

Bach Le

DEVELOPING AN E-COMMERCE
WEBSITE WITH REACT

Bachelor’s thesis

Information Technology

Bachelor of Engineering

2022

Degree title Bachelor of Engineering
Author(s) Bach Le
Thesis title Developing an e-commerce website with React
Commissioned by -
Year 2022
Pages 48 pages, 1 appendix page
Supervisor(s) Timo Mynttinen

ABSTRACT

The thesis goal was to create a website allowing users to trade products online.

The application’s target user is everyone who has internet access. The

theoretical background provides React.js, Node.js, MongoDB, JavaScript,

Express.js, and REST API definitions and functions. The theories from the

theoretical background part will provide solid knowledge for the implementation

part.

The thesis’s implementation part is about planning and coding for the website,

including server-side and client-side implementation. Also, the website will be

demonstrated by images in this part.

The result of this thesis is a functional website that allows users to buy/ trade

products online.

Keywords: web development, full-stack, MERN Stack, React

https://www.finlex.fi/fi/laki/ajantasa/2014/20141129#P20

CONTENTS

1 INTRODUCTION .. 5

2 THEORETICAL BACKGROUND .. 6

2.1 E-commerce ... 6

2.1.1 Definition ... 6

2.1.2 Types .. 6

2.1.3 Advantages ... 7

2.1.4 Challenges .. 7

2.2 JavaScript ... 8

2.3 REACT ... 9

2.3.1 Virtual DOM .. 9

2.3.2 Components and Props .. 10

2.3.3 JSX ... 11

2.3.4 State ... 11

2.4 NODE.JS .. 12

2.5 EXPRESS.JS.. 12

2.6 MONGODB ... 13

2.7 REST API ... 13

3 IMPLEMENTATION .. 15

3.1 Application Overview .. 15

3.2 Back-end implementation ... 16

3.2.1 API Planning ... 16

3.2.2 Server implementation .. 17

3.3 Web application implementation ... 27

3.3.1 Structure ... 27

3.3.2 Styling ... 28

3.3.3 Screens and Components .. 29

3.3.4 Redux ... 32

3.4 My website application .. 35

3.4.1 Home Screen .. 35

3.4.2 Single Product Screen .. 37

3.4.3 Cart Screen ... 38

3.4.4 Shipping Screen ... 39

3.4.5 Payment Screen ... 40

3.4.6 Place Order Screen .. 40

3.4.7 Order Screen .. 41

3.4.8 Register Screen .. 42

3.4.9 Log In Screen ... 43

3.4.10 Profile Screen ... 45

4 CONCLUSION .. 46

REFERENCES .. 47

5

1 INTRODUCTION

Nowadays, with the fast-paced development of technologies, online shopping

becomes a must for companies to provide/ sell their products to customers. More

and more companies have their own websites and many online platforms that sell

products online and appear to meet customers' needs. E-commerce plays a very

important role in the rise of those websites.

E-commerce is a model that allows companies and customers to trade things

online. It first appeared in the 1960s when companies used an electronic system

called the Electronic Data Interchange to facilitate the transfer of documents.

Later, with the introduction of the internet, more and more e-commerce sites

started showing up: Amazon, eBay, Etsy, etc. The convenience of online

shopping, and the development of transporting and shipping systems increase

the demand for e-commerce quickly.

The project that has been made for this thesis is an E-commerce website. The

site basically has 2 roles: admin and users/customers. Admin manages the

products by adding new products, deleting products, and making changes to

product information. Users can view and search for the product that they want,

also they can buy them by adding the products to the site’s shopping cart.

In order to achieve the goals, I have divided my thesis into 4 chapters, described

as follows:

 Chapter 1 (Introduction): basic information about the thesis topic, also

what I will do in this thesis.

 Chapter 2 (Theoretical Background): theories that are needed to

complete the thesis project.

 Chapter 3 (Implementation): the process of developing the thesis project.

 Chapter 4 (Conclusion): summary of the results and outcome of the

thesis topic.

6

2 THEORETICAL BACKGROUND

2.1 E-commerce

2.1.1 Definition

E-commerce, EC for short (electronic commerce) is a process referring to

transactions, purchases, and goods being sold over the internet. Customers

come to the website or online marketplace and purchase products using

electronic payments. Upon receiving the payment, the merchant ships the goods

or provides the service.

E-commerce is closely intertwined with the history of the internet. The first e-

commerce site was Book Stacks Unlimited, an online bookstore created by

Charles M. Stack in 1992, just one year after the internet was introduced (1991).

After years of development, as mobile devices became popular, social media

increasingly affirmed the power and the boom of e-commerce.

2.1.2 Types

Currently, there are many forms of e-commerce, including the following basic

forms:

B2B (Business to Business): When a business sells a good or service to

another business (e.g. A business sells software-as-a-service for other

businesses to use).

B2C (Business to Consumer): When a business sells a good or service to an

individual consumer (e.g. You buy a pair of shoes from an online retailer).

C2B (Consumer to Business): When a consumer sells their products or

services to a business or organization (e.g. An influencer offers exposure to their

online audience in exchange for a fee, or a photographer licenses their photo for

a business to use).

7

C2C (Consumer to Consumer): When a consumer sells a good or service to

another consumer (e.g. You sell your old furniture on eBay to another consumer).

2.1.3 Advantages

Availability: E-commerce sites are open 24/7 and 365 days (except for outages

and maintenance), enabling customers to come and shop at any time. For

businesses, it's a great opportunity to increase sales opportunities all the time.

International sales: Compared to opening a physical store where you will only

be able to have access to the customers that live near/ in your area, an e-

commerce store can sell to anyone in the world and isn't limited by physical

geography. That will help reach out to more customers, and increase sales.

Budget savings: Compared with traditional forms of commercial business, all

costs when e-commerce business are reduced: the cost of renting booths,

salespeople, and management is much more economical. Naturally, when sellers

save operating costs, they can offer more incentives and better discounts for their

customers.

Increased selection: Many stores offer a wider array of products online than

they carry in their brick-and-mortar counterparts. Many stores that solely exist

online may offer consumers exclusive inventory that is unavailable elsewhere.

Fast-accessing: Instead of waiting for lines of people to buy/pay for the goods at

physical stores, we just need to go on the website, put the goods that we want

into the cart, pay for them and wait until the goods are delivered to us. That would

be really convenient.

2.1.4 Challenges

Internet access required: To be able to buy and sell on e-commerce sites, you

need devices that are connected to the internet. For now, there are more and

8

more places that have internet connections, but still, there are places that haven’t

got the internet yet.

Trusting issues: Products and services that cannot be seen, touched, held, or

felt directly before we spend money to buy them. There’s always a high chance

that customers might be scammed by the ”sellers”.

Limited customer service: If customers have a question or issue in a physical

store, they can ask a clerk, cashier, or store manager for help. In an e-commerce

store, customer service can be limited: The site may only provide support during

certain hours, and its online service options may be difficult to navigate or not

answer a specific question.

Security: Skilled hackers can create authentic-looking websites that claim to sell

well-known products. Instead, the site sends customers fake or imitation versions

of those products -- or simply steals credit card information.

2.2 JavaScript

JavaScript is a scripting or programming language that allows you to implement

complex features on web pages which HTML and CSS cannot do. Any time we

clicked on the drop-down menu, write something on the site, or the transitions of

the elements on the site, we are seeing the effects of JavaScript. It is used for

web development, web applications, game development, and lots more.

In Web development, JavaScript is implemented on 2 sides of a website: client-

side and server-side, following its features:

 Client-side JavaScript: JavaScript is developed to enable the

enhancement and manipulation of web pages and client browsers. In

a browser environment, your code will have access to things provided only

by the browser, like the document object for the current page, the window,

functions like an alert that pops up a message, etc. The main tasks

of client-side JavaScript are validating input, animation, manipulating UI

9

elements, and append lying styles, some calculations are done when you

don't want the page to refresh so often.

 Server-side JavaScript: JavaScript is developed to enable back-end

access to databases, file systems, and servers. Server-side JavaScript, is

JavaScript code running over a server’s local resources. Also, with server-

side code, you can still send JavaScript to the client-side.

2.3 REACT

React, also known as ReactJS or React.js is a JavaScript library focused on

creating declarative user interfaces (UIs) using a component-based concept. It’s

used for handling the view layer and can be used for web and mobile apps.

React’s main goal is to be extensive, fast, declarative, flexible, and simple.

2.3.1 Virtual DOM

Document Object Model, or DOM, is an Application Programming Interface

(API), it represents the UI of your application. Every time there is a change in the

state of your application UI, the DOM gets updated to represent that change.

A virtual DOM is a representation of a real DOM that is built/manipulated by

browsers. React generate a tree of elements in memory equivalent to the real

DOM, which forms the virtual DOM in a declarative way. Because the virtual

DOM will never be presented to the user, it will only exist in memory, rendering it

is quicker.

In React, every UI piece is a component, and each component has a state. As

you can see from Figure 1, the red circles represent the nodes or states that have

changed. When the state of a component changes, React updates the virtual

DOM tree. Once the virtual DOM has been updated, React then compares the

current version of the virtual DOM with the previous version of the virtual DOM.

10

Figure 1. DOM process

Once React knows which virtual DOM objects have changed, then React

updates only those objects, in the real DOM. This makes the performance far

better when compared to manipulating the real DOM directly.

2.3.2 Components and Props

ReactJS is a component-based library where components make our code

reusable and split our UI into different pieces. Components are divided into two

types: Class components and Function components.

 Function components: they are basically JavaScript functions that may

or may not receive data as parameters. They only contain a render

method and don't have their own state. We can create a function that

takes props(properties) as input and returns what should be rendered.

 Class components: they are more complex than functional components.

It requires you to extend from React component and create a render

function which returns a React element. You can pass data from one class

11

to other class components. You can create a class by defining a class that

extends Component and has a render function.

We use props in React to pass data from one component to another (from a

parent component to a child component).

2.3.3 JSX

React uses a syntax extension to JavaScript called JSX. JSX stands for

JavaScript XML. JSX uses Babel preprocessors to convert HTML-like text in

JavaScript files into JavaScript objects to be parsed. The layout of React

components is mostly written using JSX. JSX returned by React components is

compiled into JavaScript.

2.3.4 State

State is a built-in React object that is used to contain data or information about

the component. A component’s state can change over time, whenever it changes,

the component re-renders. The change in state can happen as a response to

events or actions that occurred and these changes determine the behavior of the

component and how it will render.

 A state can be modified based on user action or network changes.

 Every time the state of an object changes, React re-renders the

component to the browser.

 The state object is initialized in the constructor.

 The state object can store multiple properties.

State can be updated in response to event handlers, server responses, or prop

changes. This is done using the setState() method.

12

2.4 NODE.JS

Node.js is an open-source and cross-platform JavaScript runtime environment. It

is a popular tool for almost any kind of project. Node.js runs the V8 JavaScript

engine, the core of Google Chrome, outside of the browser.

Some basic features of Node.js:

 Asynchronous and Event Driven − All APIs of Node.js library are

asynchronous, non-blocking. Basically, a Node.js based server never

waits for an API to return data. The server moves to the next API after

calling it and a notification mechanism of Events of Node.js helps the

server to get a response from the previous API call.

 Very Fast − Being built on Google Chrome's V8 JavaScript Engine,

Node.js library is very fast in code execution.

 Single-Threaded but Highly Scalable − Node.js uses a single-threaded

model with event looping. Event mechanism helps the server to respond in

a non-blocking way and makes the server highly scalable as opposed to

traditional servers which create limited threads to handle requests.

 No Buffering − Node.js applications never buffer any data. These

applications simply output the data in chunks.

 License − Node.js is released under the MIT license

Node.js has a unique advantage since millions of front-end developers that write

JavaScript for the browser are now able to write the server-side code in addition

to the client-side code without learning another language.

2.5 EXPRESS.JS

Express.js is an open-source web application framework for Node.js. It is used

for designing and building web applications quickly and easily. Since Express.js

only requires JavaScript, it becomes easier for programmers and developers to

build web applications and API without any effort.

13

Express.js is a framework of Node.js which means that most of the code is

already written for programmers to work with. You can build a single-page, multi-

page or hybrid web application using Express.js. Express is lightweight and helps

to organize web applications on the server-side into a more MVC architecture.

2.6 MONGODB

MongoDB is a document-oriented NoSQL database used for high-volume data

storage. Instead of using tables and rows like traditional relational databases,

MongoDB makes use of collections and documents. Documents consist of key-

value pairs which are the basic unit of data in MongoDB. Collections contain sets

of documents and functions which is the equivalent of relational database tables.

MongoDB features:

 Schema-less Database: one collection can hold different types of

documents. These documents may consist of the different numbers of

fields, content, and size.

 Data model: allows you to represent hierarchical relationships, store

arrays, and other more complex structures more easily.

 Scalability: MongoDB environments are very scalable. Companies across

the world have defined clusters with some of them running 100+ nodes

with around millions of documents within the database.

 Indexing: every field in the documents is indexed with primary and

secondary indices this makes easier and takes less time to get or search

data from the pool of the data.

 Replication: MongoDB creates multiple copies of the data and sends

these copies to a different server so that if one server fails, then the data

can be retrieved from another server.

2.7 REST API

Representational State Transfer (REST) is an architectural style that defines a

set of constraints to be used for creating web services.

14

API stands for application programming interface, which is a set of definitions and

protocols for building and integrating application software.

REST API is used to fetch or give some information from a web service. All

communication done via REST API uses only HTTP requests.

How REST API works: as you can see from Figure 2, a request is sent from client

to server in the form of a web URL as a HTTP request. After that, a response

comes back from the server in the form of a resource which can be anything like

HTML, XML, Image, or JSON.

Figure 2. API

In HTTP there are five methods that are commonly used in a REST-based

Architecture i.e., POST, GET, PUT, PATCH, and DELETE. These correspond to

create, read, update, and delete (or CRUD) operations respectively. Other

methods are less frequently used like OPTIONS and HEAD.

GET: The HTTP GET method is used to read (or get) the data of a resource. If

nothing went wrong, it returns the data you need and an HTTP response code of

200 (OK). If there are any errors, it returns a 404 (NOT FOUND) or 400 (BAD

REQUEST).

POST: The POST method is used to create new resources. In a successful

operation, it returns a Location header with a link to the resource that you have

created and a 201 HTTP status.

PUT: It is used for updating the resources. PUT can also be used to create a

resource in case where the resource ID have not existed in the database in the

15

first place. If successfully updated, return 200 (or 204 if not returning any content

in the body). If using PUT for create, return HTTP status 201 on successful

operation.

PATCH: It is used to modify the resources. The PATCH request contains the

changes of the resource, not the complete resource. This basically the same as

PUT, but the body contains a set of instructions describing how a resource

should be modified.

DELETE: It is used to delete a resource identified by a URI. On successful

deletion, return HTTP status 200 (OK) along with a response body.

3 IMPLEMENTATION

This section will be divided into three parts: application overview, back-end

implementation, and front-end implementation. The first part describes all the

features and functions of the application. The second part is about how did I

implement the back-end server and how it was planned. The third part will be

about the implementation of my web application.

3.1 Application Overview

My application contains two basic roles, including user and admin. Admins, they

can manage all the products on the site, for example create, update or delete

products. Users can search, select and order products, or they can even manage

all the orders that they have purchased before.

My application is called Phone Shop, basically it’s a phone shop that sells

phones. The main functions are the following:

• Sign up and log in: to have better experience with the website, the site

requires all the users to register an account using their e-mails. Besides,

users can also see and update their profiles.

16

• Shopping cart: whenever users want to buy something, they can add

products to the shopping cart, and users can come back to check (or buy)

the products later.

• Search: users can search for the products they want to buy by using a

search box provided by the website.

• Buy and pay: The site supports a variety of payment options for the users

when they purchasing the products.

3.2 Back-end implementation

3.2.1 API Planning

First of all, to create back-end server for the application, we need to plan API. API

is used for communication between an application and a back-end server. So if

we want to get data from back-end to our front-end, we need API to call the data

that we need. The description of each API is in the table below.

Table 1. API paths

Path Method Input Description

/users/login POST email, password To sign in user

/users/ POST name, email,

password

To register a new

user

/users/profile GET - To get profile of

current user

/users/:id GET id Get data of user

by id

/users/profile PUT name, email,

password

To update current

user

/products/ GET Get all products

/products/:id GET id Get product by id

/products/ POST Name, price,

description,

image,

countInStock

Add new product

17

/products/:id/review POST id, rating,

comment

Add product

review by id

/products/:id DELETE id Delete product by

id

/products/:id PUT :id, name, price,

description,

image,

countInStock

Update product

by id

/orders/all GET - Get all orders

/orders/ GET - Get orders from

logged in user

/orders/ POST orderItems,

shippingAddress,

paymentMethod,

itemsPrice,

taxPrice,

shippingPrice,

totalPrice

Add order

/orders/:id GET id Get order by id

/orders/:id/pay PUT id Pay order by id

/orders/:id/delivered PUT id Deliver order by

id

3.2.2 Server implementation

To implement the server, first, we need to create a database to store all the data.

I chose MongoDB as the database to work on this project. The database has

three collections, which are: orders, products, and users. Figure 3 shows all

collections I used for this project.

18

Figure 3. MongoDB Database

 Users: stores all data of users, including username, email, and password.

 Products: stores all the details of all products in the e-commerce store.

 Orders: information about orders that users have ordered.

In this project, I will connect to MongoDB by using its cloud server which is

MongoDB Atlas. There are three ways to connect the database to the server:

connect with MongoDB Shell, connect to your application, and connect using

MongoDB Compass. I will connect using “connect to my application” way which

requires a connection string that is provided by MongoDB.

Figure 4. Connect to MongoDB

Figure 4 shows the way I connect to MongoDB, using the string provided by

MongoDB: MONGODB_URI, and connect to the database using mongoose.

19

Then, I defined the schema for this project. A schema is a JSON object that

defines the structure and contents of your collection. Each field of a schema will

be the collection property. Schemas represent types of data rather than specific

values. There are many different types to be defined, for example type, required,

string, number, etc. Figure 5 shows the schema used in this project:

Figure 5. Schemas for this project

To use Schema in the collection, we have to convert it into Model. Figure 6

displays how I convert the userSchema to User model.

20

Figure 6. Database Model

After defining all the models for each collection, I created routes for each request

from the table that I have made above (Table 1). Each API path will be a route for

the corresponding request. In this project, I only use 4 basic API methods: GET,

POST, PUT and DELETE. Based on each request’s requirements, I create all the

routes by using prefixes and functions.

Figure 7. GET all orders method

Figure 7 shows how to create a route using GET method to get the list of all

orders. orderRouter is the router of Order model, orderRouter.get() is to create a

GET method. /all is the prefix of this route. This API path is to get all the orders

from the Order model by using find() to get all the available data. I also used sort

and populate the result with user’s information. If the operation is success, the

API path will return the data and a successful status. If there are any errors while

trying to get the data, a response with an error message will be sent.

Figure 8 displays how to create a route using GET method requires input to get

the data. As you can see from Table 1: /users/:id, /products/:id, in these paths,

there’s “:id” after the prefixes. This “:id” thing will be the keyword for the route to

get the information that the user/admin needs.

21

Figure 8. GET User by id

In API, in order to create data to the database, we use POST method. Figure 9

displays how to create a new product. First, add all the needed information about

the product on the request body, then the data will be sent to the database using

the POST method. If the API call is success, it will return the product’s info as a

response. If there are any products that have the same name, it will return

“product is already exists”. If there are any errors, it will send an error message:

“Invalid product data”.

Figure 9. POST method

22

If you can create, it means that you can also delete. For example, in this DELETE

method on product route as you can see from Figure 10, I will input the id of the

product that I want to delete, then use function findById to find the exact product,

and finally remove it from the database.

Figure 10. DELETE method

To update the data in API, we use PUT method. Figure 11 displays how to

update product’s data using provided id. Input the information that you want to

change and also the id of the product. Then save the product using save()

function. If anything wrong, it will send you an error message.

Figure 11. PUT method

23

I created a route to search for the products, Figure 12 displays how. Here, I

combined the search function with pagination. For this route, we will get the

keyword from the API params and use find() to find all the products that have the

exact keyword.

Figure 12. Search route

Next part covers how to register and login users. Register user basically is

creating a new user, which means we need to post a new user into Users

collection. So we do the same way as what we did with create a new product,

using POST method. Figure 13 shows how I created a new user.

24

Figure 13. Create new User

But with only posting the email and password, it is not good for security of the

accounts. So, to secure the application, we will need a token whenever a request

that was made by users/admins is done. In this project, I use JSON Web Token

(jwt) for authentication. Whenever we create a new user, a token will be

generated for that user too.

25

Figure 14. Generate token

Figure 14 shows how I generate token: jwt.sign() function combines the payloads,

which are id (the id of the user) and the secret key. This sign() function will

generate the token. The output is three Base64-URL strings separated by dots

that can be easily passed in HTML and HTTP environments, while being more

compact when compared to XML-based standards such as SAML. After that, it

returns user’s email and token in the response.

Figure 15. jwt middleware

26

To authorize the request, I use a middleware called protect. After the route

receives the request, it will get the current user’s email and password, then finds

a user that has the same email in the collection. When the route can find a user

with the provided email, it compares the given password with the one that is

stored in the collection. If the password matches, it starts generating the token. If

not, the route returns an error message. If there are any problems with finding a

user, it returns a “Not authorized” message. You can see the protect middleware

in Figure 15.

Figure 16 displays how we log in into the site:

Figure 16. Login route

We have the back-end, but currently it only works on the local server. So if we

want to use it on the internet, we must deploy it to a server online. In this project,

I use Heroku to deploy the back-end application. There are multiple ways to

deploy using Heroku, but I choose the easiest way for me: using GitHub repo. On

Heroku, I created a new application called phoneshopapi, and then connect to

27

GitHub to get my repo, then deploy it. Figure 17 shows the successfully

deployment.

Figure 17. Heroku deploy

3.3 Web application implementation

3.3.1 Structure

Figure 18 shows how my project is structured:

28

Figure 18. Front-end structure

3.3.2 Styling

CSS or Cascading Style Sheet is a style sheet language used for describing

the presentation of a document written in a markup language such

as HTML or XML. CSS handles the look and feel part of a web page.

Using CSS, you can control the color of the text, the font styles, the spacing

between paragraphs, how columns are sized and laid out, what background

images or colors are used, layout designs, variations in display for different

devices, and screen sizes as well as a variety of other effects.

29

In this project, I put all my CSS codes to a file called “App.css” as you can see in

Figure 19 below.

Figure 19. App.css file

3.3.3 Screens and Components

As stated before in the theory chapter, components make our code reusable and

split our UI into different pieces. Figure 20, 21 shows all the components that are

used in this project.

30

Figure 20. Components

Figure 20 displays the list of additional components in my project. As you can see

there are Header and Footer and they will be used on every screen. There are

other small components that work with other screens. For example,

homeComponents that are used on HomeScreen.

In my project, there are screens with different functions, for example, cart screen,

order screen, payment screen, etc. The list of screens that are used in this

project is also shown in the Figure 21.

Figure 21. Screens

31

CartScreen component provides the list of ready-to-checkout products.

HomeScreen is the landing screen of the site, it provides basic information about

the company and its products. OrderScreen and PlaceOrderScreen is the

screen where users can view their placed orders. By instance, the

SingleProduct component showed users detailed of the product, including its

name, category, and price. Login is the page for users using their email and

password to sign in, requiring a valid email and password. Users can redirect to

Register page to create a new account by providing an email valid address,

password.

To navigate to all the screens, I use React Router. Figure 22 displays how I use

react router in this project.

Figure 22. React router

32

3.3.4 Redux

Redux is a predictable state container designed to help you write JavaScript apps

that behave consistently across client, server, and native environments, and are

easy to test. Redux is used to maintain and update data across your applications

for multiple components to share, all while remaining independent of the

components.

The working way of Redux is pretty simple. There is a central "store" that keeps

the state of the application. Each component can access any state that it needs

from this store. There are three core components in Redux: actions, store, and

reducers.

In this project, Redux is mainly used to manage the loading, adding and deleting

state of the products in store and cart. Figure 23 displays the Redux store of this

application.

Figure 23. Redux store

33

The store is a “container” that holds the application state, and the only way the

state can change is through actions dispatched to the store. Redux allows

individual components connect to the store and apply changes to it by

dispatching actions.

Figure 24 shows an example how Redux was used in this one particular function:

createOrder.

Figure 24. get orderCreate state

As you can see from Figure 25, we have the information from the cart, and now

we will dispatch them to create a new order.

Figure 25. createOrder

This information that we have dispatched from the handler will be handled by the

createOrder actions in Figure 26.

34

Figure 26. createOrder actions

Simply put, Redux actions are events. They are the only way you can send data

from your application to your Redux store. We just dispatch them to our store

instance whenever we want to update the state of our application. The rest is

handled by the reducers.

35

Figure 27. createOrder reducer

Whenever we dispatch an action to our store, the action gets passed to the

reducer. Reducers take the previous state of the app and return a new state

based on the action passed to it. As you can see from the Figure 27, the reducer

will return state based on which case the action did.

3.4 My website application

3.4.1 Home Screen

The home screen is the landing screen of the website. It includes Header, the list

of products, a search bar, profile menu button, and cart button. As shown in

Figure 28, this is the home screen of my application.

36

Figure 26. HomeScreen

The footer of the website includes email subscriptions for the users, contact

information of the company, and finally types of payment that accepted on this

site.

Figure 27. Footer

37

The product data can be get from the API path. As shown in Figure 30, I

combined pagination and search functions into this API, that’s why you can see

there are keyword and pageNumber params on the GET request. To make the

request, I used the axios library. It allows you to make a request from the

application to get data from the server.

Figure 28. Get product list request

3.4.2 Single Product Screen

When you click any product on Home screen, it will automatically guide you to

Single Product screen, as you can see from figure 31 below. There will be all the

information of the products: name, pictures, price, … that will help users choosing

the products.

38

Figure 29. Single Product Screen

On this screen, users can write reviews of the products, rate them, and have

some comments about the products. This screen also has “Add to cart” button,

choosing how many products you want to buy then click the button, it will guide

you to the Cart screen.

3.4.3 Cart Screen

After clicking the “Add to cart” button, or accessing to the cart using the button on

the Home screen, the Cart screen will appear. As seen from Figure 32, you can

see all the products that have been added to the cart and the total price.

39

Figure 30. Cart Screen

You have 2 options: “Continue to Shopping”, and “Check out”. If you choose the

first one, you will be redirected to the Home screen, to continue looking for

products. If you want to check out, just click the “Check out” button.

3.4.4 Shipping Screen

After clicking the checkout button, the shipping screen will appear. You will input

your address so that the store can ship the product directly to your home. Click

“Continue” and it will get to the payment screen. Figure 33 displays the shipping

screen.

Figure 31. Shipping Screen

40

3.4.5 Payment Screen

Onto the payment screen, now I have only implemented PayPal/ Credit Card so

there’s only one choice for now as seen from Figure 34.

Figure 32. Payment Screen

3.4.6 Place Order Screen

After done choosing payment method, you will be lead to the Place order screen.

Figure 35 displays the Place Order screen. You can see all the information about

your order, price include tax and shipping fee here. Click the Place order button

to get to the Order screen.

Figure 33. Place Order Screen

41

3.4.7 Order Screen

At the order screen, you can see your order again and do the payment. Figure 36

shows the Order screen.

Figure 34. Order Screen

In this project, I use PayPal API for payment. Figure 37 shows how I set up the

PayPal environment for my project.

Figure 35. PayPal setup

42

As you can see from Figure 38, we login with our PayPal account and pay.

Figure 36. Do the payment

3.4.8 Register Screen

Figure 37. Register Screen

43

Figure 39 displays the Register screen. If users do not have accounts, they can

register for a new account. When pressing the Register button, the application

navigates to the Register screen. There is a form to fill in personal information.

The required information includes name, email, phone number, and password.

After registering successfully, the site will automatically sign you in.

3.4.9 Log In Screen

Figure 38. Log In Screen

If users already have accounts, they can log in with their existing accounts on the

login screen. Figure 41 shows the implementation of the login process and saving

the information to the reducer.

44

Figure 39. Log In request

When you have logged in, on the right of the header, there will a menu for

account as you can see from Figure 42.

Figure 40. Profile menu

You can choose to log out or choose profile to access to your profile.

45

3.4.10 Profile Screen

After clicking the Profile button, you can see all the information of the current

user, they can also make changes to their profile by using the update button.

Figure 43 displays Profile screen.

Figure 41. Profile Screen

There will be a list of orders that user have made before as you can see from

Figure 44.

Figure 42. Profile Orders list

46

4 CONCLUSION

The goal of this thesis was to create an e-commerce web application and

research the basics of MERN Stack: MongoDB, Express.js framework, React.js

library and Node.js platform. The theoretical background section has covered the

study of e-commerce concept, also methods and technologies to implement the

thesis. This chapter helps us to understand how this thesis project was

implemented.

The practical implementation part described the process of building this e-

commerce application, on both front-end and back-end parts. It provides how to

planning and deploying the server to save all the data of the store. It also shows

all the steps to create a front-end application and connect the front-end part to

the server that we have created. The screenshots of the application are also

displayed in this section. By applying the methods and technologies that had

been discussed in the theory part, the application was developed successfully.

With the provided tools, the application fulfills the goals. The application still

needs to be developed more in the future, for example, create an admin

dashboard for easier management, include google authentication and so on.

47

REFERENCES

Alesia Sirotka. Feb 18, 2022. What is React? WWW document. Available at:

https://flatlogic.com/blog/what-is-react/ [Accessed 29 Oct 2022]

Auth0. No date. Introduction to JSON Web Tokens. WWW document. Available

at: https://jwt.io/introduction [Accessed 29 Oct 2022]

Besant. No date. What is Express.js? WWW document. Available at:

https://www.besanttechnologies.com/what-is-expressjs [Accessed 30 Oct 2022]

Donna Fuscaldo. Oct 20, 2021. The History of Ecommerce: How Did It All Begin?

WWW document. Available at: https://www.businessnewsdaily.com/15858-what-

is-e-commerce.html [Accessed 28 Oct 2022]

MDN. No date. JavaScript — Dynamic client-side scripting. WWW document.

Available at: https://developer.mozilla.org/en-US/docs/Learn/JavaScript

[Accessed 29 Oct 2022]

Miva. November 23, 2020. The History of Ecommerce: How Did It All Begin?

WWW document. Available at: https://blog.miva.com/the-history-of-ecommerce-

how-did-it-all-begin [Accessed 28 Oct 2022]

Mosh Hamedani. December 3, 2018. React Virtual DOM Explained. WWW

document. Available at: https://programmingwithmosh.com/react/react-virtual-

dom-explained/ [Accessed 29 Oct 2022]

Neo Ighodar. October 3, 2022. Understanding Redux: A tutorial with examples.

WWW document. Available at: https://blog.logrocket.com/understanding-redux-

tutorial-examples/ [Accessed 4 Nov 2022]

https://flatlogic.com/blog/what-is-react/
https://jwt.io/introduction
https://www.besanttechnologies.com/what-is-expressjs
https://www.businessnewsdaily.com/15858-what-is-e-commerce.html
https://www.businessnewsdaily.com/15858-what-is-e-commerce.html
https://developer.mozilla.org/en-US/docs/Learn/JavaScript
https://blog.miva.com/the-history-of-ecommerce-how-did-it-all-begin
https://blog.miva.com/the-history-of-ecommerce-how-did-it-all-begin
https://programmingwithmosh.com/react/react-virtual-dom-explained/
https://programmingwithmosh.com/react/react-virtual-dom-explained/
https://blog.logrocket.com/understanding-redux-tutorial-examples/
https://blog.logrocket.com/understanding-redux-tutorial-examples/

48

TutorialsTeacher. No date. What is MongoDB? WWW document. Available at:

https://www.tutorialsteacher.com/mongodb/what-is-mongodb [Accessed 2 Nov

2022]

https://www.tutorialsteacher.com/mongodb/what-is-mongodb

	1 INTRODUCTION
	2 THEORETICAL BACKGROUND
	2.1 E-commerce
	2.1.1 Definition
	2.1.2 Types
	2.1.3 Advantages
	2.1.4 Challenges

	2.2 JavaScript
	2.3 REACT
	2.3.1 Virtual DOM
	2.3.2 Components and Props
	2.3.3 JSX
	2.3.4 State

	2.4 NODE.JS
	2.5 EXPRESS.JS
	2.6 MONGODB
	2.7 REST API

	3 IMPLEMENTATION
	3.1 Application Overview
	3.2 Back-end implementation
	3.2.1 API Planning
	3.2.2 Server implementation

	3.3 Web application implementation
	3.3.1 Structure
	3.3.2 Styling
	3.3.3 Screens and Components
	3.3.4 Redux

	3.4 My website application
	3.4.1 Home Screen
	3.4.2 Single Product Screen
	3.4.3 Cart Screen
	3.4.4 Shipping Screen
	3.4.5 Payment Screen
	3.4.6 Place Order Screen
	3.4.7 Order Screen
	3.4.8 Register Screen
	3.4.9 Log In Screen
	3.4.10 Profile Screen

	4 CONCLUSION
	REFERENCES

