
Developing a content management system with drag and drop

functionality

Bachelor thesis

Degree Programme in Business Information Technology
or Computer Applications

Fall, 2022

Fiona Neumann

Degree Programme in Business Information Technology Abstract

Author Fiona Neumann Year 20222

Subject Developing a content management system with drag and drop functionality

Supervisors Lasse Seppänen, Elina Hietaranta

ABSTRACT

This thesis was written in corporation with Financial Labs Oy. Financial Labs Oy is a software

development company with offices in Oulu, Helsinki and New York and was founded in 2017. The

purpose of this thesis was to develop a feature for an existing Intranet, which would be the

dashboard landing page of the Intranet and comes with an editor to give certain users the

possibility to create posts for the dashboard. The research questions were:

1. is it possible to develop a content management system that furthermore gives the user the

possibility to rearrange and deactivate posts as needed?

2. How can user rights be handled in the frontend application to give certain people the right

to access editing pages and make a functionality for reactions to posts created via the

content management system?

The implementation was done with TypeScript using the React and Node.js framework. Additional

technologies used include TypeORM, MySQL and Amazon Web Services.

The thesis is practice based and the author made an implementation plan and developed the

feature. The result of this thesis is a functional feature with possibilities for further development.

The outcome of this thesis can be seen as a guide for developers who want to achieve something

similar.

Keywords React, Node.js, Drag and Drop, TypeORM

Pages 38 pages and appendices 1 pages

Glossary

HTML HyperText Markup Language for web pages

npm Node Package Manager

CSS Cascading Style Sheets

CRUD Create Read Update Delete

Contents

1 Introduction .. 1

2 Need for the thesis ... 2

3 Full-Stack Development Theory ... 3

3.1 JavaScript .. 3

3.1.1 TypeScript .. 4

3.1.2 React .. 5

3.2 Amazon Web Services ... 8

3.3 MySQL ... 9

3.4 Node.js .. 10

4 Methods ... 14

4.1 Agile Software Development .. 14

4.2 In depth plan of the application .. 15

4.3 Used Technologies .. 19

5 Implementation of the dashboard and editor .. 21

5.1 Logic of React application ... 21

5.1.1 Logic of Dashboard .. 21

5.1.2 Logic of Dashboard Editor ... 23

5.1.3 Emoji Picker component ... 26

5.2 Setting up database tables with TypeORM in NodeJS 28

5.3 API endpoints for dashboard and reactions in NodeJS 30

5.3.1 Functions for Dashboard ... 32

5.3.2 Functions for Reactions ... 34

6 Results .. 35

7 Summary .. 36

References .. 37

Figures and program codes

Figure 1 TypeScript Interface example ... 4

Figure 2 Example of a component using props .. 5

Figure 3 Conditional Rendering .. 7

Figure 4 Inline Conditional Rendering .. 7

Figure 5 AWS Lambda ... 8

Figure 6 Architecture of Node.js ... 10

Figure 7 TypeORM Entity Example ... 11

Figure 8 Saving and Retrieving Data using TypeORM ... 12

Figure 9 TypeORM Updating in the database ... 12

Figure 10 QueryBuilder example .. 13

Figure 11 Flow of the application ... 16

Figure 12 Prototype design .. 17

Figure 13 Prototype design of editor modal ... 18

Figure 14 Planned API endpoints .. 19

Figure 15 Emoji Picker .. 26

Figure 16 MySQL Datatables .. 30

Code Snippet 1 Masonry .. 22

Code Snippet 2 Card Component ... 22

Code Snippet 3 Filtering data ... 23

Code Snippet 4 React-dnd .. 24

Code Snippet 5 Updating a post ... 25

Code Snippet 6 Axios Request example ... 25

Code Snippet 7 Counting Occurrences ... 27

Code Snippet 8 Removing duplicated and adding names .. 27

Code Snippet 9 Emoji Array Structure .. 28

Code Snippet 10 Entities Typeorm ... 29

Code Snippet 11 Example from Serverless.yml file .. 31

Code Snippet 12 Example API endpoint ... 31

Code Snippet 13 Typeorm find operation .. 32

Code Snippet 14 Saving Dashboard Order ... 33

Code Snippet 15 Creating a new post .. 33

Code Snippet 16 Typeorm QueryBuilder Leftjoin ... 34

Annexes

Annex 1 Material management plan

1 Introduction

This thesis was made in corporation with Financial Labs Oy. The company had started developing

their own Intranet in 2021 and after a break the development continued in 2022. One of my tasks

was to develop a Dashboard page which was required to include a dedicated editor associated

with it.

This required Full-Stack development with React and Node.js and planning the infrastructure of

the application, the needed database tables, API endpoints and features in the frontend. Some of

the previously created parts of the application needed to be used for the project, such as for

example user account and authentication.

The process therefore included making a development plan, adjusting to changes during the

process, actually developing the features and writing this thesis. The research questions are as

follows:

How is it possible to develop a content management system that furthermore gives the user the

possibility to rearrange and deactivate posts as needed?

How can user rights be handled in the frontend application to give certain people the right to

access editing pages and make a functionality for reactions to posts created via the content

management system?

The result of the thesis was a functional feature that might still be developed further in the future.

Suggestions for the feature will be discussed in the results section of this thesis.

2 Need for the thesis

The company started developing their own Intranet in summer 2021, but it is not yet in use. At the

time being, they are using Atlassian’s confluence to document important information about the

workplace and news are usually spread through their slack channels.

The functionality developed so far includes user accounts and profile management done with AWS

Cognito. There is a page about projects that are currently being worked on including revenue and

costs and the amount of time spent working on it and a Teams page showing who is currently

assigned to which Team.

Discussions with co-workers revealed that there were certain wishes about what should be

included in the Intranet. The most significant one was a staff directory where it is possible to look

up people and get an idea on what they are working on. One of the benefits of having such

directory is having an easier time to find a co-worker with a certain skillset if running into a

problem during the development process and in need of guidance.

A centralized area for finding news and documents was the next aspect which is the topic of this

thesis. This could eventually be used to replace confluence entirely. A designer had created a

prototype for this dashboard in Figma, a tool for designing interfaces, and during the development

process it became obvious that the company would appreciate to have a dashboard editor

associated with it. The main goal with this was that anybody in the company, regardless of their

technological background can create, edit and delete posts on the dashboard. They should also be

able to influence the design and arrange the page in a way they desire. It became clear that

developing such a feature is quite a challenging and complex task and requires understanding the

concept of the application thoroughly – and this is how the idea of ultimately turning it into a

thesis came to be.

3 Full-Stack Development Theory

Creating an Intranet and developing the required additional features discussed in this thesis, it was

necessary to setup a Full-Stack Application environment. This chapter will have a closer look into

the technologies chosen to accomplish this and describe them to a certain extent to improve the

readers’ capability to understand the practical part of this thesis.

3.1 JavaScript

Javascript is a scripting programming language originating from Brendan Eich who wrote the initial

version of Javascript back in 1995. He is also the founder of the software community Mozilla

(Knorr, 2018). JavaScript “is a lightweight, intepreted, or just-in-time compiled programming

language with first-class functions” (JavaScript, n.d.).

In its most plain form, JavaScript can be implemented in any HTML website. As the official

Documentation explains, HTML is only the markup language, CSS is used for creating styling rules

and JavaScript can be used to update content dynamically and do everything that requires higher

logic such as implementing functions. (What Is JavaScript?, n.d.)

Popular tools and frameworks using JavaScript include React, Vue, Angular and the Express Web

Framework using Node.js. According to Stackoverflow’s developer survey in 2022, 67,9% of

professional developers use JavaScript as one of their programming languages, making it the most

used one at the time being. Notably, TypeScript also took up around 40%, which is built upon

JavaScript. (Stack Overflow Developer Survey 2022, n.d.)

In the most current version, the most notable features include let and const variables. Let

variables cannot be redefined, arrow functions that can make use of callbacks, the possibility for

asynchronous requests and maps instead of normal for loops which increase readability of the

code. (Crowder, 2022, p. 4-5)

3.1.1 TypeScript

TypeScript extends JavaScript and introduces a syntax for types. By default, JavaScript does not

require the type of a variable to be specified. TypeScript therefore aims at avoiding errors in the

code caused by the usage of the wrong type or interface. It also allows the user to specify the way

an object is structured in advance. (Figure 1)

In the example of Figure 2 x and y can only be assigned numbers (TypeScript, n.d.). If the type is

changed during the development process, the user will receive an error and it is not possible to

proceed. A variable can also accept multiple types or be inferred from usage. A variable of an

interface can also be made optional by adding a question mark. If we changed interface Point to

x?: number the usage of variable x would be optional and if it does not exist will be ignored. It is

also possible to assign any to a variable – which means that the type can be anything and be

changed during its lifecycle- theoretically making the use of TypeScript obsolete. An OR operator

can also be used in certain circumstances – for example we might want the variable to be a string

but know that it will be undefined when starting the application. In this case it is possible to assign

the type string | undefined (TypeScript, n.d.).

It therefore gives the developer useful functionality during the development process, as it is

possible to define complex interfaces and verify that the information is correct. For example, when

fetching data, the developer can verify that it is actually in the exact same format they want it to

be.

Figure 1 TypeScript Interface example (TypeScript, n.d.)

TypeScript code will often be transpiled back to JavaScript code for built versions and is thus

mainly a tool during the development process. It makes it easier to avoid errors caused by

continuing with a variable or object in a slightly different type.

3.1.2 React

React is a library built on JavaScript that allows building user interfaces. It is declarative and

component based and open source, created by Facebook. For simplicity, this chapter will only

handle React used with hooks and not with class-based components. One of the most notable

features of React is the possibility to create components that can be reused. State and Props

which are commonly used in React furthermore simplify how data can be stored and handled.

(React Tutorial, n.d.) Through the Node Package Manager React a new React app can be initialized

– if desired also with TypeScript instead of plain JavaScript.

The official documentation provides a clear example of how props can be used for building

individual reusable components. In Figure 2, the function Welcome is used as a reusable

component. In this example it is used in the same file, but it could also be imported from another

React / JavaScript file. Using this component in another file allows the user to change content

depending on where the component is used. In this example, the name could come from the

backend and be changed according to who is currently signed in (React Tutorial, n.d.).

Figure 2 Example of a component using props (React, n.d.)

The example above also gives us a hint on another important aspect of React. The Welcome

components being returned need to be in an enclosing div. In a way one could say that no part of

the code can be “left open”. We can solve this either by wrapping our contents into divs or

alternatively use <React.Fragment> </React.Fragment> or its shorter form <> </>. The advantage

is that it does not add extra node to the DOM (Document Object model), making it slightly more

efficient when thinking about the performance of our application.

Since version 16.8 released, Hooks were introduced to React. The standard look of a Hook is as

follows: const [amount, setAmount] = useState(). Hooks are one of the most important features in

React as they make it possible to listen to changes and update content accordingly. Hooks can

originally be empty, but also initialized with a value. Hooks allow content to be updated

dynamically without refreshing the entire page. They can be changed multiple times during their

life cycle and be initialized with a default value. (Hooks at a Glance – React, n.d.)

A very useful feature is the useEffect() Hook. It is a function that can be called either initially when

loading a component or based on a state change. The example below shows a basic example of

using this hook. We have a state object called count (const [count, setCount] = useState(0)).

Whenever there is a change on this state object in our program by using setCount, for example we

add 1, we will see a console log. If we leave the brackets in the end empty, the code will only run

once as soon as the component mounts. (React Tutorial, n.d.)

useEffect(() => {
 console.log(“hello world”)
}, [count]);

useEffect() hooks are often used when fetching data from an API, as we need to retrieve the data

as soon as our page loaded and before content gets displayed. To achieve this, conditional

rendering is often used which makes it possible not to render content until the data was fetched.

In the past, global states were often handled with React redux, which can be installed as a npm

package. Nowadays, React also provides an internal feature for this called Context. Some data that

could be stored in the Context could include the theme of the website (dark or light mode), the

currently authenticated user or language of the program. (Context – React, n.d.)

Conditional rendering is commonly used in React applications. We can basically decide which

content to render depending on a Boolean or any if statement created by us. Figure 3 Conditional

Rendering shows us an example of how this can be done. We receive a Boolean with the value

false to a Greeting component we created. If the user is logged in, we render a UserGreeting

component to the screen, if he is not logged in – as shown in this example – a component called

GuestGreeting will be rendered. (React, n.d.)

Figure 3 Conditional Rendering (React, n.d.)

It is however also possible to use inline rendering as seen in Figure 4. We can therefore have a

component and decide to render content it contains depending on our decided condition. In this

example, we look whether our messages are more than 0. If there are, we print the message to

the screen. We need to look for more than zero as the index of Arrays starts at 0 and not at 1.

Figure 4 Inline Conditional Rendering (React, n.d.)

Conditional rendering is thus one of the most use features in any React Application.

3.2 Amazon Web Services

Amazon Web Services provides cloud computing platforms and APIS to their customers. Cloud

Computing includes services such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS)

and Software as a Service (SaaS).

Infrastructure as a Service “provides a capability for users to provision processing, storage, and

network resources on demand.” (Sarkar, A. & Shah, A., 2018, p. 9). The user can deploy his own

applications on the server. In Platform as a Service certain services such as email, databases and

workflow engines are made available, and the user can use these while building his own

applications. Software as a Service describes that an application is made available to the end user

by paying for a subscription and the user might have certain rights to influence the functionality of

said application. (Sarkar & Shah., 2018, p. 9) As cloud computing is accessed on-demand the

pricing is usually pay-as-you-go.

There are advantages of using cloud computing, such as paying only for what you actually use,

scaling, and the possibility to deploy the application in different regions which can reduce latency.

Also, services can be used immediately and the need for maintaining data centers on one’s own is

not there anymore. (Amazon Web Services, n.d.)

The Serverless framework used in this project differs from traditional hosting as you only pay for

what you use based on requests made and uses Lambda functions. Lambda can be used for any

kind of application or backend service. (Amazon Web Services, n.d.) The application runs on

Amazon’s servers and Figure 5 AWS Lambda give us an idea of the workflow happening in the

background.

Figure 5 AWS Lambda (Amazon Web Services, n.d.)

Amazon Cognito is used to handle user accounts and besides traditional accounts created also

supports sign in technologies with Apple, Facebook, Twitter, and Amazon. It is highly secure and

provides multi-factor authentication and users can be managed from the directory. (Amazon Web

Services, n.d.)

3.3 MySQL

MySQL is a database system that has been available since 1995 and owned by Oracle since 2010. It

is available as a free, open-source version and paid enterprise version. SQL stands for Structured

Query Language. (TutorialsPoint, n.d.) SQL Queries can be created that the database can

understand – such as adding, updating or deleting data from it. A database can hold a structure of

information which can be created, updated, read, combined, and deleted. A database needs to

run on a server, but a single instance can host multiple databases.

Databases mainly consist of tables that can have multiple columns – tables can be related to each

other by sharing for example a foreign key. By this, it is easily possible to perform different joins

between the tables, which allows to combine the data searched. The data entered must be

defined to accept a certain data type, such as numeric data, Strings, or date formats. (MySQL

Introduction, n.d.)

MySQL queries can be done in the console if installed, but there are many visualization tools

available such as Adminer or MySQL Workbench, which make it easier to read the data and in case

of Adminer also allows to create, update, and delete information in the tables manually without

SQL queries.

Databases can also make use of user account privileges, allowing only specific users to do certain

operations. These can for example mean that a user can only select and insert, but an admin user

can do all operations possible. In this application, most database operations and even the setup of

the database tables will be handled with typeORM, which will be described further in the Node.js

section of the theory part.

3.4 Node.js

Node.js is a server-side JavaScript environment and is mainly used in the backend for creating

REST APIs, real-time services and microservices (Nandaa, 2018, p. 6). It is built on Google

Chrome’s V8 engine which makes it very fast, and the Node Package Manager has approximately

50000 packages that can be used to implement different features (What Is Node.Js, n.d.).

It is open-source and uses a single-threaded event loop., which means that it does only one thing

at a time, before it runs the next task in the queue. It supports asynchronous programming, which

means that the system gets notified when a process – for example processing data from a

database is ready and the following code can be executed. The process can be seen in Figure 6.

(Microsoft, n.d.)

Figure 6 Architecture of Node.js (Microsoft, n.d.)

Node.js can be installed as an executable, through Homebrew (a package manager for Linux and

MacOS) or through the Node Version Manager.

TypeORM is a tool that can be installed on top of Node.js and is an ORM, which stands for object-

relational mapping. It can be used in applications that use JavaScript or TypeScript and is an

installable feature that can be used to make working with databases easier. The features it offers

include but are not limited to creating entities and columns, an entity manager, relations between

database tables, cascades – which means being able to delete a relational data table if we want to

and data types. Tables can also be joined, and schemas can be defined. Changes can be migrated

and synced, such that new tables can be created completely from scratch through TypeORM.

(TypeORM, n.d.)

Figure 7 shows an example Entity created with TypeORM. TypeORM will “translate” this for us and

create a table called User, where the id must be of type number and will be our Primary Key,

which is generated automatically. firstName and lastName refer to strings and the age is of type

number. (TypeORM , n.d.)

Figure 7 TypeORM Entity Example (TypeORM , n.d.)

There are inbuilt TypeORM functions that allow us to create, read, update or delete data from a

table. In Figure 8 we can see an example where we are dealing with a database table called Photo.

At first, a new photo object is created. Afterwards, the reference to the repository – which is the

Entity – is made and the item gets saved. We can use the function find() to retrieve all data saved

in a table. (TypeORM , n.d)

As demonstrated in Figure 9, we can also update specific data by defining a condition – for

example the id. We can change certain columns of the table, in this case the name or also multiple

of them. Deleting is done with a similar logic, where we need to have a search condition to find a

specific item we want to delete. (TypeORM , n.d.)

Figure 9 TypeORM Updating in the database (TypeORM , n.d.)

In more complex scenarios, there might be foreign keys in our Entities, which allows us to link two

or more tables together. Depending on the desired functionality, these can be OneToOne,

ManyToOne, OneToMany or ManyToMany relations. An example for this is that when we have a

user table and a reactions table. There will always only be one user, but there may be many

reactions giving the User table the need of a OneToMany relation and the reaction table the need

of a ManyToOne relation. (TypeORM, n.d.)

Figure 8 Saving and Retrieving Data using TypeORM (TypeORM , n.d)

For these more complex scenarios it is possible to use a so called QueryBuilder. Besides doing all

normal operations, it is possible to perform joins on our MySQL tables if we have created the

necessary relations. In the example below we want to select from the table user, but also have a

reference to a linkedSheep and linkedCow with a specific id. The result will be all 3 tables joined

together.

Figure 10 QueryBuilder example (TypeORM, n.d.)

As we can see, TypeORM can be a powerful tool for handling everything that has to do with our

database and a convinient way instead of writing traditional MySQL queries from scratch.

4 Methods

In this chapter we will go through the methods used to develop the application. Agile Software

Development was an approach used, but also an in-depth plan of the application was created in

advance.

4.1 Agile Software Development

Agile is a Software Development Method that follows a certain mindset and one of the main ideas

in to create and respond to change. It may contain methods such as Scrum, pair-programming,

stand-ups, and sprints. The agile manifesto focuses on “individuals and interactions over processes

and tools (…) working software over comprehensive documentation (…) customer collaboration

over contract negotiation” and “responding to change over following a plan” (Layton et al. ,2020,

p. 23).

A conversation can be more beneficial than using tools as communication is an effective way to

solve and discuss issues and teamwork will strengthen the ability of a team to work together and

the team itself can decide how they want to organize their work which means that processes can

be adjusted quickly as needed. According to agile principles, documentation can be beneficial if it

helps the team to succeed in developing their project – this includes documenting the

requirements and technical specifications. As the focus is on communication, some

documentation becomes inevitably obsolete. (Layton et al. ,2020, p. 23)

Our team followed these principles to a certain degree. The focus was continuously on developing

the main functionality over the details and the documentation was limited. Meetings were held 1-

2 times a week to update each other on the current status of the project and often the meeting

was a turning point after which changes and suggestions by other team members were

implemented. Additionally, meetings between me and the second developer were held

occasionally as needed if problems occurred.

4.2 In depth plan of the application

Several features had already been developed for the application in advance. The idea of how the

dashboard should look was made by a designer in Figma. The most important aspect was that the

layout was supposed to use a Masonry Layout. Masonry is more versatile than Flexbox as it allows

for different widths and heights of individual objects. A traditional Flexbox design only allows for

the same height, and the next object in the second row will start at the height where the highest

item ends. Masonry on the other hand is more versatile as it adjusts with the height and fits as

many items as possible into the row taking the height into account. The design also included the

possibility to react to specific components with Emojis. According to this design I started

developing the project for this thesis.

Therefore, the goal of this thesis was to develop a content management system, as for now with

the components predesigned by the designer but with possibility to expand on that idea by for

example giving the user the opportunity to partially design their own components. This required

setting up an editing page. It was decided early on that this should have a drag and drop

functionality. Other requirements were setting up a basic CRUD system for the application and the

ability to save the position where an item was dropped in the editor to show it to the user on the

dashboard.

This included using the previously set up frontend for implementing the dashboard, editor, and

Emoji Picker. This then had to be connected to the Node.js backend and combined by using an API

which was done using the serverless framework provided by Amazon Web Services. TypeORM was

used for creating and updating data tables in the dockerized MySQL database. The simplified

process of the flow of the application can be seen in Figure 11.

Figure 11 Flow of the application

Figure 12 shows the original prototype of the dashboard editor. The idea was that created

components initially get stored on the left side of the page, where it is possible to edit or delete a

post. These components are inactive and only shown in the editor. The right side of the page

shows the preview of the dashboard in the same style (Masonry) as on the actual dashboard.

Items can be dropped from the left to the right and right to the left. The items on the right can

also be rearranged in a way the user desires. Not included in the sketch is a button for creating a

post. When creating or editing a post, a modal will open – either with empty default values or

filled initially with the information the user has provided when making a post.

Deleting a post will create an alert to warn the user about the action. Only after accepting the

alert the post will actually be deleted from the database. Users can react to posts with different

emojis, which will be described in the Emoji Picker section of this thesis. Deleting a post also

means deleting any emojis associated with it.

Figure 12 Prototype design

Figure 13 shows a simplified version of a modal that will open when creating a new post. The

editor allows choosing a specific component, editing the text, and choosing an employee’s photo

from a list of registered accounts. A npm package called React Draft Wysiwyg (short for what you

see is what you get) was used to accomplish this. Below the text editor, the user can see a live

preview of the component until finally being able to save the post to the Dashboard.

Figure 13 Prototype design of editor modal

The approach for the feature was to first develop the most significant parts for its base

functionality and going into the details at a later point. The system is made in a way that

expandable features could be developed at any time.

Figure 14 shows all the endpoints that have been planned for this application and will be needed

to ensure that the core functionality can be established.

Figure 14 Planned API endpoints

ENDPOINT METHOD FUNCTION

“/posts/posts” POST Save a new post to the
dashboard database or updates
a previously made post

“posts/dashboard” POST Save the current order in the
Masonry component as decided
by the user with drag and drop

“posts/posts” GET Retrieves all posts from the
database

“posts/posts/{id}” DELETE Delete a post by using its id

“posts/reactions” POST Post or update and emoji
reactions associated with a
profile and dashboard post

“posts/reactions” GET Retrieve all reactions including
profile and the specified
dashboard post

4.3 Used Technologies

The project was written with the help of Visual Studio Code – a code editor with built-in support

for JavaScript and TypeScript, which allowed us to use it for the backend and frontend application.

As additional features, ESLint and Prettier were installed, which allow us to configure error

messages, that do not directly break the code, but there might be something missing, such as a

return statement – Prettier on the other hand does exactly what the name implies: it makes our

code prettier.

 If all developers use the same configuration, it makes submissions easier as for example Git will

understand that the code is exactly the same, as there are no differences in spacing or length of a

line of code. (Prettier · Opinionated Code Formatter, n.d.)

The frontend application is a React application with TypeScript. The backend application as

Node.js application with Amazon’s Serverless Framework and TypeORM. The Node Package

Manager was used repeatedly to install needed dependencies. The MySQL database was run in a

Docker container.

5 Implementation of the dashboard and editor

In this chapter I will go through the actual implementation of the project. I will start with the logic

of the React application briefly explained in general and then investigate the dashboard and its

editor. Then I will show how the Emoji Picker was created on top of that. This will give the reader

an important overview of the data being handled; thus, we will continue by looking into the

necessary database tables that were created with Typeorm. After that, the backend application’s

endpoints and functions required for handling data will be discussed. This thesis can be used as an

inspiration for creating a similar dashboard handling system, but some aspects such as CSS and the

design are intentionally left out as they are not required for describing the logic of the application.

5.1 Logic of React application

Developing the feature required adding information in different places of the application. There

are many ways to structure a React App, and this is often down to personal preference. For this

feature everything that gets shown to the user is provided in a folder called pages. Additionally,

there is a folder called service that will handle the communication to the backend.

5.1.1 Logic of Dashboard

As explained in the project plan the dashboard was made with a Masonry design. To accomplish

this, a package called react-masonry-component was installed. The setup of the dashboard page is

rather simple – the data is fetched and displayed. For this I need to make use of our service that

holds all our axios requests. Axios is a package that can be installed onto a React App and makes it

easier to handle API endpoints. (Axios Docs, n.d.) A simple GET request is performed to get our

stored data. Looking back at the plan made in advance, we recognize that the editor holds both

active and inactive items – therefore there is a need to filter out inactive items. The database table

has a column for the position where the order of the posts created by the user will be stored.

Therefore, the items will be ordered by this position number to display it correctly and if the

position is equal to NULL, it will be displayed in our inactive list.

Code Snippet 1 shows how the data will be displayed. Mapping through the items makes them

visible in the Masonry Component. Each item is a so-called Card component which hold different

information depending on where it will be displayed.

Code Snippet 1 Masonry

The card component (see Code Snippet 2) holds all our individual posts and processes them

depending on where they are used. At the time being this component occurs in four places in our

dashboard and editor – the first one being in our dashboard, the second and third one in our

editor and the fourth one is the preview in the modal.

For our dashboard the most relevant types that are required are the column, which defines

whether the specific post should be a full-width post or not. We also need to know the type and

photo which will define how our post will look and whether a photo has been chosen for the post

or not.

Code Snippet 2 Card Component

 The reactions made with the Emoji Picker, dashboardId, user and his email are needed to display

all data correctly.

The data fetched is therefore our posts that were created, and the reactions made for those posts.

We also need to know who the current user is to save a possible reaction to a post. The reactions

are directly linked to a profile data table, and it is therefore possible to also display the username.

Code Snippet 3 Filtering data

The Dashboard Editor saves the position of the content. Therefore, the posts need to be retrieved

and before rendering them sorted in ascending order by position. In the next step, all objects that

do not have a position will be filtered out – as seen in Code Snippet 3 - as this means that the post

has been created but is currently inactive.

5.1.2 Logic of Dashboard Editor

The main user interface makes use of React Drag and Drop. For this, a npm package called react-

dnd was installed. If we take a closer look at the plan made in advance, it becomes clear that for

this editor three different drag and drop operations are needed. First, we want the user to be able

to drag and item from the left flexbox to the right one and back. The second feature we want to

accomplish is dragging items within the Masonry and being able to change their order. React-dnd

provides us with features that make it possible to accomplish both operations. To use react-dnd

we need to provide the area / item that we want to be draggable and a droppable area where the

item is allowed to be dropped. We also need to define what data will be transferred and what we

want to do with this data. (React DnD, n.d.) An example of this can be seen in Code Snippet 4.

Code Snippet 4 React-dnd

In our example, all data related to our card item is transferred. A function (addImageToBoard) is

used to add the card to the list it is supposed to be appended to. It can be defined what kind of

item should be accepted and the drop area has to be named accordingly. Using drag and drop to

only change the order of items, we receive the new index of the item and can thus save the

position according to our item list Array. The inactive items also have a small icon on the top to

either edit the post or delete it all together.

The Dashboard Editor gives us the possibility to press a button to create a new post. This opens a

modal which entails our editor. It is mainly divided into three parts: in the upper area we have a

Selector Component which shows us seven different styles for our post to choose from, followed

by the React Draft Wysiwyg (npm package react-draft-wysiwyg) and another selector component

to choose a photo. In the bottom area we get shown a preview of our created post with the text

added in the editor being displayed in real-time. The Selector Component with the styles uses

almost the same logic throughout the entire application, the only difference being whether a

photo can be added and whether reacting with Emojis should be possible or not. If we look back at

our Card Component, we can see that it requires a value called type. This defines which of the

seven is supposed to be rendered.

Content entered in the editor will be saved in in our MySQL database as a string containing raw

html. It can then be parsed back to HTML that will be compiled which means that it keeps all its

formatting, such as bold text or colouring decided by the author who was using the editor. (Html-

to-Draftjs, n.d.)

When creating a new post, it needs to be identified whether this is a newly created post or an

update to a previous post. If the user presses the edit icon, the state of updating is set to true and

according to this either a request to update or create to our backend API is sent. If creating or

updating a post, this information is rendered in the frontend of our application. There are two

variables to store our data called itemList and board. itemList stores our inactive or recently

created post, board those that are supposed to be shown on the dashboard.

Code Snippet 5 Updating a post

Updating a post (Code Snippet 5) therefore requires us to show the modal and send forward the

type, id and content. The type identifies which styled component should be rendered in the

preview, the id is relevant for knowing which post exactly we are dealing with, and the content is

the information the user previously entered into the text editor. setUpdate needs to be set to true

to true which will tell our function for creating the post how to handle the request. For deleting a

post, the user gets shown an alert to confirm whether he really wants to delete the post. For

handling the request, only the id of the current post is required.

Code Snippet 6 Axios Request example

All of our API requests are handled in a separate folder and files called service. This needs to be

imported in the file where the functions will be used. In Code Snippet 6 we can see the fetch

request I created for getting posts. I am using axios for this – the most important aspect is that I

need to add our Authorization Headers. These will not be described in detail in this thesis as they

were not developed by me, but a short introduction is that it identifies what kind of user is trying

to access a page or make a request. As of now, the user types are admin, HR, and regular user. In

our Dashboard, we probably only want admins and HR to be able to create posts to the

Dashboard, but the backend also allows adding more user types if needed.

5.1.3 Emoji Picker component

For the Emoji Picker component, a npm package called emoji-picker-react was used. It provides us

with a standard Emoji Picker that has the functionality to save the chosen Emoji in a React State. It

has an onClick event to update this state. (Emoji-Picker-React, n.d.) Figure 15 shows the idea of

rendering the chosen Emojis as a reaction to a post by the user. Multiple Emojis should be

summarized, and a number be displayed next to them – by hovering over a chosen Emoji we can

see an overlay giving us the names of the users having reacted. If a user reacts twice, the emoji

should be replaced by the new reaction.

Figure 15 Emoji Picker

To achieve this the Emoji Picker has been created as its own component that can be added to our

Card Object. Therefore, the data is fetched in the Editor itself but processed it in the component to

provide reusability if so desired. Our Emoji consists of an id, the emoji itself, the dashboard it is

associated with and the profiles that have reacted to it. It also provides a light and dark mode

depending on the style of the post which slightly changes the coloring of the interface. Saving a

reaction is rather straight forward but rendering the view has some complexity – we need to

consider that we receive a list of all reactions and therefore need to write functions to check for

double occurrences and to save the usernames. A filter function is used to get the reactions that

are relevant to our post by comparing the dashboard id.

Code Snippet 7 Counting Occurrences

A reduce function is used count the amount of double occurrences and the result is an Array

containing the emoji followed by an Integer. The information is used to remove the duplicates and

add the usernames at the same time – the process of this can be seen in Code Snippet 8. The Array

of reactions retrieved from the backend is used to remove all duplicate emojis from the list – in

the next step I add the occurrences I calculated in the previous step to the Array, before finally

using our initial array again to add all the usernames to their respective emoji – without having

any duplicate Emoji entries anymore.

Code Snippet 8 Removing duplicated and adding names

Having done this, the result is an Array containing all the information needed to render our Emojis

in the component. The structure of the final array looks as follows:

Code Snippet 9 Emoji Array Structure

The emoji list can now be rendered in a desired way to achieve the look we want to. The names

included in the array can be used to show who has reacted to a post in a hovering overlay. For this

the HTML options onMouseOver and onMouseOut are used as they can identify when a user

hovers over a specific div – in our case an individual emoji.

5.2 Setting up database tables with TypeORM in NodeJS

Handling the data for the dashboard required us to make use of totally four database tables. Two

of these were developed previously by another developer: our user and his profile. Our user

database table stores the most basic information about our user, such as his email, phone

number, name and registration status and is linked to his profile. The profile has more detailed

information that is not directly relevant to our Dashboard, but it stores for example the profile

photo which may be used in the application and allows us to know who has reacted with emojis to

a post. During the process of handling our API requests I will make use of the relations to both of

those tables, but as they were not developed by myself, they will not be described in too much

detail.

Code Snippet 10 Entities Typeorm

The majority of columns created in typeorm are very basic columns without special relations to for

example other tables. The id of both the Dashboard and Reactions table is auto generated. Most

columns are either of type string, number or Boolean (TypeORM, n.d.). However, storing emojis

requires us to use a charset. In our case the emojis require using utf16, which includes enough bits

to display all the emojis our Emoji Picker provides. I also take advantage of TypeORM’s possibility

for making relations. Our Dashboard table has a OneToMany relation to our Dashboard Reactions,

whereas the Reaction tables has a ManyToOne relation to the Dashboard and the Profile. In this

case, OneToMany means that while there will always just be one post saved into our dashboard,

this post may have multiple reactions assigned to it. There can however be many reactions linked

to one post; therefore, ManyToOne is used. On the reactions table, onDelete needs to be set to

cascade. (TypeORM, n.d.) This makes it possible to delete a post in the dashboard table and will

delete all occurrences of reactions related to this post – this avoids not being able to delete

content from the data tables due to foreign constraints in MySQL.

Figure 16 MySQL Datatables

Figure 16 shows us how both data tables look like in Adminer – a tool for handling and visualizing

MySQL databases. The reaction datable has Indexes related to the Dashboard table and profile.

We receive the id, which allows us to easily join the tables to handle data. It can also be seen that

the dashboard_id and profile_id are foreign keys.

5.3 API endpoints for dashboard and reactions in NodeJS

As the serverless framework is used in our application all our routes need to be defined in our

serverless.yml file. Code Snippet 11 shows an example of configuring these paths. A handler needs

to be defined in which our API endpoints are created. For each possible request type, an event will

be created in which the method need to be specified (such as POST, GET, PUT, DELETE), the URL

path and in our case cors – which is mainly used for development purposes as it allows access to

our API from any origin - and authorizers, which are related to user authentication.

Code Snippet 11 Example from Serverless.yml file

For handling our dashboard, editor, and reactions all together seven API endpoints had to be

created, which will now be described in more detail. The functions used to handle the data and to

do typeORM operations will be explained in the next subchapters.

Our dashboard requires us to use at least five different types of requests. Firstly, two post

requests are needed. The first one for just saving the data after a post has been created and the

second one storing the order of the items created. Logically, a GET request is used to retrieve the

data, a DELETE request to delete posts and a PUT request for updating posts. Furthermore, a GET

and POST request for handling our reactions is created.

Code Snippet 12 Example API endpoint

Code Snippet 12 shows an example of how the routes in the handler need to be defined. The path

and method need to match the configuration in our serverless.yml file. A postService file has been

created to handle the data. We receive our request which is defined as a type of

ProxyIntegrationResult – which is defined by us and means that our request cannot fail or it will

throw an error. Our received body is our data sent from the frontend which we will receive as a

PostRequest – which is a TypeScript interface defined by us to validate that the data received is in

the exact format as expected. The item is returned after receiving it after handling our typeorm

operations which is not necessary in the deployed version but can help us during the development

process to see whether our operation was successful.

5.3.1 Functions for Dashboard

TypeORM provides relatively simple ways to do basic operations – all functions use async and

return a promise. Async is a concept in programming and JavaScript that makes sure that the

program will wait for data to be retrieved before the code will compile the next line – it is also very

common in making API calls in the frontend of the application, as the response time from the

server may vary. We first need to define the repository we want to work with, followed by the

operation we want to do. Repository.find() returns all items in the database table, whereas

findeOne allows us to search and delete() to delete by the primary key id (TypeORM, n.d.). An

example of how the posts are retrieved can be seen in Code Snippet 13.

Code Snippet 13 Typeorm find operation

Things become a little more complex once we want to save the order of our items in the

dashboard. Our frontend rearranges the array according to the position of the items on our

dashboard. Looking back at our MySQL tables we find the column position, which is the order our

items are arranged in. It can either be a number or null. Null automatically means that the item is

inactive now and therefore only visible in our editor but not in the dashboard itself. This implies

that the order needs to be created from scratch every time the user decided to save the

dashboard.

Code Snippet 14 Saving Dashboard Order

Code Snippet 14 shows the solution to this problem. As explained previously, items that are not

active have a position of null. I therefore use TypeORM’s integrated query builder and set all

positions to null that currently still have a number saved. Afterwards I make sure that we still have

any items in the Array and thus received any data from our Dashboard – without any posts, there

can’t be an order of posts. I go through the sorted Array and set the position accordingly

ascending from zero and save the position in the next step. By doing this the data that was fetched

can afterwards be sorted by position in the frontend and the order of posts will be maintained.

Code Snippet 15 Creating a new post

It is possible to create a new post with the data received. The connection needs to be established

first and it is possible to get the repository. Afterwards, the columns that need to be updated will

be defined (see Code Snippet 15) and finally, the entry will be saved to the database. The item is

returned only for debugging reasons and this is not necessary in a deployed version.

5.3.2 Functions for Reactions

Saving and retrieving reactions is slightly more advanced but we can make use of very beneficial

TypeORM features. For posting and updating I search for a duplicate entry of the same dashboard

post and profile in our Reactions data table – if the query returns undefined, I know that the

person does not have reacted to that specific post yet and can create a new entry in our database.

If the query returns something else than undefined – thus an existing item – I take that item and

update only the info on the emoji used.

Code Snippet 16 Typeorm QueryBuilder Leftjoin

To get all the items stored in our reaction table, I can take advantage of our OneToMany and

ManyToOne relation I set up when creating the MySQL tables as can be seen in Code Snippet 16.

This allows us to make use of joining tables and I can retrieve all the information I need at once – I

need all the information on the reactions, but they also need to include the profile they were sent

from and the dashboard – more specifically the dashboard post that they are attached to.

6 Results

The implementation of the project was successful, and the result is a fully functional feature.

While writing this thesis, there were a few functionalities that I would write different in the future

– some of them might still be changed in the near future. Both research questions can clearly be

answered with a yes, as it was possible to develop this feature.

The biggest learning curve for myself is that I would more often handle and structure the data

already in the backend before fetching it. A good example for this is the functionality of the Emoji

Picker. While it works, it would probably be more feasible to receive the already filtered data from

the backend including all the details we need, and this would furthermore improve readability and

reusability of the code and consistency. Considering that I worked on both the frontend and

backend, this option was feasible, but if there were separate developers the data processing

should probably be happening in the backend primarily, as the person working on the backend

knows about the data structure in more detail.

Also, at the time being, reactions cannot be deleted which is a feature that is being implemented

in the future. The feature could be developed further to allow deletion when clicking one’s own

emoji and adding a reaction when pressing a reaction of somebody else.

Handling multiple Card component in different places that partly need to look completely different

was challenging. In the future, I would definitely rather create a second Card component in places

where the CSS and logic differ immensely.

7 Summary

The goal of this thesis was to develop a dashboard and editor for an existing Intranet for Financial

Labs Oy. This was done using Full Stack JavaScript development with React in the frontend and

Node.js, Amazon Webservice’s Serverless framework and typeORM in the backend. It required

studying these frameworks in depth and understanding the previously built application which

helped to understand the structure of the code and requirements.

The application works as expected and all the main features were implemented successfully,

giving it the basic functionality needed.

The project was successful, but there remain details that can be developed in the future. This

includes CSS improvements, recreating the Emoji Picker to work more like comparable Pickers that

are widely available, allowing the user to add a reaction by clicking on someone else’s reaction and

deleting a reaction if so desired.

References

AWS Serverless Application Repository—Amazon Web Services. (n.d.). Amazon Web Services, Inc.

Retrieved September 27, 2022, from

https://aws.amazon.com/serverless/serverlessrepo/

Components and Props – React. (n.d.). Retrieved September 9, 2022, from

https://reactjs.org/docs/components-and-props.html

Compute Services—Overview of Amazon Web Services. (n.d.). Retrieved September 27, 2022, from

https://docs.aws.amazon.com/whitepapers/latest/aws-overview/compute-

services.html#aws-lambda

Conditional Rendering – React. (n.d.). Retrieved October 10, 2022, from

https://reactjs.org/docs/conditional-rendering.html

Context – React. (n.d.). Retrieved October 10, 2022, from https://reactjs.org/docs/context.html

Crowder. (2020). JavaScript. John Wiley & Sons, Inc.

Discuss the history of MySQL. (n.d.). Retrieved September 27, 2022, from

https://www.tutorialspoint.com/discuss-the-history-of-mysql

Documentation—Everyday Types. (n.d.). Retrieved September 9, 2022, from

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html

Emoji-picker-react. (n.d.). Npm. Retrieved November 7, 2022, from

https://www.npmjs.com/package/emoji-picker-react

Getting Started | Axios Docs. (n.d.). Retrieved November 7, 2022, from https://axios-

http.com/docs/intro

Hooks at a Glance – React. (n.d.). Retrieved November 6, 2022, from

https://reactjs.org/docs/hooks-overview.html

Html-to-draftjs. (n.d.). Npm. Retrieved November 7, 2022, from

https://www.npmjs.com/package/html-to-draftjs

Introducing Hooks – React. (n.d.). Retrieved September 9, 2022, from

https://reactjs.org/docs/hooks-intro.html

JavaScript | MDN. (n.d.). Retrieved September 8, 2022, from https://developer.mozilla.org/en-

US/docs/Web/JavaScript

Knorr, E. (2018, August 17). Interview: Brendan Eich on JavaScript’s blessing and curse. InfoWorld.

https://www.infoworld.com/article/3294999/interview-brendan-eich-on-javascripts-

blessing-and-curse.html

Layton, M. k., Ostermiller, S. J. & Kynaston, D. J. (2020). Agile project management for

dummies (3rd edition.). John Wiley & Sons, Inc.

Microsoft. (n.d.). How Node.js works—Training. Retrieved September 29, 2022, from

https://learn.microsoft.com/en-us/training/modules/intro-to-nodejs/3-how-works

MySQL Introduction. (n.d.). Retrieved November 6, 2022, from

https://www.w3schools.com/MySQL/mysql_intro.asp

Nandaa, A. (2018). Beginning API development with Node.js. Packt Publishing.

Prettier · Opinionated Code Formatter. (n.d.). Retrieved November 7, 2022, from

https://prettier.io/index.html

React DnD. (n.d.). Retrieved November 7, 2022, from https://react-dnd.github.io/react-dnd/about

React Tutorial: An Overview and Walkthrough. (n.d.). Retrieved September 9, 2022, from

https://www.taniarascia.com/getting-started-with-react/

Sarkar, A. & Shah, A. (2018). Learning AWS: Design, build, and deploy responsive applications using

AWS cloud components (Second edition.). Packt.

Select using Query Builder | TypeORM. (n.d.). Retrieved October 10, 2022, from

https://typeorm.io/select-query-builder#

Serverless Computing—AWS Lambda—Amazon Web Services. (n.d.). Amazon Web Services, Inc.

Retrieved September 15, 2022, from https://aws.amazon.com/lambda/

Six advantages of cloud computing—Overview of Amazon Web Services. (n.d.). Retrieved

September 27, 2022, from https://docs.aws.amazon.com/whitepapers/latest/aws-

overview/six-advantages-of-cloud-computing.html

Stack Overflow Developer Survey 2022. (n.d.). Stack Overflow. Retrieved September 8, 2022, from

https://survey.stackoverflow.co/2022/?utm_source=social-

share&utm_medium=social&utm_campaign=dev-survey-2022

TypeORM - Amazing ORM for TypeScript and JavaScript (ES7, ES6, ES5). Supports MySQL,

PostgreSQL, MariaDB, SQLite, MS SQL Server, Oracle, WebSQL databases. Works in

NodeJS, Browser, Ionic, Cordova and Electron platforms. (n.d.). Retrieved October 10,

2022, from https://typeorm.io/

Vanier, E., Birju Shah, Tejaswi Malepati, Malepati, T. & Shah, B. (2019). Advanced MySQL 8. Packt

Publishing.

What is Amazon Cognito? - Amazon Cognito. (n.d.). Retrieved September 27, 2022, from

https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-

cognito.html

What is JavaScript? - Learn web development | MDN. (n.d.). Retrieved September 8, 2022, from

https://developer.mozilla.org/en-

US/docs/Learn/JavaScript/First_steps/What_is_JavaScript

What is Node.js: A Comprehensive Guide. (n.d.). Simplilearn.Com. Retrieved September 27, 2022,

from https://www.simplilearn.com/tutorials/nodejs-tutorial/what-is-nodejs

Annex 2 / 1

Annex 1: Material management plan

Development project:

During the development project, information and to-do lists were kept in Obsidian, which stores

data only on the personal drive, in which technical information about the project is collected. This

information is analyzed for the thesis. The project and to-do lists are stored on drive C of the

author's computer and is regularly backed up to an external hard drive. The information and

project are kept at station C for at least one year after the completion of the thesis. The project is

also backed up in the company’s Bitbucket account.

