

Additional Unity Tool Creation

for Game Development Using

Unity Editor Scripting

Heikki Gauffin

OPINNÄYTETYÖ
Joulukuu 2022

Tietojenkäsittelyn tutkinto-ohjelma
Game Production

TIIVISTELMÄ

Tampereen ammattikorkeakoulu
Tietojenkäsittelyn tutkinto-ohjelma
Game Production

GAUFFIN, HEIKKI:
Unity-lisätyökalujen luonti käyttäen Unity Editor -ohjelmointia

Opinnäytetyö 44 sivua, joista liitteitä 0 sivua
Joulukuu 2022

Opinnäytetyössä tutkittiin pelituotannon lisätyökalujen tarvetta ja luontia. Tavoit-
teena oli antaa opinnäytetyön tilaajalle, Tampereen ammattikorkeakoulun peli-
tuotannon yksikölle, perusteluja Unity-pelimoottorin lisätyökalujen tarpeellisuu-
desta ja niiden luomiseen liittyvistä mahdollisuuksista ja haasteista. Opinnäyte-
työn tarkoituksena on antaa aloitteleville pelinkehittäjille ja opinnäytetyön tilaajalle
ideoita ja ehdotuksia lisätyökalujen käytöstä pelituotannossa ja pelituotannon
opetuksessa.

Opinnäytetyön alussa perehdyttiin pelimoottorien historiaan ja kehitykseen, joka
on johtanut tämän päivän korkeasti mukautettaviin pelimoottoreihin. Lisäksi opin-
näytetyössä selvitettiin, miksi pelimoottoreihin on tarvetta kehittää lisätyökaluja ja
miksi niitä hankitaan ulkopuoliselta taholta. Opinnäytetyössä keskityttiin tarkem-
min Unity-pelimoottoriin, koska sitä hyödynnetään tilaajan pelituotannon opetuk-
sessa. Opinnäytetyöprosessin aikana työn kirjoittaja toteutti muutamia käytännön
esimerkkejä Unity-pelimoottorin lisätyökaluista omaan peliprojektiinsa.

Opinnäytetyön tuloksena syntyi käytännön esimerkkejä ja ehdotuksia opinnäyte-
työn tilaajalle ja muille sidosryhmille siitä, miksi ja miten Unity-pelimoottorin lisä-
työkalujen luonti voi tukea pelituotantoa ja pelituotannon opetusta.

Opinnäytetyön tuloksista voidaan havaita lisätyökalujen hyödyt, mutta myös lisä-
työkaluihin liittyvät tarve- ja resurssihaasteet. Nämä pitää huomioida lisätyökaluja
kehittäessä tai hankittaessa. Opinnäytetyössä luotuja lisätyökaluja voidaan jatko-
kehittää ja hyödyntää myös pelituotannossa.

Asiasanat: peli, pelimoottori, pelituotanto, Unity, työkalu

ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Degree Programme in Business Information Systems
Game Production

GAUFFIN HEIKKI:
Additional Unity Tool Creation for Game Development Using Unity Editor Script-
ing

Bachelor's thesis 44 pages, appendices 0 pages
December 2022

The thesis studied the need and creation of additional tools for game
development. The commissioner of the thesis was the Game Production study
path of Tampere University of Applied Sciences. The objective of the thesis was
to provide reasons for the creation of the additional tools for the Unity game
engine and the practical challenges and opportunities associated with it.

The research focused on the reasons and concerns for additional tool creation or
acquisition from third parties for game development. The thesis concentrated
more closely on the Unity game engine which is utilised by the commissioner of
the thesis in their game production education. The practical case study of the
thesis involved the practical creation of few additional tools for the Unity game
engine.

The results of the thesis are practical examples and recommendations for the
commissioner of the thesis and other stakeholders on why and how additional
tool creation for Unity can assist in game development and game development
education. The findings indicate that while these additional tools can help with
game development, there are concerns regarding the need and available
resources that must be addressed.

Key words: game, game engine, game production, Unity, tool

4

SISÄLLYS

1 INTRODUCTION .. 6

2 GAME ENGINES .. 7

2.1 Game Engines in general ... 7

2.2 Game Projects and extending game engines 8

2.2.1 Own propriety game engines .. 8

2.2.2 Third-party game engines ... 9

2.2.3 Game development tools and third-party components 10

3 UNITY GAME ENGINE ... 13

3.1 Unity introduction ... 13

3.2 Unity Editor introduction ... 13

3.3 Unity package manager, asset store and third-party tools 15

3.3.1 Unity Package Manager ... 15

3.3.2 Unity asset store and third-party tools 16

4 EXTENDING THE UNITY EDITOR ... 19

4.1 Unity script compilation .. 19

4.1.1 Conditional compilation .. 19

4.1.2 Unity assemblies and the Unity Editor assembly 21

4.2 Unity game data ... 22

4.2.1 Serialization .. 22

4.2.2 Scriptable objects ... 23

4.3 Customizing the Unity Editor .. 25

4.3.1 Execute MonoBehaviour script in edit mode 25

4.3.2 Custom editors ... 25

4.3.3 Unity Editor windows .. 26

4.3.4 Unity Editor property drawers ... 27

4.3.5 Unity Editor scene view additions 28

5 CASE AURORA PIRATES ... 31

5.1 Chosen technologies and the case project 31

5.2 Implemented editor tools for the project 32

5.2.1 Property drawer for easier viewing and changing of enum
values... 32

5.2.2 Editor window to view and edit data from multiple scriptable
objects.. 34

5.2.3 Scene view additions to illustrate ranges 36

5.3 Key takeaways ... 38

5.3.1 Key takeaways of the created tools 38

5

5.3.2 Key takeaways of additional tool creation in general 39

6 CONCLUSIONS ... 41

REFERENCES .. 42

6

1 INTRODUCTION

The Unity Game Engine is one of the leading game engines utilised by both big

and small game developers worldwide. Due to the easy availability and popularity

of the Unity Game Engine, institutions of higher learning are providing courses

and lectures on using the Unity Engine. The Unity Game Engine however does

allow the customization of the Unity Editor that is used to create the games that

run on the Unity Game Engine. This applies both to additional tools created by

the developers themselves or tools that have been created by third parties that

the developers can utilise.

The commissioner of this thesis was the Tampere University of Applied Sciences

which is a Finnish higher education institution that is oriented towards working

life. During the thesis author’s studies in Tampere University of Applied Sciences

in games production, the author saw the need and personal professional curiosity

to look further into the possibilities of extending the Unity Editor with additional

tools for game development. This would serve the objective of the commissioner

of the thesis of providing reasons for the creation of the additional tools for the

Unity game engine and the practical challenges and opportunities associated with

it. This would also help to gain a better picture of how the Unity Editor extensions

are perceived by new starting game developers as well as satisfy the need of the

author of the thesis to gain more professional knowledge in the subject.

The purpose was to give starting game developers and the commissioner of the

thesis ideas and recommendations for the utilisation of additional tools to as-sist

game development and game development education. This is achieved through

research into the game engine history, their utilisation in game projects today and

through a practical example case provide a concrete understanding of what the

creation of additional tools for the Unity Editor entails.

Due to time and resource constraints, the thesis does not aim to create big com-

ponent or tool examples but rather investigate the practicalities by utilising smaller

examples to give a springboard for ideas for further development and things to

look out for.

7

2 GAME ENGINES

2.1 Game Engines in general

Games of varying types which utilise different technologies have existed for hun-

dreds of years. Even before the advent of the digital games most gamers these

days associate with gaming, at the core of the games has always been a game

engine. Something that makes the game function as intended by their creators.

(Williams 2017.)

Despite of this, the term game engine was not widely used or understood as a

separate concept until as late as the mid 1990’s. The arcade games which

launched the popularity of digital games in the 1970’s and 1980’s was highly spe-

cialized and customized to work on the hardware they were created for. All the

core software of a game were created within the specifics of the game and device

in question which led to difficulties with the reusability of the same approach to

different games. (Gregory 2018.)

The term game engine, and indeed the concept of a game engine we understand

to be today, can be attributed to the success of the video game Doom from id

Software in the 1990’s. The key to this was the separation of some of the core

components of the game software utilised in the games creation, such as the

graphics and physics systems. This allowed the utilisation of the separated com-

ponents in other projects by allowing the modification of the existing game or

when building new games. This led to the creation of the later games in the late

1990’s and the engines they run on to support modification and customization via

scripting out of the box. (Gregory 2018.)

Therefore, the term game engine is these days used to describe the tool sets that

are highly modifiable and customizable for a specific game project. The core com-

ponents of the game are not directly tied and hard coded only for that specific

game or device. This has led to the licensing of the game engine toolkits to other

developers to create their games and modify the tools available to fit their specific

needs. (Gregory 2018.)

8

2.2 Game Projects and extending game engines

Since the game engines these days are highly customizable and can be utilised

to create practically any kind of a game, the question of what engine to use and

how it can be made more efficient becomes more pertinent.

Jonathan Blow (2004) outlined already back in the year 2004 how complex the

video game projects have become since their inception and highlighted the im-

portance of proper development tools or the lack of them that causes issues in

game development projects. The technologies might have changed and pro-

gressed, but the developers of the day are still faced with the same questions

when it comes to successfully creating a video game. The biggest questions con-

cern the foundational tools of the game project, the game engine, but also due to

their customizability these days, extends to the possible single components or

tools as well. (Blow 2014.)

2.2.1 Own propriety game engines

One possibility when choosing a game engine for a game project is to create one

from scratch to support the needs of the game project. Many of the leading game

developers of the biggest games have gone to create their own game engines to

support their game project needs. (Gregory 2018.)

When the game engine is created from the ground up by the developers, it allows

for much more customization and the engine can be built to specifically support

a certain game genre or components and it can be tailored to fit the specific needs

of the developer. (Gregory 2018.)

The main advantage of creating your own game engine is keeping the knowledge

of how it functions within the company. Since the knowledge of incorporating the

technology the game runs on resides within the developers themselves, this does

not cause the same possible issues as utilising a third-party game engine might

where that knowledge lies outside the company. (Blow 2004.)

9

The creation of a completely new engine may also rise from or lead to innovation

of making some game concepts better than ever before. It may also unlock an

additional revenue stream for the developers by being able to license the new

engine for other developers to use as well. However, the scope of creating a

completely new game engine is a huge task and requires a lot of resources, at

least if the engine is supposed to support anything than rudimentary type of game

functionality. Independent and small developers most of the time simply do not

have the resources to create a completely own game engine, so they need to

look for alternative options. (Martin 2020.)

2.2.2 Third-party game engines

The reality for most individual game developers and studios is that creating a new

game engine from scratch is an impossible task to accomplish. Whether it be due

to lack of resources or the knowhow, utilising a third-party licensed game engine

or an open-source game engine for a game project considerably reduces the

number of required resources. (Gregory 2018.)

The most enticing option for a game engine for a game project might be the free

open-source game engine alternatives which are multiple. Open-source means

that the source code for the game engine is usually open for all to edit which

allows developers to modify and make changes to the engine as needed. How-

ever, this can also lead into issues as the actual functionalities which these open-

source game-engines come with might be lacklustre or missing completely. It also

requires knowledge to utilise such an engine and documentation, or guides might

be lacking. Therefore, the open-source engines vary in quality greatly and careful

consideration should be given into it and which open-source game engine to uti-

lise in a game project. (Gregory 2018.)

The benefits of utilising a licensed game engine developed by a third-party is the

obvious immediate access to most of the tools that are needed to create a wide

variety of games for different platforms. Usually, the licensed game engines have

started out as an in-house game engine that has been created for a specific game

title and has then been worked on further to license it to other developers, usually

10

for a fee. Utilising these licensed third-party game engines means that time avail-

able for the project can primarily be used to create the actual in-game content

rather than the tools. The licensed game-engines also usually feature a more

robust documentation, guides and due to their popularity also offers a community

guide and help that might not be available in other game engines. (Martin 2020.)

While the benefits of utilising a licensed third-party game engines are clear, it also

poses certain questions that needs to be considered. First, there usually is a li-

cense fee that needs to be paid to the game engine’s developer to utilise the

game engine for a game project and release it to the market. The fee can be

contrasted with the required resources to build a completely new game engine

and how much resources it requires. Luckily some of the bigger licensed game

engines such as Unity and Unreal Engine have taken into consideration the up-

front cost of utilising their game engines by offering smaller scalable and easily

achievable tiers for newly starting game developers or studios to use their game

engines where the license cost is waived until certain revenue figures are hit or

taking of a small percentage of the revenue the released games generate. (Greg-

ory 2018.)

Secondly the utilisation of a third-party licensed game engine still requires a lot

of knowledge of what type of issues or things the game needs to do to achieve

the goals of the game project and successfully utilise the tools of the engine to

reach that. The game systems have become more and more complex and the

licensed game engines can only go so far with fulfilling the needs of every possi-

ble scenario and game systems the developers want. This means that to imple-

ment the systems as the developers envision, the game engines need to be cus-

tomized and utilised in certain ways to achieve those goals or in some cases look

for other third-party or custom solutions for the specific functionalities. (Blow

2004.)

2.2.3 Game development tools and third-party components

Since the creation of your own game engine is a very resource incentive task and

the open-source or licensed game engines cannot fulfil all the possible needs for

11

a specific game project, the need for additional game development tools is an

increasing requirement to deliver games as they have been envisioned by the

developers.

Since the game engines and specific game engine components have become

quite modular, it has allowed the developers to either customize or completely re-

create certain game engine components to better suit their specific game project.

Even the bigger gaming studios who might utilise their own propriety game en-

gines as a core in their game development process are sometimes opting to use

a third-party component for a specific issue that they feel the need the current

tools are not capable of solving or do not support the fulfilment of their vision. One

example of this is the audio system where multiple different high quality third-

party solutions such as FMOD and Wwise exists which can be utilised if the de-

fault tools of the game engine are not up to the task. There also are other rather

large third-party solutions for other specific game components such as physics

engines, terrain generation and others. (Barclays 2021.)

Like the questions and considerations that needs to put into the selection of the

game engine, the choice of creating your own game development tool, compo-

nent or whether to utilise third-party solution also has its own benefits and draw-

backs. The reason to utilise additional third-party components for game develop-

ment is to reduce the cost of the development so that the limited resources can

be directed into creating content for the actual game and usually the most suc-

cessful third-party components are higher quality than what is already available.

On the flipside, licensing and utilising someone else’s component for a game pro-

ject can also lead to unexpected issues in trying to integrate the components to

the actual game and how it should function. It might take much more resources

to integrate and troubleshoot someone else’s implementation of the game com-

ponent than it would have taken if you had created it yourself. (Arendt 2008.)

There can also be non-technical issues that needs to be considered when utilising

third-party component or tool solutions since in certain instances the source code

might not be available at all or there are certain stipulations in the license agree-

ments that prevent the developer from trying to fix any unforeseen issues them-

12

selves. This leads to developers relying on updates and support from the compo-

nents creator which might not always be straightforward and might take a long

time which hinders the game project development. (Barclays 2021.)

While the third-party or own solutions might focus on a larger piece of the game,

there are also smaller tools that can be developed or acquired to help in the de-

velopment process. Especially in larger game projects, when the development

team grows, it is important to have the correct tools at hand. Correct tools can

help in reducing errors, ensure the correct settings for imported assets and help

automate repetitive tasks thus reducing the overall development time. (Tadres

2015.)

Ultimately the question of if an additional tool or component is needed and

whether it should be created by the developers themselves or to acquire a third-

party solution needs to be carefully considered. The available resources and

knowledge need to be carefully weighed against the actual gains from the com-

ponent or tool and what possible issues may arise regardless of which solution

the developers have chosen.

13

3 UNITY GAME ENGINE

3.1 Unity introduction

The Unity Game Engine is one of the most successful game engines that game

developers are using to create their games today. From smaller indie developers

to the big gaming studios, many game developers have harnessed the engine to

deliver both 2D and 3D games ranging across different genres and gaming de-

vices. (Kok 2021.)

Unity is no longer utilised solely for game development either. It has been

adopted as a tool in several other industries such as 3D animated films and virtual

reality applications due to its adjustability. (Kok 2021.)

One of Unity’s main advantages is, while the engine is simple to use yet powerful

at the same time, that it features the Unity Editor that can be extended to further

support your workflow through editor scripting. (Tadres 2015.)

Another contributing factor to the success of Unity is the accessibility for anyone

looking to get into game development. The free version of Unity and the huge

user community brings game development from the reach of only large gaming

studios to individuals. (Blackman 2014.)

3.2 Unity Editor introduction

At the heart of the games created by Unity is the Unity Editor which provides the

tools for the game developers to import the game assets and the tools which are

used to construct the game which the Unity Engine will run.

The Unity Editor by default provides a layout of the most useful windows and tools

which are required to start creating a game in Unity. The basic Unity Editor inter-

face layout which can be seen in Figure 1 contains the scene view, hierarchy

14

window, inspector window, project window and the toolbar. (Unity Technologies

2022a.)

FIGURE 1. Basic Unity Editor interface layout (Unity Technologies 2022a.)

.

These are the most basic tools which are available for a game developer in the

Unity Editor. The scene view is used to move and change objects rotation as well

as view these objects from different perspectives by utilising the toolbar. The hi-

erarchy view displays all the objects in the scene view as a list for easy accessi-

bility and the inspector window is used to view a single objects information when

they are selected. The project window displays to the user the files which are

imported and available in the project just like operating system’s file explorer

views. (Unity Technologies 2022a.)

This however is only the default layout of the Unity Editor. The users can custom-

ize the different windows sizes and positions as well as hide and enable different

editor windows depending on which of them are relevant to the task at the hand.

This means that the Unity Editor tools which are available by default can already

be customized to fit the user’s needs.

15

3.3 Unity package manager, asset store and third-party tools

3.3.1 Unity Package Manager

The primary additional way of extending the default Unity Editor, which Unity

themselves also utilises to provide additional tools for the developers, is the Unity

Package Manager.

The Unity Package Manager is a solution to Unity’s aims to provide a more easily

customizable approach to using the Unity Editor. Separate tools or Unity Editor

extensions can easily be installed and updated through this Package Manager

whenever a need for them arises as can be seen in Figure 2. The primary aim is

to provide the game developers with additional tools that suit their specific situa-

tion, but which are not required for the basic functionality of the Unity Editor and

thus are not required for every game project. (Kok 2021.)

FIGURE 2. Example view of Unity Package Manager (Kok 2021.)

Since the packages are separated, they can also be updated individually without

affecting the functionality of each other. It is however good to keep in mind that

the packages and modules acquired through the Package Manager might have

different compatibility versions with the Unity Editor version which needs to be

considered if the Unity Editor is updated during the game project’s lifecycle. The

package manager also offers the option for the developers to share their tools

16

and assets between different projects by creating packages from them and im-

porting them to other projects. However, this does create an additional layer of

obfuscation to the source code which can hinder possible bug fixing and integra-

tion. It might be wiser to utilise a Git repository directly for sharing tools and assets

between projects as it allows for faster access to changes to the code and assets

if needed. (Tadres 2015.)

3.3.2 Unity asset store and third-party tools

One of the reasons for the success of the Unity Game engine being increasingly

the choice of game engine for starting out game developers and experienced

developers alike is the community that Unity has managed to build around itself.

This is culminated in the Unity Asset Store which allows developers to find and

purchase prebuilt assets and tools to assist developers in their game projects.

The assets or tools from the Unity Asset Store can directly be downloaded and

accessed in the Unity project via the package manager. (Tadres 2015.)

The tools in the Unity asset store can greatly help developers solve problems that

have already been solved by others and in general help with speeding up the

development process. A tool a developer has developed for themselves might be

universal enough that it could benefit others as well. This presents a new avenue

for developers to generate extra revenue by commercializing their tool solution in

the Unity Asset Store. There are several success stories of game developers

making their ends meet with just developing new tools and solutions for the Unity

Asset Store. (Kok 2021.)

Indie developers have also managed to fund their game development through

publishing their tools on the Unity Asset Store. By making the tools of the game

available for purchase already in development phase, the developers can gener-

ate revenue from the start, help the developers to create clean and modular code,

learn from other tool developers and gain visibility for your game project. It is

however good to keep in mind that releasing the tools on Unity Asset Store also

sets certain expectations from the customers for support and guidance. This

17

might interfere with the time available for the development of the actual game that

the developers are working on. (Hougaard 2013.)

According to Unity’s own metrics, the Unity Asset Store has over 1.7 million

monthly users and over 12 000 active publishers. While Unity takes a 30% cut of

the revenue generated by the tools, such huge user base provides a great oppor-

tunity for developers to leverage their expertise through it. (Unity Technologies

2022h.)

The discoverability in the Unity Asset Store in the tools section is handy in finding

and evaluating different tools that are available to the developers. The tools can

be sorted by categories, popularity, price, and various other parameters. By sort-

ing the tool section by popularity, as can be seen from the Figure 3, the most

popular tools in the Unity Asset Store are rather large in feature size and the

pricing reflects that. Most of the popular tool’s deal with either creating better vis-

ual assets easier, their easier manipulation within the game world or tools that

can be utilised to develop other tools more efficiently. (Unity Technologies 2022i.)

FIGURE 3. Unity Asset Store tool section sorted by popularity (Unity Technolo-

gies 2022i.)

18

For an individual or small developer, the pricing of the most popular and needed

tools might be out of the range of their budget. Therefore, consideration should

be given to the idea to developing the needed tools in Unity Editor by themselves

which is described further in chapter 4.

19

4 EXTENDING THE UNITY EDITOR

The Unity Editor can be customized by the users with the default tools that are

provided with the Unity Editor out of the box. In addition to the default tools Unity

offers to the developers and possible tools created by third parties, the most pow-

erful aspect of Unity is the possibility of modifying or creating new additional tools

yourself by code.

4.1 Unity script compilation

One important aspect of coding in Unity Editor is that the Unity Engine is con-

structed using C/C++ coding language. This means that while the primary coding

language used in the Unity Editor is C#, there exists a wrapper that converts the

C# code into a language that the Unity engine and the target platform devices

which the game will run on understands. That is why the code libraries need to

be compiled first for the game to function. Unity currently supports two different

kinds of scripting backends to achieve this but details of those fall outside the

scope of this thesis. (Unity Technologies 2022b.)

4.1.1 Conditional compilation

Since Unity needs to compile the C# code, as noted in chapter 4.1, it also allows

the developers to use conditional compilation by utilising C# pre-processor direc-

tives. The directives can be used to specify certain parts of code that should not

be compiled during the compilation process as can be seen in Figure 4. (Unity

Technologies 2022c.)

20

FIGURE 4. Conditional compilation example (Gauffin 2022a.)

The directives can be used for example to change logo images depending on the

game’s target platform and only execute certain functions on one or multiple plat-

forms.

The directives are extremely useful and required when working on Unity Editor

code and tool extensions. Unless explicitly defined, all the C# language code

scripts, in which the Editor extensions are also made in, are included in the script

compilation when the game builds are built. The UnityEditor namespace, which

the Unity Editor extensions use and derive from, is one of the exceptions to this

rule. Because of this, when creating the additional tools for the Unity Editor it is

very easy to run into errors in code if the Unity Editor specific code is not properly

isolated. Code that might work in the editor just fine might prevent the build from

being completed because any references to the UnityEditor namespace and its

functions are automatically excluded from the build process. One way to isolate

the Unity Editor specific code is to use the UNITY_EDITOR directive as shown in

the figure 4. This allows the developers to specify that this code is only to be run

in the Unity Editor and not in the build versions of the game where the editor

specific functionalities are not available. (Kok 2021.)

The other option to isolate the Unity Editor specific code is the editor folders which

are described in chapter 4.1.2.

21

4.1.2 Unity assemblies and the Unity Editor assembly

In addition to the conditional compilation, Unity also utilises assembly definitions

for categorizing the developer’s scripts. Assembly definitions are a .NET concept

which is the result of the compilation of all the scripts. In the case of Unity and C#

code, the result is one or multiple .DLL files which contains a grouping of certain

scripts. (Kok 2021.)

Essentially by grouping the scripts using the assemblies, it is far easier to block

out certain group of scripts or create a group of scripts targeting a specific plat-

form only. Since the scripts need to be compiled, changes to one script means

that the whole assembly also needs to be recompiled which takes time. By utilis-

ing the different assemblies, groups of scripts can be made more independent

from each other and to require direct referencing between the assemblies. (Unity

Technologies 2022d.)

Unity also has a few different special folder names within the Unity projects, such

as Resources folder and Plugins folder, which are treated differently from normal

folders. One of the special folder names is the folder called Editor. Unity automat-

ically groups any scripts in Editor folders to a separate script assembly which is

then excluded from the project’s build process. By default, Unity creates two dif-

ferent assemblies which separate the runtime scripts from editor scripts which is

illustrated in Figure 5. (Tadres 2015.)

FIGURE 5. Unity default assemblies (Tadres 2015.)

22

When creating Unity Editor tools and code, developers should either utilise the

special Editor folder name and creating the editor scripts there to group them to

the Editor assembly or by using the editor conditional compilation directives to

mark the editor code as such. This ensures that the editor code will not be com-

piled do the built versions of the game and avoid potential issues with the game

build process.

4.2 Unity game data

To work on Unity Editor code and tools, there are two concepts which are im-

portant to consider, serialization and scriptable objects which are covered in this

chapter.

4.2.1 Serialization

Serialization is one of the key concepts when working with the Unity Editor and

developers are constantly working with it. Unity also automatically serializes cer-

tain data when scripts are created and edited inside the Unity Editor.

The main purpose of serialization is to store data in a format that allows it to easily

be saved and retrieved when needed. It converts an object into a stream of bytes

which allows it to be easily saved, whether to memory or files. Process called

deserialization is then used to convert the stream of bytes into data which can be

then used to for example restore the state of the object that was serialized. The

most obvious case where developers run into serialization is when a newly cre-

ated script in C# which extends from the MonoBehaviour scripting backend which

Unity uses is attached to a game object in the Unity Editor. If the script contains

any public variables, Unity Editor automatically serializes the fields and exposes

them in the editor where the developer can directly edit the variables from the

game object it has been attached to. (Tadres 2015.)

Serialization in Unity depends largely on how the data has been organized in the

specific Unity project and it has a great impact on the performance of the project.

23

While Unity automatically serializes public variables, there are several other re-

quirements and considerations when it comes to serialization in Unity. It is possi-

ble to serialize private or other access type variables as well with a special Seri-

alizeField attribute if the attribute is not static, constant, or read only. In addition

to this, the field type also needs to be a field type that Unity can serialize such as

primitive data type, enum or one of the Unity’s own built-in types such as Unity

Engine vectors. While Unity supports the serialization of lists of these serializable

types, Unity does not support the serialization of multilevel types such as diction-

aries or multidimensional arrays which are regularly used in Unity projects. Unity

also normally does not serialize C# properties automatically but allows the devel-

opers to serialize a backing field for the property manually if it is needed. (Unity

Technologies 2022e.)

Because of these restrictions to the types, Unity does support the serialization of

custom classes that do not extend from the MonoBehaviour Unity class. This is

extremely useful, and a lot of the serialization restrictions can be overcome by

creating of different kinds of custom class wrappers to store for example game

save data or other types of data that might not be directly serializable. Unity itself

uses serialization when saving and loading the projects scenes, assets, and as-

set bundles into the device’s memory that the project is running on. (Unity Tech-

nologies 2022e.)

The concept of serialization is important to keep in mind when creating additional

Unity Editor tools. The Editor class in Unity Editor for example utilises a serialized

object which administrates the data editing for Unity objects. It aids in supporting

the undo operations in the Unity Editor and assists with Graphical User Interface

drawing (GUI) which is a code driven way to create custom GUI within the Unity

Editor. (Kok 2021.)

4.2.2 Scriptable objects

Scriptable objects in Unity are a specific kind of specialized object that is used as

a container to store data. Unlike the C# scripts which extend from the MonoBe-

24

haviour Unity object, the scriptable objects do not need to be attach to any spe-

cific game object in the game scene. This means that they are treated more like

assets in the project, like any graphic or other asset the project uses. While it is

possible to store the game data in different formats, such as XML, JSON or .txt

files, and read the data from them, storing the same data to scriptable objects

eases the burden of creating separate parsers or relying on third-party tools to

read the data correctly from these other file types. Unity can automatically serial-

ize and deserialize the scriptable objects so access to the serialized values is

much more straight forward. (Tadres 2015.)

In addition, since the scriptable objects do not need to be attached to a game

object, the same scriptable object can be referenced in multiple different game

scenes which lowers the overhead compared to having the same data included

in all the different scenes that require it. Creating game objects with MonoBehav-

iour scripts attached to them creates a separate class instance for each of the

objects which multiplies the data that needs to be stored in memory compared to

a scriptable object which only saves the data once and which can be then refer-

ence by multiple different objects. For consideration regarding additional tool de-

velopment for the Unity Editor, the scriptable objects can also be run in both dur-

ing the game runtime in the play mode or just in editor unlike the scripts attached

to the game objects. (Kok 2021.)

The reason the scriptable objects can save data in the Unity Editor is that it uses

the Unity Editor scripting and namespace which allows it to access the Unity Ed-

itor specific functionalities. Therefore, they can be used to save and store data

during a Unity Editor session but not during runtime in the deployed builds of the

project. The saved scriptable object data can of course be utilised during the

game builds, but any changes made to them during runtime are not saved. Since

it is an asset in the project, the data can be saved just like any other asset to the

disk, so it stays the same between Editor sessions. (Unity Technologies 2022f.)

25

4.3 Customizing the Unity Editor

The Unity Editor can be customized in multiple different ways. Unity offers some

built in custom property attributes commands that can be for example added to

the serialized fields in MonoBehaviour scripts which show in the inspector. These

commands can be used to add additional functionality to these fields such as

adding a range limit to numerical values or slider handles to quickly change the

values.

The powerful aspect of the Unity Editor is the possibility to redesign the default

inspector views and create new ways to display the information. This support for

customization also allows the developers to create completely new windows,

tools and to customize the scene view with additional functionalities which are

described in this chapter.

4.3.1 Execute MonoBehaviour script in edit mode

One of the ways that might assist developers in their project, that does not directly

customize the editor by utilising the editor tools, is the possibility to execute

scripts also in Unity Editor’s edit mode. This allows scripts attached to MonoBe-

haviours that would normally require the game scene to be in a play mode to be

executed in also in the edit mode. (Unity Technologies 2022g.)

This can be helpful seeing the impact of certain type of scripts already in the

editing phase since launching the game in play mode takes time and resources.

4.3.2 Custom editors

When you create a new C# script in a Unity project, the newly created script au-

tomatically extends and inherits from the MonoBehaviour class. The MonoBehav-

iour inherited components must be attached to a game object in the Unity scene

for in order them to function. When the C# scripts that are attached to a game

object, the Unity Editor automatically displays the script’s serialized fields in the

26

inspector window as can be seen in Figure 6 where a public Unity construct Vec-

tor3 with three different float values has been serialized to be shown in the in-

spector view. (Unity Technologies 2022g.)

FIGURE 6. A default Inspector with a public Vector3 field (Unity Technologies

2022g.)

The inspector default view in Figure 6 is however only the default window layout

which can be overridden. While the original actual LookAtPoint script extended

from the MonoBehaviour class, the developers can also create a separate script

that instead extends the Unity Editor class. This editor script can then be config-

ured to point that this script is a custom editor for the LookAtPoint script and allow

the user to modify how the LookAtPoint script appears in the Unity inspector win-

dow by overriding the Editor class’s default OnInspectorGUI method with a cus-

tom solution. Although it might not be apparent to especially new developers

starting with Unity, all the Unity’s different editor views and windows, even the

complex looking ones, utilise this same unity Editor extending to achieve the dif-

ferent kind of editor views. (Unity Technologies 2022g.)

4.3.3 Unity Editor windows

While the Custom Editors described in chapter 4.3.2 can be used to either cus-

tomize or completely override the existing inspector window in the Unity Editor. it

is also possible to create new separate windows into the Unity Editor as well.

These windows can be switched around and docked into the Unity Editor layout

like any other editor window that are there by default. (Kok 2021.)

Whereas the C# scripts attached to the game objects, which extended and inher-

ited from the MonoBehaviour class, and the custom editors which extended from

the Editor class, new editor windows are created by extending and inheriting the

Unity EditorWindow class. As illustrated in Figure 7, Utilising the UnityEditor

27

namespace and extending the EditorWindow through inheritance, the scripts gain

access to the Editor specific methods, most importantly the OnGUI method, which

can then be utilised to display the information in the new window as the develop-

ers wish. Using the MenuItem property attribute also adds a new selection to the

Unity Editor menu to open this new window. The ShowWindow method on the

other hand ensures that the same window will be opened so that multiple ones

are not created needlessly. (Unity Technologies 2022j.)

FIGURE 7. Unity Editor Window basic code example (Unity Technologies 2022j.)

4.3.4 Unity Editor property drawers

By default, Unity Editor offers certain built-in property attributes that can be at-

tached to serialized fields to change how they appear in the inspector or for ex-

ample add a new menu option as described in chapter 4.3.3. Primarily, the prop-

erty attributes are a fast and easy way to customize the Unity Editor’s inspector

view as it is only altering and customizing the already existing built-in inspector

view as opposed to creating a completely new custom inspector from scratch.

There are several other built-in property attributes that can be used for the differ-

ent serialized variable types to change how they appear in the editor’s inspector

view. (Tadres 2015.)

In addition to the built-in property attributes, the Unity Editor allows developers to

create their own custom properties and supports the ability to specify how the

Unity Editor draws those custom properties. (Unity Technologies 2022k.)

28

To create a custom property attribute, the developer needs to create a separate

C# script that extend and inherits from the PropertyAttribute class in Unity Editor.

By creating a separate script this way, it will automatically function similarly to the

Unity’s own property attributes where you can utilise it in similar way as the built-

in properties such as the MenuItem attribute. Then another script can be created

that extends the PopertyDrawer class which allows the developer to define how

this custom property is shown and handled in the Unity Editor inspector. This can

for example be used to create a custom property drawer for a float variable, where

using the custom property attribute above the float variable field allows the devel-

oper to specify a list of float values which can be assigned to that field. Building

a custom property drawer for this property attribute could then allow the user to

select the wanted float value from the list of float values that have been created

for that float variable. This allows developers to quickly shift and select between

predetermined float values for the field as illustrated in Figure 8. (Kok 2021.)

FIGURE 8. Custom Unity property attribute and property drawer example (Kok

2021.)

4.3.5 Unity Editor scene view additions

The Unity Editor scene view is the representation of the actual game objects and

what the player sees when playing the game. While the scene view with all the

game objects and scripts attached to them provides the developers an easy way

to switch the positions or rotations of game objects and getting a good overview,

it does not necessarily show all the things that happen on the code side until the

code is being executed in the game play mode. For example, a waypoint system

used by a game object to move from one position to another may only exist in

29

code and this is not visualized in anyway by default. Unity Editor however does

allow the developers to modify and make the scene view more robust either by

utilising the gizmos functionality or by creating their own custom editor tools for

the scene view. (Tadres 2015.)

The gizmos in the Unity Editor are used to display a graphical view of the game

objects in the Unity Editor scene view. By default, some of these gizmos are al-

ways shown whereas other are normally hidden when the specific game object

is not selected. Some of them are just informative, indicating only additional in-

formation while others are also interactable such as the move, scale and trans-

form tools. The most seen gizmos by starting developers using the Unity Editor

are the camera and light direction gizmos that are shown in Figure 9. While the

light source gizmo indicates the direction of the lighting, the camera gizmo can

be used to change the camera’s view using the gizmo handles. (Unity Technolo-

gies 2022l.)

FIGURE 9. Camera and light direction scene view gizmo example (Unity Tech-

nologies 2022l.)

While the default gizmos can be displayed and changed in the Unity Editor quite

easily by just selecting them and changing the built-in options for the gizmos, the

gizmos offer even more flexibility by allowing them to be created and modified

through code. Since the C# scripts attached to the game objects in the game

scene view are extended and inherited from the MonoBehaviour class, they au-

tomatically have access to the same gizmo methods that are used to draw the

default gizmo implementations. This allows developers to also create their own

implementation in code for the component’s OnDrawGizmos and OnDrawGiz-

mosSelected methods. Implementing these methods allows the developers for

30

example to draw icons to locations in the scene view or draw lines or other graph-

ical representation between coordinates to visualize things more clearly in the

scene view. It is also possible to create the gizmo related functionality as a sep-

arate script which allows even more customization since they are not directly re-

lated to the component they are attached to. (Tadres 2015.)

In addition to drawing and customizing the gizmos in the Unity Editor, developers

also have the possibility of creating separate scripts that extend and inherit from

the EditorTool class which allows the creation of separate tools for the scene

view. Once created, these tools will be accessible from the same toolbar as all

the default Unity Editor scene tools like in the Kok (2021) example of a custom-

ized object spawner tool shown in Figure 10. (Kok 2021.)

FIGURE 10. Example of a customized object spawner editor tool in the scene

view (Kok 2021.)

Both the gizmos and the actual new editor tools can also both take advantage of

the Unity’s Handles class, which on top of the classes which allow additional

graphical information to be displayed in the scene view, enables the creation of

the same kind of handles that Unity Editor has built-in by default. Developers can

for example create similar handles that Unity’s move tool does which enables the

dragging of a game object along the different axis’ by just clicking on the handles

and dragging the object in the scene view. (Unity Technologies 2022m.)

31

5 CASE AURORA PIRATES

5.1 Chosen technologies and the case project

The case example project Aurora Pirates is developed using the Unity Editor ver-

sion 2021.3.12f1 which is one of the latest long term support (LTS) versions of

the Unity Editor. The long term support version was chosen due to the stability

they offer. The editor tools were created using the primary Unity Editor scripting

language C# and the chosen code editor was VS Code due to the familiarity of

the thesis author with the VS Code as well as it being free to use. The VS Code

can also be extended with plugins for Unity and other C# related coding conven-

tions easily. The GitHub version control and GitHub desktop client were utilised

for the version control of the project.

The project case Aurora Pirates is a game concept that the author of the thesis

has had in mind for a while, and which could benefit greatly from the usage of

additional tools to make the project more easily manageable and realizable. The

project is in its early stages where the benefits of the created tools will carry on

all through the development cycle.

Aurora Pirates is a blend of action-adventure and strategy genres with an open

world like its inspiration, Sid Meier’s Pirates. The game is going rely heavily on

different systems within the game world that simulate different factions vying for

the control of the galaxy by battling each other and trying to grow their influence.

The player can choose to join the different factions or make their own mark by

becoming the most sought-after pirate in the game.

The main challenge in creating the project is to try and balance all the different

factions and resources in the game in a way that allows the player to progress

but at the same time simulate a balanced war between the factions. The Unity

Editor on its own does allow the creation of data containers and systems without

much of an issue. The big issue with the project is the ability to view all this data

since all the individual pieces affect each other and the game balance and often

this information might be hidden inside the individual code scripts. Therefore, the

32

chosen editor tools to be implemented for the project focus largely on how this

amount of different game balancing data can easily be displayed and manipu-

lated.

5.2 Implemented editor tools for the project

5.2.1 Property drawer for easier viewing and changing of enum values

The property drawers which were described in chapter 4.3.4 seem like an easy

way to customize the inspector view to show the game object’s serialized varia-

bles in a desired way. Enums are one of the frequently used types in game pro-

gramming where they are used to represent different statuses and types in a

more readable form instead of their underlying numerical integer values.

By default, Unity Editor shows the serialized enum variables as a drop-down list

which allows the developer to choose the wanted enum from the list. When the

amount of enum variables on a game object starts to grow, reading all the indi-

vidual variables from the fields and selecting the correct ones from the list does

consume time and mistakes are harder to spot. Therefore, there was a need to

create a better way to faster identify and select the correct enum for the loot table

variables which are in the game and indicate the amount and type of loot the

player and the non-playable characters can gain from the target. The loot table

script was created as a separate custom serializable class containing a public

loot type enum variable and a public float variable for the amount. The custom

serializable class allows the creation of a custom property drawer for this class.

The default Unity implementation of the loot table class in the Unity Editor inspec-

tor can be seen in Figure 11 where the loot table class has been added to the

asteroid game object which contains a serialized list of the loot table class.

33

FIGURE 11. Default Unity inspector view of the loot table class (Gauffin. H.

2022b.)

By creating a custom property drawer for the loot table class through an editor

script, the default Unity inspector view of this class can be changed to a toggle

instead, which automatically allows the developer to see the possible enum val-

ues for the field and due to their uniform layout, can distinguish fast which of the

values are selected as can be seen in Figure 12. The custom property drawer

also allows to removal of the element names and the nested list which reduces

the amount of space needed for the value fields.

FIGURE 12. Custom property drawer for the loot table class (Gauffin. H. 2022c.)

The biggest hurdle when creating the custom property drawer is calculating and

choosing the different sizes for the fields that the developer wants to draw to the

inspector using the EditorGUI methods. The created tool works for this need very

well, but it might require further changes and configuration if the enum value

count raises and changing the inspector width also causes issues with the current

implementation. The implementation can however still be utilised in other custom

serializable classes that require the same kind of functionality in displaying the

information in the inspector view.

34

5.2.2 Editor window to view and edit data from multiple scriptable objects

The scriptable objects serve as a great container for storing data in Unity. In the

project, the data for the space stations which exist in the game world and interact

with the player and other units was created as a scriptable object. One issue with

the Unity default editor is that the inspector displays the information from one

scriptable object at a time as can be seen in Figure 13 which displays the default

Unity inspector view of one of the station data scriptable objects.

FIGURE 13. Unity default inspector view of a project’s scriptable object (Gauffin.

H. 2022d.)

The project has a huge number of different stations for different factions which

means keeping track of the whole is rather hard and changing values for the

scriptable objects need to be done by one scriptable object at a time. Therefore,

there was a need to create a tool to view multiple scriptable objects at the same

time and allow the editing of the scriptable object values.

Since this required the access to multiple scriptable objects at a time, a new editor

window script was created for this purpose. The UnityEditor namespace contains

a separate class called AssetDatabase that can be used to search all the project’s

assets to locate every station data scriptable object regardless of their folder lo-

cation within the project assets folder. Then the list can be drawn in a station data

viewer script which extends and inherits from the EditorWindow class. The class

was used to create a new editor window which draws the scriptable object’s data

to the window utilising the OnGUI method and connecting the scriptable object’s

variables to the drawn fields in the window. Unlike the custom property drawer,

35

the station data window utilises the methods contained in the EditorGUILayout

class instead of EditorGUI and this allows the creation of the horizontal and ver-

tical rows of the window much more automatically by using the built-in layout op-

tions. The custom editor window for viewing and editing the station data can be

seen in Figure 14 which in the current implementation allows for viewing and ed-

iting all the station data or filtering based on selected faction.

FIGURE 14. Custom editor window to view multiple project’s scriptable objects

(Gauffin. H. 2022e.)

The editor window script also converts the scriptable objects to serialized objects

when they are drawn as it allows any changes made to the values to be automat-

ically saved to the scriptable object asset and changes can be reverted with the

Unity Editor’s own undo option. Other possible implementation option could be to

not automatically save changes but handle the saving by a separate button. The

tool could also be modified to support for creating new station data scriptable

objects directly from the tool.

Alternative to creating this editor window tool would be to read the data from a

text file or external spreadsheet application to the scriptable objects but this would

also require the creation of additional parsers and keeping the data editing inside

Unity allows for further customized drawing of the data and improvement of the

tool. The basic implementation of the tool can be used to find and draw infor-

mation from other assets than scriptable object as well. A modified version of the

tool could for example find and display all the 2D art assets within the project and

display relevant information regarding them.

36

5.2.3 Scene view additions to illustrate ranges

One challenge when trying to balance and fine tune the in-game values for a

project such as the Aurora Pirates is that by default the different values contained

in the game objects are not illustrated in the editor by default. For example, the

values that determine the ranges for the station’s patrolling area and interact

range is hard to gauge and change just from the default editor view which can be

seen in Figure 15.

FIGURE 15. Unity default view of station patrol and interact range (Gauffin. H.

2022f.)

To illustrate and change these ranges better, a custom addition to the scene view

was needed. This was achieved by creating a custom editor for the range indica-

tor script that would draw these ranges in the 2D plane that the game functions

in and a handle to allow the values to be changed similarly to the default move

object handles. The result of the custom editor for the range indicator for the

scene view illustrates these ranges with wire discs, value labels and allows the

selected object’s values to be changed using the corresponding handles as can

be seen in Figure 16.

37

FIGURE 16. Unity custom editor view of station patrol and interact range (Gauffin.

H. 2022g.)

The handles and the wire discs to represent the ranges were first drawn to the

scene via the custom editor script by utilising the Editor class’s OnSceneGUI

method which can be used to draw additions to the scene view. There was how-

ever an issue as the Editor and Handles classes by default only draws the rele-

vant information to the scene when the object is selected in the scene view and

the need was to illustrate these values for all the range indicator scripts at the

same time.

To achieve the drawing of these ranges even when the object is not selected, the

use of the Gizmos was considered since they are useful for drawing the graphical

representation for either the one selected object or for all the objects. However,

since the functionality had already been created for the custom editor script using

the Handles class and the Gizmos do not offer similar fast wire disc drawing out

of the box, it was decided to create an additional MonoBehaviour script attached

to a single game object in the scene. This additional script finds all the range

indicators in the scene and draws the wire disc representation in that object’s

OnDrawGizmos method using the Handles class. Since this is a script in the

game scene and utilises the Editor class, it is necessary to use the conditional

compilation directive to only run the code in the Editor or otherwise the game

cannot build correctly since the editor tools are not available there. The actual

38

handle drawing and value change was still left to the range indicator custom editor

script when the object is selected.

5.3 Key takeaways

5.3.1 Key takeaways of the created tools

While the tools created for the project are rather small, they provide great value

for the data visibility and management of the project going forward. This shows

that even small changes and increase in productivity early on can bring great

accumulated benefits over the course of a game project development cycle. The

development took time and required several iterations before the wanted func-

tionality was achieved but the time spent on them was not excessive. The expe-

rience of understanding the editor tool creation allows for much faster tool crea-

tion in the future and can constantly give new ideas how certain things could be

done better.

Based on the tool creation, it might have been easier to create a completely new

custom inspector view for the serializable class that was used for the loot table

changes. The custom property drawer that utilises the EditorGUI methods was

much harder to use due to having to calculate the different field heights and

widths manually rather than the EditorGUILayout which contained the pre-built

layout options for laying out the different fields for the scriptable object custom

editor window.

The tools can be further expanded upon and utilised in other parts of the project

or other future projects. The next steps would also include making the implemen-

tation of the tools more generic to support other use cases and projects as well,

as the current implementation is heavily tied to the specific problems that were

solved in this project.

39

5.3.2 Key takeaways of additional tool creation in general

Based on the research and the case project, several recommendations can be

made regarding additional tool creation for the Unity Editor. The first thing to con-

sider and weigh when considering the creation or acquisition of tools for a game

project is to consider whether the tool is needed. Whether the tool is created by

the developers themselves or acquired from somewhere else, they require devel-

opment and integration time on top of possible monetary costs. In case of for

example automating certain functions through a tool, there is no incentive to cre-

ate the tool if the cost is greater than manually doing those functions. Therefore,

it is good to consider how often and for what purpose the tool is going to be used

and whether it can be repurposed for other things or future projects which in-

creases the value of the tool.

Especially for new starting developers, creating a game project requires a lot of

knowledge of different domains and the tool creation aspect might not be of the

highest priority when learning about game development. In the end the players

of the completed game project are likely to not ever know how much time, time

that could potentially have been used to create new or enhance existing game-

play systems that the players interact with.

What also needs to be considered is if the required tool could be acquired from

an outside source. There exist several free and paid tools in the different market-

places for the game engines that can be utilised by developers in their game

projects. This however also brings certain challenges when trying to integrate the

tool to work on a particular project. More time might be spent on fixing issues with

an acquired tool than how long it would have taken if the tool was created by the

developers themselves. In addition, support for the tool might not always be avail-

able or documentation may be lacking if the tool is acquired from somewhere

else.

Even with these concerns and considerations, additional tools clearly offer value

for both the tool creators and their users. The correct tools can speed up the

development process and reduce errors in game projects. The creators of these

tools can tap into additional revenue source by publishing their tools for others to

40

use and can learn from user feedback how to improve them. The number of tools

available in the Unity marketplace and the amount of developer’s who use them

is a testament to how beneficial additional tools can be. The creation of additional

tools for the Unity game engine requires time investment but it is well worth it.

41

6 CONCLUSIONS

Through the research and example case project of additional tool creation for the

Unity game engine, the result of the thesis provides the commissioner of the the-

sis and other stakeholders reasons and recommendations on why and how the

additional tools can assist developers in game projects and game production ed-

ucation.

The additional tools can help greatly in game projects if the need and resource

concerns are taken properly into account. Depending on the situation, it might be

better to forego the tool creation or look for accessible third-party options, but this

requires careful consideration, and it is not without its own challenges. The focus

on additional tool creation for the Unity game engine should not be the first things

a new starting developers concentrate on but should still be kept in mind as they

gain experience with the Unity game engine due to its benefits.

As a result of the thesis, several smaller additional tools were created for the case

project which can be utilised in other game projects or in the commissioner’s

game production education. They can also give ideas for further development of

said tools and in which other cases they might be applicable. The thesis also

served as a basis for a separate document which was compiled and submitted to

the commissioner of the thesis regarding the additional tool creation for Unity

game engine.

In retrospect, the better defining and narrowing of the thesis to only a single big-

ger tool or knowledge area could have been better as the time concerns pre-

vented the execution of all the wanted features and proper analytical comparison

to third party tool usage in practice. This could have led to a better structuring of

the thesis. Still, the thesis provided the author much needed and valuable per-

sonal experience on the subject matter and provided the commissioner recom-

mendations and guidance according to the objective.

.

42

REFERENCES

Arendt, S. 2008. Showdown: Developers Argue Pros And Cons Of Middleware.
Wired. Accessed 9 November 2022.
https://www.wired.com/2008/02/las-vegas-1/

Barclays. 2021. Funding and Finance: Making the most of middleware. Barclays
Bank UK PLC. Accessed 9 November 2022.
https://games.barclays/resource-hub/games/funding-and-finance/making-the-
most-of-middleware/

Blackman, S. 2014. Unity for Absolute Beginners. Apress. Accessed: 31 Octo-
ber 2022. Requires access.
https://learning.oreilly.com/library/view/unity-for-absolute/9781430267782/

Blow, J. 2004. Game Development: Harder Than You Think. ACM Digital Li-
brary. Accessed: 7 November 2022.
https://doi.org/10.1145/971564.971590

Gauffin, H. 2022a. Conditional compilation example. Thesis author.

Gauffin, H. 2022b. Default Unity inspector view of the loot table class. Thesis
author.

Gauffin, H. 2022c. Custom property drawer for the loot table class. Thesis au-
thor.

Gauffin, H. 2022d. Unity default inspector view of project’s scriptable object.
Thesis author.

Gauffin, H. 2022e. Custom editor window to view multiple project’s scriptable
objects. Thesis author.

Gauffin, H. 2022f. Unity default view of station patrol and interact range
Thesis author.

Gauffin, H. 2022g. Unity custom editor view of station patrol and interact range.
Thesis author.

Gregory, J. 2018. Game Engine Architecture, Third Edition, 3rd Edition. A K Pe-
ters/CRC Press. Accessed: 7 November 2022. Requires access:
https://learning.oreilly.com/library/view/game-engine-architec-
ture/9781351974271/

Hougaard, K. 2013. Funding Indie Games with the Asset Store. Unity Technolo-
gies. Accessed 11 November 2022.
https://blog.unity.com/games/funding-indie-games-asset-store

https://www.wired.com/2008/02/las-vegas-1/
https://games.barclays/resource-hub/games/funding-and-finance/making-the-most-of-middleware/
https://games.barclays/resource-hub/games/funding-and-finance/making-the-most-of-middleware/
https://learning.oreilly.com/library/view/unity-for-absolute/9781430267782/
https://doi.org/10.1145/971564.971590
https://learning.oreilly.com/library/view/game-engine-architecture/9781351974271/
https://learning.oreilly.com/library/view/game-engine-architecture/9781351974271/
https://blog.unity.com/games/funding-indie-games-asset-store

43

Kok, B. 2021. Beginning Unity Editor Scripting: Create and Publish Your Game
Tools. E-book. 1st ed. Hong Kong, China: Apress. Accessed: 9 October 2022.
Requires access.
https://learning.oreilly.com/library/view/beginning-unity-editor/9781484271674/

Martin, J. 2020. Game Design Tips and Trends: What is a game Engine? Uni-
versity of Silicon Valley. Accessed 7 November 2022.
https://usv.edu/blog/what-is-a-game-engine/

Tadres, A. 2015. Extending Unity with Editor Scripting: Put Unity to Use for Your
Video Games by Creating Your Own Custom Tools with Editor Scripting. [N.p.]:
Packt Publishing (Community Experience Distilled). Accessed: 2 October 2022.
Requires access.
https://search-ebscohost-com.libproxy.tuni.fi/login.aspx?di-
rect=true&AuthType=cookie,ip,uid&db=e000xww&AN=1069146&site=ehost-
live&scope=site

Unity Technologies. 2022a. Learn Unity: Explore the Unity Editor. Accessed: 31
October 2022.
https://learn.unity.com/tutorial/explore-the-unity-editor-1?uv=2021.3

Unity Technologies. 2022b. Manual: Unity Architecture. Accessed: 2 November
2022.
https://docs.unity3d.com/Manual/unity-architecture.html

Unity Technologies. 2022c. Manual: Conditional compilation. Accessed: 2 No-
vember 2022.
https://docs.unity3d.com/Manual/unity-architecture.html

Unity Technologies. 2022d. Manual: Assembly Definition Files. Accessed: 2 No-
vember 2022.
https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html

Unity Technologies. 2022e. Manual: Script Serialization. Accessed: 3 November
2022.
https://docs.unity3d.com/Manual/script-Serialization.html

Unity Technologies. 2022f. Manual: Scriptable Object. Accessed: 3 November
2022.
https://docs.unity3d.com/Manual/class-ScriptableObject.html

Unity Technologies. 2022g. Manual: Custom Editors. Accessed: 4 November
2022.
https://docs.unity3d.com/Manual/editor-CustomEditors.html

Unity Technologies. 2022h. Unity Asset Store: Start publishing on the Asset
Store. Accessed: 11 November 2022.
https://assetstore.unity.com/publishing/publish-and-sell-assets

Unity Technologies. 2022i. Unity Asset Store: Tools. Accessed 11 November
2022.
https://assetstore.unity.com/tools

https://learning.oreilly.com/library/view/beginning-unity-editor/9781484271674/
https://usv.edu/blog/what-is-a-game-engine/
https://search-ebscohost-com.libproxy.tuni.fi/login.aspx?direct=true&AuthType=cookie,ip,uid&db=e000xww&AN=1069146&site=ehost-live&scope=site
https://search-ebscohost-com.libproxy.tuni.fi/login.aspx?direct=true&AuthType=cookie,ip,uid&db=e000xww&AN=1069146&site=ehost-live&scope=site
https://search-ebscohost-com.libproxy.tuni.fi/login.aspx?direct=true&AuthType=cookie,ip,uid&db=e000xww&AN=1069146&site=ehost-live&scope=site
https://learn.unity.com/tutorial/explore-the-unity-editor-1?uv=2021.3
https://docs.unity3d.com/Manual/unity-architecture.html
https://docs.unity3d.com/Manual/unity-architecture.html
https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html
https://docs.unity3d.com/Manual/script-Serialization.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/Manual/editor-CustomEditors.html
https://assetstore.unity.com/publishing/publish-and-sell-assets
https://assetstore.unity.com/tools

44

Unity Technologies. 2022j. Manual: Editor Windows. Accessed 14 November
2022.
https://docs.unity3d.com/Manual/editor-EditorWindows.html

Unity Technologies. 2022k. Manual: Property Drawers. Accessed 14 November
2022.
https://docs.unity3d.com/Manual/editor-PropertyDrawers.html

Unity Technologies. 2022l. Manual: Gizmos Menu. Accessed 15 November
2022.
https://docs.unity3d.com/Manual/GizmosMenu.html

Unity Technologies. 2022m. Manual: Important Classes - Gizmos & Handles.
Accessed 16 November 2022.
https://docs.unity3d.com/Manual/GizmosAndHandles.html

Williams, A. 2017. History of Digital Games. Routledge. Accessed: 7 November
2022. Requires access.
https://learning.oreilly.com/library/view/history-of-digital/9781317503804/

https://docs.unity3d.com/Manual/editor-EditorWindows.html
https://docs.unity3d.com/Manual/editor-PropertyDrawers.html
https://docs.unity3d.com/Manual/GizmosMenu.html
https://docs.unity3d.com/Manual/GizmosAndHandles.html
https://learning.oreilly.com/library/view/history-of-digital/9781317503804/

	1 INTRODUCTION
	2 GAME ENGINES
	2.1 Game Engines in general
	2.2 Game Projects and extending game engines
	2.2.1 Own propriety game engines
	2.2.2 Third-party game engines
	2.2.3 Game development tools and third-party components

	3 UNITY GAME ENGINE
	3.1 Unity introduction
	3.2 Unity Editor introduction
	3.3 Unity package manager, asset store and third-party tools
	3.3.1 Unity Package Manager
	3.3.2 Unity asset store and third-party tools

	4 EXTENDING THE UNITY EDITOR
	4.1 Unity script compilation
	4.1.1 Conditional compilation
	4.1.2 Unity assemblies and the Unity Editor assembly

	4.2 Unity game data
	4.2.1 Serialization
	4.2.2 Scriptable objects

	4.3 Customizing the Unity Editor
	4.3.1 Execute MonoBehaviour script in edit mode
	4.3.2 Custom editors
	4.3.3 Unity Editor windows
	4.3.4 Unity Editor property drawers
	4.3.5 Unity Editor scene view additions

	5 CASE AURORA PIRATES
	5.1 Chosen technologies and the case project
	5.2 Implemented editor tools for the project
	5.2.1 Property drawer for easier viewing and changing of enum values
	5.2.2 Editor window to view and edit data from multiple scriptable objects
	5.2.3 Scene view additions to illustrate ranges

	5.3 Key takeaways
	5.3.1 Key takeaways of the created tools
	5.3.2 Key takeaways of additional tool creation in general

	6 CONCLUSIONS
	REFERENCES

