
BUILDING AN APP WITH OUTSYSTEMS

Learning materials

Ammattikorkeakoulututkinnon opinnäytetyö

Tietojenkäsittelyn koulutus, Hämeenlinnan korkeakoulukeskus
syksy, 2022

Elina-Maria Zamora Lopez

Tietojenkäsittely Tiivistelmä
Tekijä Elina-Maria Zamora Lopez Vuosi 2022
Työn nimi Building an app with OutSystems – Learning Materials
Ohjaaja Esa Huiskonen

Opinnäytetyön tavoitteena on kehittää yksinkertainen tehtävälista-sovellus OutSystemsin
low-code-alustalla ja luoda tästä oppimateriaalia HAMK:n englanninkieliselle OutSystems-
aiheiselle kurssille, joka pohjautuu OutSystemsin Reactive Web Developer -
sertifiointipolkuun.

Teoriaosuudessa käsitellään low-coden lisäksi no-code ja high-code, sivutaan hieman low-
coden historiaa, ja käsitellään citizen developmentin käsitettä ja ilmiötä. Näiden lisäksi
käsitellään OutSystems, OutSystems Service Studio 11 ominaisuuksineen, ja Service Studiolla
kehittämisen eri vaiheet.

Käytännön osassa kuvataan sovelluksen suunnitteluprosessia, kehitystyön osalta käsitellään
pääkohdat yksityiskohtaisesti myös kuvankaappauksin. Sovellus on pidetty tarkoituksellisesti
yksinkertaisena, jotta opiskelija saa käsityksen siitä miten helppoa low-code voi olla.
Kehitystyö käsitellään päävaiheittain, edeten työn aloittamisesta luomalla
entiteetit/tietokannat, jatkaen ensimmäisten ruutujen luomiseen sovellukseen aluksi tuodun
tiedon avulla, ja päättyen viimeistelyyn ja julkaisuun.

Työn tuloksena on kuvaus yksinkertaisen sovelluksen luomisesta OutSystemsin Service
Studio 11-sovelluksella, sekä erilaista oppimateriaalia kurssia varten. Lukijan tulisi saada
peruskäsitys OutSystemsin toiminnasta, ja ymmärrys yksinkertaisen sovelluksen
kehittämisestä. Opettajat saavat materiaalia oppitunnin pitämiseen ja oppilaille jaettavaksi.

Sovelluksen kehittäminen oli yksinkertaista ja suoraviivaista, isoin haaste oli pitää valmis
sovellus järkevän laajuisena. Tarkoitus on kuitenkin myös osoittaa, että low-code-
kehittäminen on yksinkertaista.

Valmis sovellus toimii, kuten on tarkoitus. Sovelluksessa ei ole tällä hetkellä mahdollista
poistaa jo tehdyiksi merkittyjä tehtäviä, mutta tämä voisi olla haaste opiskelijoille kehittää
itse sovellusta edelleen, ja halutessaan lisätä sovellukseen poistamisen lisäksi muitakin
ominaisuuksia.

Avainsanat Low-code, No-code, OutSystems
Sivut 34 sivua ja liitteitä 10 sivua

Name of Degree Programme Abstract
Author Elina-Maria Zamora Lopez Year 2022
Subject Building an app with OutSystems – Learning Materials
Supervisors Esa Huiskonen

The thesis aims to develop a simple to-do list application on OutSystems' low-code platform
and create learning material from this for HAMK's English-language OutSystems-related
course, which is based on OutSystems' Reactive Web Developer certification path.

In addition to low-code, no-code and high-code are discussed in the theory part, the history
of low-code is looked at a little, and the concept and phenomenon of citizen development
are discussed. In addition to these, OutSystems, OutSystems Service Studio 11 with its
features, and the different stages of development with Service Studio are discussed.

In the practical part, the design process of the application is described in terms of the
development work, and the main points are discussed in detail, with screenshots. The
application has been deliberately kept simple so that the student gets an idea of how easy
low-code can be. The development work is handled by main stages: creating the
entities/databases, making the first screens using the information initially brought into the
application, and finishing and publishing.

The result of the thesis is a description of creating a simple application using the OutSystems
Service Studio 11 application and different learning materials for the course. The reader
should get a basic understanding of how OutSystems works and an understanding of
developing a simple application. Teachers receive material to teach the lessons and
distribute it to the students.

The application development was simple and straightforward, and the biggest challenge was
keeping the finished application reasonable in scope. However, the purpose is also to show
that low-code development is simple.

The finished application works as intended. In the application, it is not currently possible to
delete already marked tasks. Still, it could be considered a challenge for students to develop
the application itself further and if they want to add other features besides deletion.

Keywords Low-code, No-code, OutSystems, development
Pages 34 pages and appendices 10 pages

Contents

1 Introduction ... 1

2 Low-Code, No-Code, and High-Code ... 2

2.1 Citizen development and Citizen developer .. 2

2.2 Low-Code and No-Code ... 3

2.3 High-Code ... 3

3 OutSystems .. 4

3.1 OutSystems Service Studio 11 ... 4

3.2 Developing in OutSystems ... 6

3.2.1 Use data.. 6

3.2.2 Design UI .. 7

3.2.3 Implement application logic ... 7

3.2.4 Use Processes ... 8

3.3 AI-assisted development in OutSystems ... 8

3.4 Publishing, deploying, and scaling the application .. 9

4 Purpose of the work .. 10

5 Development of the application and making of the study materials 11

5.1 Designing the application... 11

5.2 Development .. 14

5.2.1 Entities .. 15

5.2.2 Screens and checkbox .. 18

5.2.3 Aggregate editing ... 24

5.2.4 Finishing touches .. 25

5.3 The study materials .. 28

6 Summary .. 29

References .. 30

Figures

Figure 1 Overview of the Environment tab ... 5

Figure 2 Overview of workspace ... 5

Figure 3 Main screen ... 12

Figure 4 Detail Screen for adding tasks ... 12

Figure 5 Detail Screen for editing tasks ... 13

Figure 6 "Done" screen .. 13

Figure 7 OutSystems Service Studio at the beginning of development 14

Figure 8 Importing entities from Excel .. 15

Figure 9 Excel sheet used to create Entities and Entity Attributes 16

Figure 10 Prompt to confirm import from Excel ... 16

Figure 11 Element tree showing the newly created database .. 17

Figure 12 Properties of "IsDone" Entity attribute ... 17

Figure 13 Service Studio before Screens are added .. 18

Figure 14 Elements tree for Interface ... 18

Figure 15 Adding the checkbox ... 19

Figure 16 Properties of the Checkbox ... 20

Figure 17 Finished Checkbox with label .. 20

Figure 18 Adding a new screen from the Elements tree. .. 21

Figure 19 Choosing a template for the new screen .. 21

Figure 20 Placeholder for the screen title ... 22

Figure 21 Table widget without data .. 22

Figure 22 Selecting a Source for table ... 23

Figure 23 Selecting data for the table from source ... 23

Figure 24 GetMyLists aggregate in the widget tree .. 24

Figure 25 Aggregate editor .. 24

Figure 26 Filter condition editor .. 25

Figure 27 Common menu .. 26

Figure 28 PageLinks widget ... 26

Figure 29 Creating the link to Done-screen ... 27

Annexes

Annex 1 Material management plan

Attachments

Attachment 1 MyTasks.xlsx

Attachment 2 PowerPoint presentations

1

1 Introduction

Market research company Forrester coined the term "Low-code development" in 2016.

Forrester defined low-code as follows “Low-code platforms enable rapid delivery of business

applications with a minimum of hand-coding and minimal upfront investment in setup,

training, and deployment” (obviously.ai, 2022). It is estimated that 70% of all development

will be made with low-code platforms and technologies by 2025.(Wong & Iijima, 2021)

This thesis aims to make study materials for an upcoming course on low-code development,

focusing on developing using OutSystems. In this thesis, I will open the concept of low-code

by comparing it to high-code and no-code and tracing some of its histories. OutSystems will

also get a deeper view of the platform and development using it.

I will also go through the development process in detail, which will be the basis for the

PowerPoint -presentations. The presentations and other possible additional materials will

result from this thesis.

The questions this thesis aims to answer are: How to develop a simple application in

OutSystems Service Studio, and what are the main phases of development?

2

2 Low-Code, No-Code, and High-Code

Low-Code and No-Code development's roots are deeper than one would think. The first

programming language for non-programmers was developed in 1955. FLOW-MATIC was

devised by Grace Hopper so that businessmen could use computers. It used English-like

statements instead of mathematical symbols. (nocode.tech, 2022)

FLOW-MATIC was a programming language. But what about no-code tools? In 1983 VisiCalc

was launched. One could use software to run calculations and store, analyze, and organize

data in a spreadsheet. Before that, one needed a programmer to run the calculations.

VisiCalc was followed by Microsoft Excel, probably one of the more familiar no-code/low-

code tools. (nocode.tech, 2022)

Low-code/no-code platforms enable users to create applications and automation workflows

using graphical tools with drag-and-drop functions. The platforms are easily integrated into

existing products, such as cloud services. (Hay, 2021)

2.1 Citizen development and Citizen developer

Citizen development is a business process that enables employees to develop the business

applications they need using low-code or no-code platforms, thus supporting them to

become software developers even without experience or training in coding. This also

includes customizing existing business applications to fit their needs better. These

employees are then citizen developers. (Liptak & Horwitz, 2021)

Citizen developers can help relieve the IT department by developing applications for smaller

user groups or niche needs. However, the platforms used for development should be

approved by the IT department, or an in-company program for citizen development should

be created. This is a way to reduce and avoid breaching regulations or safety issues. Setting

up the program could be time-consuming, but it will release resources for the IT department

in the future. (Rubens, 2014)

3

2.2 Low-Code and No-Code

Low-code development platforms are made for users with a limited understanding of coding.

A good example would be someone who knows and understands processes and workflows

but does not know how to code. They are the users to whom these platforms are targeted.

(Hay, 2021)

There are several providers of low-code/no-code platforms; for example, Forrester included

these 14 platforms in their Q2/2021 assessment: AgilePoint, Appian, GeneXus, HCL Software,

Mendix, Microsoft, Oracle, OutSystems, Pegasystems, Salesforce, ServiceNow, Thinkwise,

Unqork, and WaveMaker. (Bratincevic & Koplowitz, 2021)

2.3 High-Code

Whereas citizen developers use no-code and low-code, high-code use needs experience in

developing and understanding programming languages. High-code is perceived as

"traditional programming," where developers are more experienced and write the code

from the beginning. (Kissflow, 2022)

High-code is best to be used when a unique application is needed, one that is customized to

your business needs. Developers control the experience and interface, while data can be

used and controlled by remote systems. It is important to note that high-code is very reliant

on experienced developer resources. (Northcutt, 2021)

4

3 OutSystems

OutSystems was founded in 2001 by Paulo Rosado in Lisbon, Portugal. OutSystems is a low-

code platform that one can use to develop an application, either starting from scratch or

using an earlier application as a base to build on. The available options for developing are

reactive web apps, tablet apps, phone apps, external web portals, traditional web

development, and service development. (OutSystems, 2022g)

3.1 OutSystems Service Studio 11

Applications are developed in Service Studio, the main IDE (Integrated development

environment) in OutSystems. Service Studio is used to build, edit, and debug applications.

(OutSystems, 2022k)

To use Service Studio, the user needs access to an OutSystems environment. The free option

of OutSystems provides one runtime environment that can be used for training and

development. Two subscription options provide more runtime environments that are fully

isolated. (OutSystems, 2022b)

Service Studio opens to the Environment tab (see picture 1), showing users the applications

currently on the server. It allows the user to view and access them, create new applications,

and install application templates made by the community from the Forge. (OutSystems,

2022k)

5

Figure 1 Overview of the Environment tab (OutSystems, 2022k)

The other main feature of Service Studio is the workspace (see Figure 2).

Figure 2 Overview of the workspace (OutSystems, 2022k)

The Main editor is the area in the middle of the screen where the interface and logic are

designed. Shortcuts to the most common operations can be found in the Toolbar, and the

Toolbox contains the tools and widgets. (OutSystems, 2022k)

6

The four development tabs consist of the TrueChange tab that displays errors and warnings,

the debugger tab that is used for debugging as the name implies, the 1-Click Publish tab that

shows the progress and result of the deployment, and the Search Results tab that shows

search results for searches performed in the module. (OutSystems, 2022k)

The other elements of the workspace are the Application layer tabs that contain the

elements for the different layers (processes, user interface, logic, and data model), the 1-

click publish button that starts the deployment process if the application has no errors, the

Status Bar, and the Properties editor. (OutSystems, 2022k)

3.2 Developing in OutSystems

Developing or building can be started from scratch or using application templates.

Applications are constructed with modules that Service Studio bootstraps from the selected

templates. (OutSystems, 2022f) No previous experience in OutSystems is needed.

(OutSystems, 2022l)

There are three kinds of application templates, built-in, custom, and Forge application

templates. Built-in templates are maintained by OutSystems and include Reactive Web App,

Phone App, and Tablet app. Custom templates are created by the user, and Forge templates

are created and shared by the OutSystems community. (OutSystems, 2022f)

3.2.1 Use data

Service Studio lets the user specify and use complicated data structures. Entities are used to

keep information persistent, and structures are used for data management. Entities are also

used in data modeling and can be used like database tables or views. Entities are defined

using Entity Attributes. The data model is made to define the relationships between entities.

(OutSystems, 2022a)

7

The data in the application can be viewed and displayed using database queries or

customized SQL queries. The data in the application has been fetched from the database as

an aggregate or an SQL element. (OutSystems, 2022a)

3.2.2 Design UI

UI Design in OutSystems is based on The OutSystems UI Framework. On top of the

Framework are the Built-in Screen Templates, The Custom Application Templates, and a

Style Guide that can be created to define the style of your application. The Built-in Screen

Templates are made and supported by OutSystems, and the users make Custom templates.

There are also possibilities for making your application multilingual and accessible.

(OutSystems, 2022h)

3.2.3 Implement application logic

In OutSystems, the user uses Actions to implement logic in the applications. Like in earlier

features, there are Built-in actions and Custom actions. Built-in actions cannot be modified

and are defined by the platform, and the user creates Custom actions. With Custom actions,

the user can, for example, run integrations and create business rules. There are also actions

for handling system events that run at a particular moment of the application duration. The

user can implement their own business rules in the design of these System Event handling

actions. OutSystems also provides AI-supported development that suggests developing your

logic and automatically adding logic nodes to the workflow. Exception and error handling are

also available for the actions. (OutSystems, 2022i)

There are differences in where the actions run depending on if the actions are used in

Reactive Web Applications and Mobile applications or traditional web and service

applications. The actions in Reactive Web applications can run either on the server or on the

client, client in this case meaning the device used by the user of the application. In

traditional web and service applications, all logic runs on the server. This means that the

developer needs to consider that it is done via server requests when the logic on the client

8

side needs to use server-side logic. The communication between the client logic and server

logic needs an internet connection. (OutSystems, 2022i)

3.2.4 Use Processes

In OutSystems, a Business Process is called a Process. A process is seen as how a task is

carried out in the user's company or organization. Examples include invoice handling and

order processing. A process is also known as Business Process Technology or a BPT.

(OutSystems, 2022i)

The developer uses the Process Flow Editor to create and edit the processes. The user can

use the editor to create a process flow for the activities needed during runtime. The editor

has tools to use in the design process. (OutSystems, 2022i)

3.3 AI-assisted development in OutSystems

OutSystems has developed an AI service called AIFusion™ and added AI-assisted

development to Service Studio through its OutSystems.ai program. The OutSystems.ai

program is intended to research methods to increase efficiency in developing and also ease

the addition of AI to the developed applications. (OutSystems, 2022d)

AIFusion™ powers the AI-assisted development in Service Studio; AI-assisted development

uses patterns learned from anonymized code to give the developer suggestions on the

following steps to take or the tools to use. (OutSystems, 2022c)

There are two different ways for AI-assisted development to give suggestions for the

developer, Next-step suggestions for logic flows and OutSystems Smart Guidance. Next-step

suggestions for logic flows gives suggestions for all kinds of logic flows within the flow itself.

It gives 1-6 suggestions depending on the confidence of the assistant. The more confident

the assistant is, the fewer suggestions it gives. Next-step suggestions are often specific and

provide the information needed for the parameters of the logic node so that the developer

does not have to fill them in.

9

With OutSystems Smart Guidance, the developer can search for relevant information on the

current issue they are facing. There are several triggers within the development

environment, including a "What do you want to do?"-button. Clicking the trigger activates a

search wizard that shows results relevant to the issue at hand. OutSystems uses AI to figure

out the context of the issue from the type of the module or the error messages the

developer is seeing. (OutSystems, 2022e)

3.4 Publishing, deploying, and scaling the application

In the free version of OutSystems Service Studio, the user gets one runtime environment.

Once the app is published using 1-click Publish, it’s also deployed. In OutSystems, you use

the Lifetime- console to manage the applications lifecycle and the environments. (Note:

Console is separate from Service Studio). More runtime environments are available in the

paid subscriptions, and Lifetime is needed to manage them. The user can deploy the App

from development to QA or Production, depending on the available runtimes. There is also

some variation depending on if OutSystems is used in the cloud or installed on-premise. But

all management can be handled through the Lifetime console. (OutSystems, 2022j)

The user size range for apps developed with OutSystems ranges from a few to millions of

users. OutSystems provides several scalability options, including vertical and horizontal

scalability, according to the user’s needs. (OutSystems, 2022n)

10

4 Purpose of the work

The purpose of this thesis was to produce learning materials and a simple to-do-list

application on OutSystems. HAMK needed study materials on the following subjects: custom

validations and data modeling, user-interface, utilizing the built-in top menu, using existing

templates in their application, and writing custom SQL queries.

The materials were made by collecting information from OutSystems documentation and

documenting the development process in writing and screenshots. The text and screenshots

were made into PowerPoint presentations, and an Excel -file was also saved for use in

development.

The application was designed with a citizen developer in mind, so someone who does not

know how to code but is interested in low-code development. The design was deliberately

kept relatively simple to showcase the simpleness of low-code development.

The development process was completed several times. First, to achieve a working and

valuable application, then a few times to document the phases of development. The process

was repeated similarly each time, only differences being the names of the developed

applications. Only OutSystems Service Studio and Excel were used to develop the

application. Which is a nice coincidence, since Excel was mentioned as one of the early

instances of low-code development, and one of the more well-known ones.

11

5 Development of the application and making of the study materials

Developing the application was simple and straightforward, as expected when using a low-

code platform. It was agreed that a simple "to-do list" application would be suitable for the

study materials. Since the course the study materials are for follows the OutSystems

Reactive Developer certification path, the application will naturally be a reactive web app.

A "to-do-list" application is quite simple to make in OutSystems; one of the default examples

of fast development is a Tasks-application, a simple to-do-list app.

I chose to make the materials as PowerPoint presentations, as they are easier to update and

recycle than videos. For this, three presentations were made, each with its own subject title.

One focuses on general development with OutSystems, one for making a screen from

scratch, and one for using aggregates to visualize the data.

The most challenging part of developing was keeping the scope of the application sensible. It

is relatively easy to get too excited and try to come up with new things to add to the

application.

5.1 Designing the application

The designing and development of the application had to be done in a way that would be

understandable for a beginner. The application’s design had to be simple but also include

chances to learn further. At the simplest, the development is importing an excel file to make

the database and entities and dragging and dropping the said entities to create two screens.

I designed the application to have three screens. OutSystems creates the two first screens

from the database/entities: the main screen (Figure 3), which includes an overall view of the

tasks, and a detail screen where the user can edit the task (Figure 5). The detail screen is also

used when adding a new task (Figure 4). I wanted to add a third screen to the application so

that the study material would include a screen made from scratch. The third screen shows

the user all the tasks that have been marked as done (Figure 6).

12

Figure 3 Main screen

Figure 4 Detail Screen for adding tasks

13

Figure 5 Detail Screen for editing tasks

Figure 6 "Done" screen

I also wanted to add a checkbox for the tasks. Since it is a "To do" -list, the user would like to

be able to check their tasks as done. I added a feature that once the tasks were marked as

done, the tasks would be moved to the third screen called “Done” (see fig. 6), where the

user will be able to view the tasks marked as done. The app filters the tasks done from the

overall view; so that the user only sees tasks still to be done. In case the user marks the task

as done by accident, I added a possibility to edit the tasks after they are moved to the

“Done” -screen, and the task can be returned to the main screen by removing the check

from the checkbox.

14

5.2 Development

The development could be divided into three stages: setting up the database and entities,

setting up the screens, and then using aggregates to control the data seen on the screens.

I chose to create the database and entity attributes by importing them from an Excel file I

had previously prepared for this use. This simple Excel file will also be included in the study

materials. One entity attribute will be added manually to the database, and it will be used as

the filtering value in the aggregates as well.

Figure 7 OutSystems Service Studio at the beginning of development

15

5.2.1 Entities

I started the development by importing the Entity and its attributes from Excel. (Figure 8).

Figure 8 Importing entities from Excel.

The first phase of the import process is to choose the file from which the Entity and the

entity attributes are from. One thing that should be noted here is that Service Studio will

name the Entity according to the name of the sheet, and the entity attributes will be named

after the headings. For example, an entity made with the Excel sheet in Figure 9 would be

called task, and the entity items are Description, DueDate, and Comments.

16

Figure 9 Excel sheet used to create Entities and Entity Attributes

Once the file is chosen, Service Studio will pop out a prompt to verify which Entities are to be

imported, as shown in Figure 10.

Figure 10 Prompt to confirm import from Excel

17

After importing, OutSystems creates the database and logic. The database can be seen in the

element tree after it is created, as shown in Figure 11.

Figure 11 Element tree showing the newly created database

After this, the new entity attribute will be added to the database. The attribute is added by

right-clicking the Entity on the element tree and choosing “add entity attribute” from the

dropdown menu. I chose to call the entity attribute IsDone. I checked the properties and

ensured that the Data Type is Boolean since the information needed here is whether the

checkbox has been checked or not. The correct properties are shown in Figure 12.

 Figure 12 Properties of "IsDone" Entity attribute

18

5.2.2 Screens and checkbox

After adding the entity attribute, it was time to add the first two screens by dragging and

dropping the TASK-entity to the MainFlow. OutSystems will create screens and logic in the

background. Once the screens are ready, the checkbox can be added to the Edit/New task -

screen. Service Studio visually guides the developer to drag and drop either a screen or an

Entity to the MainFlow to create a screen, as seen in Figure 13.

Figure 13 Service Studio before Screens are added.

Service Studio will then create two screens, MyTasks, the main screen, and MyTaskDetail,

the detail screen used to add or edit the tasks on the list. The screens can be accessed and

edited from the Interface-tabs Element tree, as shown in Figure 14.

 Figure 14 Elements tree for interface

19

Next, I added the checkbox by right-clicking on the position I wanted to place it next to the

"Back" and "Save"-buttons created by Service Studio. I chose Insert Widget from the

dropdown menus and then the checkbox from the widget dropdown, as shown in Figure 15.

Figure 15 Adding the checkbox.

The checkbox could also be added by dragging and dropping the widget from the Toolbox,

but I preferred the right-click and dropdown combination for precision.

Then, the checkbox needs an accompanying variable. It is set in the properties box, as shown

in Figure 16. Service Studio will automatically suggest different options, but for this case, I

chose: “GetMyListById.List.Current.MyList.IsDone”.

20

By choosing this, the application will update the IsDone Entity Attribute as TRUE or FALSE,

depending on whether the checkbox is checked. The update will take place when the Save

button is pressed. Service Studio has created the logic for the updating, and I chose to use it

here, too, instead of adding new logic on top.

Figure 16 Properties of the Checkbox

Once the checkbox was complete, I added a label next to the checkbox and typed “Done” on

the label. The label can be added by either dragging it from the widget toolbox or, as how I

added the checkbox itself, right-clicking and choosing "add widget" from the dropdown. See

Figure 17 for the result and placement.

Figure 17 Finished Checkbox with label

Next, the new screen is added. We start by right-clicking MainFlow in the Elements tree of

the Interface tab. We will select Add screen from the dropdown menu, as shown in Figure

18.

21

Figure 18 Adding a new screen from the Elements tree.

Service Studio will show a pop-up (Figure 19) where the developer can choose a template

and name the new screen. Here we choose an empty screen and name it "Done."

Figure 19 Choosing a template for the new screen.

22

Service Studio does give the developer some help with adding placeholders for the screen

title (Figure 20) and Main Content. First, the title needs to be added by clicking the

placeholder and typing the title. Since this screen lists out the tasks that are done, I named it

"Done."

Figure 20 Placeholder for the screen title

Then I added a Table widget to the screen by dragging and dropping it from the Toolbox to

the MainContent-area of the screen. As before, the widget can be added by right-clicking the

MainContent -area and choosing the widget from the dropdown menu.

Figure 21 Table widget without data

23

I added the data to the table by right-clicking the red "Table" button. From the dropdown

menu, I chose "Select Source." I checked all Entity attributes from the MyList Entity I created

earlier by importing it from Excel and manually adding the "IsDone” entity attribute. For

these steps, see Figures 22 and 23.

Figure 22 Selecting a Source for the table.

Figure 23 Selecting data for the table from the source.

24

5.2.3 Aggregate editing

For the Done screen to show only the tasks that have been marked as done with the

checkbox, I needed to edit the aggregate already created by Service Studio. The aggregate

defines what data is shown in the table. An aggregate called GetMyLists has been created for

my new screen by Service Studio and can be accessed from the widget tree, as shown in

Figure 24.

Figure 24 GetMyLists aggregate in the widget tree

I opened the Aggregate editor window by double-clicking the GetMyLists aggregate (see

Figure 25). The aggregate editor offers options to edit the data shown in the table. It is

possible to add sources to combine data from several sources, such as entities and variables.

Filters can be used to only show the data according to the desired filtering conditions. Lastly,

the data can be sorted with the aggregate.

Figure 25 Aggregate editor

25

In the editor, I opened the Filters tab (or No Filters tab if none have been made). After

clicking on "Add filter," a Filter condition editor opens. There I added the following

expression: MyList.IsDone = True, and now the aggregate only shows items that have been

marked as done using the checkbox created earlier. The filter condition editor with the

expression used in this case is shown in Figure 26.

Figure 26 Filter condition editor

The process is then repeated for the Main screen by adding an otherwise similar filter to the

aggregate. For the main screen, the condition should be MyList.IsDone = False. If this step is

not taken, the Main screen will show all the tasks regardless of their status as done or not.

5.2.4 Finishing touches

Lastly, a link to the “Done” screen made from scratch needs to be added to the Common

menu. OutSystems created the menu during the making of the first two screens, but the new

screen needs to be added separately. The Common menu can be accessed for editing by

double-clicking the menu on any of the screens.

26

Figure 27 Common menu

Then the link can be added by typing the link text, in this case, "Done," to the PageLinks-

widget in the menu. The placement of the link text and PageLinks-widget is shown in Figure

28.

Figure 28 PageLinks widget

Right-clicking the added text opens a dropdown menu. From that dropdown, I chose "link

to" and then the screen "Mainflow\Done," which was suggested by OutSystems. The

dropdown menu and the suggested link destinations are shown in Figure 29.

27

Figure 29 Creating the link to Done-screen.

Now the link to the “Done”-screen is in the Common Menu and can be accessed from any

screen.

Then the program can be published by clicking the green “publish” -button on the top of the

screen. After Service Studio has deployed the application, it can be opened in the browser.

The basics of the app are now done. The budding OutSystems-developer is now able to

develop a simple program and use it as a base to practice and test their development ideas.

28

5.3 The study materials

The study materials will consist of a PowerPoint presentation that will guide the students

through the start of the development process and then the three development stages:

setting up the database and entities, setting up the screens, and then using aggregates to

control the data seen on the screens. One presentation will also be made about Service

Studio, giving an overview of the platform. The contents of this report could also be used as

guide for beginner developers.

I will also include the small and simple Excel file to be used in developing the To Do-app. It

will contain the basic info for the database, and the Entity attributes that Service Studio will

use to create them. Then that information will be further used to create screens and tables

within Service Studio.

29

6 Summary

The goal of this thesis was to develop a simple application and to make the accompanying

study materials. The study materials are based on the development process depicted in this

thesis. HAMK needed study materials on the following subjects: custom validations and data

modelling, user-interface, utilizing the built-in top menu, utilizing existing templates in their

own application, and writing custom SQL queries. Apart from the custom SQL queries, the

materials discuss all the needed subjects. Instead of custom SQL queries, aggregates were

studied and used, as OutSystems suggests using them instead. (OutSystems, 2022m)

The development was straightforward and simple, but the challenge was keeping the scope

of the application sensible. The point of Low-code development is that it is simple to do. So,

a simple application really is that. It is easy for the scope to get out of hand; I was

considering trying out integration with Outlook but ultimately decided that it would have

taken out the simplicity of the application.

Overall, the application is working as it should. I left it relatively simple so the student could

use it as a base to build on and test their ideas. One thing that the application lacks is the

possibility to delete the tasks that are done. Nevertheless, that could be considered a

challenge for the students. How would they develop it further? What would they do

differently? There are so many choices in developing that we cannot think of the student-

made application as clones but more like siblings or cousins of the original.

Low-code development is growing rapidly; some estimates are as high as 70% of all

development made with low-code applications in 2025. Low-code will not likely grow by

replacing traditional development but by making development possible for more people and

increase overall total development. So, more development overall with the rise of citizen

developers.

30

References

Bratincevic, J., & Koplowitz, R. (2021, May 11). The Forrester WaveTM: Low-Code

Development Platforms For Professional Developers, Q2 2021.

https://reprints2.forrester.com/#/assets/2/228/RES161668/report

Hay, R. (2021, October 20). What Are Low-Code/No-Code Platforms?

https://www.itprotoday.com/no-codelow-code/what-are-low-codeno-code-

platforms

Kissflow. (2022, July 15). Low-Code vs High-Code : Choose The Best For Your Business App

Development in 2022. https://kissflow.com/low-code/low-code-vs-high-code/

Liptak, J., & Horwitz, L. (2021, February). What is citizen development, and what is a citizen

developer? https://www.techtarget.com/searchsoftwarequality/definition/citizen-

development

nocode.tech. (2022). NoCode - The history of no-code: from VisiCalc to Airtable.

https://www.nocode.tech/article/the-evolution-of-no-code-from-visicalc-to-airtable

Northcutt, R. (2021, August 16). High Code vs. Low Code vs. No Code: Why Choose Just One?

| Acquia. https://www.acquia.com/blog/high-code-vs-low-code-vs-no-code-why-

choose-just-one

obviously.ai. (2022). The Short, Inventive History of No-Code and the Long Future Ahead |

Obviously AI Blog. https://www.obviously.ai/post/the-history-of-no-code

OutSystems. (2022a). Entity Relationships - OutSystems 11 Documentation. OutSystems.

https://success.outsystems.com/Documentation/11/Developing_an_Application/Use

_Data/Data_Modeling/Entity_Relationships

31

OutSystems. (2022b). OutSystems Pricing | OutSystems.

https://www.outsystems.com/pricing-and-

editions/?_gl=1*1356bm1*_ga*NjA1MjI5MDY4LjE2NTU4MDc2Njc.*_ga_ZD4DTMH

WR2*MTY2NDkwODE5OS4xNC4xLjE2NjQ5MTA4MzguMTkuMC4w

OutSystems. (2022c). What is AI-assisted development? | Evaluation Guide | OutSystems.

https://www.outsystems.com/evaluation-guide/what-is-ai-assisted-development/

OutSystems. (2022d). What is OutSystems.ai? | Evaluation Guide | OutSystems.

https://www.outsystems.com/evaluation-guide/what-is-outsystems-ai/

OutSystems. (2022e). What kind of suggestions can developers get from AI-assisted

development? | Evaluation Guide | OutSystems.

https://www.outsystems.com/evaluation-guide/suggestions-developers-get-ai-

assisted-development/

OutSystems. (2022f, June 29). Application Templates - OutSystems 11 Documentation.

https://success.outsystems.com/Documentation/11/Developing_an_Application/Ap

plication_Templates

OutSystems. (2022g, June 29). Choose the right app for your project - OutSystems 11

Documentation.

https://success.outsystems.com/Documentation/11/Getting_started/Choose_the_ri

ght_app_for_your_project

32

OutSystems. (2022h, June 29). Design UI - OutSystems 11 Documentation.

https://success.outsystems.com/Documentation/11/Developing_an_Application/Des

ign_UI

OutSystems. (2022i, June 29). Implement Application Logic - OutSystems 11 Documentation.

https://success.outsystems.com/Documentation/11/Developing_an_Application/Imp

lement_Application_Logic

OutSystems. (2022j, June 29). Managing the Applications Lifecycle - OutSystems 11

Documentation. OutSystems.

https://success.outsystems.com/Documentation/11/Managing_the_Applications_Lif

ecycle

OutSystems. (2022k, June 29). Service Studio Overview - OutSystems 11 Documentation.

https://success.outsystems.com/Documentation/11/Getting_started/Service_Studio

_Overview

OutSystems. (2022l, June 29). Understanding how to create an app - OutSystems 11

Documentation.

https://success.outsystems.com/Documentation/11/Getting_started/Getting_starte

d_with_your_own_app_use_case/Understanding_how_to_create_an_app

OutSystems. (2022m, September 28). SQL Queries - OutSystems 11 Documentation.

https://success.outsystems.com/Documentation/11/Developing_an_Application/Use

_Data/Query_Data/SQL_Queries

33

OutSystems. (2022n, October 6). High availability and scalability strategies - OutSystems 11

Documentation.

https://success.outsystems.com/Documentation/11/Setup_and_maintain_your_Out

Systems_infrastructure/Setting_Up_OutSystems/Possible_setups_for_an_OutSystem

s_infrastructure/High_availability_and_scalability_strategies

Rubens, P. (2014, February 7). DIY apps and the rise of ‘citizen developers’. BBC News.

https://www.bbc.com/news/business-26052344

Wong, J., & Iijima, K. (2021, September 20). Gartner Reprint.

https://www.gartner.com/doc/reprints?id=1-24AEKPVN&ct=201001&st=sb

34

Annex 1: Material management plan

The application developed for this thesis is hosted in my personal OutSystems environment,

and I will also download a copy of it for backup. When the material gets used in the course,

there will be several “siblings” for the application created by the students.

The PowerPoint presentations and the Excel file will be handed over to HAMK once the

course teachers accept them. Copies will be saved in my personal OneDrive or Google Drive

for at least a year, after which they will be removed. The backup copy of the developed

application will also be saved in the same places and handed over to HAMK.

Attachment 1/2

Attachment 1: MyTasks.xlsx

Description DueDate Comments

Start thesis 15/06/2023

Return book 17/08/2023

Attachment 2/2

Attachment 2: PowerPoint presentations

 reate a module

Attachment 2/2

 orkspace

In the beginning, your
workspace should look like
this

Import n ty
 Right click on n es in the
Data tab

 hoose Import New n es
from cel and nd the le you
intend to use

 er impor ng, ut ystems
creates the database and logic.

 The database can be seen in the
element tree a er it is created.

Attachment 2/2

 rea ng creens
using n es 2 2
 ervice tudio will create two
screens:

 yTasks the main screen

 yTaskDetail screen used for
adding or edi ng the tasks on the
list.

 The screens can be accessed and
edited from the Interface tabs
 lement tree.

 dding the heckbo

 In the yTaskDetail screen, dd
the heckbo by right clicking the
posi on you would like to place it.

 hoose heckbo from the
dropdown menu

 You can also add the heckbo by
dragging and dropping it from the
Toolbo

 on guring the heckbo proper es
 The checkbo needs an
accompanying variable.

 It is set in the proper es bo

 choose:
 et yList yId.List. urrent. yLis
t.IsDone

 y choosing this, the applica on
will update the IsDone n ty
 ribute as TR or F L ,
depending on whether the
checkbo is checked.

Attachment 2/2

 dding a screen from cratch
 tart by right clicking ainFlow in
the lements tree of the Interface
tab.

 elect dd screen from the
dropdown menu

 ervice tudio will show a pop up
where you can choose a template
and name the new screen.

 hoose mpty screen and name it
 Done.

 dding a Title to the screen

 ervice tudio does give the
developer some help with
adding placeholders for the
screen tle and ain ontent.

 dd the tle by clicking the
placeholder and typing the tle

 ince this screen lists out the
tasks that are done, name it
 Done.

 dding a Table widget to the screen
 dd a Table widget to the
screen by dragging and
dropping it from the Toolbo to
the ain ontent area of the
screen.

 s before, the widget can be
added by right clicking the
 ain ontent area and
choosing the widget from the
dropdown menu.

Attachment 2/2

 on guring the Table widget

 dd the data to the table by
right clicking the red Table
bu on.

 From the dropdown menu,
choose elect ource.

 heck all n ty a ributes from
the yList n ty

 ggregates
 For the Done screen to show only
the tasks that have been marked
as done with the checkbo , we
need to edit the aggregate already
created by ervice tudio.

 The aggregate de nes what data
is shown in the table.

 n aggregate called et yLists
has been created for the screen by
 ervice tudio and can be
accessed from the widget tree

 ggregate editor
 In the editor, open the Filters tab (or No
Filters tab if none have been made).

 er clicking on dd lter, a Filter
condi on editor opens. There add the
following e pression: yList.IsDone
True, and now the aggregate only shows
items marked as done using the
checkbo created earlier.

 The process is then repeated for the
 ain screen by adding an otherwise
similar lter to the aggregate. For the
main screen, the condi on should be
 yList.IsDone False.

Attachment 2/2

 di ng the ommon menu 1 2

 The ommon menu can be
accessed for edi ng by double
clicking the menu on any of the
screens.

 Then the link can be added by
typing the link te t, in this case,
 Done, to the PageLinks
widget in the menu.

 di ng the ommon menu 2 2
 Right clicking the added te t
opens a dropdown menu.

 From that dropdown, choose link
to and then the screen
 ain ow Done, which was
suggested by ut ystems.

 Now the link to the Done screen
is in the ommon enu and can
be accessed from any screen.

Publishing

 Then the program can be
published by clicking the green
 publish bu on on the top of
the screen.

 er ervice tudio has
deployed the applica on, it can
be opened in the browser.

Now what
 The basics of the app are now done.

 Feel free to venture out and develop this li le app further to t
your needs.

 aybe add a delete bu on or more screens

Attachment 2/2

Attachment 2/2

Attachment 2/2

