

Bachelor’s thesis

Information and Communications Technology

2022

Mika Oksanen

3D INTERIOR ENVIRONMENT

OPTIMIZATION FOR VR

Bachelor’s thesis | Abstract

Turku University of Applied Sciences

Information and Communications Technology

2022 | Number of pages 44

Mika Oksanen

3D Interior environment optimization for VR

In this thesis, the primary question was to determine if Level of Details (LODs)

were optimizing the performance of the VR platform inside Unity. The

secondary question was to find other optimization methods and study how they

optimize performance for VR. The thesis was commissioned by the research

group Futuristic Interactive Technologies of Turku University of Applied

Sciences for their multi-user application named TUAS VR Social Platform.

To achieve the objective of this thesis, an altered interior of a real-world building

was created. Two copies of the same scene were created where one was not

optimized, and the other was fully optimized. The test was carried out by first

measuring the unoptimized scene and then comparing it to other optimization

methods. The unoptimized scene was then compared to the optimized scene.

The conclusion was that LODs do not significantly affect performance at this

scale. The most performance gains occurred with occlusion culling and bake

lights. Implementing all optimization techniques in the scene at once resulted in

significant performance gains. Nevertheless, the test was ultimately successful

as it showed that optimization can improve performance with VR.

Keywords:

Unity, Blender, game development, 3D-modelling, LOD, optimization, VR

Opinnäytetyö (AMK) | Tiivistelmä

Turun ammattikorkeakoulu

Tieto- ja viestintätekniikka

2022 | 44 sivua

Mika Oksanen

3D-sisäympäristön optimointi VR:lle

Tämän opinnäytetyössä tavoitteena oli selvittää, tuovatko yksityiskohtaisuuden

tasot (LOD) merkittäviä suorituskyky etuja VR-alustaan Unityn sisällä.

Toissijainen kysymys oli löytää muita optimointimenetelmiä ja kuinka ne lisäävät

VR:n suorituskykyä. Opinnäytetyön toimeksiantajana toimi Turun

ammattikorkeakoulun Futuristic Interactive Technologies -tutkimusryhmä heidän

TUAS VR Social Platform -nimiseen monikäyttäjäsovellukseen.

Opinnäytetyön tavoitteiden saavuttamiseksi luotiin muunneltu tosielämän

rakennuksen sisusta. Tästä luotiin kaksi kopiota, yksi ilman optimointia ja toinen

täysin optimoitu. Testi suoritettiin mittaamalla ensin optimoimattomasta

rakennuksesta ja sitten vertaamalla sitä muihin optimointimenetelmiin. Lopuksi

optimoimatonta versiota verrattiin täysin optimoituun versioon.

Johtopäätös oli, että LOD:t eivät merkittävästi vaikuta suorituskykyyn tässä

mittakaavassa. Eniten suorituskykyä paranivat occlusion culling ja light baking.

Kun kaikki optimointimenetelmät olivat käytössä, suorituskyky parani

huomattavasti. Silti testi onnistui, koska se osoitti optimoinnin olevan loistava

tapa parantaa VR:n suorituskykyä.

Asiasanat:

Unity, Blender, pelinkehitys, 3D-mallinnus, LOD-tasot, optimointi, virtuaalinen

todellisuus

CONTENTS

LIST OF ABBREVIATIONS 7

1 INTRODUCTION 8

2 DEVELOPMENT TOOLS AND TECHNOLOGY 10

2.1 Virtual Reality 10

2.2 Used Software 10

3 OPTIMIZATION OF 3D MODELS 12

3.1 Optimization fundamentals 12

3.2 Fundamentals of 3D model optimization 13

3.3 LOD – Level of Detail 14

3.4 Combining meshes 15

3.5 Optimizing textures 17

3.6 Mipmaps 19

4 UNITY PROJECT OPTIMIZATION 22

4.1 Profiling 22

4.2 Reducing draw calls 23

4.3 Static batching 23

4.4 Frustum Culling 24

4.5 Occlusion Culling 26

4.6 Light Baking 27

5 MAKING THE ENVIRONMENT 29

5.1 Background and objective 29

5.2 Modelling the environment 29

5.3 Making the LODs 31

5.4 Making the Textures 32

5.5 Baking the lights 33

5.6 Adding Occlusion culling 35

6 TESTING THE ENVIRONMENT 36

6.1 Examining the optimization methods 36

6.2 Testing LOD system 37

6.3 Baked light testing 37

6.4 Testing Occlusion culling 37

6.5 Fully optimized scene 38

7 CONCLUSION 40

REFERENCES 41

Pictures

Picture 1. Flat shading on the left and smooth shading on the right. 14

Picture 2. Same object with multiple LODs. 15

Picture 3. Hydraulic press model made of multiple different meshes. 17

Picture 4. Texture atlas. 18

Picture 5. Different Mipmap levels (Unity 2021d). 20

Picture 6. Moire Pattern before and after mipmapping (Roldan 2022). 20

Picture 7. Profiler tool from Unity 22

Picture 8. Scene without culling (Unreal Engine 2021). 25

Picture 9. Scene with frustum culling (Unreal Engine 2021). 25

Picture 10. Scene with occlusion culling (Unreal Engine 2021). 27

Picture 11. Blockout of the Koneteknologiakeskus. 30

Picture 12. From left to right. Different LODs of the same object decrease in

detail inside Unity. 32

Picture 13. Texture atlas with more textures. 33

Picture 14. Interior with real-time lights. 34

Picture 15. Interior with baked lighting. 35

Picture 16. Scene with occlusion culling enabled. 35

Picture 17. Unoptimized interior 37

Picture 18. Fully optimized scene. 39

TABLES

Table 1. Comparison between unoptimized and optimized scenes. 38

LIST OF ABBREVIATIONS

Baking Pre-computing information into a file to speed up the

process

CPU Central Processing Unit

Draw call Rendering task to decide many objects to draw on the

screen

FPS Frames Per Second

GPU Graphics Processing Unit

LOD Level of Detail

PC Personal Computer

RAM Random Access Memory

Texture Image applied on a surface of a 3D object

UV-map 2D presentation of the surface of a 3D object, which is

used for texturing

UV unwrap Operation where the surface of a 3D object is spread

into two-dimensional information

VR Virtual Reality

 8

Turku University of Applied Sciences Thesis | Mika Oksanen

1 INTRODUCTION

The game industry grows year after year. During the COVID-19 pandemic,

millions of new players were introduced to gaming. Video games are projected

to take a 10.9% share of global spending in the entertainment and media

sectors by 2026 (Read 2022). This results in game developers making new

astonishing-looking games while simultaneously leading the audience to be

more critical of what they want to consume. As a consequence of this, game

developers tend to take shortcuts and cut corners when making the game and

this can ultimately lead to a poorly optimized game that will ruin the player

experience. Waiting for the next area to load or massive framerate drops can

make the players stop playing the game altogether. Additionally, it can impact

the game's sales if the critics give it a bad review. The poorly optimized game

can even increase power consumption, which is essential, especially for mobile

devices. These are all common issues resulting from poorly optimized games.

Optimization refers to increasing the performance of a video game for a better

overall experience and opening the possibility of having the game running on

multiple devices. However, every game is unique and will have different

problems and challenges to overcome. Fortunately, Unity has a vast amount of

manuals and guidelines to help get started, but knowing when to use one or the

other is time taking.

This thesis aims to determine if Level of Details LODs were making substantial

performance difference for the VR platform inside Unity. The secondary

question is to find other optimization methods and study how they increase

performance for VR. To achieve these objectives, the author created an altered

copy of a real-life building interior of Koneteknologiakeskus Turku Ltd to test the

performance of optimization methods. First, two copies of the same scene are

created where one is not optimized, and the other is fully optimized. Then, to

test the performance benefits, the author uses Unity's built-in profiler tool to

observe optimization results. After that, the results are compared to the same

scene without the optimization methods.

 9

Turku University of Applied Sciences Thesis | Mika Oksanen

To create the building, a free 3D software named Blender is used to make all

the models. Then, Adobe Substance Sampler and Adobe Photoshop are used

to create the textures.

The thesis is structured as follows. Chapter 1 introduces the objectives of this

thesis. Chapter 2 focuses on the tools and software used during the project.

Chapter 3 explains different optimization principles that should be done before

putting the objects inside a game engine. Chapter 4 discusses optimization

principles that should be considered when making games with Unity. Chapter 5

describes the methods that were used for the environment. Finally, Chapter 6

goes through the results, and Chapter 7 concludes the research.

 10

Turku University of Applied Sciences Thesis | Mika Oksanen

2 DEVELOPMENT TOOLS AND TECHNOLOGY

2.1 Virtual Reality

Virtual reality (VR) refers to the use of a computer-simulated virtual 3D

environment (Lowood 2022). To get inside the world, the user uses a head-

mounted display typically (HMD) that the person wears. VR headset immerses

the user in the virtual world by preventing them from seeing the real world

around them (Vince 2004).

For the best user experience, the VR should get a high enough framerate, and

optimizing will be vital for achieving this. The targeted framerate can be hard to

achieve because VR requires every frame to be drawn twice, once for each

eye. This generally means that every mesh and texture is drawn twice, so the

draw call count is double (Oculus 2022). Poor framerate can cause the game

not to run smoothly, and this can lead to motion sickness for the user (Vince

2004).

2.2 Used Software

A game engine software is a development environment with functionalities and

settings built-in for developing different 2D or 3D games (Gregory 2018). The

most popular game engines out there are Unreal and Unity. They both have

many features built-in and extensive documentation to help new and

experienced game developers. For this project, the chosen game engine was

Unity for its use already in the commissioner's project. This ensures that it is as

easy as possible when the project is tested together.

When making games, the world needs something, or they are just an open

world with many possibilities. For this, 3D software comes to the rescue to fill

the void. 3D software is computer graphics software that allows the user to

develop, design and produce 3D graphics and animations. The main principle is

to work inside 3D space with three axes: X, Y and Z. 3D software are not all

 11

Turku University of Applied Sciences Thesis | Mika Oksanen

equal, and some are more specific in another aspect than in another. Also, 3D

software are often under a licence, which can be expensive. Blender is, on the

other hand, a free, open-source 3D software. For this project, the author chose

Blender for its benefits of being free, and the author has some experience with

the software. Other excellent and popular 3D software are Autodesk Maya and

3DS Max, ZBrush, Houdini, and Cinema 3D.

While 3D objects might look good, they are missing a part to make them stand

out, and that is textures. There are many different software to make textures,

but the two most popular ones are Gimp and Adobe Photoshop. Gimp is a free

and open-source image editor with lots of features. However, Adobe Photoshop

contains far more tools to edit images, but the downside is that Adobe is paid

software. Nevertheless, the author was familiar with Adobe software, so the

textures were made with Adobe Photoshop and with Adobe Substance

Sampler. Substance Sampler is an excellent tool for making textures out of

images because it automatically creates different maps for the image.

Photoshop was used to finetune these images then.

Creating the environment from scratch is no easy task, but luckily the

Koneteknologiakeskus Turku Ltd interior was already captured by Matterports

with their laser scanner cameras. The interior was accessed from the

Koneteknologiakeskus website, and it could then be used to accurately see the

interior without going there all the time. The website also had a measurement

tool that helped to measure the premises and machines with high accuracy.

 12

Turku University of Applied Sciences Thesis | Mika Oksanen

3 OPTIMIZATION OF 3D MODELS

3.1 Optimization fundamentals

Video game optimization means increasing the performance for better visual

experience and gameplay, regardless of the level of graphic setting. An

optimized game means it can work on a wide range of different hardware and

maintain consistent Frames Per Second (FPS) no matter the platform (Garney

& Preisz 2010). This is especially important when games get imported to

different consoles, mobile or, in some cases, to Personal Computer (PC).

Regardless of the game's size, a handful of general principles and good

practices should be followed. To ensure this happens, the graphic team and

programmers must work together closely, or it can cause issues later in the

development process (Unity 2021b).

Visual optimization means optimization methods related to video games' visual

properties and not programming. For example, visual optimization includes the

3D models and textures visible in the game and the game's lighting. In other

words, visual optimization includes methods that are related to the rendering of

game objects (Unity 2021b). For example, shadows and reflections created by

lighting exposure should be calculated in advance so that the lighting does not

have to be calculated constantly during gameplay because this would

significantly impact the performance (Gonzalez 2017). One of the most

straightforward and crucial visual optimization methods are hiding objects that

cannot be seen, baking lighting beforehand, making Levels of details for the 3D

objects and using suitable formats and different levels of resolution for textures

(MIPs). When using these techniques for optimization, they are often relatively

easy to notice when playing games. However, when done right, they are

imperceptible by the players (Meshmatic 2020).

 13

Turku University of Applied Sciences Thesis | Mika Oksanen

3.2 Fundamentals of 3D model optimization

The polygon count is something that the artist should keep an eye on when

making models for video games because it plays a vital role in game

optimization. It is especially crucial when making mobile games because they

may need more performance to display a detailed model (Jie et al. 2011).

Reducing the number of polygons is one of the essential optimization steps and

should be considered from the beginning. When making 3D models, one must

consider the number of polygons and the model's appearance. The tricky part is

to know what is right. Adding too much detail to a model can affect the

gameplay, but if adding too little detail, the more the model's appearance suffers

(Unity 2021a). However, by reducing the polycount of the model, it will be easier

for the artist to make changes later to the mesh and texture it (Meshmatic

2020). However, to know the desired polycount, we will need to know the target

application of the model. One of the most significant benefits of having a well-

optimized model is file size reduction (3D-Ace 2022). When making a game,

especially when many people are working on it, it is to have it as small as

possible file sizes to reduce the time it takes to open and download everything.

It cannot be avoided easily but acknowledging it is a good thing.

When making 3D models with hard edges, they might look unnatural, as would

be expected, as in the actual world, edges are rounded. This would lead to

adding a bevel to every hard corner of the model to achieve this look. It would

increase the polygon count by a thousand and simultaneously impact the

object's performance and size way too much. To solve this problem, there are

several techniques to make the object look more rounded and simultaneously

smoother than it really is. Smooth shading is a common technique used to

make this happen. It will trick the lighting into making the object look much

smoother and does not alter the object's geometry but changes its appearance.

(Blender Foundation 2020). Smooth shading does not change the object's

silhouette, so when viewed from certain angles, we can still easily see the edge

count, thus breaking the illusion as seen in Picture 1. Another way to make

objects appear smooth is to add subdivisions to the objects. Subdividing is not

 14

Turku University of Applied Sciences Thesis | Mika Oksanen

ideal for game assets because it will add more geometry to the object and

impact the performance.

Picture 1. Flat shading on the left and smooth shading on the right.

3.3 LOD – Level of Detail

LOD stands for Level of Detail, and it is a process to reduce the mesh

complexity and the details of the object when viewed further away from the

camera (Arm Developer 2022a). Level of detail is a technique to speed up

rendering by lowering the detail for objects which take up a small screen area

and helps to lower the strain on the computer and allow more objects to be

rendered while maintaining a high FPS. LOD are a widespread practice,

especially in open-world games, where there are vast distances between

objectives (Denham 2022). The most detailed version of the model will be seen

when the player is closest to the object. The further way player goes from the

object, the more it will be changed to a more primitive object with fewer details

(Arm Developer 2022a). LODs are generally numbered to start from LOD0,

which is the most detailed version and is viewed from close. From there, it will

be LOD1 and can go up to as many LODs as it needs, as Picture 2

demonstrates. There is no set-in-stone number on how many LODs the object

 15

Turku University of Applied Sciences Thesis | Mika Oksanen

should have. It depends on how important the object is and on the size of the

objective. Many background objects can also have a 2D image as the last LOD,

decreasing the CPU load furthermore (Bonet 2021b).

Picture 2. Same object with multiple LODs.

Making LODs and adding too many LOD levels can cost CPU workload, and the

increased size of the LODs combined will also affect the file size. On the other

hand, not adding enough levels can cause popping where the LOD change is

noticeable, breaking the immersion, or the benefit of LODs might not be worth it

anymore (Arm Developer 2022a). LODs are recommended when the player can

see the 3D object up close and from afar, especially when the object has lots of

small details. If the model is enormous, it is recommended to make many LOD

levels to stop the popping effect. Nowadays, almost every game that does use

3D model will use some form of LOD system.

3.4 Combining meshes

Every object that is visible in the scene needs to be drawn. In Unity, one of the

CPU tasks is to send different rendering commands to the GPU. Rendering is

resource-intensive for the CPU and can quickly add up over time (Meshmatic

2020). Combining meshes can be done inside the 3D modelling program, but

 16

Turku University of Applied Sciences Thesis | Mika Oksanen

there can be tools inside the game engine to do that as well. For example, there

is a robot arm with 80 bolts attached to it, but they never deviate from the

original robot body, so they should be combined to the main objective. This will

reduce the number of components from 81 to only one. Combining the meshes

makes the CPU workload much lower (Meshmatic 2020). The reason being the

CPU prefers to process one large model rather than many small ones. The cost

of multiple meshes and one mesh is almost identical for the GPU, but the work

done by the CPU to render multiple different objectives is much higher.

Combining meshes into one can help boost the performance to the desired

levels and reduces the amount of work the CPU and GPU need to do (Unity

2021f). Combining meshes not only reduces the workload but can also help

keep the project organized. Picture 3 demonstrates how much more objects

there are inside the editor. While combining meshes is a good practice, there

are some things to consider when widely using them. When combining meshes,

they should be close together. It is because almost every game engine has a

visibility system that can determine whether the object should be culled or not.

For example, if a player has a whole house made out of one object, it will render

the whole thing visible even if the player sees a fraction of the house. This can

impact the GPU, and its resources will be wasted because the player sees a

couple of pixels. Also, when combining objects that do not share the same

texture, it will not give any performance increase at all. That said, excessive

merging can worsen performance by increasing the amount of work for the GPU

(O’Conor

 17

Turku University of Applied Sciences Thesis | Mika Oksanen

2017). The best solution would be to combine small objects that are close

together because they will probably be on-screen at the same time.

Picture 3. Hydraulic press model made of multiple different meshes.

3.5 Optimizing textures

When creating textures, they should be as significant enough to meet the

project's required quality. This can be vague because there are a lot of different

factors, such as the platform the game is intended to be used, the art style of

the game and the size of different objects. The artist should consider the objects

in the background, or are they essential hero objects like a sword? The best

advice when making textures for 3D assets is to make the size a power of two

on each side (512, 1024, 2048, 4096). The textures usually do not need to be

square. The height can be different from the width (KatsBits 2022). For

example, 64 x 512 and 32 x 156 are both acceptable since they can still follow

the power of two rule. Unity can more easily resize and compress the textures

by following the power of two methods. Some compression tools also need this

to function correctly (KatsBits 2022).

 18

Turku University of Applied Sciences Thesis | Mika Oksanen

A great way to optimize textures is using a texture atlas, which is one large

image that is made out of multiple smaller images packed together (Arm

Developer 2022c). For example, a 4K (4096 x 4096) texture atlas can hold up to

four 2K (2048 x 2048) texture maps, as Picture 4. demonstrates. However,

these square textures can be easily split into smaller pieces, with three 2K

textures and four 1024-pixel textures, for example (O'Conor 2017). Textures

can be different sizes depending on what kind of texture map they are and how

much detail they need. For example, an albedo texture could be 2048 x 2048

pixels, while a roughness map could be only 1024 x 1024 pixels. It is not a set

rule but should be observed if it makes a too noticeable impact on the visuals.

Picture 4. Texture atlas.

Unity can handle most common texture formats like PNG and JPG, although

GPUs cannot use these formats directly. Instead, GPUs need to use different

and more specialized formats to optimize memory usage and sampling speed.

Unity does this by decompressing and recompressing the original file to be

suitable for the GPU. It can also reduce the texture file size by a quarter without

decreasing the image quality too much, and for this, choosing the right

 19

Turku University of Applied Sciences Thesis | Mika Oksanen

compression tool for the right textures and the targeted platform (Unity 2021i).

The recommended compression formats for PC are DXT1 and DXT5. DXT1 will

give higher-quality compression but is slower and can only use RGB texture.

DXT5 can use RGBA textures and has faster compression but loses in quality.

For iOS, PVRTC gives a broader range of compatibility. On the newest iOS

hardware, the recommended format is ATSC format. For Android, the

recommended compression formats are ASTC and ETC (Unity 2021g).

3.6 Mipmaps

When making textures, artists want them to be of the highest quality possible.

Unfortunately, this means that the texture sizes are large and can put a strain

on the computer. However, their details are not noticeable, especially when

using large textures far away, which will drain performance from the GPU,

which is when Mip levels come in handy. Mips are stored in a mipmap

containing different resolution versions of the texture, as Picture 5 shows an

example of different MIP levels. Mipmaps are equivalent to LODs, but for

textures (Unity 2021d). Artists can create mipmaps manually, but most game

engines have tools to generate mipmaps automatically, but the original texture

resolution must be in a power of two value (Jeremiah 2019).

Mipmaps are commonly used for 3D objects that can be seen from a distance

and up close by the camera. To calculate the correct mipmap level, GPU will

need to perform calculations based on the texture's angle and distance from the

camera, concluding how much of the texture is visible to the camera (Unity

2021d). The GPU does this by calculating the pixels, so it much considers the

player's screen resolution to calculate it correctly. With all this in mind, the GPU

will determine what resolution mip it will show (Arm Developer 2022b). If the

texture is a very sharp angle or a great distance away, it will pick a lower

resolution mip. In vies versa, if the object is close and slightly angled, it will

choose a better quality mip.

 20

Turku University of Applied Sciences Thesis | Mika Oksanen

Picture 5. Different Mipmap levels (Unity 2021d).

Mipmaps not only give a clear performance boost when used correctly but can

also be used to prevent the formation of artefacts on large surfaces. (Roldan

2022). This kind of interference results from viewing a large texture in certain

angles where the texel density is getting too high will result in moiré patterns on

distant surfaces (Gregory 2018). When mipmaps are used correctly, the moiré

patterns can be fixed, resulting in better visuals, as Picture 6 shows.

Picture 6. Moire Pattern before and after mipmapping (Roldan 2022).

Mipmaps are excellent overall, but there are some situations when they are not

a good option. When generated, Mipmaps will increase the texture's size on

 21

Turku University of Applied Sciences Thesis | Mika Oksanen

disk and in memory by 33%. If the texture only uses the full resolution, such as

User Interface (UI) textures, it will not provide any additional benefits.

Additionally, if the object is always close to the camera, like the player model,

there are no benefits in making a mipmap (Unity 2021d).

 22

Turku University of Applied Sciences Thesis | Mika Oksanen

4 UNITY PROJECT OPTIMIZATION

4.1 Profiling

When making games, developers should always watch the scene's

performance. The game could run smoothly, but there might be issues below

the surface. For this, many game engines have built-in tools that allow the game

developers to see how well-optimized their game is during the game's

development and after the release. Unity's built-in profiler tool comes in handy

in this situation. With the profiler tool and its many different modules, as seen in

Picture 7, developers can examine many areas of the application's

performance, such as audio, lighting, memory usage and CPU load. It is

advised to use profiling with the targeted platform of the game it is intended to

be used. For example, use profiling with the phone if the game is meant to be

played with a mobile device. The application can still be tested inside Unity, but

the results will differ (Unity 2022).

Picture 7. Profiler tool from Unity

With the profiler tool, developers can easily find problems in the projects, figure

out the root causes, and iterate on those areas while simultaneously increasing

 23

Turku University of Applied Sciences Thesis | Mika Oksanen

their application performance (Unity 2022). In addition, with the profiler tool, the

developers can pinpoint the performance costs. Without seeing the information

about the application, it leads developers to look for solutions with guesswork. It

would lead to optimizing pieces of the application that do not require

optimization at all, thus using resources for nothing (Unity 2021b).

4.2 Reducing draw calls

Reducing draw calls is one of the most effective ways to improve the game's

performance. Draw calls contain information about shaders, textures and other

rendering objects that the CPU will send to the GPU so that it knows what to

render and how. Unfortunately, draw calls are heavy for the CPU, so the more

there are, the more strain it puts on the CPU and simultaneously reduces the

performance (Unity 2021f).

There are a few options to reduce draw calls, like batching (Unity 2021f).

However, some tasks inside the modelling program should be performed before

even importing the models into Unity. The reason is that if the objects have

numerous meshes and each has its own material, it will quickly add numerous

draw calls. This is because Unity needs to calculate the draw call for each

material and mesh. For example, there is a model of a car with four wheels and

a body that is not in the same mesh, and they all share the same material.

Therefore, when added to Unity, it will need five draw calls when rendering.

However, if everything were combined into one mesh, the draw calls would drop

to one. The reason is that the objects only have one mesh and one material in

the best case. Nevertheless, this only works for objects that will not have parts

moving independently (O'Conor 2017).

4.3 Static batching

Game objects can be toggled to be static inside the Unity editor. Static means

that the objects should not move inside the game (Gonzalez 2017). Unity can

 24

Turku University of Applied Sciences Thesis | Mika Oksanen

pre-calculate information about the object and potentially improve its

performance. Furthermore, it can be improved by adding static batching to the

mix (Unity 2021h).

Static batching is a method that combines multiple meshes that are not moving.

However, for this to work, the game objects must be marked static and share

the same material. Marking objects static reduces the number of draw calls,

increasing the performance, but the drawback is the increased amount of

memory cost (Unity 2021h).

4.4 Frustum Culling

Frustum culling is Unity’s default culling method, of which the primary purpose

is not to render objects outside the camera’s field frustum (Unity 2021j). Picture

9 shows how frustum culling works by dividing a pyramid-like shape into a far-

clipping plane and a near-clipping plane. The clipping planes will determine

whether the object needs to be rendered (Six 2021). The near-clipping plane is

the closes point that the camera will be rendering objects visible, and the far-

clipping plane is the farthest the objects can be visible. Therefore, anything that

is closer or further away from the clipping planes will not be rendered (Autodesk

2020). Without any culling, the game would render everything, even if the player

does not see the objects, as demonstrated in Picture 8.

 25

Turku University of Applied Sciences Thesis | Mika Oksanen

Picture 8. Scene without culling (Unreal Engine 2021).

Picture 9. Scene with frustum culling (Unreal Engine 2021).

 26

Turku University of Applied Sciences Thesis | Mika Oksanen

Frustum culling is an excellent method to optimize scenes because the GPU

does not need to render all the objects, only the ones within the camera's field

frustum. However, the downside to frustum culling is that it cannot hide objects

that are behind other objects. This can lead to hundreds or even thousands of

objects being rendered even if they are not seen by the camera, which will

cause unnecessary work for the GPU and CPU (Unreal Engine 2021).

4.5 Occlusion Culling

Occlusion Culling is a process designed to reduce the processing power

required to render a scene by not rendering the parts that are not visible to the

player at runtime. In other words, the objects are not rendered if they are

outside the view frustum or hidden behind other objects closer to the camera,

so the method heavily relies upon other objects making visual barriers (Unreal

Engine 2021). In addition, occlusion culling must be set up and baked ahead of

time, unlike frustum culling (Unity 2021e).

Occlusion culling is very useful, mainly when used in an environment with many

corridors or inside buildings (Unity 2021e). The inside of a building is an

excellent example because objects are more likely to be hidden behind other

objects, like doors and walls, as seen in Picture 10. However, with this in mind,

occlusion culling is not very useful when used outside with vast space between

objects, and everything has a clear line of sight.

 27

Turku University of Applied Sciences Thesis | Mika Oksanen

Picture 10. Scene with occlusion culling (Unreal Engine 2021).

It is good to remember that occlusion culling will be more performance-heavy

for the CPU in runtime. This is because Unity uses the CPU to calculate the

occlusion culling. However, when using occlusion culling correctly, it will also

improve CPU performance by lowering the draw calls, and with this, it will also

improve GPU performance (Bonet 2021a). Therefore, Occlusion culling should

be considered to be used when the game is GPU-bound (Unity 2021e).

4.6 Light Baking

Good lighting can make the game look great and more alive. Lighting gives the

game life but can also simultaneously break the game's performance. Real-time

lighting can make the scene look great, and it is also able to change during

runtime. The drawback is that, as the name implies, it is real-time, so Unity

needs to calculate the light hitting different surfaces and the shadows it creates

 28

Turku University of Applied Sciences Thesis | Mika Oksanen

in every frame. Real-time lighting can be very costly for performance, especially

on mobile or low-end hardware (Gonzalez 2017).

In such a case, light baking will come in handy. Light baking means the lighting

has been calculated beforehand inside the game engine and saved on the disk

as lighting data. Baked lighting will reduce the rendering cost of shadows and

shading because the lighting has been calculated in advance (Unity 2021c).

When developing games, it is recommended to use baked lights as often as

possible. The downside is that the baked lighting cannot be changed during

runtime, so the game objects must be set as static objects (Gonzalez 2017).

 29

Turku University of Applied Sciences Thesis | Mika Oksanen

5 MAKING THE ENVIRONMENT

5.1 Background and objective

This thesis was commissioned by Turku University of Applied Sciences

research group called Futuristic Interactive Technologies for their multi-user

application made with Unity, named TUAS VR Social Platform. The object was

to create a copy of a real-life building interior of Koneteknologiakeskus Turku

Ltd and to make it modular for easy reconfigurations with VR in mind. The main

objective of this thesis was to determine if LODs were making substantial

performance benefits for the VR platform inside Unity. The secondary question

was to find other optimization methods and how they increase performance for

VR. However, to get the maximum performance benefits of LODs, several other

optimization methods must be considered alongside LODs. After that, the

Koneteknologiakeskus building is to be used inside the social platform projects.

The social platform is meant to be played on almost every type of PC, no matter

how low-end hardware is used. The koneteknologiakeskus has a 3D space

presentation on their website that was very helpful when making the interior.

When all of this is considered, the environment could not be overly detailed so

that it could be used inside the TUAS VR Social Platform.

5.2 Modelling the environment

Because this project was to be done so that it would be added to the social

platform project later, the models could not be too detailed or high poly. Keeping

the model's polygon count low as possible ensures having a broader range of

hardware. However, the models should still have enough polygons to test the

LODs effectively.

The modelling should always start with conceptualizing and blocking out the

scene, as seen in Picture 11. The blockout dimensions were obtained from the

Koneteknologiakeskus website, which has a 3D scanned model of the building.

 30

Turku University of Applied Sciences Thesis | Mika Oksanen

For this project, the first part was to make the modular parts for the wall, ceiling

and floor. These were done because they were the basic building blocks for the

future. With them, it was easier to make other machines and smaller props

further down the line and get them to the correct dimensions. After making the

blockout, the critical big machines, like the CNC machine, were next in line.

These are important because the commissioner wants them to be included

inside the building. After the essential machines were done, it was time for the

smaller props and less important background objects.

Knowing the project goals is essential since they will affect how they go with the

production process. Changes that need to be made later on might cause

problems with the whole project (Galuzin 2017).

Picture 11. Blockout of the Koneteknologiakeskus.

When making 3D models, the artist should roughly know what the end product

should look like, mainly the art style and polygon count. There is no set-in-stone

value for polygon count, but because the models are supposed to be not

photorealistic, the polycount is reasonably low (Meshmatic. 2020). This helped

with the modelling process in the long run when clearly seeing what needs to be

achieved. Knowing the purpose of the model in the scene is also always helpful.

Most of the models are only static without any movement or functions, so most

 31

Turku University of Applied Sciences Thesis | Mika Oksanen

of the models are made from a single mesh to help reduce the draw calls.

(O’Conor 2017).

5.3 Making the LODs

When making LODs, it is not always the best idea to make them for every

object in the scene, but this will highly depend on the project. For this project,

the machines would be a significant and essential part of the scene, so they

needed LODs. When making LODs, the artist should keep an eye out for the

object's silhouette so that it will not change too much from the original. This will

help mitigate the noticeable popping effect later (Arm Developer 2022a).

LODs can be done mainly by two approaches, both with advantages and

disadvantages. The first approach to making LODs is to reduce the geometry

manually. Manually reducing is useful when wanting more freedom and

maintaining a cleaner topology of the object. This is more useful when making

objects that need to change shape, like characters. The second approach is

much easier and quicker than manually making, and it is by using the Blenders

decimation modifier. The decimate modifier will try to reduce the geometry

without changing the object's silhouette too much. The drawback with this is that

the decimate modifier will make some mistakes that might need fixing manually.

For best results, it is best to use both for easy and quick progress. Only

manually making the LODs will take extra time, and the average player might

not notice the difference.

All LODs were made using Blender's decimate modifier for quick results, but

some models also needed manual adjustments for better visual results. The

amount of LODs depends highly on the object type and its importance for the

scene. Most of the objects had three LODs, so LOD0, LOD1 and LOD2 were

quite enough for the project size. Objects bigger or more prevalent in the scene

were given more levels, as demonstrated in Picture 12. It is good to

acknowledge that not every object in the scene needs to have LODs. For

 32

Turku University of Applied Sciences Thesis | Mika Oksanen

example, in this case, the floors and roof are only scaled versions of a plane, so

there is no need to do LODs. It would only worsen the look of the scene.

After the LODs were done for the models, they were exported to Unity by FBX-

file. Inside Unity, if everything goes right, it should automatically add the LOD

Group component. With the components, it is easy to change LOD group

distances or add and delete LODs entirely.

Picture 12. From left to right. Different LODs of the same object decrease in

detail inside Unity.

5.4 Making the Textures

The texturing process first started by marking down the most important and

most used materials inside the Koneteknologiakeskus. This was done by

visiting the place and taking pictures of the surfaces. Then, the images were

imported to Substance Sampler, where they would be more edible. The primary

purpose was to get the textures tileable and also, at the same time, make

Normal maps for them. After making several tileable textures, they were

imported to Adobe Photoshop to make them into one big texture Atlas to reduce

 33

Turku University of Applied Sciences Thesis | Mika Oksanen

the needed materials. For the project, there was a total of 3 different texture

atlases created. Texture atlases are a great way to improve performance while

minimizing the project size and helping Unity with batching. Texture atlases will

also help with the organization of the project by having fewer materials, as seen

in Picture 13.

Picture 13. Texture atlas with more textures.

5.5 Baking the lights

After the models and textures were in place, for the most part, it was time to add

lighting. With lighting, the whole scene will burst to life, making it feel more

natural. When adding light to the scene, they are set to real-time by default, as

seen in Picture 14. Real-time lighting is good when needing to change the light

effects, or the objects need to be moving inside the scene. The downside is that

it is very costly, and it will not be the best choice when making a scene for VR.

However, because the scene has nothing that is moving, it is the best option to

have. With bake lighting, the performance benefit will be huge compared to the

real-time lights.

To start baking, the lights in the scene need to be selected as baked lights.

After that, it is good to identify which objects are good candidates to bake

lightmaps. Generally, all medium or large static objects are suitable for this.

Small props and massive objects like terrain are not good lightmap targets. All

the big props, like the machines and walls, were good candidates for this

 34

Turku University of Applied Sciences Thesis | Mika Oksanen

project, as demonstrated in Picture 15. For this to take effect, selected objects

need to be marked to be included in the global illumination from the

lightmapper. (Unity 2020).

When baking lights, it is highly recommended to start with low lightmap

resolution for fast iterations and tweak it afterwards. However, this can lead to

artefacts that should be fixed with higher resolution. Furthermore, a higher

resolution should be made relatively late in the development because light

baking can take up to a couple of hours in higher resolutions. For this scene,

the lightmap resolutions were kept relatively low because the scene was for

concept purposes and will be iterated more in the future.

Picture 14. Interior with real-time lights.

 35

Turku University of Applied Sciences Thesis | Mika Oksanen

Picture 15. Interior with baked lighting.

5.6 Adding Occlusion culling

Adding occlusion culling can be a massive help for FPS, but in some cases, it

can also worsen the performance. Unity uses frustum culling by default, so the

occlusion culling needs to enable inside the camera. In addition, occlusion

culling only works with static objects, so it was a good candidate for the scene

because nothing was moving. The first to get occlusion culling to work is to set

the objects to be occluder and occlude and bake the occlusion data. Picture 16

demonstrates the scene where occlusion culling is enabled.

Picture 16. Scene with occlusion culling enabled.

 36

Turku University of Applied Sciences Thesis | Mika Oksanen

6 TESTING THE ENVIRONMENT

6.1 Examining the optimization methods

The testing was done with a reasonably powerful desktop with a windows 10

operating system. The CPU is an Intel Core i5-8600K 6-core (6 threads)

3.6GHz (Boosted up to 4.30 GHz), and the GPU is Nvidia GeForce RTX 2070

8GB GDDR6. The system RAM is 32GB DDR4 3400MHZ dual channel. The VR

headset used to test was Meta Quest 2.

Because the project needed to be made from scratch with the help of the

Matterports 3D environment from the Koneteknologiakeskus website, some

things were made in advance before putting them on the scene. Mainly the

texture atlases because they are proven to give better performance. Making

textures and materials for all would have been unnecessary work, so the texture

atlases were always present in the testing. Testing was done to determine if the

optimization methods would increase the performance was done by first taking

performance data from different places of the scene. After that, adding one of

the optimizing methods to the scene and compare the results. Lastly, compare

the unoptimized scene with a fully optimized scene. The unoptimized scene had

five different points to take the measurement. The average FPS was 36,

Batches and draw calls were 16378 and CPU time was 27.7ms. The average

triangle count was 4.1 million. Picture 17 shows one of the measurement points.

 37

Turku University of Applied Sciences Thesis | Mika Oksanen

Picture 17. Unoptimized interior

6.2 Testing LOD system

The main focus was to determine if LODs will help performance with VR. The

outcome was unexpected because the performance did not increase as much

as was anticipated. The FPS only increased a bit, but batches and draw calls

only lowered a couple hundred on average. CPU and GPU were both also

almost unchangeable. Only the triangle count was impacted hugely by reducing

the average triangle count to 1.4 million from 4.1 million. From this, it is clear

that the LOD system was not worth it in itself, considering the time and effort it

took to make them. The results would have been much more noticeable if the

scene had been much larger in size with more objects with LODs.

6.3 Baked light testing

Real-time lighting is notoriously known to drain the performance of projects.

Therefore, the best solution was to bake the lighting beforehand. The baking

process took around 10 minutes for this scene, but the result was more than

expected. The average FPS went from 36 to 70, which is a massive 94.4%

increase in FPS. Also, the batches and draw calls decreased from the starting

16 000 to only 3500 on average, which is a 78.1% decrease. The testing was

done multiple times to ensure that they were right. This was such a massive

boost for the performance that it is highly recommended to bake the lighting for

the interior building. The only downside to baking is that it takes time, but if the

benefits are almost double, it is still worth doing.

6.4 Testing Occlusion culling

For this test, all of the objects were converted to static objects. It was a crucial

step for getting the occlusion culling working. The scene needs to be baked like

the lighting, but it took much less time. The occlusion bake was done with the

 38

Turku University of Applied Sciences Thesis | Mika Oksanen

default values. The FPS average was the same, but there were areas where the

occlusion culling could have worked better, and the FPS almost got up to 60

FPS. Triangle count also dropped an average by half, but the most significant

change was with the Batches and draw calls, averaging around 3500. That is

almost the same as with the baked lighting. When all of this is considered, it is

pretty effortless to bake the occlusion data to the scene. However, it did lower

the batches and draw calls considerably, so it is wise to do occlusion culling, at

least for this scene.

6.5 Fully optimized scene

The result was quite promising when all of the above were put together to make

the most out of the scene. The fully optimized scene was then compared to the

unoptimized version to see the difference.

Table 1. Comparison between unoptimized and optimized scenes.

Scene FPS Draw calls triangle count

Unoptimized scene 36 16 378 4.1 million

Optimized scene 72 650 200 000

Difference 100% Increase 96% Decrease 95% Decrease

The difference was huge as the average FPS was 72, and the average Baches

and draw calls were low as 650. The average triangle count was slightly over

200 000 from the starting at 4.1 million. This indicates that optimizing has a

massive role in improving performance. The FPS increased on average by

100%, and the batched and draw calls decreased an immense 96%, so they

were almost at the minimum. The only downside to this is the time and effort it

will take to make this all happen and how they might alter the game's look.

When comparing the result, the clear winners were the occlusion culling and the

baked light. The worst contester was the LOD system, which frankly took the

 39

Turku University of Applied Sciences Thesis | Mika Oksanen

most time to make. It is easy to say that, when making small interior scenes

with low poly objects, do not worry about LODs at the start but focus more on

the light baking and occlusion culling. Picture 18 shows the fully optimized

scene from one of the measurement points.

Picture 18. Fully optimized scene.

 40

Turku University of Applied Sciences Thesis | Mika Oksanen

7 CONCLUSION

In this thesis, the primary question was to determine if Level of Details (LODs)

were optimizing the performance of the VR platform inside Unity. The

secondary question was to find other optimization methods and study how they

optimize performance for VR.

For this, the author made an interior scene of an existing building with some of

the machines and props inside. From this same scene, there was an

unoptimized version that was compared to the optimized version of the same

building. After the two scenes were compared, it was determined if the

optimization method should be considered for future work. Some of the tests

were carried out multiple times to eliminate undesirable results. The last test

was conducted when all of the optimization methods were in use at the same

time.

The tests clearly showed that for this scale, the LODs were not giving the hoped

results, and there was almost no performance boost. The LOD system only

impacted the triangle count considerably. This could have been avoided if the

author had made the objects more detailed. The light baking and occlusion

culling gave the best results by almost doubling the FPS and decreasing the

draw calls and batches by an immense amount. When all the optimization

methods were used, the performance was significantly better.

The LODs should be much more detailed for future work if tested in a small

environment. All the optimization methods could have been more noticeable if

the scene was more considerable in size, or there would have been more

complex models. For future work, the Matterports laser scanned environment

should also be used for its much more detailed models. Therefore, LODs with

VR should be researched again in the future to uncover the benefits in full.

 41

Turku University of Applied Sciences Thesis | Mika Oksanen

REFERENCES

3D-Ace, 2021. 3D Modelling for video games: How to create beautiful assets.

Referenced: 20.9.2022. Available at: https://3d-ace.com/blog/3d-model-

optimization/

Arm Developer. 2022a. Level of Detail – LOD. Referenced: 23.9.2022. Available

at: https://developer.arm.com/documentation/102496/0100/Level-of-Detail---

LOD

Arm Developer. 2022b. Mipmapping. Referenced: 25.9.2022. Available at:

https://developer.arm.com/documentation/102073/0100/Mipmapping?lang=en

Arm Developer. 2022c. Texture atlasing. Referenced: 25.9.2022. Available at:

https://developer.arm.com/documentation/102696/0100/Texture-

atlasing?lang=en

Autodesk. 2020. Clipping Planes. Referenced: 10.10.2022. Available at:

https://knowledge.autodesk.com/support/maya/learn-

explore/caas/CloudHelp/cloudhelp/2020/ENU/Maya-Rendering/files/GUID-

D69C23DA-ECFB-4D95-82F5-81118ED41C95-htm.html

Blender Foundation. 2020. Shading. Referenced: 30.9.2022 Available at:

https://docs.blender.org/manual/en/latest/scene_layout/object/editing/shading.ht

ml

Bonet, R. 2021a. How to Use Occlusion Culling in Unity — The Sneaky Way.

Referenced: 29.9.2022. Available at: https://thegamedev.guru/unity-

performance/occlusion-culling-tutorial/

Bonet, R. 2021b. Level of Detail (LOD) Tutorial for Unity 2021+. Referenced:

23.9.2022. Available at: https://thegamedev.guru/unity-gpu-performance/lod-

level-of-

detail/?utm_source=gamasutra&utm_medium=post&utm_campaign=unity_gpu_

performance_lod_level_of_detail#why-do-you-need-lods-in-your-unity-project

Denham, T. 2022. What is LOD (Level of Detail) in 3D Modeling?. Referenced:

23.9.2022. Available at: https://conceptartempire.com/3d-lod-level-of-detail/

https://3d-ace.com/blog/3d-model-optimization/
https://3d-ace.com/blog/3d-model-optimization/
https://developer.arm.com/documentation/102496/0100/Level-of-Detail---LOD
https://developer.arm.com/documentation/102496/0100/Level-of-Detail---LOD
https://developer.arm.com/documentation/102073/0100/Mipmapping?lang=en
https://developer.arm.com/documentation/102696/0100/Texture-atlasing?lang=en
https://developer.arm.com/documentation/102696/0100/Texture-atlasing?lang=en
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/Maya-Rendering/files/GUID-D69C23DA-ECFB-4D95-82F5-81118ED41C95-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/Maya-Rendering/files/GUID-D69C23DA-ECFB-4D95-82F5-81118ED41C95-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/Maya-Rendering/files/GUID-D69C23DA-ECFB-4D95-82F5-81118ED41C95-htm.html
https://docs.blender.org/manual/en/latest/scene_layout/object/editing/shading.html
https://docs.blender.org/manual/en/latest/scene_layout/object/editing/shading.html
https://thegamedev.guru/unity-performance/occlusion-culling-tutorial/
https://thegamedev.guru/unity-performance/occlusion-culling-tutorial/
https://thegamedev.guru/unity-gpu-performance/lod-level-of-detail/?utm_source=gamasutra&utm_medium=post&utm_campaign=unity_gpu_performance_lod_level_of_detail#why-do-you-need-lods-in-your-unity-project
https://thegamedev.guru/unity-gpu-performance/lod-level-of-detail/?utm_source=gamasutra&utm_medium=post&utm_campaign=unity_gpu_performance_lod_level_of_detail#why-do-you-need-lods-in-your-unity-project
https://thegamedev.guru/unity-gpu-performance/lod-level-of-detail/?utm_source=gamasutra&utm_medium=post&utm_campaign=unity_gpu_performance_lod_level_of_detail#why-do-you-need-lods-in-your-unity-project
https://thegamedev.guru/unity-gpu-performance/lod-level-of-detail/?utm_source=gamasutra&utm_medium=post&utm_campaign=unity_gpu_performance_lod_level_of_detail#why-do-you-need-lods-in-your-unity-project
https://conceptartempire.com/3d-lod-level-of-detail/

 42

Turku University of Applied Sciences Thesis | Mika Oksanen

Galuzin, A. 2017. Making Difficult Level Design Decisions. Referenced:

15.11.2022 Available at:

https://www.worldofleveldesign.com/categories/productivity_goals/making-

difficult-level-design-decisions.php

Garney, B. & Preisz, E. 2010. Video Game Optimization. Boston. Cengage

Learning PTR.

Gonzalez, J. 2017. Maximizing Your Unity Game's Performance. Referenced:

24.10.2022. Available at: https://cgcookie.com/posts/maximizing-your-unity-

games-performance

Gregory, J. 2018. Game Engine Architecture, Third Edition. Page: 643—644.

Referenced: 1.11.2022 Available at:

https://books.google.fi/books?id=EwlpDwAAQBAJ&printsec=frontcover&hl=fi#v

=onepage&q&f=false

Jie, J., Yang, K., and Haihui, S. 2011. Research on the 3D Game Scene

Optimization of Mobile Phone Based on the Unity 3D Engine. Referenced:

25.9.2022. Available at: https://ieeexplore.ieee.org/document/6086340

Jeremiah, 2019. Learning DirectX 12 – Lesson 4 – Textures. Referenced:

28.9.2022. Available at: https://www.3dgep.com/learning-directx-12-

4/#Mipmap_Filtering

KatsBits. 2022. Make Better Textures, The 'Power Of Two' Rule & Proper

Image Dimensions. Referenced: 25.9.2022. Available at:

https://www.katsbits.com/tutorials/textures/make-better-textures-correct-size-

and-power-of-two.php

Lowood, H. 2022. virtual reality. Encyclopedia Britannica. Referenced:

5.12.2022. Available at: https://www.britannica.com/technology/virtual-reality

Meshmatic. 2020. 10 best practices when optimizing 3D files for VR.

Referenced: 20.11.2022. Available at:

https://meshmatic3d.com/technical/optimize-3d-files-ar-vr/

O’Conor, K. 2017. GPU Performance for Game Artists. Referenced:1.11.2022.

Available at: http://fragmentbuffer.com/gpu-performance-for-game-artists/

Oculus, 2022. Guidelines for VR Performance Optimization. Referenced:

5.12.2022. Available at:

https://www.worldofleveldesign.com/categories/productivity_goals/making-difficult-level-design-decisions.php
https://www.worldofleveldesign.com/categories/productivity_goals/making-difficult-level-design-decisions.php
https://cgcookie.com/posts/maximizing-your-unity-games-performance
https://cgcookie.com/posts/maximizing-your-unity-games-performance
https://books.google.fi/books?id=EwlpDwAAQBAJ&printsec=frontcover&hl=fi#v=onepage&q&f=false
https://books.google.fi/books?id=EwlpDwAAQBAJ&printsec=frontcover&hl=fi#v=onepage&q&f=false
https://ieeexplore.ieee.org/document/6086340
https://www.3dgep.com/learning-directx-12-4/#Mipmap_Filtering
https://www.3dgep.com/learning-directx-12-4/#Mipmap_Filtering
https://www.katsbits.com/tutorials/textures/make-better-textures-correct-size-and-power-of-two.php
https://www.katsbits.com/tutorials/textures/make-better-textures-correct-size-and-power-of-two.php
https://www.britannica.com/technology/virtual-reality
https://meshmatic3d.com/technical/optimize-3d-files-ar-vr/
http://fragmentbuffer.com/gpu-performance-for-game-artists/

 43

Turku University of Applied Sciences Thesis | Mika Oksanen

https://developer.oculus.com/documentation/native/pc/dg-performance-

guidelines/

Read, S. 2022. Gaming is booming and is expected to keep growing. This chart

tells you all you need to know. Referenced: 11.12.2022. Available at:

https://www.weforum.org/agenda/2022/07/gaming-pandemic-lockdowns-pwc-

growth/

Roldan, F. 2022. ANTI-ALIASING PROBLEM AND MIPMAPPING. Referenced:

25.9.2022 Available at: https://textureingraphics.wordpress.com/what-is-texture-

mapping/anti-aliasing-problem-and-mipmapping/

Six, J. 2021. Frustum Culling. Referenced: 11.10.2022 Available at:

https://learnopengl.com/Guest-Articles/2021/Scene/Frustum-Culling

Unity, 2020. How to build Lightmaps in Unity 2020.1 | Tutorial. Referenced:

18.11.2022. Available at: https://www.youtube.com/watch?v=KJ4fl-KBDR8

Unity, 2021a. Creating models for optimal performance. Referenced: 20.9.2022.

Available at:

https://docs.unity3d.com/Manual/ModelingOptimizedCharacters.html

Unity, 2021b. Graphics performance fundamentals. Referenced: 22.9.2022.

Available at:

https://docs.unity3d.com/2021.3/Documentation/Manual/OptimizingGraphicsPer

formance.html

Unity, 2021c. Light Mode: Baked. Referenced 14.11.2022. Available at:

https://docs.unity3d.com/Manual/LightMode-Baked.html

Unity, 2021d. Mipmaps introduction. Referenced: 25.9.2022. Available at:

https://docs.unity3d.com/Manual/texture-mipmaps-introduction.html

Unity, 2021e. Occlusion Culling. Referenced: 10.11.2022. Available at:

https://docs.unity3d.com/Manual/OcclusionCulling.html

Unity, 2021f. Optimizing draw calls. Referenced: 22.9.2022. Available at:

https://docs.unity3d.com/2020.3/Documentation/Manual/optimizing-draw-

calls.html

https://developer.oculus.com/documentation/native/pc/dg-performance-guidelines/
https://developer.oculus.com/documentation/native/pc/dg-performance-guidelines/
https://www.weforum.org/agenda/2022/07/gaming-pandemic-lockdowns-pwc-growth/
https://www.weforum.org/agenda/2022/07/gaming-pandemic-lockdowns-pwc-growth/
https://textureingraphics.wordpress.com/what-is-texture-mapping/anti-aliasing-problem-and-mipmapping/
https://textureingraphics.wordpress.com/what-is-texture-mapping/anti-aliasing-problem-and-mipmapping/
https://learnopengl.com/Guest-Articles/2021/Scene/Frustum-Culling
https://www.youtube.com/watch?v=KJ4fl-KBDR8
https://docs.unity3d.com/Manual/ModelingOptimizedCharacters.html
https://docs.unity3d.com/2021.3/Documentation/Manual/OptimizingGraphicsPerformance.html
https://docs.unity3d.com/2021.3/Documentation/Manual/OptimizingGraphicsPerformance.html
https://docs.unity3d.com/Manual/LightMode-Baked.html
https://docs.unity3d.com/Manual/texture-mipmaps-introduction.html
https://docs.unity3d.com/Manual/OcclusionCulling.html
https://docs.unity3d.com/2020.3/Documentation/Manual/optimizing-draw-calls.html
https://docs.unity3d.com/2020.3/Documentation/Manual/optimizing-draw-calls.html

 44

Turku University of Applied Sciences Thesis | Mika Oksanen

Unity, 2021g. Recommended, default, and supported texture formats, by

platform. Referenced 28.9.2022. Available at:

https://docs.unity3d.com/Manual/class-TextureImporterOverride.html

Unity, 2021h. Static batching. Referenced 15.11.2022. Available at:

https://docs.unity3d.com/2023.1/Documentation/Manual/static-batching.html

Unity, 2021i. Texture compression formats. Referenced 28.9.2022. Available at:

https://docs.unity3d.com/2020.1/Documentation/Manual/texture-compression-

formats.html

Unity, 2021j. Understanding the view Frustum. Referenced: 11.10.2022.

Available at: https://docs.unity3d.com/Manual/UnderstandingFrustum.html

Unity, 2022. How to profile and optimize a game | Unite Now 2020. Referenced:

10.11.2022. Available at: https://www.youtube.com/watch?v=epTPFamqkZo

Unreal Engine. 2021. Visibility and Occlusion Culling Settings. Referenced:

10.10.2022. Available at: https://docs.unrealengine.com/4.27/en-

US/RenderingAndGraphics/VisibilityCulling/

Vince, J. 2004. Introduction to Virtual Reality. London. Springer.

https://docs.unity3d.com/Manual/class-TextureImporterOverride.html
https://docs.unity3d.com/2023.1/Documentation/Manual/static-batching.html
https://docs.unity3d.com/2020.1/Documentation/Manual/texture-compression-formats.html
https://docs.unity3d.com/2020.1/Documentation/Manual/texture-compression-formats.html
https://docs.unity3d.com/Manual/UnderstandingFrustum.html
https://www.youtube.com/watch?v=epTPFamqkZo
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/VisibilityCulling/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/VisibilityCulling/

