

MESSAGE BROKERS AND RABBITMQ IN

ACTION

Tsuri Kamppuri

Thesis

May 2014

Degree Programme in Media Engineering

Technology, communication and transport

DESCRIPTION

Author(s)

Kamppuri, Tsuri

Type of publication

Bachelor’s Thesis

Date

15.5.2014

Pages

40

Language

English

 Permission for web

publication

(X)

Title

MESSAGE BROKERS AND RABBITMQ IN ACTION

Degree Programme

Media Engineering

Tutor(s)

Manninen, Pasi

Assigned by

Paytrail Oyj

Abstract

The objectives of this bachelor’s thesis were to study the concept of messaging and messaging

systems in the domain of Information Sciences, and to research the applicability of RabbitMQ for

Paytrail Oyj as a replacement for pre-existing systems.

The thesis discusses the history of messaging and message queues, and the topologies, patterns,

internal operational models, and usable protocols for messaging brokers. Theoretical part also

compares RabbitMQ and ZeroMQ messaging solutions. The main focus of message broker

applications was in RabbitMQ’s suitability for Paytrail’s needs as a payment service provider.

The practical section researched the substitutability of a web API example with a message queue

solution. The section covered the benefits and different stages of the implementation through

command line examples. At the end of the practical part additional examples were given where

message queues could be useful from the perspective of Paytrail Oyj.

The results of the thesis were a theoretical information package to support the selection of a

message broker solution and instructions for introducing RabbitMQ into an existing system coupled

with additional ideas on other suitable applications for message queues. The additional ideas were

made from the perspective of the client directly applicable for future development by the client.

The analysis and conclusion stage of the thesis weighed the pros and cons of RabbitMQ and

ZeroMQ for different purposes and especially for Paytrail Oyj through their features, strengths and

weaknesses, and the experiences from web API replacement implementation. As the final results

RabbitMQ was found to be the best message queue solution for the client’s purposes. By following

the additional application ideas and examples for implementation, the client can begin mapping the

use of message queues in their system and working on the implementation.

Keywords

messaging, message queue, message broker, RabbitMQ

 Miscellaneous

KUVAILULEHTI

Tekijä(t)

Kamppuri, Tsuri

Julkaisun laji

Opinnäytetyö

Päivämäärä

15.05.2014

Sivumäärä

40

Julkaisun kieli

Englanti

 Verkkojulkaisulupa

myönnetty

(X)

Työn nimi

MESSAGE BROKERS AND RABBITMQ IN ACTION

Koulutusohjelma

Mediatekniikka

Työn ohjaaja(t)

Manninen, Pasi

Toimeksiantaja(t)

Paytrail Oyj

Tiivistelmä

Opinnäytetyön tavoitteena oli esitellä viestimisen konseptia ja viestijärjestelmiä

tietojenkäsittelytieteen viitekehyksessä sekä tutkia RabbitMQ-viestijonototeutuksen soveltuvuutta

Paytrail Oyj:n tarkoituksiin korvaavana tekniikkana.

Opinnäytetyössä käytiin läpi viestimisen ja viestijonojen historia, viestijärjestelmien topologioita ja

malleja sekä sisäistää toimintaa ja käytössä olevia protokollia ja vertailtiin kahta eri

viestijärjestelmätoteutusta. Ohjelmistoissa keskityttiin tutkimaan RabbitMQ:n soveltuvuutta

erityisesti Paytrail Oyj:n näkökulmasta maksupalveluntarjoajana.

Toteutusosassa tutkittiin esimerkkisovelluksen korvattavuutta RabbitMQ-viestijonototeutuksella.

Toteutuksessa käytiin läpi implementaation hyödyt ja eri vaiheet komentoesimerkein. Toteutusosan

lopussa esiteltiin myös muita mahdollisia Paytrail Oyj:n tarkoituksiin soveltuvia kohteita, joissa

viestijonoista voisi olla hyötyä.

Opinnäytetyön tuloksina oli viestijonosovelluksen valintaa tukeva teoreettinen osio ja suunnitelma

ja ohje olemassa olevan toteutuksen korvaamiseen RabbitMQ-viestijonototeutuksella sekä ideoita

viestijonojen muihin käyttökohteisiin. Käyttökohdeideat olivat tilaajan näkökulmasta suunniteltuja

ja suoraan hyödynnettävissä jatkokehityksessä.

Pohdintaosassa punnittiin viestijonojen ja tarkemmin RabbitMQ:n ja ZeroMQ:n käytettävyyttä

Paytrail Oyj:n tarkoituksiin ominaisuuksien, hyötyjen ja haittojen sekä esimerkki-implementaation

kautta. Lopputuloksena todettiin RabbitMQ:n soveltuvan toimeksiantajan tarkoituksiin parhaaksi

vaihtoehdoksi. Opinnäytetyön käyttökohdeideoita ja toteutusesimerkkejä seuraamalla tilaaja pystyy

kartoittamaan viestijonojen toteutuskohteet järjestelmässään ja aloittamaan niiden toteuttamisen

Avainsanat (asiasanat)

messaging, message queue, message broker, RabbitMQ

 Muut tiedot

1

Contents

TERMS AND ABBREVIATIONS ... 4

1 INTRODUCTION ... 6

1.1 Thesis background ... 6

1.2 Paytrail Oyj ... 7

1.3 Research mission and objectives ... 8

1.4 Research methodologies ... 8

1.5 Information sources .. 9

2 MESSAGING ... 10

2.1 Messaging in information sciences ... 10

2.2 Messaging topologies .. 11

2.3 Messaging patterns ... 14

3 MESSAGE BROKERS ... 16

3.1 History .. 16

3.2 Features and benefits ... 17

3.2.1 Synchronous and asynchronous operations ... 17

3.2.2 Efficiency ... 18

3.2.3 Scalability ... 18

3.2.4 Abstraction .. 19

3.2.5 Monitoring and fault tolerance ... 20

3.2.6 Isolation and extendibility ... 20

3.2.7 Security .. 21

3.3 Protocols ... 21

3.3.1 Advanced Message Queuing Protocol .. 22

3.3.2 STOMP ... 23

4 MESSAGE QUEUE SOLUTIONS ... 24

2

4.1 RabbitMQ ... 24

4.1.1 History ... 24

4.1.2 Anatomy and features ... 24

4.2 ZeroMQ .. 25

4.2.1 Features ... 26

4.2.2 Strengths and weaknesses .. 26

5 INTRODUCING RABBITMQ INTO EXISTING SYSTEM .. 28

5.1 Existing system ... 28

5.2 Replacement steps ... 29

5.3 Implementation .. 30

5.3.1 Clustering... 31

5.3.2 Load balancing ... 32

5.3.3 Monitoring ... 33

5.3.4 Security .. 33

5.4 Other scenarios .. 34

5.4.1 Task scheduling ... 34

5.4.2 Batch processing ... 34

6 RESULTS AND ANALYSIS .. 36

6.1 Messaging in production .. 36

6.2 RabbitMQ from Paytrail’s perspective ... 36

REFERENCES ... 38

FIGURES

Figure 1. Web inspector showcasing asynchronous UX in Gmail 11

Figure 2. Master server and clients in a hub topology... 12

Figure 3. Publishes and subscribers connected to a service bus 12

Figure 4. Pipeline topology ... 13

3

Figure 5. Clients connected to each other in a peer-network topology 13

Figure 6. Federated service bus, hub and peer-network topologies 14

Figure 7. Short timeline of message queuing (Videla & Williams 2012, 5) 17

Figure 8. The main concepts of RabbitMQ (Rotem-gal-oz 2012) 25

Figure 9. Processing benchmarks of messaging brokers (Hadlow 2011) 27

Figure 10. Existing application architecture ... 28

Figure 11. Future system architecture design with RabbitMQ 30

TABLES

Table 1. High volume processing speeds of messaging brokers (Salvan 2013) 18

4

TERMS AND ABBREVIATIONS

AMQP

Advanced Message Queuing Protocol, a binary-format open messaging

protocol

Binding

Entity that creates a relationship between a message queue and an exchange

Broker

Program that provides messaging services

Consumer

Broker user that pulls messages from queues

Erlang/OTP

Erlang is a programming language created to the development of highly

concurrent and fault-tolerant applications for telephony applications by

Ericsson. Open Telecom Platform (OTP) is the open source distribution of

Erlang and an application server written in Erlang

Exchange

Entity within the server receiving messages from producers and optionally

routing these to message queues

JMS

Java Message Service API, a messaging standard for communication between

components based on Java Enterprise Edition

Key-value store

Data storage that uses a dictionary type data model where data is represented

as key-value pairs

Message

Collection of data that is sent between systems

MVC

Architectural software design pattern for segmenting code into Models, Views

and Controllers

Queue

Message storage

5

Producer

Broker user that pushes messages to queues

Round-robin

Algorithm for scheduling processing without prioritising

Routing key

Virtual address that an exchange may use to decide how to route a message

Software Bus

Software architecture model for connecting software modules

Telnet

Protocol for providing text-based communications between machines over a

network later inspiring protocols like SSH

UX

User experience

vhost

Virtual host. In RabbitMQ’s case these are addresses within the broker server

WAN

Network that covers a large area and large number of smaller networks

6

1 INTRODUCTION

1.1 Thesis background

The idea of ensuring the integrity of data transmissions has been etched into the very

building blocks of the global network that we know today as the Internet. It is so

crucial in fact that the concept of acknowledging a packet –an enclosed digital

message– transfer is part of multiple transportation layer protocols, such as the

Transmission Control Protocol designed already in 1974 (Cerf, Dalal & Sunshine 1974).

Transfer acknowledgment and data fidelity also play a key role in Message Oriented

Middleware (MOM):

A MOM system assures that packets of data or messages are delivered from

one destination to another regardless of the state of the network or the

recipient of the message. If the message can not be delivered to the receiver at

the time the sender sends it, the message will wait in a queue until it can be

delivered by channels that connect the MOM services together. The sender and

receiver have no knowledge of each other’s physical location or platform

specifics. (Van de Putte, Adinarayan, Haddon, McCarty, Peltomäki & Quixchan

2005, 12.)

Messaging middleware has its place also in smaller scenarios, but the nature and

exponential growth of the Internet have made message brokers almost a required

component in any larger systems. The broad concept of messaging is simple at first

glance but the tackled problems are complex in similarly complex environments and

choosing and implementing just the right messaging solution for the task can be

arduous and require domain expertise to actually utilise effectively.

The principles and patterns of messaging are useful throughout the various fields in

the domain of information sciences. This thesis will discuss them mainly in the

context of software architecture and Internet applications in particular but also veer

towards general notions on messaging for the sake of understanding how various

message brokers operate on internal level. It will explain the intricacies behind

7

message oriented systems and then zoom in on specific message broker products as

the solution to decoupling challenges presented in the following chapter.

1.2 Paytrail Oyj

Paytrail Oyj was originally known as Suomen Verkkomaksut (“Finnish

Webpayments”) when it was founded in 2007 in Jyväskylä for the purpose of

providing businesses a centralised channel for starting to accept payments online.

Paytrail was the first of its kind in Finland to receive payment institution license.

As the customer base began expanding to other countries, the new name along with

a new brand were developed and adopted. Today Paytrail has over 4000 business

customers in over 10 countries, more than 350 partners, and a recently launched

payment solution by the name of Paytrail Account. Their systems handle tens of

millions of euros each month. (Paytrail – Our Story n.d.)

The subject for this thesis was proposed by Paytrail when the company needed a

research of potential solutions for separating and isolating applications in order to

eliminate service upgrade down-time and increase updatability and fault-tolerance

through asynchronic decoupling of individual components.

The separation of services could be achieved through various means but since the

company already had previously invested resources in message brokers, they were a

natural choice as the subject of this research. The tentative choice of RabbitMQ was

made by the company's software architecture team.

This thesis provides Paytrail invaluable insight into the prospects that message

broker solutions can provide in various areas, including but not limited to application

decoupling, transaction reliability and fault monitoring. The validity of RabbitMQ as

the best solution for Paytrail’s case was also assessed.

8

1.3 Research mission and objectives

The objective of this thesis is to do research on the concept of messaging and to

compare different message brokers and message queue solutions. The theoretical

part of the thesis studies message queue solutions’ maturity and applicability in

production environments as a method of separating services to improve availability

and to reduce complexity. The practical section of this research will be performed

from the viewpoint of existing services so that the results can serve as a direct action

plan for Paytrail. Through feature analysis and a case study this thesis determines if

the tentatively chosen message broker RabbitMQ is a fit choice for Paytrail.

In the context of this thesis messaging is viewed mostly from the perspective of

message brokers that operate over the network. According to a definition by

Margaret Rouse (2005), interprocess communication can also be implemented using

semaphores, sockets or shared memory.

1.4 Research methodologies

The research is divided into two parts: theoretical background study and practical

implementation steps. The theoretical part studies the history, purpose and

functionality of messaging on a broad level, and then continues to narrow down on

four different message broker products. The practical implementation part discusses

actual use cases for message brokers and takes a closer look at a situation where a

web API has been created between services and a message queue is brought in to

decouple them.

The viability of each message queue application presented in the thesis is assessed

by examining the benefits and disadvantages of each product. The applicability of the

premeditated product choice for Paytrail, RabbitMQ, is further delved into via a web

API replacement scenario.

9

1.5 Information sources

This thesis uses both digital and analogue sources as references. Digital sources

include e-books, electronic product manuals and tutorials, blog articles, forum

answers, and presentation slides and recorded videos of presentations. Some of the

e-books are privately owned copies, some of them are licensed for educational use

via faculty credentials, and some of them are partly or fully accessible to the public.

For this thesis, analogue sources refer exclusively to books.

10

2 MESSAGING

2.1 Messaging in information sciences

Messaging has become a ubiquitous concept since its manifestation in the world of

computing in the 1980s. One of the most identifying distinctions among messaging

systems is whether they use synchronous or asynchronous message passing.

Synchronous messaging

Synchronous messages are transactions that block further process until the

transaction finishes. For software developers the concept of synchronicity is well-

known from object oriented paradigms where operations are executed in the

specified order unless specifically instructed otherwise. Maryka (2009) notes that

historically the World Wide Web has been largely synchronous until the recent shift

from websites to web applications that process and display data transported

synchronously over HTTP in asynchronous fashion as shown in Figure 1.

Asynchonous messaging

In contrast, asynchronous messages do not require immediate response from the

message handler. Asynchronous messaging can provide scalability by delaying data

transfers, post-processing capabilities by providing filtering pipelines (see Chapter

2.2), and resistance against connectivity issues by persisting messages until a

consumer is able to receive the message. On the negative side asynchronous

messaging is more complex to handle and implement requiring additional

components to validate transaction statuses. (Janssen n.d.)

Figure 1 reveals the asynchronic nature of today’s web through timeline inspection:

while each HTTP query in itself is synchronous, the holistic user experience is

asynchronous as the user interface is free to update while the data is transferring in

the background.

11

Figure 1. Web inspector showcasing asynchronous UX in Gmail

Messaging over the network

A classic example of a network messaging situation is email: an author sends a

message at their desired time, and the recipients fetch and read the message at the

time of their choosing. Just like in the real world there are delivery services such as

UPS or Fedex, there are digital services in-between stakeholders to store and pass

messages on. Sometimes message brokers are referred to as message oriented

middleware, a type of intermediary between services or applications (Van de Putte &

al. 2005, 12).

2.2 Messaging topologies

In the domain of messaging, a topology describes how connections between nodes

are implemented. Understanding these operational differences can help grasp what

kind of messaging solutions are best suited for different topics and scenarios.

Client – Server (hub)

Client – Server is a commonly used topology in routing data from single publisher to

subscribers (Figure 2), also known as the store-and-forward pattern (Richardson

2008). This topology is the cornerstone of the “publish and subscribe” pattern when

scalability is a requirement.

12

Figure 2. Master server and clients in a hub topology

Service Bus

Service busses are used for example in asynchronous applications in which messages

are dropped onto a lane so that consumers of these messages can receive and

respond to them at a later time (Figure 3). Service bus architecture provides great

flexibility and de-coupling capabilities in the form of message storing and delayed

messaging as is required for example in the case of emailing systems.

Figure 3. Publishes and subscribers connected to a service bus

13

Pipeline

In the article Messaging Patterns in Service-Oriented Architecture, Part 1 Soumen

Chatterjee (2004) states that a pipeline topology is used in systems where a message

may pass through multiple messaging middleware servers that all run an action on

the message be it consuming, redistributing, or filtering it (Figure 4). This kind of

system is sometimes referred to as flat system. Pipes are an effective way to

sequence a task into smaller sub-tasks for independent, organized processing.

Figure 4. Pipeline topology

Peer Network

A peer network is, as the name suggests, a network of equally operating clients that

share messages between them (Figure 5). Peer messaging is commonly encountered

in peer-to-peer file sharing and private chat connections.

Figure 5. Clients connected to each other in a peer-network topology

14

Federation and Cloud

Federation and clouds step into the picture when one topology is not enough (Figure

6). Broyer (2011) defines a federated cloud effectively as a union of clouds that act as

black boxes around architectures and services joining together various topologies.

Clouds are generally an effective way of abstracting implementation details between

two different systems, as could happen for example between systems using IBM

WebSphere MQ and Microsoft Azure AppFabric Service Bus (Cloud Platforms &

Integration n.d.).

Figure 6. Federated service bus, hub and peer-network topologies

2.3 Messaging patterns

Patterns are the rules, the behavioural models of message brokers. They describe

how a message broker functions: who can send messages, who receives what, in

which format and when, and what happens before, after and during when a message

is transported. There are some common operational patterns such as publish–

subscribe and request–reply but message broker applications tweak and adapt

patterns to best service their purposes.

15

Message type and channel patterns describe different varieties of messages and the

attributes of the message delivery systems. Routing and service consumer patterns

describe addressing mechanisms and behaviours for servers and clients. Contract

patterns define interactional specifications between clients and servers, and

construction and transformation patterns dictate what format goes in and what

format comes out of the other end. (Chatterjee 2004.)

Publish-subscribe

Chatterjee (2004) defines publishers as service providers pushing messages to all

interested consumers that have subscribed to the bus or channel. According to him a

copy of the original event is replayed to each recipient, and the message is

considered published only when all of the subscribers have been notified. Publish–

subscribe model is based on the Observer Pattern and it can be useful for testing,

system management and error solving.

Request-response

The pattern of requests and responses, or replies, is one of the basic methods of

message exchange between information systems: a client sends in a request, and the

server sends back a response based on the received request. This is largely how for

example web service calls over HTTP operate. Pieter Hintjens (n.d.) states in

ZeroMQ’s official guide that request-reply pattern is likely the simplest way to use

ZeroMQ where it is used for remote procedure calls and heavy load scenarios.

No-subscribers

Technically it is possible to use queues as final destinations without traditional

consumers attached to them for example for the purposes of monitoring and

gathering statistics. This pattern is not strictly without subscribers as in order to read

the queues, broker plugins and add-ons or ephemeral one-time connections are

required to act as message consumers. Instead of reading the actual messages

themselves, the subscribers may consume messaging metadata like processing rate,

and message size and message destination distribution for example.

16

3 MESSAGE BROKERS

3.1 History

Message broker products are the middleware that embody different messaging

solutions. In 1983 Vivek Ranadivé from Teknekron Software Systems began working

on an idea based on the ideals of a Software Bus to enable applications to share data

in a standard fashion. That work would later be referred to as “The Information Bus”.

Already in 1986 his ideas were put to use when Goldman Sachs, an American

investment banking firm, launched cooperation with Teknekron to find solutions for

the trading floor of the future. (Vivek Ranadivé – Teknekron Software Systems 2014.)

For nearly two decades the domain of message exchange was left for proprietary

vendors and proprietary formats. Throughout the 1980s and 1990s message queuing

kept evolving but in isolation since commercial message queue vendors strived for

interoperability between client applications rather than worked on standardised

interfaces for their message queuing products to utilise. In their book RabbitMQ in

Action Videla and Williams (2012, 4) say that vendor lock-ins were largely the reason

why message queuing did not find its way into the public’s favour during those years

because they made it unviable option for smaller companies.

As the demand for interoperability grew alarmingly beyond the capabilities of

existing solutions at the time, new contenders began emerging. The market

witnessed the rise of open standard specifications like Java Message Service API

(JMS) and Advanced Message Queuing Protocol (AMQP). The field of messaging had

rapidly evolved into one with options for multiple vendors across different

applications inside and across systems. (Videla & Williams 2012, 5)

Figure 7 shows a brief timeline of message queuing.

17

Figure 7. Short timeline of message queuing (Videla & Williams 2012, 5)

3.2 Features and benefits

3.2.1 Synchronous and asynchronous operations

Sometimes immediate action is required, sometimes the timing is unimportant, and

sometimes a delayed execution is desired. Message queues can cater both ends of

the spectrum with synchronous and asynchronous configurations.

Paddy Foran lists in his blog article Top 10 Uses For A Message Queue (2012)

asynchronous communication as one of the top ten reasons to use message queues:

A lot of times, you don't want to or need to process a message immediately.

Message queues enable asynchronous processing, which allows you to put a

message on the queue without processing it immediately. Queue up as many

messages as you like, then process them at your leisure.

Synchronous message queues based on time serve well as task schedulers because

brokers can be set to ensure that queue items are handled in given order (Foran

2012). The benefit of doing this over something like traditional cron jobs is not only

guaranteed execution order but also the configurable built-in logic of resuming

execution of a task if errors do occur.

18

3.2.2 Efficiency

Message queues can be very useful in creating scenarios based on batches. In

situations where connections are limited or costly, or the data to transfer comes in

such small portions that the overhead of transferring the data as single items would

be too much, a message queue can be created to store and forward the data in time

or amount based intervals, enabling the optimisation of data exchanges in regards to

bandwidth.

Table 1 shows the processing speeds of different message broker solutions using

AMQP and STOMP protocols to simultaneously enqueue and dequeue 20 000

messages each of which 1 KB in size. The benchmark was performed on a consumer-

grade laptop with brokers running on default configurations. The table uses the

following abbreviations:

• PET: Persistent Enqueue Time

• PDT: Persistent Dequeue Time

• TET: Transient Enqueue Time

• TDT: Transient Dequeue Time. (Salvan 2013.)

Table 1. High volume processing speeds of messaging brokers (Salvan 2013)

Engine PET (s) PDT (s) TET (s) TDT (s)

ZeroMQ_Transient – – 0.411023 6.957397

RabbitMQ_AMQP 9.184524 10.715612 7.266415 7.896451

ActiveMQ_STOMP 32.055833 35.928055 31.936827 34.554975

RabbitMQ_STOMP 34.955998 38.692212 32.89588 36.465085

Apollo_STOMP 40.542319 48.187756 34.44997 39.242244

QPID_AMQP 36.771103 51.162925 6.826391 6.949398

HornetQ_STOMP 65.988774 66.11078 64.582694 64.614696

3.2.3 Scalability

Scaling is divided into three different categories in an article Scaling the Message

Queue Service by Oracle (2010):

19

• Vertical scaling

Processing power is increased through hardware additions or system

changes that expand available resources

• Stateless horizontal scaling

Brokers and queues are added and load is redistributed over the new

network

• Stateful horizontal scaling

Brokers are clustered either through a master broker or shared state

database. Brokers can occupy shared location or they can spread over

a network.

In a blog article Spikability - An Application's Ability to Handle Unknown and/or

Inconsistent Load Travis Reeder (2012) concludes that message queues are a simple

and effective way of dealing with spiky behaviour. Queue processors operate at the

maximum rate they are able to while being restrained by a set of boundaries from

their host system so traffic spikes will not befall on systems and tip them over. When

a queue fills up, its load can be distributed horizontally over multiple new queues.

This balancing can be done manually as needed, or automatically on a cloud based

solution such as IronMQ.

3.2.4 Abstraction

A message broker can hide away not only message destinations but also message

formats providing a layer of abstraction on top of the application logic. This allows

the broker’s publishers to leave the responsibility of formatting and routing to the

broker. For consumers the static front enables future flexibility in regards to

application location and data formats, meaning that applications using data from the

queue can be moved around and changed with ease.

For administrators solutions by third-party vendors can bring a sense of relief

because as Richardson, Radestock and Garnock-Jones (2008, 16) put it in their

20

presentation Introduction to RabbitMQ, maintenance is taken care of by the vendors.

If there is a known issue in the message broker –a bug or performance flaw– the

vendor will fix it. Or, if the product is open source and the vendor is too slow to act or

reluctant to fix the issue, users can take the source code and fix the problem

themselves.

Clustered messaging is extremely complex to implement from scratch. Using a

message broker by a known vendor with an existing community lets its users focus on

application logic and let vendors and the powerful communities think of message

transfers. (Richardson & al. 2008, 31.)

3.2.5 Monitoring and fault tolerance

Message queues expose bottlenecks within a system through message processing

rate. If the application has been architecturally dissected into granular pieces,

snapshots of the messages’ states throughout different queue processes can be used

to identify and analyse performance issues in business logics. (Foran 2012)

With message queues systems are resilient against partial system failures as a direct

effect of decoupling. Even if a process within message queues fails, like the process of

handling received messages for example, the message broker will still be able to

receive messages and process them later when the system recovers. (Foran 2012)

In a distributed architecture, should the message broker itself fail, the failure state is

universal to the whole system. This prevents discrepancies over application states as

nothing is moving forward before the issues are resolved and application's consumers

begin receiving new tasks from the queues.

3.2.6 Isolation and extendibility

By introducing abstraction layers to the system through message queues, it can be

grown organically and extended as new requirements are discovered and the system

21

specification matures. Foran (2012) suggests that message queues are a great way to

decouple applications and even data processing stages within applications.

Especially during development for the purpose of mocking values and ensuring

system stability in a range of different cases, it is crucial to be able to isolate not only

applications from each other but also data sources from their applications.

Messaging can provide just that: with other parts of the application being

independent from the data it receives, messages are easy to switch around, replay

for testing and analyse after processing (Pasker 2008, 8).

3.2.7 Security

Security features depend on the message broker product. In RabbitMQ security is

exercised through user accounts and access control lists. This allows handing over

some parts of access control to the message broker, especially in systems that talk

over publicly accessible services.

3.3 Protocols

For nearly two decades since the concept of service buses for applications was

introduced vendors tied their customers closely to their solution stack by using

proprietary, closed formats. If two vendors' applications were able to talk to each

other, the bridging was made on application level. (Videla & Williams 2012, 4.)

In the beginning of 2000s a few projects –most notably JMS and XMPP which would

later become a notable contender among instant messaging protocols– could

provide openly accessible messaging but the holy grail, an open messaging standard,

was yet to be discovered. The arrival of Advanced Message Queuing Protocol marked

a new era for open messaging, leading the way to other comparable specifications

like STOMP, Microsoft's MQ Telemetry Transport (MQTT) and Apache's OpenWire.

22

The following chapters will introduce one binary-based protocol, AMQP, and one

text-based protocol, STOMP. The main focus will be on AMQP due to its importance

both in the domain of message brokers but also in the founding of RabbitMQ.

3.3.1 Advanced Message Queuing Protocol

The computing world was in dire need of an open protocol for messaging because

messaging middleware market was stuck on outdated products that provided little to

no solutions for interoperability, service architecturing or virtualisation (Richardson

& al. 2008, 13–14). Advanced Message Queuing Protocol is one such direct result of

that need, and it was thus designed with portability in mind.

The driving force behind an open message exchange protocol was the bank industry:

“AMQP got started because a bank, JPMorgan Chase, realised that they were losing

money by locking themselves in in this way to multiple different vendors and thought

‘well wouldn’t it be easier if messaging was just plug and play like TCP and HTTP?’”

When they began working on AMQP in 2004, JP Morgan looked into open Internet

protocols like SMTP, HTTP and TCP for reference (RabbitMQ: An Open Source

Messaging Broker That Just Works 2008).

Today AMQP is developed by a joint AMQP Working Group consisting of financial

service providers Bank of America, Bloomberg, Credit Suisse, Deutsche Börse and

JPMorgan Chase, and technology providers Informatica, LogMeIn, Microsoft, Red Hat,

SITA, Software AG, US Department of Homeland Security and WSO2 (AMQP

Members n.d.). This division of responsibility has been the key to AMQP’s success

because it ensures that any message queue solution built on AMQP outlasts any

single supplier (RabbitMQ: An Open Source Messaging Broker That Just Works 2008).

The finalised version 1.0 specification of AMQP was released in October, 2012. It is

worth noting that while version 0.8 and 0.9 of AMQP are similar to each other,

version 1.0 is completely different. RabbitMQ implements version 1.0 through an

experimental plugin. (RabbitMQ - Protocol Compatibility n.d.)

23

3.3.2 STOMP

STOMP (stylised Stomp), or Simple/Streaming Text Oriented Messaging Protocol, is

an open interoperable wire format for message exchange with same driving

principles as AMQP. Like AMQP, it draws the roots of its design from simple and

popular protocols like HTTP and FTP. As is true for AMQP implementations, likewise

all Stomp clients can communicate with all brokers that implement the Stomp

protocol as per the specification, regardless of client technology – one can even

connect to a Stomp broker with a telnet client. Stomp currently stands at version 1.2,

released in October, 2012. (Stomp - The Simple Text Oriented Messaging Protocol

2012.)

Unlike AMQP, Stomp is fully text based format making it more analogous to their

common ancestor HTTP in regards to appearance. Textual representation increases

readability and simplicity at the expense of larger transfer payload due to verbosity.

Instead of queues, Stomp uses an FTP-like SEND semantic with a destination to which

consumers can subscribe to. Because destinations are not strictly mandated in the

documentation, Stomp brokers may have differently defined and supported

destinations. This makes porting code between brokers difficult. Stomp is, however,

relatively lightweight and well supported by an active community. (Piper 2013)

Stomp supports transactions that allow messaging to occur atomically (STOMP

Protocol Specification, Version 1.2, 2012).

24

4 MESSAGE QUEUE SOLUTIONS

Message brokers each come with their own set of features, formats and protocol

support. When asked how to choose a message queue solution, Dan Echlin (2013a)

reminds that knowing the strengths and weaknesses of at least a few different

messaging technologies is important because different products are best suited for

different scenarios. Messaging layer can be implemented using also other than

conventional message queue solutions, like Redis key-value store that is trending as

of May 2014 (DB-Engines Ranking of Key-Value Systems 2014), however, they can

require additional manual implementations that traditional message brokers would

handle automatically (Echlin 2013b). The following chapters will introduce two

message broker solutions.

4.1 RabbitMQ

RabbitMQ is a message broker solution by Pivotal Software written in Erlang/OTP. It

is fully open source and has a large open source community behind it. At the time of

writing RabbitMQ is at version 3.3.1 which was released on 29th of April, 2014.

4.1.1 History

The sparks that eventually led to the birth of RabbitMQ and the foundation of Rabbit

Technologies were ignited in the early 2000s. While working on caching Java objects

at Metalogic, Richardson came to learn what works in distributed computing

environments, and what companies want for those environments. In 2004

Richardson began working on the building blocks that would later manifest

themselves as RabbitMQ. (Videla & Williams 2012, 4–7.)

4.1.2 Anatomy and features

Each RabbitMQ server contains at least one node, and more frequently multiple in a

cluster configuration. Exchanges and queues comprise virtual hosts that are used to

25

partition broker data. Connections are made to virtual hosts on a RabbitMQ node

(see Figure 8). (Edelson 2011.)

Figure 8. The main concepts of RabbitMQ (Rotem-gal-oz 2012)

In an introductory article RabbitMQ and a Short Intro to AMQP Arnon Rotem-gal-oz

(2012) states that RabbitMQ exchanges can be temporary, auto-deleted or durable.

Exchanges support direct and fan-out, and header and topic-based routing schemes

for exchanges. Rotem-gal-oz continues that “queues, like exchanges cab [sic] be

temporary, auto-deleted or durable.”

In a blog article The Merit of AMQP (part I) Martin Sústrik (2013) states that almost

all messaging protocols have two functionally distinct layers: connection and broker.

Connection layer comprises any and all details related to connections between the

nodes in a messaging system, such as handshake and authentication procedures.

Broker layer or broker model defines what occurs to the messages in the queue

between endpoints.

4.2 ZeroMQ

ZeroMQ (often stylised as ØMQ) is an asynchronous messaging library or

concurrency framework geared towards performance. According to a definition by a

Stack Overflow forum member under the alias Julien as quoted by Pronschinske

26

(2013), “ZeroMQ is a very lightweight messaging system specially designed for high

throughput/low latency scenarios like the one you can find in the financial world.”

Like RabbitMQ, also ZeroMQ has lived through a major change between its versions:

while most parts of the API are compatible between versions 2.2 and 3.2, some

breaking changes were made (Hintjens 2013b). Its latest version is 4.0.3 that was

released in November, 2013. ZeroMQ is an LPGLv3 licensed product of iMatix.

4.2.1 Features

ZeroMQ is aimed at solving issues that occur in massive scale in the ballpark of

hundreds of millions of messages per second. It is a performance-oriented, socket-

based messaging library. ZeroMQ is driven by an open source expert community as

opposed to RabbitMQ (ØMQ - Welcome to ØMQ for AMQP users n.d.)

In ZeroMQ, messages are carried in sockets that have types. The socket type defines

its semantics, its policies for routing, queues etc. Different types of sockets can be

connected together, such as publisher and subscriber sockets. The patterns in

messaging manifest themselves through these sockets. (Hintjens 2013b.)

ZeroMQ derives its power from connections which are somewhat different to

traditional TCP connections. In a traditional scenario, the server would have to be

alive when a socket is created. In ZeroMQ, however, bits and pieces can be started

autonomously: socket can be created prematurely and it’ll start delivering messages

only when the server comes online. One ZeroMQ socket can also have many

incoming and outgoing connections attached to it, and connections are automatically

renewed after disconnects. (Hintjens 2013b.)

4.2.2 Strengths and weaknesses

Without a doubt ZeroMQ’s strength lies in its processing speed – it is staggeringly

fast as shown in benchmarks by Mike Hadlow in the article Message Queue

Shootout! (2011) (see Figure 9).

27

Figure 9. Processing benchmarks of messaging brokers (Hadlow 2011)

Pieter Hintjens (2013a), a veteran in the software industry, also commends the

possibilities ZeroMQ has to offer:

It takes a few days of coding and then you will experience a kind of

enlightenment, and see new dimensions in your software. Not only can you

make much more ambitious architectures, but you can make them easily, and

the results are fast and solid.

The biggest issue of ZeroMQ is its level of abstraction. Instead of having a predefined,

built-in broker, ZeroMQ is a library of broker-like functionality that enables, or in this

case necessitates, users to write their own brokers (ØMQ - Welcome to ØMQ for

AMQP users n.d.). This lightweight approach and abstraction of ZeroMQ also means

that it does not do security – security has to be layered on top. In addition to security,

many other pieces in the messaging system need to be implemented manually as

well, thus in general ZeroMQ requires more development resources to tackle than

RabbitMQ. Hintjens would also like to see ZeroMQ support threading. (Hintjens

2013a.)

28

5 INTRODUCING RABBITMQ INTO EXISTING SYSTEM

The following sub-chapters will explain step by step in practical fashion how

RabbitMQ can be introduced as a replacement to a web API connecting two

applications. RabbitMQ supports other protocols besides AMQP but according to

measurements by Salvan (2013), AMQP as binary-based format performs very well.

Using AMQP now also enables the simple switching of RabbitMQ to another broker

solution that supports AMQP protocol at a later time.

5.1 Existing system

The existing system consists of two separate applications on separate servers each

with their own database. Upon user data updates in the first application, the second

application must reflect these changes. Both of their databases include a user table

but each with a different structure. To propagate changes from the first application

to the database of the second application a web API has been defined in the latter

application to receive user data and save it to the database. Figure 10 shows

component locations and data flows in current application architecture.

Figure 10. Existing application architecture

The applications reside under different domains on different machines and the data

is passed over to a publicly available but restricted location. When user data is

29

updated in the first application, the updates are sent through the web API using

POST queries. The API is protected against eavesdropping and unauthorised entries

by connection encryption, firewall access rules and message tokenisation.

Figure 10 also shows that the applications are tightly coupled – they must both be

online and offline at the same time to prevent data discrepancies from occurring.

With a message broker between the applications, the second application can be

offline when the first application updates user data, and the changes will propagate

when the second application comes back online. The benefits of introducing a

message broker to the system in this case are not limited only to the decoupling itself

but include also its simplification: the maintenance of both applications is easier with

reduced amount of application code to manage.

5.2 Replacement steps

In general, the very first step in bringing in a message broker to replace existing

functionality in a system is firstly to define business requirements for the broker, and

secondly to recognise data endpoints, i.e. to find where the data exchange joints of

the system. These steps must be taken to determine the best suited message broker

and the right operational pattern within the broker to match the task at hand.

Here the choice to investigate RabbitMQ was already made, so the next step was to

identify the sections where common data is used and exchanged. When decoupling a

larger system that could be a time-consuming task requiring thorough architectural

inspection. Here, however, this was easy since it is already known what data the two

applications share and how.

30

Figure 11. Future system architecture design with RabbitMQ

As seen in Figure 11, applications no longer have a direct connection and can thus be

managed separately. Queue publisher and consumer are not part of the applications

and can thus be implemented using more performant technologies. If user data

traffic grows enough to slow down the operations, more queue consumers can be

added to process the messages faster.

Figure 11 also portrays potential future additions enabled by the message broker

solution. In order to make RabbitMQ resilient to failure, a cluster should be used

instead of a standalone RabbitMQ node (Videla & Williams 2012, 89). This is

important especially in production environments where data integrity is an absolute

requirement. A Rabbit message queue also inherently enables monitoring and

metrics through RabbitMQ’s built-in management plugin.

5.3 Implementation

In the existing applications the publisher application initiates data synchronisation

from a controller class coded using a PHP MVC framework. The data is received by a

web API coded into a few classes on top of another PHP MVC framework. In the

message queue solution, queue consumer replaces the web API completely.

31

Publishing logic could be moved outside the publishing application for example by

using database triggers instead, but that would surface another set of complexity,

reliability and integrity challenges. Publishing is therefore left here inside the existing

application with POST query replaced by a queue connection.

To start working with RabbitMQ message queues, follow downloading and

installation instructions on RabbitMQ’s website. Once installed, open the installation

directory into terminal for the next steps.

The commands used here in the examples are specific to Linux systems but they are

very similar in OS X Windows environments, the difference being the way

environment variables are inputted.

5.3.1 Clustering

Starting with a clustered solution differs little from single node solution, yet it reaps

significant benefits in the future. To create a queue cluster, start a few queue nodes

by commanding:

$ RABBITMQ_NODE_PORT=5672 RABBITMQ_NODENAME=rabbit \

 ./rabbitmq-server -detached

$ RABBITMQ_NODE_PORT=5673 RABBITMQ_NODENAME=rabbit_1 \

 ./rabbitmq-server -detached

Next stop and reset nodes to prepare them for clustering:

$./rabbitmqctl -n rabbit@myhostname stop_app

$./rabbitmqctl -n rabbit_1@myhostname stop_app

$./rabbitmqctl -n rabbit@myhostname reset

$./rabbitmqctl -n rabbit_1@myhostname reset

Now the nodes can be clustered:

$./sbin/rabbitmqctl -n rabbit_1@myhostname \

 join_cluster rabbit@myhostname

32

Noteworthy here is that the built-in clustering was not designed to be used over

WAN – instead, shovel and federation plugins should be used for networked

clustering.

5.3.2 Load balancing

Because RabbitMQ will distribute traffic evenly over all consumers using a round-

robin method, loads are balanced by default (Videla & Williams 2012, 63). If a

separate load balancer like HAProxy already exists in the system, it may make sense

to centralise all load balancing efforts there. The configuration for load balancing a

cluster with three nodes through HAProxy may look something like this:

global

 log 127.0.0.1 local0 info

 maxconn 4096

 stats socket /tmp/haproxy.socket uid haproxy mode 770 level admin

 daemon

defaults

 log global

 mode tcp

 option tcplog

 option dontlognull

 retries 3

 option redispatch

 maxconn 2000

 timeout connect 5s

 timeout client 120s

 timeout server 120s

listen rabbitmq_local_cluster 127.0.0.1:5670

 mode tcp

 balance roundrobin

 server rabbit 127.0.0.1:5672 check inter 5000 rise 2 fall 3

 server rabbit_1 127.0.0.1:5673 check inter 5000 rise 2 fall 3

 server rabbit_2 127.0.0.1:5674 check inter 5000 rise 2 fall 3

listen private_monitoring :8100

 mode http

 option httplog

 stats enable

 stats uri /stats

 stats refresh 5s

This imports cluster nodes into HAProxy which begins to balance load across nodes

using the round-robin algorithm.

33

5.3.3 Monitoring

Queue traffic can be monitored easily through the built-in management plugin. To

enable the plugin command:

$ rabbitmq-plugins enable rabbitmq_management

Next restart the server by commanding:

$ rabbitmq-service stop

$ rabbitmq-service install

$ rabbitmq-service start

Note that plugins such as the management plugin here may interfere with clustering

or multiple simultaneous nodes in general if they use constant ports. Each new node

will try to occupy the same port used by a plugin, which will cause the node not to be

able to start up properly. The error message when attempting to set up the cluster

when a node is unavailable does not convey the source of the problem very clearly.

5.3.4 Security

By default RabbitMQ comes with a guest user enabled. The user should be disabled

and replaced by a user with more secure password:

$./rabbitmqctl add_user secure_user mySecurePassword!

Access list permissions should be applied for the new user account to allow it access

to vhosts inside the broker:

$./rabbitmqctl set_permissions –p my_vhost \

 secure_user ".*" ".*" ".*"

This will give the secure user all privileges to configure, read and write in the realm of

my_vhost.

34

RabbitMQ message transfers can be encrypted using SSL certificates. Assuming the

certificate files already exist, RabbitMQ can be given the following configuration to

enable listening for SSL connections on port 5671:

[

 {rabbit, [

 {ssl_listeners, [5671]},

 {ssl_options,

 [{cacertfile,"/path/to/rmqca/cacert.pem"},

 {certfile,"/path/to/server/cert.pem"},

 {keyfile,"/path/to/server/key.pem"},

 {verify,verify_peer},

 {fail_if_no_peer_cert,false}]}

]}

]

5.4 Other scenarios

The many features of RabbitMQ make it viable for other scenarios for payment

service providers and businesses dealing with monetary transactions in general.

5.4.1 Task scheduling

Businesses with any larger systems often have tasks that need to be taken care of at

regular intervals. One popular is scheduled tasking through cron jobs but they do not

provide any error handling capabilities: if a task fails, the next task is none the wiser

of its failure unless additional logic has been added to the cron job. A message queue

can be used to make sure that each task is executed in the correct order and only

after and if the previous task has finished.

5.4.2 Batch processing

As part of financial transactions many businesses have to do batch processing. In

order to move money between business customers and consumers, payment service

providers often opt to do calculate totals first and do settlements in batches in order

to cut down transactional costs between financial institutions.

35

Processing thousands and thousands of entries synchronously on daily basis can be

slow and tedious task. An error in the process halts progress for the whole

settlement process. Instead of processing transactions through single application, the

application could publish transaction data to a queue cluster that would crunch the

data through smaller applications and pass it on to a financial transaction application

that would consume the reports once all transactions have been handled.

36

6 RESULTS AND ANALYSIS

6.1 Messaging in production

Looking into the history of messaging it is safe to say that the concept is at a mature

age. Open messaging standards are relatively new but they are being developed and

trusted upon by an impressive congregation of vendors and large communities.

Understanding the paradigms behind messaging and knowing message broker’s

features help design and implement architectures that best suit operational needs at

hand. The many benefits of message queues over other solutions not only validate

but encourage their use. As shown in the implementation chapter of this thesis,

restructuring system architecture to include messaging queues can be relatively

simple given the original design has a clear data flow structure.

In addition to handling the obvious, message delivery, message brokers come packed

with many features like routing and access control lists that help centralise business

logics irrelevant to immediate business code from applications to the message

broker. Features and benefits related to scaling, monitoring and security make

messaging brokers enticing option for businesses requiring solid performance. As

shown in the web API replacement scenario, RabbitMQ covers all of the previously

mentioned features well.

Sometimes the choice of message broker is limited by pre-existing technological

choices but often, like in the cases of RabbitMQ or Apache ActiveMQ, technologically

inclined brokers may be used across endpoints that have been implemented in

different technologies.

6.2 RabbitMQ from Paytrail’s perspective

Based on both theoretical and practical study of messaging and RabbitMQ with

AMQP in particular, RabbitMQ with AMQP can easily be recommended as the perfect

37

candidate for anyone to begin gradual transformation toward de-coupled systems.

Should the choice need revisiting at a later time, changing to another message broker

is simple due to the open messaging standard.

If it was well known from the beginning of a project that superior performance was

required, ZeroMQ would be an obvious choice as evident from the dominance

displayed in the measurements by Salvan (2013) and Hadlow (2011) (see Table 1 and

Figure 9 respectively).

Weighing the strengths and weaknesses of both products and reflecting on the

experiences during the web API replacement implementation, RabbitMQ’s ease of

use and reasonably good performance overcome the benefit of ZeroMQ’s brute

performance. Overall, RabbitMQ matches Paytrail’s current purposes and use cases

better.

38

REFERENCES

Broyer 2011. A Federation of Clouds. Blog article. Accessed on 4 May 2014. Retrieved

from http://blog.venyu.com/2011/12/08/a-federation-of-clouds/

Cerf, V., Dalal, Y., Sunshine, C. 1974. SPECIFICATION OF INTERNET TRANSMISSION

CONTROL PROGRAM. Accessed on 1 May 2014. Retrieved from

http://tools.ietf.org/html/rfc675

Chatterjee, S. 2004. Messaging Patterns in Service-Oriented Architecture, Part 1.

Tech article, Microsoft Developer Network. Accessed on 4 May 2014. Retrieved from

http://msdn.microsoft.com/en-us/library/aa480027.aspx

DB-Engines Ranking of Key-Value Systems May 2014. Accessed on 11 May 2014.

Retrieved from http://db-engines.com/en/ranking/key-value+store

Echlin, D. 12 July 2013. Stack Exchange - Designing an scalable message queue

architecture. Forum post. Accessed on 11 May 2014. Retrieved from

http://programmers.stackexchange.com/a/204626

Echlin, D. 15 July 2013. Stack Exchange - How to implement a message queue over

Redis?. Forum post. Accessed on 11 May 2014. Retrieved from

http://programmers.stackexchange.com/a/204922

Enable Consulting - Cloud Platforms & Integration n.d. Accessed on 5 May 2014.

Retrieved from http://www.enableconsulting.com/#!cloud-platforms/c7zg

Foran, P. 2012. Top 10 Uses For A Message Queue. Blog article. Accessed on 1 May

2014. Retrieved from http://blog.iron.io/2012/12/top-10-uses-for-message-

queue.html

Hadlow, M. 2011. Message Queue Shootout! Blog article. Accessed on 12 May 2014.

Retrieved from http://mikehadlow.blogspot.fi/2011/04/message-queue-

shootout.html

Hintjens, P. 2013. ØMQ - Welcome to ØMQ for AMQP users. n.d. Accessed 14 May

2014. Retrieved from http://zeromq.org/docs:welcome-from-amqp

Hintjens, P. 2013. ZeroMQ. California: O’Reilly Media, Inc.

Hintjens, P. 2014. ØMQ - The Guide. Accessed on 5 May 2014. Retrieved from

http://zguide.zeromq.org/page:all#Chapter-Four-Reliable-Request-Reply

Janssen, C. n.d. Techopedia - Asynchronous Messaging. Online IT Dictionary

definition. Accessed on 12 May 2014. Retrieved from

http://www.techopedia.com/definition/26454/asynchronous-messaging

Maryka, S. 2009. What is the Asynchronous Web, and How is it Revolutionary?. Tech

article. Accessed on 12 May 2014. Retrieved from

39

http://www.theserverside.com/news/1363576/What-is-the-Asynchronous-Web-

and-How-is-it-Revolutionary

Pasker, B. 2008. "You Might Need Messaging If...". Presentation slideshow. Accessed

on 4 May 2014. Retrieved from http://blog.pasker.net/2008/06/16/you-might-need-

messaging-if/

Paytrail - Our Story n.d. Company information page. Accessed on 10 May 2014.

Retrieved from http://www.paytrail.com/en/our-story

Piper, A. 2013. VMware vFabric Blog - Choosing Your Messaging Protocol: AMQP,

MQTT, or STOMP. Blog article. Accessed on 6 May 2014. Retrieved from

http://blogs.vmware.com/vfabric/2013/02/choosing-your-messaging-protocol-

amqp-mqtt-or-stomp.html

Pronschinske, M. 2013. A Concise Comparison of RabbitMQ, ActiveMQ, and ZeroMQ

Message Brokers. Tech article. Accessed on 13 May 2014. Retrieved from

http://java.dzone.com/articles/concise-comparison-rabbitmq

RabbitMQ - Protocol Compatibility n.d. Technological documentation. Accessed on

12 May 2014. Retrieved from https://www.rabbitmq.com/specification.html

Reeder, T. 2012. Spikability - An Application's Ability to Handle Unknown and/or

Inconsistent Load. Blog article. Accessed on 5 May 2014. Retrieved from

Http://blog.iron.io/2012/06/spikability-applications-ability-to.html

Richardson, A. 2008. RabbitMQ: An Open Source Messaging Broker That Just Works.

Video recorded presentation, Google Tech Talks. Accessed on 3 May 2014. Retrieved

from https://www.youtube.com/watch?v=ZQogoEVXBSA

Richardson, A., Radestock, M., Garnock-Jones, T. 2008. Introduction to RabbitMQ -

An open source message broker that just works. Presentation slides. Accessed on 4

May 2014. Retrieved from http://www.rabbitmq.com/resources/google-tech-talk-

final/alexis-google-rabbitmq-talk.pdf

Rouse, M. 2005. Techtarget.com - Definition of 'message queueing' [sic]. Online IT

dictionary definition. Accessed on 1 May 2014. Retrieved from

http://searchsoa.techtarget.com/definition/message-queueing

Rotem-gal-oz, A. 2012. RabbitMQ and a Short Intro to AMQP. Tech article. Accessed

on 12 May 2014. Retrieved from http://java.dzone.com/articles/rabbitmq-and-short-

intro-amqp

Salvan, M. 2013. A quick message queue benchmark: ActiveMQ, RabbitMQ, HornetQ,

QPID, Apollo. Blog article. Accessed on 12 May 2014. Http://blog.x-

aeon.com/2013/04/10/a-quick-message-queue-benchmark-activemq-rabbitmq-

hornetq-qpid-apollo/

40

Sústrik, M. 2012. The Merit of AMQP (part I). Blog article. Accessed 1 May 2014.

Retrieved from http://250bpm.com/blog:11

Scaling the Message Queue Service 2010. Technological documentation. Oracle

corporation. Accessed 11 May 2014. Retrieved from

http://docs.oracle.com/cd/E19717-01/819-7759/aerbc/index.html

Stomp n.d. Product website front page. Accessed on 5 May 2014. Retrieved from

http://stomp.github.io/

Van de Putte, G., Adinarayan, G., Haddon, R., McCarty, B., Peltomäki, M., Quixchan,

O. 2005. Messaging Solutions in a Linux Environment. Accessed 1 May 2014.

Retrieved from http://www.jamk.fi/kirjasto, Nelli portal, IBM Redbooks.

Videla, A., Williams. J.J.W. 2012. RabbitMQ in Action. New York: Manning

Publications Co.

Vivek Ranadivé – Teknekron Software Systems 2014. Accessed on 5 May 2014.

Retrieved from http://emereo.net/success/vivek-ranadive-teknekron-software-

systems/

