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Abstract

Objective. The purpose of this research is to develop a new deep learning framework for detecting atrial
fibrillation (AFib), one of the most common heart arrhythmias, by analyzing the heart’s mechanical
functioning as reflected in seismocardiography (SCG) and gyrocardiography (GCG) signals. Jointly,
SCG and GCG constitute the concept of mechanocardiography (MCG), a method used to measure
precordial vibrations with the built-in inertial sensors of smartphones. Approach. We present a
modified deep residual neural network model for the classification of sinus rhythm, AFib, and Noise
categories from tri-axial SCG and GCG data derived from smartphones. In the model presented, pre-
processing including automated early sensor fusion and spatial feature extraction are carried out using
attention-based convolutional and residual blocks. Additionally, we use bidirectional long short-term
memory layers on top of fully-connected layers to extract both spatial and spatiotemporal features of
the multidimensional SCG and GCG signals. The dataset consisted of 728 short measurements
recorded from 300 patients. Further, the measurements were divided into disjoint training, validation,
and test sets, respectively, of 481 measurements, 140 measurements, and 107 measurements. Prior to
ingestion by the model, measurements were split into 10 s segments with 75 percent overlap, pre-
processed, and augmented. Main results. On the unseen test set, the model delivered average micro-
and macro-F1-score 0f 0.88 (0.87-0.89; 95% CI) and 0.83 (0.83—0.84; 95% CI) for the segment-wise
classification as well as 0.95 (0.94—0.96; 95% CI) and 0.95 (0.94-0.96; 95% CI) for the measurement-
wise classification, respectively. Significance. Our method not only can effectively fuse SCG and GCG
signals but also can identify heart rhythms and abnormalities in the MCG signals with remarkable
accuracy.

1. Introduction

Atrial fibrillation (AFib) is a widespread chronic and relapsing heart arrhythmia, present in approximately 2% of
individuals, accounting for 20%—45% of all ischemic strokes worldwide (Kirchhof et al 2016). AFib increases the risk
of heart failure, which lowers the quality of life, especially in symptomatic patients (Gregory and Antonio 2006, Elisa
et al 2010), and heightens morbidity and mortality rates (Valentin et al 2001, Camm et al 2010).

Today, various measurement techniques are available to detect heart arrhythmia, of which electrocardiography
(ECG) is the most widely validated and guideline-recommended gold standard. In addition, a variety of clinically
validated wearable devices offer ECG-based monitoring, including smartphones and smartwatches (Lau et al 2013,
Tieleman et al 2014, Hendrikx et al 2014, Barrett et al 2014, Perez et al 2019). The other measurement technique
which has been effective in detecting AFib is mechanocardiography (MCG) (Jaakkola et al 2018) which refers to the
joint measurement of tri-axial seismocardiogram (SCG) (Zanetti and Tavakolian 2013) and tri-axial gyrocardiogram
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(GCQG) (Tadietal 2017) signals. Tri-axial SCG refers to the chest movement acceleration resulting from heart
functions recorded by a 3-dimensional accelerometer. Similarly, tri-axial GCG refers to the chest movement angular
velocity resulted from heart functions recorded by a 3-dimensional gyroscope. Nowadays, almost all of the
smartphones and wearable sensors are equipped with 3-dimensional accelerometer and/or gyroscope sensors which
can be used for ambulatory MCG recording.

In ECG signals, AFib is characterized by two attributes: (i) absence of regular sinus node originated P-waves and
(ii) presence of irregularly irregular inter-beat timing and amplitude variations (Hindricks et al 2020). In MCG
signals, since the signals are originated from mechanical movements rather than the electrophysiological activity of
the heart, we may not necessarily observe the same AFib characteristics as in ECG signals. On the other hand, unlike
ECG signals, finding reliable and robust AFib characteristics in MCG signals is challenging and requires extensive
domain knowledge and substantial exploratory analysis. In this case, data-driven learning approaches such as deep
learning can be useful as they provide us with fully automated feature extraction and classification (Zhang et al 2020).

Deep learning has been widely applied to biomedical data (Baldi 2018, Park et al 2018) including ECG signals
(Pyakillya et al 2017). The introduction of deep learning to ECG analysis has opened new avenues for improving
the detection and classification of pathological heart conditions (Somani et al 2021). The key to the success of
deep neural networks (DNN) is learning representative features through iterative optimization of model weights
according to the model output compared to the ground truth or expected output values. The deep automated
feature learning applicability becomes even more pronounced when we deal with multidimensional
heterogeneous time series data, especially if the data are difficult to interpret by visual inspection or conventional
signal processing-based feature extraction (Miotto et al 2017). Consequently, automated feature learning
becomes relevant when we deal with multidimensional MCG data (Suresh et al 2020).

In our previous contributions (Tadi et al 2018, Mehrang et al 2019, 2020), we have addressed the classification of
AFib and SR classes utilizing MCG signals via feature engineering and injecting domain knowledge into the solution.
In the absence of sufficient domain knowledge and/or the presence of a huge target population, DNNs are legitimate
alternatives that are highly scalable in terms of generalization and predictive power. With this motivation, in this
paper, we present a deep convolutional-recurrent neural network (CRNN) architecture that consists of attention-
based convolutional and residual blocks (He et al 2016) as well as stage-level dense connections (Huang et al 2017) to
perform automated early sensor fusion (Miinzner et al 2017) and spatial feature extraction. In particular, Squeeze-
and-Excitation (SE) blocks (Hu et al 2018) are used for implementing attention mechanism, stage-level shortcut
connections for alleviating the vanishing-gradient problem and facilitating feature reuse (Huang et al 2017),
bidirectional Long Short-term Memory (LSTM) layers (Hochreiter and Schmidhuber 1997) for temporal feature
extraction, and fully-connected layers on top for the classification.

In this paper, in addition to the AFib and sinus rhythm (SR) classification, we aim to detect noisy
measurements as well. One of the major issues in the analysis of cardiac signals, be it ECG or MCG, is the proper
detection of the noise level in the collected signals (Kumar and Sharma 2020). An excess amount of noise can
mislead the algorithms and consequently lead to the wrong disease classification (Kumar and Sharma 2020).
Detecting the noisy episodes of a measurement is, therefore, a crucial step toward improving the reliability of the
MCG signal analysis. In the case of MCG signals, noise class is defined as a condition where the underlying
physiological properties cannot be seen or extracted from the signals. This condition can be caused by sensor
placement failure or the presence of unwanted/undesired data generation sources. Hereafter, we denote the
noise class with Noise throughout the rest of this document.

The main contribution of this study is the adoption of attention-based residual CRNN model architecture
for performing an automated end-to-end sensor fusion, spatiotemporal feature extraction, and classification on
the multidimensional MCG signals that are collected solely by smartphones. The adopted model performs a
three-class classification to discriminate AFib, SR, and Noise classes.

2. Methods

2.1. Data acquisition and measurement protocol

Our dataset included retrospective (de-identified) data from 300 age and gender matched elderly patients,
including 150 patients with AFib as the prevalent heart rhythm during the recording (Jaakkola et al 2018). The
demographics of the patients can be found in Tadi ef al (2018). An android smartphone with a running custom-
designed application for research was placed on the subject’s chest longitudinally while the screen was facing
upwards and the bottom edge of the phone at the level of the lower edge of the body of the sternum (Tadi et al
2018). We gathered two sets of measurement scenarios, including physician-applied and patient-applied. Ina
patient-applied measurement, the subject was instructed to place the sensor on the chest and initiate the
recording (Tadi et al 2018). Among all the subjects, 182 patients (86 AFib) proceeded with two recordings, one
physician-applied and one patient-applied. The remaining patients (n = 118) were either nervous, physically in
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Figure 1. Smartphone-derived accelerometer (SCG) and gyroscope (GCG) signals (left side panels) with their corresponding envelope
signals (right side panels) from an AFib, SR, and Noise recording.

poor condition, or not interested in performing the patient-applied measurement. During the recording, the
subjects were advised to stay calm, silent, and motionless. The data logger application automatically terminated
the recording after three minutes from the manual initiation. Those measurements in which either the patient or
physician failed to obtain a valid recording were regarded as Noise class, for example, due to excessive
movements, lack of concentration, delayed placement, phone drop, and poor placement. In total, we collected
827 sMCG measurements, of which 345 recordings were annotated as Noise category. Helsinki ethical
declaration was strictly followed during all phases of the data collection. The study has also been reviewed and
accepted by the Ethical Committee of the Hospital District of South-Western Finland.

A continuous 5-lead telemetry ECG (Philips IntelliVue MX40) was acquired simultaneously with the sSMCG
recordings and was used as the comparison method to assess the cardiac rhythm. The rhythm of each telemetry
ECG was labeled as SR, AFib, or other by two independent cardiologists and the study investigator. In cases of
inconsistency in the labeling of the two cardiologists, a third independent cardiologist made the final decision.
The medical history of the subjects was collected from the electronic patient records. Following consent
collection, background data were gathered. Afterward, a recording of three minutes was obtained using a Sony
Xperia Z1 or Z5 smartphone. Detail descriptions of the measurement protocol and the demographics of the
participants are available in Jaakkola et al (2018).

2.2. Pre-processing

All the recordings were acquired simultaneously with a 200 Hz sampling frequency. The signal processing starts
with filtering each of the six data axes—corresponding to tri-axial SCG and tri-axial GCG—separately by a
bandpass filter. A 4th order Butterworth filter with passband frequencies of 3—20 Hz was respectively applied on
the GCG and SCG, allowing the removal of white noise and signals offset. We applied the filter forward and
backward to every signal. In addition to the band-pass filtering, we obtained the pulse amplitude signal by
computing the envelope of the SCG and GCG signals from all six channels and used them as six additional input
dimensions. This envelope detection algorithm operates based on moving-average filtering as was described in
(Tadi et al 2018). Figure 1 shows sample AFib, SR, and Noise class measurements together with their
corresponding pulse-wave envelopes.

2.3.Dataset and sampling
Dataset preparation started by dividing individual MCG channels of each sensor/modality into a sequence of
10 s segments, each with 75% overlap. Next, we split the entire dataset into three disjoint subsets, train,
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Figure 2. Schematic illustration of the implemented linear trainable sensor fusion mechanism. c,, for m between 1 and 12 are the input
channels, k,, for n between 1 and 128 are the bottleneck convolutional kernels, s is the attention vector, and c,; are the output channels.

Table 1. Number of measurements and segment counts used in this study.

Train Validation Test Total
AFib (patient-recorded) 149 (56) 45(16) 42(14) 236
SR (patient-recorded) 149 (62) 57(20) 40(14) 246
Noise 183 38 25 246
Total (split percentage) 481 (66%) 140 (19%) 107 (15%) 728
10 s segments w/o0 augmentation 21612 6993 2798 31403
10 s segments with augmentation 43224 13 986 5596 62 806

validation, and test. Finally, we randomly sampled measurements exhibiting each category; from the patient
data, corresponding physician- and patient-recorded samples of individual subjects were selected to be included
in only one of the subsets (train/valid/test) to avoid any data leakage. Table 1 shows the total number of sampled
measurements and the corresponding number of windows (10 s segments) obtained from the incorporated
measurements in each subset. It is worth mentioning that the segment duration was chosen based on our
previous research studies (Tadi et al 2018, Mehrang et al 2019). The 75% overlap was chosen to enable the
creation of a larger dataset.

2.4. Data augmentation

Since the availability of labeled signals for training the DNN models in this study was limited to the retrospective
measurements, a data augmentation approach was utilized to expand the dataset size in training and validation
sets. We considered the rotational data augmentation method proposed in Um et al (2017). Using rotational
transformation on geometric vector data, we can generate synthetic data which can correspond to real-life
observations. In detail, considering that acceleration and angular velocity are both geometric vectors, we can
rotate the measured tri-axial SCG and tri-axial GCG signals around an arbitrary axis to resemble the rotation or
placement variations of the measurement device. With this approach, we aimed to create synthetic data that
closely correspond with real-life measurement scenarios that might have been absent in our original dataset.

2.5. Channel recalibration

Convolutional kernels are naturally designed for efficient transformation or filtering of the input data by
sweeping along and transforming local receptive fields independently. In the case of the 1-dimensional
convolutional (Conv1D) layer, the kernels sweep along the time axis. As a result, convolutional kernels are
unable to learn the global channel-wise information (Hu et al 2018). To get a view of the global channel-wise
information, SE blocks (Hu et al 2018) were introduced to our classification model which implemented an
adaptive recalibration of channel-wise feature maps by modeling interdependencies between channels.

2.6. Sensor fusion

An efficient and learnable channel fusion technique can be implemented using the Conv1D layer. A bottleneck
ConvlD layer contains kernels of length one, which can be used as a sample-by-sample channel fusion
(aggregation) (Sandler et al 2018) when applied to multi-channel data with 7 number of channels. The fusion
operation is implemented via dot product of a kernel and every multi-channel time sample of the data, which
are both of shape (1, ). We can have n number of these kernels, each computing and learning a different
channel fusion. See figure 2 for a schematic illustration of the implemented sensor fusion mechanism and
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Figure 3. Building blocks of the proposed CRNN architecture. (a) SE block, (b) linear sensor fusion stage, (c) residual block, (d) type-1
residual stage which contains a dense connection, (e) type-2 residual stage without dense connection, (f) the full CRNN architecture.

figures 3(a) and (b) for the layer-by-layer illustration. In this figure, every input channel is denoted by ¢,,, for m
between 1 and 12. There are 128 kernels in the filter matrix, each denoted by k,, for nn between 1 and 128. The
channel recalibration is done via scaling the obtained feature maps from linear sensor fusion by vector s. In other
words, every channel 7 in the feature map gets scaled by the scalar s, at index n of vector s that is computed by an
SE block. The output channels c, are the fused input channels that are each scaled by the attention coefficient s,,.

2.7. Deep neural network classifier

We considered a deep CRNN (Zihlmann et al 2017) to unveil arrhythmia pattern from the MCG signals, which
takes as input the filtered and envelopes of tri-axial SCG and GCG signals and as output the expected class labels.
Every input sample (segment) is of shape (2048, 12); while, the output is a one-hot encoded array of length 3. The
one-hot encoded array is a binary vector that contains zeros everywhere except for the expected target class
index. In our case, AFib, SR, and Noise were denoted by the class indices 0, 1, and 2, respectively. Accordingly,
categorical cross-entropy was used for the loss function (Goodfellow et al 2016).

Our CRNN has been inspired by Hannun et al (2019) study in which a deep residual network (ResNet)
architecture (He et al 2016) was adopted for the classification of ECG signals. The differences of the presented
architecture with that of Hannun et al architecture are the use (1) CNN-based linear sensor fusion, (2) channel-
attention by SE blocks, (3) stage-level dense connections, and (4) long-short term memory (LSTM) layers for
temporal aggregation of features. See figure 3 for all the different building blocks of the proposed architecture.

We used linear bottleneck Convl1D layer, a batch normalization (BatchNorm) layer, and a SE block at the
very beginning of the network to implement an end-to-end learnable early sensor fusion (Miinzner et al 2017)
which altogether constitute the sensor fusion stage as shown in figure 3(b). Furthermore, We opted to efficiently
integrate such a sample-by-sample channel fusion into all residual blocks in our network by placing alinear
bottleneck Conv1D layer followed by a 1-dimensional max-pooling (MaxPool1D) layer into the dense
connection of the residual blocks as illustrated in figure 3(c). The residual blocks are grouped into two types of
residual stages, type-1 and type-2, as depicted in figures 3(d) and(e). There is a dense connection in the type-1
residual stage, with ConvlD and MaxPool1D layers, which concatenates the input of the stage to its output. This
dense connection helps to overcome the vanishing gradient (He et al 2016). All residual stages contain three
residual blocks stacked on top of each other, plus an SE block placed at the end of the stage utilized for channel
recalibration. For regularization, we used batch normalization and dropout layers extensively throughout the
whole network architecture, as illustrated in figure 3. For training, Adam optimizer (Kingma and Ba 2014) with a
learning rate of 0.001 was used.
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Table 2. Notational representation of the confusion matrix for the classification problem in this study.

Predicted labels
AFib SR Noise | Total
AFib Aa As An A
True labels | SR Sa Ss Sn S
Noise | Na Ns Nn >N
Total >.a P

Starting from the input, the network contains a sensor fusion stage, three pairs of type-1 and type-2 residual
stages, a stack of forward and backward LSTM layers, four fully-connected layers that each is followed by Relu6
activation layer (Krizhevsky and Hinton 2010) and a dropout layer (Srivastava et al 2014), and ultimately a fully-
connected layer followed by softmax activation for getting the classification probabilities. The whole network
architecture is summarized and sketched in figure 3(f).

The hyper-parameters of the network were chosen as follows:

+ Forall the dropout layers, the dropout ratio was set to 0.15.

+ Forall the convolutional layers in type-1 and type-2 residual stages, the number of kernels was set to 32 except
for the last residual block in the last type-2 residual stage, where there are 128 kernels.

+ Forall the dense connections in the type-1 residual stages, the convolutional kernels were set to 64. The
number of units in both LSTM layers was set to 32.

+ The number of units in fully-connected layers on top of LSTM layers was set to 64, 32, 16, 8, and 3, respectively.

Altogether there was 237 363 trainable and 3456 non-trainable parameters in the model. It is worth
mentioning that no automatic hyper-parameter tuning was used due to insufficient computing power.

For the software tools, mainly Scikit-learn (Pedregosa et al 2011) and Tensorflow 2.4 (Abadi et al 2015) were
used. The experiments were done on a desktop machine with an Nvidia RTX-2070 graphics card and 64
GbRAM.

2.8. Experiments

In order to getan unbiased evaluation of the created CRNN model and the whole data processing pipeline, we
repeated the training and testing processes for 10 fully random iterations initialized with different random seeds.
Hereafter, we call these 10 random iterations with evaluation iterations. In every iteration, we trained the model
for a maximum of 80 epochs, used categorical cross-entropy for the loss function, computed macro-averaged
F1-score for measuring the goodness of fit, validated the trained model at the end of each epoch, and
subsequently checkpointed the models at the end of each epoch based on the validation set macro-averaged F1-
score. The model that provided the highest macro-averaged F1-score on the validation set was then
automatically pulled from the model registry and used in the testing process. We stored the test set predictions
for further in-depth statistical and performance analysis in each of the 10 evaluation iterations. Subsequently,
various micro- and macro-averaged metrics were calculated using the obtained test set predictions. Hereafter,
we refer to macro-averaged F1-score with macro-FI-score and similarly micro-averaged F1-score with micro-FI-
score. We use the same shorthand for micro- and macro-averaged recall and precision.

2.9. Ablation study

The presented model architecture has been built by combining neural network components which were
separately shown effective in a wide body ofliterature. To determine the utility of the proposed blocks and stages
for the problem at hand, we performed an ablation study. All components that ended up in the presented model
architecture were the ones that contributed to improving the predictive power, improving the convergence
speed, and/or stability of model predictions when weights are initialized randomly. To limit the search space for
optimal components, the performance of the goodness of fit was observed with and without each and every
component separately. To measure the goodness of fit or the predictive power, models were trained for 10
randomly initialized iterations each 80 epochs, and the validation set macro-F1-score graph was plotted. The
convergence speed, i.e. how fast the peak of predictive power is touched, was examined by checking the
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Table 3. Performance of the CRNN classifier averaged over all three

classes.

segment-level measurement-level
Resolution
Scores Mean 95% CI Mean 95% CI
Macro-F1-score 0.83 0.83-0.84 0.95 0.94-0.96
Macro-recall 0.89 0.88-0.90 0.95 0.94-0.96
Macro-precision 0.80 0.79-0.81 0.95 0.94-0.96
Micro-F1-score 0.88 0.87-0.89 0.95 0.94-0.96

validation set macro-F1-score graph and the epoch number at which the best model was checkpointed. The
stability of the model was examined by inspecting the standard deviation of the validation set macro-F1-score
values across the 10 random training rounds at each epoch. The best model architecture was expected to achieve
the highest validation set macro-F1-score in as fewest epochs as possible and show lowest variations across the 10
random training rounds.

2.10. Performance metrics

Given the three-class classification problem at hand, a notational confusion matrix can be represented via table 2
(Clifford et al 2017). Macro-F1-score was calculated according to equation (1) considering the given notations in
table 2. Similarly, macro-recall and macro-precision were calculated according to equations (2) and (3),
respectively. In the case of multi-class classification, micro-F1-score, micro-recall, micro-precision, and
accuracy are all equal and can be computed using equation (4).

2% Aa + 2% Ss + 2% Nn
Macro — F1 — score = =AT%0 25;25 LNt e (1
Aa S 4 Nm
Macro — recall = w, )
Aa Ss Nn
Macro — precision = W, (3)
. A N;
Micro — F1 — score = M, 4)
YA+S+ YN

3. Results

We compared the performance of the presented CRNN classifier against the ground truth annotations of the test
dataset by calculating statistical performance metrics, including micro- and macro-F1-score, precision, recall,
and area under the receiver operating characteristic curve (ROC-AUC). In addition, we report the detection
performance for segment-level, which we define as one rhythm class per segment, as well as measurement-level,
which we define as one rhythm class per measurement. The measurement-level results were obtained by first
gathering all the segment-level predictions of each unique measurement and then calculating the statistical
mode of the rounded predictions. Such an averaging approach plays the role of a voting system.

Table 3 shows the performance metrics for both segment-level and measurement-level classification
averaged over all the classes using micro- and macro-averaging. The obtained metrics show an acceptable
macro-recall over all the classes for the segment-level classification. A more reliable performance was obtained
for the measurement-level predictions as shown in the right-most column of table 3.

For a more in-depth view on the class-specific goodness of fit, table 4 shows the segment-level one-versus-all
F1-score and ROC-AUC scores. The two classes, AFib and SR, were classified reliably, as shown by the high
values of both F1-score and ROC-AUC. However, the Noise class classification suffered from low precision.
Computing the same metrics for measurement-level predictions resulted in improved performance, in
particular for the Noise class precision, as shown in table 5.

A pair of cumulative confusion matrices are created out of the test set predictions. Cumulative confusion
matrices were obtained by performing element-wise summation on the 10 confusion matrices, each
corresponding to one of the 10 evaluation iterations. Table 6 presents the segment-level classification and table 7
presents the measurement-level classification cumulative confusion matrices.
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Table 4. Segment-level performance of the CRNN classifier per each class.

AFib SR Noise
Class
Scores Mean 95% CI Mean 95% CI Mean 95% CI
F1-score 0.89 0.88-0.90 0.89 0.88-0.90 0.72 0.71-0.74
ROC-AUC 0.96 0.95-0.97 0.97 0.96-0.97 0.98 0.98-0.98
Precision 0.92 0.91-0.94 0.89 0.86-0.91 0.60 0.57-0.62
Recall 0.86 0.84-0.89 0.90 0.88-0.91 0.91 0.89-0.94
Table 5. Measurement-level performance of the CRNN classifier per each class.

AFib SR Noise
Class
Scores Mean 95% CI Mean 95% CI Mean 95% CI
F1-score 0.94 0.93-0.96 0.94 0.92-0.96 0.96 0.95-0.97
ROC-AUC 0.98 0.98-0.99 0.99 0.99-1.00 0.99 0.99-1.00
Precision 0.96 0.94-0.98 0.95 0.92-0.98 0.93 0.92-0.94
Recall 0.93 0.90-0.96 0.94 0.92-0.96 0.99 0.98-1.00

Table 6. Segment-level cumulative confusion matrix
obtained by element-wise summation of confusion
matrices overall evaluation iterations.

Predicted
AFib SR Noise
True AFib 23597 2814 889
SR 1891 23194 825
Noise 85 152 2513

Table 7. Measurement-level cumulative confusion
matrix obtained by element-wise summation of
confusion matrices over all evaluation iterations.

Predicted
AFib SR Noise
True AFib 390 21 9
SR 15 376 9
Noise 2 0 248

3.1. Ablation study results
Figure 5 concisely presents the ablation study results for a few of the model architecture building blocks, namely

SMehranget al

The per-class ROC curves obtained from the evaluation iterations can be seen in figures 4(a)—(c) for the
classes AFib, SR, and Noise, respectively. According to the obtained ROC-AUC values, the presented CRNN
classifier captured meaningful patterns for all three classes across all the evaluation iterations without significant
variation in the performance.

SE block, sensor fusion stage, and stage-level dense connections. We excluded residual blocks and LSTM layers
from the presented ablation study results as they have been investigated sufficiently in the literature (Somani et al
2021). In figure 5, the thick line in the middle of the shadows represents the arithmetic mean of the validation set
macro-F1-score across the 10 evaluation experiments performed for each ablated model. The shadows around
the graphs represent the standard deviation of the metric. These shadows provide us with a qualitative view of
the stability of the model architecture across different training rounds. To quantify the predictive power and the
speed of convergence of each of the four model architectures in the ablation study, we calculated the arithmetic
mean and 95% confidence interval of the maximum macro-F1-score across the 10 evaluation experiments.
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Figure 4. Class-wise ROC curves obtained from the evaluation iterations.
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Figure 5. Predictive power and stability of (a) the full model versus models without (b) sensor fusion stage, (c) SE blocks, or (d) stage-
level dense connections. The predictive power of the models is quantified by arithmetic mean of the validation set macro-F1-score.
The stability of the models is quantified by the shadows around the graphs which represent the standard deviation of the metric across
the 10 randomly initialized training experiments.

Similarly, we provide the same statistics of the epoch number where the maximum macro-F1-score has
occurred. These statistics are shown in table 8.

4. Discussion

Our study is the first demonstration of an end-to-end DNN-based classification approach to AFib detection using
smartphone MCG. In this study, we implemented a SE mechanism for channel recalibration, a trainable
convolutional-based sensor fusion, a deep CRNN for spatiotemporal feature extraction, and fully-connected neural
networks for the classification. The utility of the building blocks we have added to the widely adopted plain CRNN
architecture (Somani et al 202 1) was thoroughly tested via an ablation study and the effect of each block was separately
shown in figure 5 and table 8. In particular, in comparison with the full model, a model without a sensor fusion stage
was less stable and needed 16 more epochs on average to achieve its peak performance. The model without SE blocks,
was hugely unstable, needed 20 more epochs on average to reach its peak performance, and was unable to achieve the
peak performance level of the full model. Similarly, the model without stage-level dense connections was less stable,
needed 22 more epochs on average to accomplish its peak performance, and was incapable of achieving the peak
performance level of the full model.

The classification task was performed at two resolutions, segment-level and measurement-level. Even though we
had only measurement-level annotations and each measurement was on average three minutes long, we had to
perform segmentation on the data to limit the number of time samples fed to the CRNN classifier. Following our
previous contributions, we segmented the data into 10 s segments (Tadi et al 2018, Mehrang et al 2019).

The reported measurement-level classification performances in this study are comparable to other screening
modalities such as ECG and PPG (Ramkumar et al 2018, Zungsontiporn and Link 2018). Furthermore,
performance levels obtained in this study were almost at the same level as with that of 2017 Physionet Challenge
(Clifford et al 2017), where a total of 12 186 single lead ECG measurements were analyzed to classify AFib, SR,
Noise, and Other rhythm classes. The overall macro-F1-score for the top 11 algorithms in the 2017 Physionet
challenge was approximately equal to 0.83 (Clifford et al 2017). Thus, we see smartphone MCG as a
complementary AFib detection technique in settings where ECG recording is not feasible.

Rhythm classification using mechanical functioning of the heart, including ballistocardiography (BCG) and
MCG, has been previously done by combining feature engineering and machine learning (Bruser efal 2012,
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Table 8. Statistics of the validation set maximum macro-F1-score and the corresponding
epoch number of (a) the full model versus models without (b) sensor fusion stage, (c) SE
blocks, or (d) stage-level dense connections. The arithmetic mean and the 95% Cls are
computed across 10 randomly initialized training experiments.

Max. macro-F1-score Epoch
Model architecture

Mean 95% CI Mean 95% CI
Full model 0.81 0.80-0.81 44 30-59
W/O sensor fusion stage 0.8 0.80-0.80 60 48-71
W/O SE blocks 0.75 0.70-0.80 64 51-78
W /O stage-level dense connections 0.77 0.76-0.79 66 59-73

Lahdenoja etal 2017, Tadi et al 2018, Mehrang et al 2020). Naturally, designing, implementing, and experimenting
with hand-crafted features were the first steps in the approaches proposed by previous studies. In contrast to those,
DNNs provide us with automatic end-to-end feature extraction and classification (Andreotti et al 2017). As shown in
this study, the capabilities of the DNNs can be extended beyond the ordinary automatic feature extraction by
incorporating sensor fusion and channel recalibration mechanisms. These all facilitate knowledge discovery and
pattern recognition with less human intervention and domain knowledge prerequisites (Somani et al 2021). One
drawback of DNN based approaches is the computational load and the size of the datasets they need to be trained
with. DNNG are purely data-driven; therefore, it is the content of the datasets that mainly derives and constrains the
learning process (Somani et al 2021). Similar to the other DNN based classification use-cases, the key challenge for
MCG analysis is not necessarily the computational load, but the availability of sufficiently sized datasets with high-
quality and high-resolution annotations.

When CNN s are adopted for feature extraction, feature learning is done in an end-to-end fashion together
with the classification (Goodfellow et al 2016). When training by plain stochastic gradient descent or its variants,
as the most popular optimization algorithm for training DNNs (Le et al 2011), we need precise and high-
resolution annotations. If the proportion of imprecise annotations increases, the optimizer gets confused and, as
aresult, cannot find the optimal latent space and decision boundaries (Nigam et al 2020). This, in turn, results in
misclassifications for the inputs which are located close to the ground truth class boundaries. In our study, the
two classes, AFib and SR, were annotated by a team of cardiologists, while a single senior researcher only
annotated the Noise class. In addition, the size of the Noise class in our dataset was quite limited compared with
the other two classes. Moreover, by definition, the Noise class covers a wide variety of measurement failure
conditions of which some might be under-represented in our dataset. The size and the potentially inconsistent
annotations of the Noise class were most likely the root causes of the low precision score of the segment-level
Noise class classification. Despite the potentially inconsistent annotations, the measurement-level predictions
were sufficiently accurate and comparable to our previous contributions (Mehrang et al 2019).

To improve the model’s generalization, we increased the size of our training and validation sets with a data
augmentation scheme tailored to the MCG data at hand. Specifically, we deployed segmentation with overlap (Tadi
etal 2018, Mehrang et al 2019) and rotation augmentation technique (Um et al 2017) which is suitable for the data
that hold a geometric description. Our observations showed that data augmentation helped to prevent overfitting and
also improved the overall classification performance. However, further inclusion of augmented data did not improve
the segment-level Noise classification results, primarily because of the inconsistent ground truth labels. We postpone
the relabeling and addition of more consistently labeled Noise class data to the future contributions. Besides, more
advanced unsupervised (Nurmaini et al 2019), generative adversarial networks (Yoon et al 2019), weakly supervised
(Tong et al 2021), and self-supervised learning (Jawed et al 2020, Sarkar and Etemad 2020) techniques can be adapted
to improve the process of feature learning without being constrained by the quality of the human-generated
annotations.

Automated detection of cardiac rhythms is rapidly growing with the emergence of mobile and wearable
devices that facilitate personalized monitoring and early detection of life-threatening conditions. Modern
smartphone devices and mobile applications are profoundly enriching to serve the growing healthcare needs by
being affordable, non-invasive, and easy to use. Sensor-rich smartphones are today accessible to most people
worldwide, offering ubiquitous heart monitoring even without acquiring extra peripherals via MCG signals. As
the number of users, amount of data, and complexity of the gathered data are growing, advanced data-driven
knowledge discovery techniques are highly demanded.
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5. Conclusion

Smartphone MCG devices may offer a practical and cost-efficient screening and monitoring alternative for AFib
which can complement the other monitoring modalities. Analysis of multi-channel MCG data via deep learning
facilitates the automatic and scalable extraction of the potential pathological conditions. The proposed CRNN
architecture delivered promising AFib classification performance, proving the applicability of data-driven knowledge
discovery techniques on MCG data. With the adoption of these data-driven techniques, we can improve the
performance of AFib detection at scale, and as a result, increase the reliability of AFib screening and monitoring.
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