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Abstract. We introduce similarity weighted aggregation, a principled
and efficient method for regularized weight aggregation in federated
learning. Our method is adapted to non-IID collaborators and is simul-
taneously cost-efficient. This is the first method to propose a sliding-
window to select the collaborators, to the best of our knowledge. We
demonstrate our method on the federate training task of the FeTS 2021
challenge. We proposed two variations coined Similarity Weighted Aggre-
gation (SimAgg) and Regularized Aggregation (RegAgg). SimAgg results
on internal validation data demonstrate that the proposed method out-
performs the baseline FedAvg. The method SimAgg by our team HT-
TUAS won 2nd position on both leaderboards in FeTS2021 challenge.
SimAgg is the only method to be among the top performing methods
on both the leaderboards, making it robust and reliable to data varia-
tions. Our solution is open sourced at: https://github.com/dskhanirfan/
FeTS2021

Keywords: Brain tumors · Cancer · Collaborative learning ·
Federated learning · FeTS challenge · Lesion segmentation · Weight
aggregation

1 Introduction

Federated Learning (FL) can facilitate healthcare organizations to collaborate
and share information without compromising patients privacy. This is in contrast
to many medical imaging studies that use data stored in a centralized database,
where the curation of image data, prepossessing, and model development are
done with full access to the sensitive and delicate patient information. Moreover,
by using secure FL infrastructures we can potentially eliminate tedious and time-
consuming ethical permission process for using medical images.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Federated learning is a computational paradigm for distributed or decentral-
ized machine learning where training data is shared via multiple collaborators
and a central server learns a consensus model by aggregating locally-computed
updates [14]. In other words, FL allows distributed adaption of AI development
in a privacy-preserving fashion such that private data never leaves the local data
storage (e.g. a medical device, academic research center, clinical trial site, and
medical data repository). With the advent of strict regulations like GDPR (EU)
and HIPAA (US) the usability spectrum of Federated Learning is diverse [1,20].
In FL, multiple collaborators – also referred to as devices or clients – contribute
to a learning task. This approach allows clients to collaboratively train a shared
inference model while holding all the training data on the local storage privately,
decoupling the ability to do machine learning from the need to keep the data
in one centralized location [18]. Hence, only certain model updates may leave
the client’s secure computational environment, enabling the aggregation of the
learned parameters into a single generalized (global) model without disclosing
the raw data to the third parties. The communication between the clients usually
involves a central orchestrator that receives and aggregates client’s updates [12].

Decentralized training of an inference model in a federated fashion is an itera-
tive process, in which a subset of clients are selected to receive the current global
model in each iteration. Each client runs several epochs, for example in a stochas-
tic gradient descent optimization problem where a neural network is trained with
certain mini-batches, and communicates its model update back to the server. The
differences between the local models and the received global model are considered
as model updates, for which the server aggregates them from the contributing
clients to obtain an improved global model. This process continues to the next
iteration until a desired performance is obtained [11]. Figure 1 shows a high-level
schema of the federated learning framework for healthcare institutions.

In general, algorithms for FL face three main challenges: 1) statistical het-
erogeneity in weight aggregation, 2) communication efficiency, and 3) privacy
with security [12,22]. An efficient aggregation strategy, i.e. combining the mod-
els of all clients, is essential for the successful implementation of FL in real-life
applications. Numerous aggregation strategies have been studied, of which Fed-
erated Averaging (FedAvg) [14] is one of the most well-known FL methods. This
approach considers the normalized number of non-Independent Identical Dis-
tribution (non-IID) data in each client to aggregate the models in the server.
However, FedAvg does not address the weight divergence challenge due to the
strongly skewed data distributions. FedProx [13] handles statistical heterogeneity
in the network by constraining the local solvers so that they do not deviate sig-
nificantly from the global model. This is achieved using a proximal weight term,
however, FedProx works on the client side. Existing research on dealing with
the statistical challenge of federated learning focuses on the ideas of inverse dis-
tance aggregation [23], temporal weighting [6], knowledge transfer [9], knowledge
distillation and augmentation [10], multi-task learning [7], and meta-learning [5].

Communication efficiency in many FL settings is the primary bottleneck,
which requires adequate cost management strategies such as decreasing the
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Fig. 1. General workflow of an FL-trained model and the key components in a federated
learning setting [22]. Private clients A–D (e.g. healthcare institutions) communicate
the local weight updates with a central secure server at regularly occurring intervals to
learn a global model; the server aggregates the updates and sends back the parameters
of the updated global model to the clients.

number of clients, reducing the update size, and reducing the number of updates.
Hence, the existing research on communication-efficient FL is divided into four
major categories: model compression, client selection, update reducing, and peer-
to-peer learning [12,22].

From privacy-preserving point of view, it is also important to securely aggre-
gate the model parameters or weights to avoid possibilities of leakage of infor-
mation and vulnerability to adversarial inference and inversion [8,11,15]. Even
well-generalized deep models can potentially leak a considerable amount of infor-
mation about the input training data [15]. Even worse, certain neural networks
trained on sensitive data (e.g., medical image data) can memorize the training
data [8]. Secure aggregation protocols such as secure multiparty computation
(SMC) and differential privacy (DP) have been proposed to alleviate the risk of
adversarial attacks and further enhance privacy guarantees in FL [19,21]. We
leave dealing with the privacy-preserving and security challenges for the future
works.

Our main contributions in this paper are 1) the establishment of an efficient
adaptive regularized weight aggregation approach on the FeTS 2021 multi-modal
brain MRI data; 2) the implementation of a practical algorithm that can be
applied to this setting; and 3) an extensive evaluation of the proposed weight
aggregation approach. This paper is organized as follows: in Sect. 2, we describe
the methodologies including our two FL weight aggregation strategies by our
experiment setting. In Sect. 3, we describe FL experiments and evaluate the
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performance of the proposed methods quantitatively and in Sect. 4, we discuss
about the presented work, potentials and limitations, and describe our future
direction in FL. Finally, Sect. 5 concludes this work.

2 Methods

2.1 FeTS 2021 Challenge

Federated Tumor Segmentation (FeTS) Challenge 2021 focuses on federated
learning in medical imaging, and intends to address efficient creation and eval-
uation of a consensus model for the segmentation of intrinsically heterogeneous
brain tumors, namely gliomas. The FeTS 2021 challenge considers an ample
multi-institutional multi-parametric Magnetic Resonance Imaging (mpMRI)
scans of glioblastoma (GBM), the most common primary brain tumor, before
any kind of resection surgery as the training and validation data. The datasets
used in the FeTS 2021 challenge are the subset of GBM cases from the Brain
Tumor Segmentation Challenge (BraTS) 2020 [2–4]. BraTS offers the largest
fully annotated and publicly available database for AI model development for
the objective of brain tumor segmentation methods.

The FeTS 2021 data release consists of a training set and two partitions each
providing information for how to split the training data into non-IID institutional
subsets1. The training dataset includes 341 subjects with High-Grade Gliomas
(HGG) and Low-Grade Gliomas (LGG). All FeTS mpMRI scans, provided as
NIfTI files (.nii.gz), had four 240× 240 × 155 structural MRI images includ-
ing native (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2
FLuid Attenuated Inversion Recovery (FLAIR) volumes. A sample image is
shown in Fig. 2. Annotations comprise the pathologically confirmed segmentation
labels with similar volume size of 240 × 240 × 155 including the GD-enhancing
tumor (ET - label 4), the peritumoral edematous/invaded tissue (ED - label
2), and the necrotic tumor core (NCR - label 1). All these provided MRI scans
were collected from multiple institutions and certain pre-processing steps such
as rigid registration, brain extraction, alignment, 1× 1 × 1 mm resolution resam-
pling, and skull stripping were applied as described in [2–4].

We deployed Intel Federated Learning (OpenFL) [17] framework for training
brain tumor segmentation model—an encoder-decoder U-shape type of convolu-
tional neural network provided by FeTS2021 challenge—using the data-private
collaborative learning paradigm of FL. OpenFL considers two main components:
1) the collaborator which uses a local dataset to train the global model and 2)
the aggregator which receives model updates from each collaborator and fuses
them to form the global model. Our experiments were performed on a cluster
workstation with running NVIDIA TITAN V100 GPU and 350 GB memory.

1 https://github.com/FETS-AI/Challenge/tree/main/Task 1.
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Fig. 2. Sample images from all MRI modalities with the corresponding GBM lesion.

2.2 Method 1: Similarity Weighted Aggregation (SimAgg)

We developed an adaptive machine-learning approach coined similarity weighted
aggregation for efficient aggregation of model parameters at the server. Our app-
roach is suitable for both IID as well as non-IID data. Specifically, our strategy
is focused on collaborator selection and parameter aggregation policy.

Collaborator Selection. For the collaborator selection, we use a subset of the
available collaborators (for example, 20%) in each round. To allow for systems
heterogeneity where collaborators can contribute in a non-deterministic fash-
ion, we simulate random selection of collaborators in each round. However, to
ensure that the model sees all collaborators the same number of times at regu-
lar intervals, we implement a sliding window over the randomized collaborator
index as shown in Fig. 3. In this setup, once all collaborators have participated
in updates, a new randomized order is computed for better learning. We use a
sliding window instead of random collaborator selection to ensure participation
of all collaborators. We used a sliding-window size equal to 20% of the collabo-
rators in each partition. In partition 1, the sliding-window size was set to three
as the total number of collaborators was 17. In partition 2, the sliding-window
size was set to four as the total number of collaborators was 22.

Weight Aggregation. A fundamental issue with non-IID data is that model
parameters coming from the collaborators can diverge. To overcome such a sce-
nario we use weighted aggregation of the collaborators at the server. The collabo-
rators are weighted based on how similar they are to their non-weighted average.
This simple yet effective mechanism can help in learning a master model that is
representative of most of the collaborators at each round, see Algorithm 1.

Specifically, at round r, the parameters pCr of the participating collaborators
Cr are collected at the server. The average of these parameters is calculated as:

p̂ =
1

|Cr|Σi∈Crpi. (1)
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a) Original collaborators list

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

b) Shuffled collaborators list

3 8 6 10 15 13 7 22 2 20 16 9 4 19 17 12 5 18 1 21 11 14

c) Selected collaborators 

3 8 6 10 15 13 7 22 2 20 16 9 4 19 17 12 5 18 1 21 11 14 3 8

Selected 
collaborators

Round = 2

Selected 
collaborators

Round = 1

Selected
collaborators

Round = 4

Selected 
collaborators

Round = 3

Selected 
collaborators

Round = 6

Selected
collaborators

Round = 5

Fig. 3. Collaborator selection strategy. In a) the model receives a list of initial col-
laborators, in b) collaborator order is randomized to help better learning, and in c)
collaborators are selected for each round using a sliding window. Once the collaborator
list is entirely used, it is shuffled again and the process starts again from step b).

We subsequently calculate the similarity of each collaborator c ∈ Cr with the
average parameter values from all collaborators as

simc =
Σi∈Cr |pi − p̂|
|pc − p̂| + ε

, (2)

where ε = 1e − 5 (small positive constant), and normalize to obtain similarity
weights as follows:

uc =
simc

Σi∈Crsimi
. (3)

The collaborators closer to the average receive a higher similarity score while
those further away obtain a lower value. In the extreme case this approach can
expel the diverging collaborator.

In order to adjust for the effect of varying number of samples in each collab-
orator c ∈ Cr, we use a second weighting factor that favors collaborators with
larger sample sizes:

vc =
Nc

Σi∈CrNi
, (4)

where Nc is the number of examples in collaborator c.
Using the weights obtained using Eqs. 3 and 4, the similarity weighted param-

eter values (pm) are computed as:
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wc =
uc + vc

Σi∈Cr (ui + vi)
. (5)

Finally, the parameters are aggregated as follows:

pm =
1

|Cr| · Σi∈Cr (wi · pi). (6)

The normalized aggregated parameters pm are then dispatched to the next
set of collaborators in the successive federation rounds.

Algorithm 1. SimAgg aggregation algorithm
1: procedure Similarity Weighted Aggregation(Cr, pCr )
2: ε ← 1e − 5 � Cr = set of collaborators (at round r)
3: p̂ = average(pCr ) using Eq. 1 � pCr = parameters of the collaborators in Cr

4: for c in Cr do
5: Compute similarity weights uc using Eqs. 2 and 3
6: Compute sample weights vc using Eq. 4

7: for c in Cr do
8: Compute aggregation weights wc using Eq. 5

9: Compute master model parameters pm using Eq. 6
10: return pm

2.3 Method 2: Regularized Aggregation (RegAgg)

We also developed a regularizing version of our aggregation approach. The
method performs stronger penalization of diverging collaborators.

Collaborator Selection. The collaboration selection for regularized aggrega-
tion is the same as in Sect. 2.2.

Weight Aggregation. The weight aggregation methodology is adapted from
Sect. 2.2 to compute the similarity and sample weights using Eqs. 3 and 4. We
then compute the regularizing weights of each of the collaborator as:

wc =
uc · vc

Σi∈Cr (ui · vi)
. (7)

Finally, the master models parameters are computed using Eq. 6. The entire
process is summarized in Algorithm 2.
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Algorithm 2. RegAgg aggregation algorithm
1: procedure Regularized Aggregation(Cr, pCr )
2: ε ← 1e − 5 � Cr = set of collaborators (at round r)
3: p̂ = average(pCr ) using Eq. 1 � pCr = parameters of the collaborators in Cr

4: for c in Cr do
5: Compute similarity weights uc using Eqs. 2 and 3
6: Compute sample weights vc using Eq. 4

7: for c in Cr do
8: Compute aggregation weights wc using Eq. 7

9: Compute master model parameters pm using Eq. 6
10: return pm

3 Experiments

3.1 Setup

The goal of task 1 is to improve the federation process by focusing on efficient
aggregation, client selection, training-per-round, compression, and communica-
tion efficiency. We have developed an efficient method that aggregates the model
updates trained on individual collaborators. A data set with total of 341 multi-
institutional patients was available. Supplementary information indicates the
division of patients in different partitions. Partition 1 and partition 2 have 17
collaborators and 22 collaborators, respectively. Partition 1 means institutional
split, while partition 2 is further divided based on the tumor size. The experimen-
tal setup uses Intel’s OpenFL platform for federation learning and a predefined
3D U-shape neural network for the semantic segmentation of whole tumor, tumor
core, and enhancing tumor. The metrics computed in the aggregation rounds are
binary DICE similarity (whole tumor, enhancing tumor, tumor core) and Haus-
dorff (95%) distance (whole tumor, enhancing tumor, tumor core) as described
in [16].

The hyperparameters used are shown in Table 1. Collaborator selection for
SimAgg and RegAgg are shown in Fig. 3.

Table 1. Hyperparameters used in aggregation algorithms.

Leaderboard Hyperparameter SimAgg RegAgg FedAvg

1 Learning rate 5e−5 5e−5 5e−5

1 Epochs per round 5.0 1.0 1.0

2 Learning rate 5e−5 5e−5 5e−5

2 Epochs per round 5.0 5.0 1.0
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3.2 Results

In this section, results are summarized for leaderboards 1 and 2 (with parti-
tions 1 & 2). The comparison of baseline FedAvg with default setting and our
aggregation methods – namely regularized aggregation and similarity weighted
aggregation – shows that both of our methods rapidly converge and are stable as
the learning progresses across all the measured metrics. Moreover, our methods
show significant improvement in the performance.

Model Training and Performance Using Internal Validation Data.
Figure 4 shows the performance comparison of model training on internal vali-
dation for partition 2 for Leaderboard 1. Figure 5 contains the same comparison
for both partitions 1 and 2 of Leaderboard 2.

In Leaderboard 1, SimAgg significantly outperforms RegAgg with approx-
imately 10–15% improvement across all DICE and Hausdorff (95%) scores. In
Leaderboard 2, SimAgg performs slightly better than RegAgg and FedAvg across
all DICE and Hausdorff (95%) scores.

Model Performance Using External Validation Data. Prior to the official
testing phase, the performance of both of our methods was assessed using unseen
external validation data provided by challenge organizers, see Tables 2, 3, and 4.
From the Tables 3 and 4, we can see that SimAgg resulted in higher performance
across all DICE scores. Similarly, the Hausdorff (95%) distances obtained by
SimAgg method were smaller than the RegAgg for the partitions 1 & 2.

Table 2. Leaderboard 1 experiments: Trained aggregation algorithms on partition 2
performance on validation data.

SimAgg RegAgg

Binary DICE WT 0.7774 0.6982

Binary DICE ET 0.6793 0.5856

Binary DICE TC 0.6682 0.5664

Hausdorff (95%) WT 34.2991 50.1060

Hausdorff (95%) ET 22.8250 42.5777

Hausdorff (95%) TC 29.6163 43.1602

Model Performance Using Fully Blinded Test Set. FeTS2021 challenge
organizing committee permitted one algorithm per team for ranking in the official
leaderboards. Therefore, we submitted SimAgg algorithm for the leaderboard
ranking since SimAgg performed better on internal and external validation data
in our experiments.

The SimAgg performance stats for team HT-TUAS on the fully blinded test
set for Leaderboards 1 and 2 are shown in Tables 5 and 6, respectively. These
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Fig. 4. Leaderboard 1 experiments: Performance metrics model training of SimAgg,
RegAgg, and FedAvg for partition 2. The horizontal axis refers to the number of
rounds and the vertical axis to the performance metrics. Metrics; DWT: DICE Whole
Tumor, DET: DICE Enhancing Tumor, DTC: DICE Tumor Core, HWT: Hausdorff
(95%) Whole Tumor, HET: Hausdorff (95%) Enhancing Tumor, HTC: Hausdorff (95%)
Tumor Core, S: Projected Convergence Score, T: Simulation Time (Hours).

results ranked us as the top second team for the federated tumor segmentation
challenge. In leaderboard 1, a significant discrepancy between the validation and
testing datasets for the DICE and Hausdorff distance scores was visible. The
discrepancy is because the wrapper function for data loader had a logical bug
that the next collaborator is not selected. However, in leaderboard 2, the results
on fully blind test set is better because model training is performed for 500
rounds by challenge organizers after the logical bug was removed.

Overall, SimAgg performs whole tumor segmentation better as compared to
enhancing tumor segmentation and tumor core segmentation.
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Fig. 5. Leaderboard 2 experiments: Performance metrics model training of SimAgg,
RegAgg, and FedAvg for partition 2 (a) and partition 1 (b). The horizontal axis refers
to the number of rounds and the vertical axis to the performance metrics. Metrics;
DWT: DICE Whole Tumor, DET: DICE Enhancing Tumor, DTC: DICE Tumor Core,
HWT: Hausdorff (95%) Whole Tumor, HET: Hausdorff (95%) Enhancing Tumor, HTC:
Hausdorff (95%) Tumor Core, S: Projected Convergence Score, T: Simulation Time
(Hours).

Table 3. Leaderboard 2 experiments: Trained aggregation algorithms on partition 2
performance on validation data.

SimAgg RegAgg

Binary DICE WT 0.8415 0.8387

Binary DICE ET 0.6993 0.6910

Binary DICE TC 0.7143 0.7110

Hausdorff (95%) WT 12.1612 12.8851

Hausdorff (95%) ET 17.2475 26.5882

Hausdorff (95%) TC 17.6554 26.3145

4 Discussion

Various methods have been proposed in the literature for federated aggregation.
However, a limited set of methods work exclusively on the server side. To start
with, we explored several alternatives including exponential smoothing aggre-
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Table 4. Leaderboard 2 experiments: Trained aggregation algorithms on partition 1
performance on validation data.

SimAgg RegAgg

Binary DICE WT 0.8501 0.8265

Binary DICE ET 0.7087 0.6867

Binary DICE TC 0.7038 0.7160

Hausdorff (95%) WT 13.2122 14.1265

Hausdorff (95%) ET 15.2001 16.9239

Hausdorff (95%) TC 16.3441 18.1132

Table 5. SimAgg (HT-TUAS) test set performance on Leaderboard 1.

Mean Standard
Deviation

Median 25quantile 75quantile

DICE WT 0.7076 0.2676 0.8259 0.5788 0.9066

DICE ET 0.6054 0.3172 0.7558 0.3633 0.8461

DICE TC 0.6502 0.3320 0.8144 0.4134 0.9082

Sensitivity ET 0.7845 0.2908 0.8967 0.7565 0.9542

Sensitivity WT 0.8471 0.1722 0.8997 0.8231 0.9410

Sensitivity TC 0.8104 0.2913 0.9328 0.8259 0.9729

Specificity WT 0.9942 0.0081 0.9985 0.9909 0.9994

Specificity ET 0.9973 0.0045 0.9993 0.9971 0.9997

Specificity TC 0.9964 0.0062 0.9993 0.9957 0.9998

Hausdorff (95%) WT 30.5343 29.3950 13.8515 4.3872 58.5597

Hausdorff (95%) ET 53.9195 98.8776 5.5649 1.4142 71.2686

Hausdorff (95%) TC 48.6906 80.4691 16.8320 3.0000 68.4579

Communication Cost 0.8562 0.8562 0.8562 0.8562 0.8562

gation and conditional threshold aggregation. However, both of these methods
required user defined threshold parameters that needed tuning, hence, these
approaches are not inherently generalizable to new and unseen data sets. There-
fore, we designed similarity weighted aggregation and regularized aggregation
that automatically adapt the weights. Unlike, our approach, FedProx [13] per-
forms regularized weight aggregation on the client side by restricting the local
solvers so that they do not deviate significantly from the global model. Our
method works on the server-side by limiting the contribution of the diverging
collaborators to learn the global model. Our approach has the additional advan-
tage that it can be implemented only on the server-side so that clients with
varying configurations can join the federation.

Several works have demonstrated that using a subset of random collaborators
helps speed up the training of federated learning algorithms [24]. We extended
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Table 6. SimAgg (HT-TUAS) test set performance on Leaderboard 2.

Mean Standard
deviation

Median 25quantile 75quantile

DICE WT 0.8213 0.1797 0.8847 0.8055 0.9188

DICE ET 0.7438 0.2425 0.8174 0.7179 0.8868

DICE TC 0.7455 0.2662 0.859 0.6780 0.9119

Sensitivity ET 0.8423 0.2597 0.9427 0.8563 0.9820

Sensitivity WT 0.9070 0.1731 0.9619 0.9190 0.9866

Sensitivity TC 0.8510 0.2685 0.9607 0.8735 0.9881

Specificity WT 0.9979 0.0025 0.9984 0.9975 0.9991

Specificity ET 0.9993 0.0011 0.9995 0.9992 0.9998

Specificity TC 0.9988 0.0019 0.9994 0.9986 0.9998

Hausdorff (95%) WT 8.2904 10.7090 5.0990 3.0000 9.0415

Hausdorff (95%) ET 26.4082 88.3786 2.2361 1.4142 3.6056

Hausdorff (95%) TC 26.2290 74.0068 6.7082 2.4495 16.9027

Communication Cost 0.7937 0.7937 0.7937 0.7937 0.7937

the ideas here and formulated a sliding window strategy that ensures representa-
tion of all collaborators in the training process. It may be valuable to study the
performance of sliding window alone without SimAgg or RegAgg aggregation in
future. We used a sliding window size equal to 20% of the collaborators. The
size of the sliding window is a hyper-parameter of the method and optimizing it
will only further improve the model performance. A promising future work is to
develop a strategy for optimizing the sliding-window size.

The FeTS 2021 data release consists of two partitions each providing infor-
mation for how the training data is split into non-IID institutional and tumor
size subsets. Therefore, the size and distribution of data in each collaborator
can be different. Our method works well on both partitions, as the weighted
aggregation approach helps learn a model that is representative of most of the
collaborators at each round, with minimal impact from the outliers. While the
model performs well in general when data has non-IID splits, it will be valuable
to further investigate the performance on the outliers.

A limitation of this work is the small number of patients and collaborators.
However, our approach has laid the groundwork for the refined development of
an improved model that can be applied to newly generated data sets at scale.
The aggregation algorithm can be used for generalizable ML model training for
“real-world” clinical data in clinical practices and production environments on
geographically distinct collaborators.

Our future research direction includes incorporation of our developed FL
methods with diverse state-of-the-art privacy protection AI frameworks for data
anonymization, augmentation, object detection and segmentation, and image
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translation. The widespread adoption of secure and private AI on medical image
data still requires vigorous improvements to the generalization or personalization
of the AI models. Decentralized data storage, efficient cryptographic and privacy
primitives, and dedicated neural network operations are yet emerging to replace
the current paradigm of data sharing and privacy preservation, enabling privacy-
preserving cross-institutional research in a breadth of biomedical disciplines.

5 Conclusion

In this work, we proposed two novel weight aggregation schemes, regularized
aggregation and similarity weighted aggregation, for aggregation of neural net-
work models in a federated learning setting for brain tumor segmentation. Our
extensive experiments on internal validation show that the proposed methods
outperform FedAvg in terms of convergence score and communication costs. Our
team HT-TUAS submitted SimAgg for ranking on official leaderboards and won
2nd position on both Leaderboards in FeTS2021 challenge. While our proposed
strategies offer better aggregation benefits, providing stronger privacy guaran-
tees, for example via differential privacy, secure multi-party computation, or a
mixture of them is an interesting future research direction.
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