up by

product owner. Altogether task assigning in agile teams is not valued.

Challenging tasks are mentioned to be one source for motivation and

product owner should pay attention to distribution of those.

The importance of testing should be emphasized and product owner can

drive the team to understand this fact and value the work the test engineers

are doing. Independent development of test systems can be seen as a

challenging and motivating task for test engineers, it means much more

responsibility than just running the test cases.

From table 8 can be found few things which are product owner’s

responsibilities to keep team motivated. Communication of clear vision for

team deliveries is important to build common understanding why the team

exists and what is its’ target.

Working environment is something were product owner can help the team.

For the tools needed in work team or developers should have autonomy to

select and product owner can help to get them. Product owner can help

also by providing needed materials and hardware. One important thing is

that product owner has contacts or one can arrange contacts which are

needed by the team to solve problems. It was already noticed that

customer are not regularly participating to team work.

Technical coach for the team should be scrum master or equivalent person.

Product owner can coach team in more leadership related issues. Giving

positive feedback is one important thing to keep people motivated, not to

mention that also negative things should be brought to table. Product

owner can encourage team member to feedback internally in team, it is

motivating to be respected by colleagues. If product owner is a master in

agile methods, coaching can be offered also in that sense. Product owner

should be able to provide decision making encouragement and coaching,

and of course methods for it.

LEADING SOFTWARE PROJECTS: Applying agile principles

42

 The most efficient and effective method of conveying information to and Table 9.

within a development team is face-to-face conversation.

Team Findings

A Local work environment arranged for better conversation possibility,

meaning work places are located to same area near each other. Daily

meeting happens face-to-face, but via online conference tool because

team is distributed on two sites. Common agile board application is used

instead whiteboard.

B The remote team has locally a daily half an hour morning meeting.

Every Monday an online status meeting with product owner and the

remote team is held. Occasional on-line meetings can be called

whenever needed. Remote team of experienced developers works well,

but few face-to-face meetings have improved the communication a lot.

Common agile board application is used instead whiteboard.

C Team is divided to two locations and on both sites they are sitting near

to each other, which make it easy to have face-to-face conversations.

Anyway the whole team has never had a common face-to-face meeting.

Daily meetings are online meetings. Video is not possible with remote

team even it could improve the level of communication. Common agile

board application is used instead whiteboard.

D Team is distributed to three different locations and face-to-face

conversations are not possible. Daily meetings are on-line meetings,

where you can’t be sure how much everyone is focusing on the meeting

and it is possible that some problems are not taken into discussion and

made visible to everyone. It would be best to have all team members

located in the same site and near each other. Once the whole team was

working in the same location for few weeks and productivity was much

higher on that time. Common agile board application is used instead

whiteboard

E All team members are located near to each other and around the scrum

table. Conversation is natural and open. Common agile board

application is used with customers.

F Face to face is the best way to communicate. Whenever it is possible to

work together in same site, it is very productive. The whole

development team is located in same area to improve communication.

But daily communication with product owner happens in on-line

meetings, in which all team members are present. Daily meetings are

used for status sharing and prioritizing the next features to implement.

Ad-hoc online meetings can be arranged if there is some problem which

needs to be discussed. Chat is also handy communication tool. Common

agile board application is used instead whiteboard.

Findings in table 9 tell that there is a consensus between all interviewees

about importance of face-to-face conversation. In all teams work

environment is arranged so that all team members are located near each

other. In one team where the scrum board was used all team members

have easy visibility to that board.

The face-to-face conversation possibility is broken in the teams which

were distributed to different sites. Even they are locally working together

and near each other, the conversation between the other parts of the team

can happen only via on-line conference tools and messaging tools. Video

conference tools could be the best for common meetings, but those are not

available exclusive for own use. Those have not been very reliable within

LEADING SOFTWARE PROJECTS: Applying agile principles

43

the context of this interview, but there is no doubt that a reliable

connection between two sites in different countries can’t be arranged, it is

just a matter of investment and the feasibility of it. It seems to be that

presence of the product owner in team local working environment is not so

important. Regular online meetings with team are enough to keep work

going on to right direction, in the case where the whole team is in one

location. In case of a remote team and specially subcontracted team one

need to have daily visibility to team progress. Product owner participation

to daily meetings is not suggested in agile process, but in this case

listening of daily status without too much managing the team is one good

idea to follow-up progress of the work. A written daily report does the

same thing, though.

Even having a few face-to-face meetings can improve the communication,

by better knowing each other and understanding their background.

Altogether distributing a team to different sites is not according to this

particular agile value and causes information breaks and more

management work.

LEADING SOFTWARE PROJECTS: Applying agile principles

44

 Working software is the primary measure of progress. Table 10.

Team Findings

A Software product has dependences to other entities which makes

integration, testing and verification of official customer release quite

tedious. Anyway customer can be provided with unofficial demo

version for testing latest features.

B Product can’t be tested in all different setups, thus had to make a

decision that only most common environments are covered. Testing the

product takes as much effort as the implementation work. Error metrics

are used as an indicator when the release is ready for customer delivery.

C Bug fixing has highest priority and bugs are added to sprint backlog and

prioritized higher than implementation tasks. Testing and verification

happens all the time by nominated person. Official customer release

requires more testing effort and overrides daily build testing. New test

engineers need more attention from project manager (scrum master) to

make sure they follow testing process correctly.

D Working software is the only thing that matters to customer. Testing is

not only a mandatory task, it is emphasized to ensure the quality. Team

has test first thinking in development and all user stories have

acceptance criteria included. Testing is automated and the test system

and test cases are developed by test engineers themselves. Test system

automatically creates test reports for easy follow-up for quality.

E Automatic testing happens daily and generates a report for problems and

for code complexity and testing coverage. All functionalities can’t be

tested by team itself, thus final verification happens factory production

line. Official release is delivered after that final verification. End user

feedback is usually delayed as factories are all over the world. Working

software has more priority than documentation.

F Making a verified official release requires two weeks of integration and

testing effort in addition to daily automated test runs. Working software

is available every day but not integrated to newest dependent software

components. Every day a small amount of new functionality is added to

delivery, ensures that we are doing the right thing and nothing else gets

broken.

According to findings in table 10 all teams are investing on testing efforts.

Automatic test systems ensure quality on daily builds. And the results

from testing are available after test runs. This kind of daily testing is not

comprehensive as it does not include latest deliveries from other

dependent entities. In addition it is not possible for team to test delivery in

final environment. Continuous integration and automated build and test

systems make it possible to quickly provide the customer with draft

version for evaluation. Guaranteed working software delivery is not easy

to do and depending on team it will take time from couple of days to two

weeks. Testing is valued amongst these teams and it is said that in some

teams testing time is as long as implementation time. One team is

targeting to develop test cases before implementation is started.

LEADING SOFTWARE PROJECTS: Applying agile principles

45

 Agile processes promote sustainable development. The sponsors, developers, Table 11.

and users should be able to maintain a constant pace indefinitely.

Team Findings

A Maintaining inherited code base can cause blocking situations which are

difficult to solve and break the constant pace. This causes context

switching. Following code complexity points out problem areas in

source code.

B Work-In-Process limiting is used to keep work amount in line with

developers’ capability. Due to several customers with different

requirements and changing priorities the context switching can’t be

avoided and happens quite often.

C Official customer releases cause temporary overload for testing. Context

switching breaks constant pace, but it can’t be avoided. Changes in

depended entities cause priority changes for team development tasks.

Work amount for each team member are kept sensible to avoid stress.

Overtime is anyway sometimes needed and it is mainly compensated

with time-off. When more resources are needed, problem needs to be

communicated to management.

D Technical skills vary so much inside the team that work amount can’t be

shared equally. A scrum master could help the situation by technical

mentoring and coaching. Currently some developers have big and long

lasting implementation tasks with strict schedules.

E Product owner maintains constant pace by protecting the team against

external pressure. That pressure has caused sometimes too early

implementation and then lot of changes afterwards. Team tries to avoid

single responsibility and aims to have at least two people who are

capable for implementing the same feature. Thus workload can be

shared evenly.

F Subcontracted team home country regulation prevents too much

overtime. Sometimes overtime is anyway needed and it is then

compensated with time-off.

Findings in table 11 show that usual reasons to break constant

development pace are sudden changes in requirements or priorities. This is

likely to happen if team has several products to deliver and several

customers. Consequence of these is context switching, which is frustrating

or overtime working to get everything done in time. It is possible that lack

of technical understanding causes overload, especially when the team has

not been developing the product from the beginning and the source code is

unfamiliar. Also if technical skills vary a lot inside the team, the more

productive person need to support the others and at the same time hurdle

to finish challenging tasks. It has happened that team has pressure from

external stakeholder, high management or arrogant customer, to push

through a requirement. Not to say it could be right thing to do for one

party, but for team it causes overload for implementation and overload

later on by means of bug fixing and late changes. Building the official

release is in some cases overloading testing engineers.

There are few things that product owner can do to protect constant pace.

Overtime can´t be avoided totally and when done it should be rather

compensated with time-off, to allow people to recur. It is of course

individual decision how to compensate overtime. Good thing is also to

circulate different task so that at least two persons are always capable to

LEADING SOFTWARE PROJECTS: Applying agile principles

46

share the work load of certain implementation area in the product.

Developers need encouragement and support for dividing their work to

small pieces, this ends up to product owner responsibility if there is no

scrum master or similar role in the team. Following code complexity

measures helps to find out the risk areas in the code, if the project and the

code are not familiar for the developers. If there is a constant need for

overtime and the team is always overloaded, it is product owners

responsibility indicate the need for more resources to management. It is

also possible that the project layout is wrong and it is not possible to

execute without overloading and burning out the developers.

LEADING SOFTWARE PROJECTS: Applying agile principles

47

 Continuous attention to technical excellence and good design enhances Table 12.

agility.

Team Findings

A Bi-weekly design meetings are held for ensuring the design quality.

Especially when starting a new application development a lot of

communication is needed inside the team to agree the main lines of the

design. It is also good to have just enough documentation in the code to

point out the decisions made in the implementation.

B Target in implementation is to keep options open until the last decision

point and to produce simple self-explaining code. Refactoring is used to

improve design. Retrospectives are held whenever someone from the

team sees the need for improvement, this one Kanban principle.

Dependencies are hindering the optimal design approach, but those can’t

be totally avoided.

C Developers have autonomy to make design decisions. Product owner

can challenge decisions to start discussion and supports organizing

design meetings. Dependencies to other entities are tried to minimize on

design level. Senior level developers are usually quite enthusiastic to

avoid bad design and technical debt is corrected as soon as possible.

D Coding standard checking tool is used, but everyone is not committed to

improving scores of it. Dependencies to other entities make it hard to

maintain optimal design. Design meetings can be arranged ad-hoc, not

regularly. Overall design and architecture is defined by development

environment, thus there is not so much design work needed. Test case

design is team own responsibility.

E Good design is target for the team and in current setup technical

excellence is learnt by doing and it is growing all the time.

F Developers have the responsibility to follow coding guideline. Interface

design agreements are respected to avoid problems in integration.

Technical education and self-learning is emphasized by product owner.

From table 12 one can find few design related features. In the beginning of

the project design issues and agreements require a lot of time and

communication. It is important to respect agreements about interfaces.

Design decision should be commented directly to code, it is not necessary

to have separate design document. Technical debt can’t be avoided, but

teams are targeting to fix it as soon as possible by refactoring. When

design decisions are made, it should be kept in mind that dependencies are

not increasing, rather decreasing. Defining and applying coding standards

ensures that everyone in the team can understand the code. It also enables

the usage of code standard checking tools to follow up compliance of the

standard. Technical education and self-learning is encouraged by product

owner.

It seems that in most teams design decisions are made inside the team and

it is not an issue for product owner to participate. Scrum masters and

architect are natural leader for design development. For increasing

technical excellence the product owner can support the team support the

team by searching and providing information about training opportunities.

And product can also arrange room learning in product backlog.

LEADING SOFTWARE PROJECTS: Applying agile principles

48

 Simplicity--the art of maximizing the amount of work not done--is essential. Table 13.

Team Findings

A It is hard for some engineers to do only minimal necessary

implementation and not to build everlasting solutions. Code complexity

is a good measure to follow to keep code simplicity high enough.

B Fast rough implementation of feature is often used to verify the

feasibility. If the feature is seen as unnecessary, internally in team or by

customer, it will not be implemented. Implementation is made in small

increments which do not break the whole. The final product is self-

guiding and there are no user manuals needed.

C Implementing unnecessary features can be avoided by keeping product

backlog features in priority order. Customer requirement meeting held

before sprint planning to get latest changes on priorities. Incremental

and frequent delivery to customer helps to find out what is the

functionality they really want. Complicated parts of implementation are

separated from optimal design.

D Prototyping keeps options open until last decision moment, but it

sometimes means unnecessary code. Tasks are often too big for iterative

and incremental implementation. Customer requirements can include

unnecessary features. Two separate product lines inside the team causes

sometime less valuable features to be implemented, just to keep

everyone busy.

E Product owner needs to be aware of possible waste in software

development and point out when there is a risk to produce waste

F Simplicity in implementation is promoted, sometimes refactoring is

needed to get rid of too complex solutions. Coming changes are tried to

take into account in design.

In table 13 team C findings tell quite clearly a basic idea of the agile

process. Product backlog is kept up-to-date and especially before sprint

planning. It ensures the team selects right requirements and tasks for next

iteration. And demonstration to customer before sprint planning gives

valuable last feedback which can affect to priorities and sharpen the

requirements in the backlog. This is optimal flow of process and truly

helps to avoid implementing unnecessary features. And the shorter the

sprint is and smaller increment the less wrong implementation can be

done.

Prototyping is quite similar approach, but the prototype needs to be simple

enough. Otherwise too much code will be trashed if the idea is not

acceptable. If the requirements are not chopped to smaller task the

iteration time may stretch to months and the developer loses the

opportunity for valuable regular customer feedback.

In agile development it is important to deliver just what is enough for the

customer, nothing extra which looks fancy or complicated code which

requires high expertize to be written and read. Code complexity measures

are good tool to follow up that code stays simple.

LEADING SOFTWARE PROJECTS: Applying agile principles

49

 The best architectures, requirements, and designs emerge from self-Table 14.

organizing teams.

Team Findings

A Team work is managed by project manager and development tasks are

assigned by project manager. Project manager handles the customer

interface as well. Anyway autonomy in handling the tasks is

emphasized.

B If project manager is too controlling, developers feel themselves as

coding machines. Team has responsibility and power to do development

according to its’ own decisions, while high level target is common with

project management. Sometimes coaching is given for team leader to

solve problems on personal or technical level. Authoritarian thinking of

the leadership has been removed and trust build on that.

C Team has autonomy to plan sprint contents. Product owner guides the

planning by prioritizing backlog and justifying the priorities. Quality

targets are set by team itself. Product owner gives to team a clear vision

what is expected from them and from their product. With remote team

self-organizing is a challenge. Usually subcontractors do not have all

information available and their autonomy is restricted. They are also

used to top-down management culture, thus product owner (scrum-

master) must encourage them or just assign the tasks to them.

D Architecture is top-down driven, not much room for own ideas.

Currently increments are too big and cause challenges in integration to

external systems. Product owner emphasizes decision making inside the

team. Tasks need to be assigned to developers. Technical coaching is

needed in many cases. Team structure and deliveries are too complex to

create an environment for self-organizing team. A scrum master with

enough time for coaching and equal task assignment would be needed.

Especially with remote subcontracted resources.

E Product owner supports team members in decision making by giving

ideas. Team members select their tasks independently and estimate their

own work effort for it. That sometimes requires encouragement from

product owner. Product owner gives coaching on agile process issues or

at least assists to get coaching.

F Communication inside team is open and support for problem solving

and decision making is available. Senior developers are coaching and

mentoring new resources. To be a self-organizing team requires time

and experienced team members before it can really work.

Analyzing the findings in table 14 shows that self-organization comes

from autonomy. Team must have responsibility and power to select and

commit to tasks it’s going to implement in next iteration. Important part is

also mentoring and coaching inside the team from experienced team

members to new resources. Product owner should avoid managing the

team. Product owner can encourage and support the team by coaching in

managing problems, decision making, own work effort estimation and

agile processes.

From table 14 it can be seen, that self-organizing is not happening if the

team is divided to different locations. There is still only one scrum master

or team leader driving the agile process and the other sites are not equally

positioned with local team. In some of the teams there are no team leaders

and it is product owner responsibility to handle those duties. It means

overload on product owner workload. Technical coaching and agile

LEADING SOFTWARE PROJECTS: Applying agile principles

50

process controlling is scrum masters or team leaders task and product

owner should concentrate on customers.

Subcontracted teams seem to have a problem with authoritarian work

model. They are used to do what they are told and not think that much by

themselves. This requires extra effort from product owner or team leader

to encourage them to make own decisions. It is also a fact that

subcontractor do not have same information available than local

employees, which make it even harder to make decisions.

In the findings there are comments that it has taken years to change the

attitude in the subcontracted teams. Also the experienced team members

are mentioned to be role models for self–organizing.

LEADING SOFTWARE PROJECTS: Applying agile principles

51

 At regular intervals, the team reflects on how to become more effective, then Table 15.

tunes and adjusts its behavior accordingly.

Team Findings

A Monthly retrospectives were used earlier. Now bi-weekly design

meetings include the retrospective if needed. Discussion about problems

and failures are an opportunity for everyone to learn how the system

works.

B Team does continuously process improvement and the product

optimization. Retrospectives are held whenever someone from the team

sees the need for improvement, this one Kanban principle.

C Retrospectives are held in the end of every sprint. Long term (half a

year) retrospective also held. Subcontractors need encouragement to

participate into improvement of methods and processes.

D Retrospectives are not working within on-line meeting. Face-to-face

would bring better results as everyone gets involved. Scrum master for

facilitating retrospectives could help the situation.

E After team and projects have been running for years, not so much to

improve. Still retrospectives are held, but results are quite light

F Retrospectives are kept from time to time when someone finds out a

problem. In the beginning of the project, when there was a lot of tuning

needed in the processes, it was good to have a bi-weekly retrospective

meeting.

On table 15 interviewees tell how their teams are using retrospectives.

Retrospective is a meeting where team takes a look at the past and reflects

how to improve their processes to become more effective and how to

improve quality.

In two of the teams where sprint cycles were complied, also retrospectives

were held in the end of the sprint. If the project has been running for a

long, like several years, there is not so much to improve anymore, in the

beginning of the project these meetings have valuable. Also it can be seen

that subcontractors do need encouragement to participate into process

improvement.

Most of the projects have been running already for a long time and those

are used to have this kind of improvement meetings only when a member

of the team indicates that things are not going on smoothly.

3.4.4. Problem areas against agile working methods

This chapter provides information about good work practices as product

owner or project manager should apply in their work. This information is

valid in general for teams which were studied.

- Mixed and distributed team structure

When team is constructed from both local and outsourced resources, it

causes many problems against agile principles. Face-to-face meetings are

not possible, the tasks are not distributed evenly and a team leader can’t

give individual support for remote team members.

LEADING SOFTWARE PROJECTS: Applying agile principles

52

- Broad customer base

Having several customer causes continues discussion about priorities

between the customers and their requests. If the customers are not very

active, it requires additional work effort from project manager to

communicate and get the decision about the conflicting priorities.

- Broad product base

When the team several products to deliver it is obvious that priorities

between those will change. There is also a risk implementation of specific

product turns out to be individual developers responsible. In that situation

tasks will not distributed evenly and there will be differences in workload

between team members.

- Subcontractors and customer co-operation

Subcontractors may not have access to all possible information needed for

decision making. Thus it is mandatory to have a local project manager or

technical expert participating to these discussions.

- External pressure directly to team

Sometimes customers try to push their priorities and schedules directly to

developers. This can happen even more easily within subcontractor and

customer direct communication, due to nature of subcontractor role and

cultural aspects. Project manager responsibility is to protect the team from

this kind of activity. Agile processes should reveal the work effort not

planned to iteration.

- Mixed roles

In agile methods there are usually few specific roles defined. If one person

is acting in several roles in team it will cause conflicts or at least too high

work load. For example in Scrum the Scrum master can partly act like a

designer, but Product owner and Scrum master shouldn’t be the same

person. That will be constant turning of the table. Also the setup where

developers are working for more than one team is problematic and against

agile principles.

- Waste in implementation

Long implementation time of too big tasks and rare demonstrations to

customer causes unnecessary implementation included into delivery. Same

applies to product backlog priorities validity, project manager duty is to

co-operate with customers to keep information updated. The priorities are

there to be respected in task selection for implementation. Prototyping can

cause unnecessary implementation, when executed in too detail level.

- Offshore subcontractors and self-organization

LEADING SOFTWARE PROJECTS: Applying agile principles

53

Self-organization is not subcontractor behavior by definition. They may

live in an authoritarian culture and expect that the manager gives the

orders and assigns tasks. They may hesitate to make decisions and criticize

decisions on the implementation and processes. Situation is far more better

from project manager point of view it they have a local team leader. Still it

is not sure how self-organizing they are. To change the attitude in the team

takes long time and a lot of effort from project manager to encourage them

and arrange the needed tools and information to enable self-organization

and decision making.

3.4.5. Good work practices to success with agile working methods

This chapter provides information about good work practices project

managers or product owners should apply. This information is valid

generally for teams which were studied.

- Continuous integration and daily builds

Latest version of the product is always available for customer or other

stakeholder review. It may not be fully functioning but it has the latest

feature implementation included and feedback can be gathered. It helps to

avoid unnecessary implementation and may be used to demonstrate

optional solutions for problematic issues.

- Centralized team structure

Development team and its leader or scrum master needs to be located in

the site and near to each other. Otherwise interaction and effective

communication can’t take place. Project manager does not need be located

so close to team, but good connection to team is needed, for daily follow-

up with team leader or scrum master and for frequent meetings with whole

team.

- Support for team success

Project manager is the coach for agile team by encouraging for internal

constructive and positive feedback within team. Encouragement for

decision making and supporting decision making by providing tools and

information needed decision making is responsibility of the project

manager in agile development environment. Support is also needed in

setting targets and estimating work efforts. Encouragement is required by

team for initiating and implementing process improvements.

- Agile boards, physical and virtual

A common whiteboard illustrating team’s development current state is

very is handy, especially when all team members have easy access to it. It

is important to keep it updated at least daily. In addition a common

LEADING SOFTWARE PROJECTS: Applying agile principles

54

application for agile board is required to provide status information to

customers and other teams which are not co-located. It is important to

have agreement how and by whom physical and virtual agile boards are

synchronized.

- Test automation

Automated tests within continuous integration gives frequent feedback

about the quality of the team current implementation. Usually automated

tests are not comprehensive and finally the delivery will be integrated with

other software deliveries for further integration. Anyway, it is important to

be sure that the latest delivery of team is working seamlessly with current

environment.

- Clear roles

Project manager or product owner handles the general information sharing

and gathering with customers and other related stakeholders. Product

owner’s contacts can be utilized whenever deeper co-operation with team

and customer is needed.

Development team has the technical excellence and responsibility deliver

what they have committed to implement. Customer and project manager

should not direct what or how the team will do. They just need to trust the

team.

- Product backlog validity

Frequent communication with customers is needed to keep product

backlog updated. The team should be able rely on backlog requirements

and their priorities.

- Code complexity following

Code complexity measuring tools are easily used within continuous

integration environment provided by company, as well as other code

quality measurement tools. It is easier to share implementation tasks inside

the team when source code is easy to read. Common coding guideline

makes code more understandable when applied diligently.

- Continuous improvement

Having a retrospective meeting and discussing process improvement

might sound frustrating when the project is mature and it feels like there is

not that much to improve anymore. But if the team wants to be agile it

needs to be agile also in processes. When a project has moved to a

maintenance phase it could be a good idea to think about other agile

methods or Kanban process to serve customers better in changed

environment.

LEADING SOFTWARE PROJECTS: Applying agile principles

55

4 DISCUSSION

 Research results 4.1.

The first research problem was ‘How the agile values and principles are

applied in project management’. The interview result analysis chapter

3.4.3 collects the related findings to each agile principle. And those are

discussed in detail for every agile principle.

The second question was ‘What are the management practices suitable to

particular agile software development method’. This was a disappointment

for researcher as there was so much variation and freedom in applying a

certain agile method that it was not possible to define a method specific

guidance for management practices. Presumption was that most of the

teams are applying scrum method but the reality was something else. Still

there is nothing wrong in tuning the process the team is using, but for this

part of the study it just caused too much challenges. Instead of method

specific guidance the interview result analysis provided enough data to

define success factors and obstacles for executing according to agile

principles within the teams under study. Those results are explained in

chapters 3.4.4 and 3.4.5 and will be communicated to interviewees.

 Reliability and validity 4.2.

Reliability means according to Hirsjärvi etc. that when we are studying the

same person on two different times we are able to get the same answer or

results. The reliability can also mean that two interviewer will end up to

same results with the same interviewee. Reliability can also be understood

so that with two different research methods can give the results from same

target group. (Hirsjärvi etc. 2004, 186)

It is likely not possible to get exactly same answer from the person after

some time, as the people change during time and circumstances change

and thus affect to people view of the issue. (Hirsjärvi etc. 2004, 186)

It could be possible that the same results would have been reached

regardless of interviewer. Researcher itself is not experienced as an

interviewer, thus there would have been differences compared to very

experienced interviewer.

It is not likely that any other method could give us same results as people

behavior depends on the context. (Hirsjärvi etc. 2004, 186)

Reliability can also relate to researcher actions on analysis of the results,

like is all data transcript same way and all data littered correctly (Hirsjärvi

etc. 2004, 187). In that sense study can be said to be reliable.

LEADING SOFTWARE PROJECTS: Applying agile principles

56

It was obvious that after interviewing few people, researcher could not

resist to lead the interviewee, when they had difficulties to find their point.

It was still kept in control and used only for the cases where interviewee

had problems to understand the issue of the discussion.

Validity can be statistical, structural, internal or external. None of these

can really be used with qualitative research methods (Hirsjärvi etc. 2004,

187-188). Though it can be said that structural validity of the research

method is true but the results are valid only for that group of people at the

time research was executed and on their current environment.

Validity in qualitative research can be addressed by member checking. It

means that interviewees have a possibility to check and validate the

littering and researchers interpretations (Hirsjärvi etc. 2004, 186). In that

sense the validity is ensured in this research.

 Reflection on research process 4.3.

This study was started on December 2012 by planning this research, but

the actual work started on September 2013. That long silent period leaded

to fact that the whole work needed to start from the beginning. It is really

important for this kind research that one can work continuously towards

final target. It is important when one is studying the theory, that all related

information is documented immediately, otherwise it needs to be studied

again. That happened to researcher in theory studies while there was

almost nine months break in the process. Analyzing the empirical research

result is also a task which requires focusing and concentration. One can’t

control large amount of data for long time period. If there are breaks in

analysis, one needs to digest the whole information again. Researcher

learned the lesson from theory studies and focused on interview result

analysis intensively.

Interviewing was a new experience for researcher. It can’t be avoided that

every interview changes the attitude of the interviewer to the issue under

discussion. It is also hard to resist helping and guiding the interviewee

when one has difficulties to find answers. There is a big possibility to lead

the thoughts to a direction that interviewer itself prefers.

The research question about the agile method would have been easier to

clarify with just clear questions about the characteristics of the teams’ way

of working.

 Possible future studies 4.4.

It was seen in the results that many teams were not able to execute in the

most efficient way when those had distribution in the team structure or

project layout.

LEADING SOFTWARE PROJECTS: Applying agile principles

57

The project managers who were in the target group of this study were not

in a position where they can decide the resourcing and distribution of

projects and resources. Thus it would be a good idea to study the

understanding of agile development principles also within higher

management. Same kind of interview as in this study for them could

refresh their thinking of agile development and guide to decisions

supporting agile development.

Subcontracting and offshoring with agile development could also be one

idea for a study. When scoping only to that area the theory of

subcontracting and offshoring can studied more thoroughly than in this

study and possible better guidance to those situations can be reached.

Scheduling and planning was not studied in this research thoroughly.

Anyway there seemed to be quite many different techniques for planning

and work effort estimation, for example in the book by Larman. (Larman

2007)

LEADING SOFTWARE PROJECTS: Applying agile principles

58

5 CONTRIBUTION

The results of this research are tightly related to the teams that were the

target group. This research revealed problems in some teams which were

causing challenges to effective execution. Already after interviews before

this report is not finished corrective actions were made in some teams. The

problems were probably already known but for sure this study gave some

extra boost to execute corrective actions. It was also heard from the free

comments during interviews that target person were seeing that discussion

interesting and good opportunity to stop and think how they have been

leading their project.

When these research results are published to target audience it will give

them more guidance about what are the things they should maintain or

what are the things they could improve. The findings in this research are

also good to remember when new projects are established. Especially team

structure and project lay-out are the barebones for succeeding. Agile

development idea enables adaptation in processes, but it can’t change

persons and environment. Those fundamentals are important to

communicate to instances which make the decisions have power to

influence.

The researchers own expertise of leading agile teams has grown a lot

during research. It was not a direct target of this research, but unavoidable

side-effect. Researcher can now better understand what went wrong in the

past trial of applying agile method.

LEADING SOFTWARE PROJECTS: Applying agile principles

59

REFERENCES

Agile Manifesto 2001. Ref. 05.11.2013. http://www.agilealliance.org/the-

alliance/the-agile-manifesto/

Anderson D. 2010. Kanban: Successful evolutionary change for your

technology business. USA WA : Blue HolePress.

Auer A., several other authors. 2013. Ketterää Kehitystä. Suomi:

FinnLectura

Cockburn A. 2007. Agile software development : The cooperative game.

USA, Boston : Pearson education

Equinox blog 2011, Ref. 13.01.2013,

http://blog.equinox.co.nz/blog/Lists/Posts/Post.aspx?ID=155

Boeg J. 2012. Priming kanban. Ref. 9.12.2013.

http://oledru.free.fr/agile/kanban/PrimingKanban-JesperBoeg-

Version2.pdf

Hackett M. 2013. Top Ten Risks When Leading an Offshore Test Team

(Part 1 & 2). Ref. 20.01.2014. http://www.logigear.com/resources/articles-

presentations-templates/620-top-ten-risks-when-leading-an-offshore-test-

team-part-1.html and http://www.logigear.com/resources/articles-

presentations-templates/622-top-ten-risks-when-leading-an-offshore-test-

team-part-2.html

Hirsjärvi S., Hurme H. 2004. Tutkimus haastattelu. Teemahaastettelun

teoria ja käytäntö. Helsinki: Yliopistopaino.

Haikala I, Märijärvi J. 1997, Ohjelmistotuotanto. Jyväskylä: Gummerrus

kirjapaino Oy

International Institute of Business Analysis (IIBA) 2011. Agile Extension

to the BABOK Guide. Ref. 1.10.2013.

http://austin.iiba.org/download/presentations/The%20Agile%20Extension.

pdf

Larman C. 2007. Agile and iterative development: a manager’s guide.

Westford, Massachusetts, USA: Addison-wesley.

Liker J., Convis G. 2012, Toyotan tapa Lean johtamiseen. Hämeenlinna:

Kariston kirjapaino Oy.

McConnell S. 2002. Ohjelmistotuotannon hallinta. Helsinki: Edita.

Niiniluoto I. 1997. Johdatus tieteenfilosofiaan: käsitteen- ja

teorianmuodostus. Helsinki: Otava.

http://www.agilealliance.org/the-alliance/the-agile-manifesto/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/
http://blog.equinox.co.nz/blog/Lists/Posts/Post.aspx?ID=155
http://oledru.free.fr/agile/kanban/PrimingKanban-JesperBoeg-Version2.pdf
http://oledru.free.fr/agile/kanban/PrimingKanban-JesperBoeg-Version2.pdf
http://www.logigear.com/resources/articles-presentations-templates/620-top-ten-risks-when-leading-an-offshore-test-team-part-1.html
http://www.logigear.com/resources/articles-presentations-templates/620-top-ten-risks-when-leading-an-offshore-test-team-part-1.html
http://www.logigear.com/resources/articles-presentations-templates/620-top-ten-risks-when-leading-an-offshore-test-team-part-1.html
http://www.logigear.com/resources/articles-presentations-templates/622-top-ten-risks-when-leading-an-offshore-test-team-part-2.html
http://www.logigear.com/resources/articles-presentations-templates/622-top-ten-risks-when-leading-an-offshore-test-team-part-2.html
http://www.logigear.com/resources/articles-presentations-templates/622-top-ten-risks-when-leading-an-offshore-test-team-part-2.html
http://austin.iiba.org/download/presentations/The%20Agile%20Extension.pdf
http://austin.iiba.org/download/presentations/The%20Agile%20Extension.pdf

LEADING SOFTWARE PROJECTS: Applying agile principles

60

Poppendieck M., Poppendieck T. 2003. Lean software development: An

agile toolkit. USA : Addison Wesley

Royce W. 1970. Ref. 24.11.2013.

http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

Software Testing Class 2012. Ref 05.11.2013.

http://www.softwaretestingclass.com/wp-content/uploads/2012/05/v-

model-stlc1.png

Turialspoint 2013. Ref 24.11.2013.

http://www.tutorialspoint.com/management_concepts/agile_project_mana

gement.htm

Kainulainen A. 2008. Agile Menetelmät. Jyväskylän Ammattikorkeakoulu

Koivusalo M. 2012. Measuring progress of agile transition. , University of

Turku: Department of information technology

Yeatts D . 1998. High-performing self-managed work teams: A

comparison of theory to practice. USA: Sage Publications.

http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.softwaretestingclass.com/wp-content/uploads/2012/05/v-model-stlc1.png
http://www.softwaretestingclass.com/wp-content/uploads/2012/05/v-model-stlc1.png
http://www.tutorialspoint.com/management_concepts/agile_project_management.htm
http://www.tutorialspoint.com/management_concepts/agile_project_management.htm

Appendix 1

Agile method properties (Kainulainen, 2008)

Appendix 2/1

Interview support material

Appendix 2/2

Interview support material

Appendix 2/3

Interview support material

