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Abstract
Objective. The purpose of this research is to develop a newdeep learning framework for detecting atrial
fibrillation (AFib), one of themost commonheart arrhythmias, by analyzing the heart’smechanical
functioning as reflected in seismocardiography (SCG) and gyrocardiography (GCG) signals. Jointly,
SCG andGCGconstitute the concept ofmechanocardiography (MCG), amethod used tomeasure
precordial vibrationswith the built-in inertial sensors of smartphones.Approach.We present a
modified deep residual neural networkmodel for the classification of sinus rhythm, AFib, andNoise
categories from tri-axial SCG andGCGdata derived from smartphones. In themodel presented, pre-
processing including automated early sensor fusion and spatial feature extraction are carried out using
attention-based convolutional and residual blocks. Additionally, we use bidirectional long short-term
memory layers on top of fully-connected layers to extract both spatial and spatiotemporal features of
themultidimensional SCG andGCG signals. The dataset consisted of 728 shortmeasurements
recorded from300 patients. Further, themeasurements were divided into disjoint training, validation,
and test sets, respectively, of 481measurements, 140measurements, and 107measurements. Prior to
ingestion by themodel,measurements were split into 10 s segments with 75 percent overlap, pre-
processed, and augmented.Main results. On the unseen test set, themodel delivered averagemicro-
andmacro-F1-score of 0.88 (0.87–0.89; 95%CI) and 0.83 (0.83–0.84; 95%CI) for the segment-wise
classification aswell as 0.95 (0.94–0.96; 95%CI) and 0.95 (0.94–0.96; 95%CI) for themeasurement-
wise classification, respectively. Significance. Ourmethod not only can effectively fuse SCG andGCG
signals but also can identify heart rhythms and abnormalities in theMCG signals with remarkable
accuracy.

1. Introduction

Atrialfibrillation (AFib) is awidespread chronic and relapsingheart arrhythmia, present in approximately 2%of
individuals, accounting for 20%–45%of all ischemic strokesworldwide (Kirchhof et al2016). AFib increases the risk
of heart failure,which lowers the quality of life, especially in symptomatic patients (Gregory andAntonio 2006, Elisa
et al2010), andheightensmorbidity andmortality rates (Valentin et al2001,Camm et al2010).

Today, variousmeasurement techniques are available todetect heart arrhythmia, ofwhich electrocardiography
(ECG) is themostwidely validated andguideline-recommended gold standard. In addition, a variety of clinically
validatedwearable devices offer ECG-basedmonitoring, including smartphones and smartwatches (Lau et al2013,
Tieleman et al2014,Hendrikx et al2014,Barrett et al2014,Perez et al2019). Theothermeasurement technique
whichhas been effective indetectingAFib ismechanocardiography (MCG) (Jaakkola et al2018)which refers to the
jointmeasurementof tri-axial seismocardiogram (SCG) (Zanetti andTavakolian2013) and tri-axial gyrocardiogram
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(GCG) (Tadi et al2017) signals. Tri-axial SCGrefers to the chestmovement acceleration resulting fromheart
functions recordedby a 3-dimensional accelerometer. Similarly, tri-axialGCGrefers to the chestmovement angular
velocity resulted fromheart functions recordedby a3-dimensional gyroscope.Nowadays, almost all of the
smartphones andwearable sensors are equippedwith 3-dimensional accelerometer and/or gyroscope sensorswhich
canbeused for ambulatoryMCGrecording.

InECGsignals, AFib is characterizedby two attributes: (i) absence of regular sinusnodeoriginatedP-waves and
(ii)presence of irregularly irregular inter-beat timing and amplitude variations (Hindricks et al2020). InMCG
signals, since the signals are originated frommechanicalmovements rather than the electrophysiological activity of
theheart,wemaynotnecessarily observe the sameAFib characteristics as inECGsignals.On theother hand, unlike
ECGsignals,finding reliable and robustAFib characteristics inMCGsignals is challenging and requires extensive
domainknowledge and substantial exploratory analysis. In this case, data-driven learning approaches such as deep
learning canbeuseful as theyprovideuswith fully automated feature extraction and classification (Zhang et al2020).

Deep learning has beenwidely applied to biomedical data (Baldi 2018, Park et al 2018) including ECG signals
(Pyakillya et al 2017). The introduction of deep learning to ECG analysis has opened new avenues for improving
the detection and classification of pathological heart conditions (Somani et al 2021). The key to the success of
deep neural networks (DNN) is learning representative features through iterative optimization ofmodel weights
according to themodel output compared to the ground truth or expected output values. The deep automated
feature learning applicability becomes evenmore pronouncedwhenwe deal withmultidimensional
heterogeneous time series data, especially if the data are difficult to interpret by visual inspection or conventional
signal processing-based feature extraction (Miotto et al 2017). Consequently, automated feature learning
becomes relevant whenwe deal withmultidimensionalMCGdata (Suresh et al 2020).

In ourprevious contributions (Tadi et al2018,Mehrang et al2019, 2020), wehave addressed the classificationof
AFib andSRclasses utilizingMCGsignals via feature engineering and injectingdomainknowledge into the solution.
In the absence of sufficient domainknowledge and/or thepresence of a huge target population,DNNsare legitimate
alternatives that are highly scalable in termsof generalization andpredictive power.With thismotivation, in this
paper,wepresent adeep convolutional-recurrentneural network (CRNN) architecture that consists of attention-
based convolutional and residual blocks (He et al2016) aswell as stage-level dense connections (Huang et al2017) to
performautomated early sensor fusion (Münzner et al2017) and spatial feature extraction. Inparticular, Squeeze-
and-Excitation (SE)blocks (Hu et al2018) are used for implementing attentionmechanism, stage-level shortcut
connections for alleviating the vanishing-gradient problemand facilitating feature reuse (Huang et al2017),
bidirectional LongShort-termMemory (LSTM) layers (Hochreiter andSchmidhuber 1997) for temporal feature
extraction, and fully-connected layers on top for the classification.

In this paper, in addition to the AFib and sinus rhythm (SR) classification, we aim to detect noisy
measurements aswell. One of themajor issues in the analysis of cardiac signals, be it ECGorMCG, is the proper
detection of the noise level in the collected signals (Kumar and Sharma 2020). An excess amount of noise can
mislead the algorithms and consequently lead to thewrong disease classification (Kumar and Sharma 2020).
Detecting the noisy episodes of ameasurement is, therefore, a crucial step toward improving the reliability of the
MCG signal analysis. In the case ofMCG signals, noise class is defined as a conditionwhere the underlying
physiological properties cannot be seen or extracted from the signals. This condition can be caused by sensor
placement failure or the presence of unwanted/undesired data generation sources. Hereafter, we denote the
noise class withNoise throughout the rest of this document.

Themain contribution of this study is the adoption of attention-based residual CRNNmodel architecture
for performing an automated end-to-end sensor fusion, spatiotemporal feature extraction, and classification on
themultidimensionalMCG signals that are collected solely by smartphones. The adoptedmodel performs a
three-class classification to discriminate AFib, SR, andNoise classes.

2.Methods

2.1.Data acquisition andmeasurement protocol
Our dataset included retrospective (de-identified) data from300 age and gendermatched elderly patients,
including 150 patients with AFib as the prevalent heart rhythmduring the recording (Jaakkola et al 2018). The
demographics of the patients can be found in Tadi et al (2018). An android smartphonewith a running custom-
designed application for researchwas placed on the subject’s chest longitudinally while the screenwas facing
upwards and the bottom edge of the phone at the level of the lower edge of the body of the sternum (Tadi et al
2018).We gathered two sets ofmeasurement scenarios, including physician-applied and patient-applied. In a
patient-appliedmeasurement, the subject was instructed to place the sensor on the chest and initiate the
recording (Tadi et al 2018). Among all the subjects, 182 patients (86AFib) proceededwith two recordings, one
physician-applied and one patient-applied. The remaining patients (n= 118)were either nervous, physically in
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poor condition, or not interested in performing the patient-appliedmeasurement. During the recording, the
subjects were advised to stay calm, silent, andmotionless. The data logger application automatically terminated
the recording after threeminutes from themanual initiation. Thosemeasurements inwhich either the patient or
physician failed to obtain a valid recordingwere regarded asNoise class, for example, due to excessive
movements, lack of concentration, delayed placement, phone drop, and poor placement. In total, we collected
827 sMCGmeasurements, of which 345 recordings were annotated asNoise category.Helsinki ethical
declarationwas strictly followed during all phases of the data collection. The study has also been reviewed and
accepted by the Ethical Committee of theHospital District of South-Western Finland.

A continuous 5-lead telemetry ECG (Philips IntelliVueMX40)was acquired simultaneously with the sMCG
recordings andwas used as the comparisonmethod to assess the cardiac rhythm. The rhythmof each telemetry
ECGwas labeled as SR, AFib, or other by two independent cardiologists and the study investigator. In cases of
inconsistency in the labeling of the two cardiologists, a third independent cardiologistmade the final decision.
Themedical history of the subjects was collected from the electronic patient records. Following consent
collection, background datawere gathered. Afterward, a recording of threeminutes was obtained using a Sony
Xperia Z1 or Z5 smartphone. Detail descriptions of themeasurement protocol and the demographics of the
participants are available in Jaakkola et al (2018).

2.2. Pre-processing
All the recordings were acquired simultaneously with a 200 Hz sampling frequency. The signal processing starts
withfiltering each of the six data axes—corresponding to tri-axial SCG and tri-axial GCG—separately by a
bandpassfilter. A 4th order Butterworth filter with passband frequencies of 3–20 Hzwas respectively applied on
theGCGand SCG, allowing the removal of white noise and signals offset.We applied the filter forward and
backward to every signal. In addition to the band-pass filtering, we obtained the pulse amplitude signal by
computing the envelope of the SCG andGCG signals from all six channels and used them as six additional input
dimensions. This envelope detection algorithmoperates based onmoving-average filtering aswas described in
(Tadi et al 2018). Figure 1 shows sample AFib, SR, andNoise classmeasurements togetherwith their
corresponding pulse-wave envelopes.

2.3.Dataset and sampling
Dataset preparation started by dividing individualMCG channels of each sensor/modality into a sequence of
10 s segments, eachwith 75%overlap. Next, we split the entire dataset into three disjoint subsets, train,

Figure 1. Smartphone-derived accelerometer (SCG) and gyroscope (GCG) signals (left side panels)with their corresponding envelope
signals (right side panels) from anAFib, SR, andNoise recording.

3

Physiol.Meas. 43 (2022) 055004 SMehrang et al



validation, and test. Finally, we randomly sampledmeasurements exhibiting each category; from the patient
data, corresponding physician- and patient-recorded samples of individual subjects were selected to be included
in only one of the subsets (train/valid/test) to avoid any data leakage. Table 1 shows the total number of sampled
measurements and the corresponding number of windows (10 s segments) obtained from the incorporated
measurements in each subset. It is worthmentioning that the segment durationwas chosen based on our
previous research studies (Tadi et al 2018,Mehrang et al 2019). The 75%overlapwas chosen to enable the
creation of a larger dataset.

2.4.Data augmentation
Since the availability of labeled signals for training theDNNmodels in this studywas limited to the retrospective
measurements, a data augmentation approachwas utilized to expand the dataset size in training and validation
sets.We considered the rotational data augmentationmethod proposed inUm et al (2017). Using rotational
transformation on geometric vector data, we can generate synthetic datawhich can correspond to real-life
observations. In detail, considering that acceleration and angular velocity are both geometric vectors, we can
rotate themeasured tri-axial SCG and tri-axial GCG signals around an arbitrary axis to resemble the rotation or
placement variations of themeasurement device.With this approach, we aimed to create synthetic data that
closely correspondwith real-lifemeasurement scenarios thatmight have been absent in our original dataset.

2.5. Channel recalibration
Convolutional kernels are naturally designed for efficient transformation orfiltering of the input data by
sweeping along and transforming local receptive fields independently. In the case of the 1-dimensional
convolutional (Conv1D) layer, the kernels sweep along the time axis. As a result, convolutional kernels are
unable to learn the global channel-wise information (Hu et al 2018). To get a view of the global channel-wise
information, SE blocks (Hu et al 2018)were introduced to our classificationmodel which implemented an
adaptive recalibration of channel-wise featuremaps bymodeling interdependencies between channels.

2.6. Sensor fusion
An efficient and learnable channel fusion technique can be implemented using theConv1D layer. A bottleneck
Conv1D layer contains kernels of length one, which can be used as a sample-by-sample channel fusion
(aggregation) (Sandler et al 2018)when applied tomulti-channel data withm number of channels. The fusion
operation is implemented via dot product of a kernel and everymulti-channel time sample of the data, which
are both of shape (1,m).We can have n number of these kernels, each computing and learning a different
channel fusion. See figure 2 for a schematic illustration of the implemented sensor fusionmechanism and

Figure 2. Schematic illustration of the implemented linear trainable sensor fusionmechanism. cm form between 1 and 12 are the input
channels, kn for n between 1 and 128 are the bottleneck convolutional kernels, s is the attention vector, and cn¢ are the output channels.

Table 1.Number ofmeasurements and segment counts used in this study.

Train Validation Test Total

AFib (patient-recorded) 149 (56) 45 (16) 42 (14) 236

SR (patient-recorded) 149 (62) 57(20) 40 (14) 246

Noise 183 38 25 246

Total (split percentage) 481 (66%) 140 (19%) 107 (15%) 728

10 s segments w/o augmentation 21 612 6993 2798 31 403

10 s segments with augmentation 43 224 13 986 5596 62 806
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figures 3(a) and (b) for the layer-by-layer illustration. In thisfigure, every input channel is denoted by cm form
between 1 and 12. There are 128 kernels in thefiltermatrix, each denoted by kn for n between 1 and 128. The
channel recalibration is done via scaling the obtained featuremaps from linear sensor fusion by vector s. In other
words, every channel n in the featuremap gets scaled by the scalar sn at index n of vector s that is computed by an
SE block. The output channels cn¢ are the fused input channels that are each scaled by the attention coefficient sn.

2.7.Deep neural network classifier
Weconsidered a deepCRNN (Zihlmann et al 2017) to unveil arrhythmia pattern from theMCG signals, which
takes as input the filtered and envelopes of tri-axial SCG andGCG signals and as output the expected class labels.
Every input sample (segment) is of shape (2048, 12); while, the output is a one-hot encoded array of length 3. The
one-hot encoded array is a binary vector that contains zeros everywhere except for the expected target class
index. In our case, AFib, SR, andNoise were denoted by the class indices 0, 1, and 2, respectively. Accordingly,
categorical cross-entropywas used for the loss function (Goodfellow et al 2016).

Our CRNNhas been inspired byHannun et al (2019) study inwhich a deep residual network (ResNet)
architecture (He et al 2016)was adopted for the classification of ECG signals. The differences of the presented
architecture with that ofHannun et al architecture are the use (1)CNN-based linear sensor fusion, (2) channel-
attention by SE blocks, (3) stage-level dense connections, and (4) long-short termmemory (LSTM) layers for
temporal aggregation of features. See figure 3 for all the different building blocks of the proposed architecture.

We used linear bottleneck Conv1D layer, a batch normalization (BatchNorm) layer, and a SE block at the
very beginning of the network to implement an end-to-end learnable early sensor fusion (Münzner et al 2017)
which altogether constitute the sensor fusion stage as shown infigure 3(b). Furthermore,We opted to efficiently
integrate such a sample-by-sample channel fusion into all residual blocks in our network by placing a linear
bottleneckConv1D layer followed by a 1-dimensionalmax-pooling (MaxPool1D) layer into the dense
connection of the residual blocks as illustrated infigure 3(c). The residual blocks are grouped into two types of
residual stages, type-1 and type-2, as depicted infigures 3(d) and(e). There is a dense connection in the type-1
residual stage, withConv1D andMaxPool1D layers, which concatenates the input of the stage to its output. This
dense connection helps to overcome the vanishing gradient (He et al 2016). All residual stages contain three
residual blocks stacked on top of each other, plus an SE block placed at the end of the stage utilized for channel
recalibration. For regularization, we used batch normalization and dropout layers extensively throughout the
whole network architecture, as illustrated infigure 3. For training, Adamoptimizer (Kingma andBa 2014)with a
learning rate of 0.001was used.

Figure 3.Building blocks of the proposedCRNNarchitecture. (a) SE block, (b) linear sensor fusion stage, (c) residual block, (d) type-1
residual stage which contains a dense connection, (e) type-2 residual stagewithout dense connection, (f) the full CRNNarchitecture.
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Starting from the input, the network contains a sensor fusion stage, three pairs of type-1 and type-2 residual
stages, a stack of forward and backward LSTM layers, four fully-connected layers that each is followed byRelu6
activation layer (Krizhevsky andHinton 2010) and a dropout layer (Srivastava et al 2014), and ultimately a fully-
connected layer followed by softmax activation for getting the classification probabilities. Thewhole network
architecture is summarized and sketched infigure 3(f).

The hyper-parameters of the networkwere chosen as follows:

• For all the dropout layers, the dropout ratiowas set to 0.15.

• For all the convolutional layers in type-1 and type-2 residual stages, the number of kernels was set to 32 except
for the last residual block in the last type-2 residual stage, where there are 128 kernels.

• For all the dense connections in the type-1 residual stages, the convolutional kernels were set to 64. The
number of units in both LSTM layers was set to 32.

• Thenumberofunits in fully-connected layers on topofLSTMlayerswas set to 64, 32, 16, 8, and3, respectively.

Altogether there was 237 363 trainable and 3456 non-trainable parameters in themodel. It is worth
mentioning that no automatic hyper-parameter tuningwas used due to insufficient computing power.

For the software tools,mainly Scikit-learn (Pedregosa et al 2011) andTensorflow 2.4 (Abadi et al 2015)were
used. The experiments were done on a desktopmachinewith anNvidia RTX-2070 graphics card and 64
GbRAM.

2.8. Experiments
In order to get an unbiased evaluation of the createdCRNNmodel and thewhole data processing pipeline, we
repeated the training and testing processes for 10 fully random iterations initializedwith different random seeds.
Hereafter, we call these 10 random iterations with evaluation iterations. In every iteration, we trained themodel
for amaximumof 80 epochs, used categorical cross-entropy for the loss function, computedmacro-averaged
F1-score formeasuring the goodness offit, validated the trainedmodel at the end of each epoch, and
subsequently checkpointed themodels at the end of each epoch based on the validation setmacro-averaged F1-
score. Themodel that provided the highestmacro-averaged F1-score on the validation set was then
automatically pulled from themodel registry and used in the testing process.We stored the test set predictions
for further in-depth statistical and performance analysis in each of the 10 evaluation iterations. Subsequently,
variousmicro- andmacro-averagedmetrics were calculated using the obtained test set predictions. Hereafter,
we refer tomacro-averaged F1-score withmacro-F1-score and similarlymicro-averaged F1-score withmicro-F1-
score.We use the same shorthand formicro- andmacro-averaged recall and precision.

2.9. Ablation study
The presentedmodel architecture has been built by combining neural network components whichwere
separately shown effective in awide body of literature. To determine the utility of the proposed blocks and stages
for the problem at hand, we performed an ablation study. All components that ended up in the presentedmodel
architecture were the ones that contributed to improving the predictive power, improving the convergence
speed, and/or stability ofmodel predictionswhenweights are initialized randomly. To limit the search space for
optimal components, the performance of the goodness offit was observedwith andwithout each and every
component separately. Tomeasure the goodness offit or the predictive power,models were trained for 10
randomly initialized iterations each 80 epochs, and the validation setmacro-F1-score graphwas plotted. The
convergence speed, i.e. how fast the peak of predictive power is touched, was examined by checking the

Table 2.Notational representation of the confusionmatrix for the classification problem in this study.
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validation setmacro-F1-score graph and the epoch number at which the bestmodel was checkpointed. The
stability of themodel was examined by inspecting the standard deviation of the validation setmacro-F1-score
values across the 10 random training rounds at each epoch. The bestmodel architecture was expected to achieve
the highest validation setmacro-F1-score in as fewest epochs as possible and show lowest variations across the 10
random training rounds.

2.10. Performancemetrics
Given the three-class classification problem at hand, a notational confusionmatrix can be represented via table 2
(Clifford et al 2017).Macro-F1-score was calculated according to equation (1) considering the given notations in
table 2. Similarly,macro-recall andmacro-precisionwere calculated according to equations (2) and (3),
respectively. In the case ofmulti-class classification,micro-F1-score,micro-recall, micro-precision, and
accuracy are all equal and can be computed using equation (4).

( )Macro F score1
3.

, 1
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A a
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S s
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N n

2 2 2

- - =
+ +

å +å å +å å +å
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3. Results

Wecompared the performance of the presentedCRNNclassifier against the ground truth annotations of the test
dataset by calculating statistical performancemetrics, includingmicro- andmacro-F1-score, precision, recall,
and area under the receiver operating characteristic curve (ROC-AUC). In addition, we report the detection
performance for segment-level, whichwe define as one rhythm class per segment, as well asmeasurement-level,
whichwe define as one rhythm class permeasurement. Themeasurement-level results were obtained by first
gathering all the segment-level predictions of each uniquemeasurement and then calculating the statistical
mode of the rounded predictions. Such an averaging approach plays the role of a voting system.

Table 3 shows the performancemetrics for both segment-level andmeasurement-level classification
averaged over all the classes usingmicro- andmacro-averaging. The obtainedmetrics show an acceptable
macro-recall over all the classes for the segment-level classification. Amore reliable performancewas obtained
for themeasurement-level predictions as shown in the right-most columnof table 3.

For amore in-depth view on the class-specific goodness offit, table 4 shows the segment-level one-versus-all
F1-score andROC-AUC scores. The two classes, AFib and SR,were classified reliably, as shownby the high
values of both F1-score andROC-AUC.However, theNoise class classification suffered from lowprecision.
Computing the samemetrics formeasurement-level predictions resulted in improved performance, in
particular for theNoise class precision, as shown in table 5.

A pair of cumulative confusionmatrices are created out of the test set predictions. Cumulative confusion
matrices were obtained by performing element-wise summation on the 10 confusionmatrices, each
corresponding to one of the 10 evaluation iterations. Table 6 presents the segment-level classification and table 7
presents themeasurement-level classification cumulative confusionmatrices.

Table 3.Performance of theCRNNclassifier averaged over all three
classes.

Resolution
segment-level measurement-level

Scores Mean 95%CI Mean 95%CI

Macro-F1-score 0.83 0.83–0.84 0.95 0.94–0.96

Macro-recall 0.89 0.88–0.90 0.95 0.94–0.96

Macro-precision 0.80 0.79–0.81 0.95 0.94–0.96

Micro-F1-score 0.88 0.87–0.89 0.95 0.94–0.96
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The per-class ROC curves obtained from the evaluation iterations can be seen infigures 4(a)–(c) for the
classes AFib, SR, andNoise, respectively. According to the obtainedROC-AUC values, the presented CRNN
classifier capturedmeaningful patterns for all three classes across all the evaluation iterationswithout significant
variation in the performance.

3.1. Ablation study results
Figure 5 concisely presents the ablation study results for a few of themodel architecture building blocks, namely
SE block, sensor fusion stage, and stage-level dense connections.We excluded residual blocks and LSTM layers
from the presented ablation study results as they have been investigated sufficiently in the literature (Somani et al
2021). Infigure 5, the thick line in themiddle of the shadows represents the arithmeticmean of the validation set
macro-F1-score across the 10 evaluation experiments performed for each ablatedmodel. The shadows around
the graphs represent the standard deviation of themetric. These shadows provide uswith a qualitative view of
the stability of themodel architecture across different training rounds. To quantify the predictive power and the
speed of convergence of each of the fourmodel architectures in the ablation study, we calculated the arithmetic
mean and 95% confidence interval of themaximummacro-F1-score across the 10 evaluation experiments.

Table 5.Measurement-level performance of the CRNNclassifier per each class.

Class
AFib SR Noise

Scores Mean 95%CI Mean 95%CI Mean 95%CI

F1-score 0.94 0.93–0.96 0.94 0.92–0.96 0.96 0.95–0.97

ROC-AUC 0.98 0.98–0.99 0.99 0.99–1.00 0.99 0.99–1.00

Precision 0.96 0.94–0.98 0.95 0.92–0.98 0.93 0.92–0.94

Recall 0.93 0.90–0.96 0.94 0.92–0.96 0.99 0.98–1.00

Table 6. Segment-level cumulative confusionmatrix
obtained by element-wise summation of confusion
matrices overall evaluation iterations.

Predicted

AFib SR Noise

True AFib 23 597 2814 889

SR 1891 23 194 825

Noise 85 152 2513

Table 7.Measurement-level cumulative confusion
matrix obtained by element-wise summation of
confusionmatrices over all evaluation iterations.

Predicted

AFib SR Noise

True AFib 390 21 9

SR 15 376 9

Noise 2 0 248

Table 4. Segment-level performance of the CRNNclassifier per each class.

Class
AFib SR Noise

Scores Mean 95%CI Mean 95%CI Mean 95%CI

F1-score 0.89 0.88–0.90 0.89 0.88–0.90 0.72 0.71–0.74

ROC-AUC 0.96 0.95–0.97 0.97 0.96–0.97 0.98 0.98–0.98

Precision 0.92 0.91–0.94 0.89 0.86–0.91 0.60 0.57–0.62

Recall 0.86 0.84–0.89 0.90 0.88–0.91 0.91 0.89–0.94
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Similarly, we provide the same statistics of the epoch numberwhere themaximummacro-F1-score has
occurred. These statistics are shown in table 8.

4.Discussion

Our study is thefirst demonstrationof an end-to-endDNN-based classification approach toAFibdetectionusing
smartphoneMCG. In this study,we implemented aSEmechanism for channel recalibration, a trainable
convolutional-based sensor fusion, a deepCRNNfor spatiotemporal feature extraction, and fully-connectedneural
networks for the classification.Theutility of the buildingblockswehave added to thewidely adoptedplainCRNN
architecture (Somani et al2021)was thoroughly tested via an ablation study and the effect of eachblockwas separately
shown infigure 5 and table 8. Inparticular, in comparisonwith the fullmodel, amodelwithout a sensor fusion stage
was less stable andneeded16more epochsonaverage to achieve its peakperformance. Themodelwithout SEblocks,
was hugelyunstable, needed20more epochs on average to reach its peakperformance, andwasunable to achieve the
peakperformance level of the fullmodel. Similarly, themodelwithout stage-level dense connectionswas less stable,
needed22more epochs on average to accomplish its peakperformance, andwas incapable of achieving thepeak
performance level of the fullmodel.

The classification taskwasperformedat two resolutions, segment-level andmeasurement-level. Even thoughwe
hadonlymeasurement-level annotations and eachmeasurementwas on average threeminutes long,wehad to
performsegmentationon thedata to limit thenumber of time samples fed to theCRNNclassifier. Followingour
previous contributions,we segmented thedata into 10 s segments (Tadi et al2018,Mehrang et al2019).

The reportedmeasurement-level classification performances in this study are comparable to other screening
modalities such as ECG andPPG (Ramkumar et al 2018, Zungsontiporn and Link 2018). Furthermore,
performance levels obtained in this studywere almost at the same level as with that of 2017 Physionet Challenge
(Clifford et al 2017), where a total of 12 186 single lead ECGmeasurements were analyzed to classify AFib, SR,
Noise, andOther rhythm classes. The overallmacro-F1-score for the top 11 algorithms in the 2017 Physionet
challengewas approximately equal to 0.83 (Clifford et al 2017). Thus, we see smartphoneMCGas a
complementary AFib detection technique in settings where ECG recording is not feasible.

Rhythmclassificationusingmechanical functioningof theheart, including ballistocardiography (BCG) and
MCG,has beenpreviously doneby combining feature engineering andmachine learning (Bruser et al2012,

Figure 4.Class-wise ROC curves obtained from the evaluation iterations.

Figure 5.Predictive power and stability of (a) the fullmodel versusmodels without (b) sensor fusion stage, (c) SE blocks, or (d) stage-
level dense connections. The predictive power of themodels is quantified by arithmeticmean of the validation setmacro-F1-score.
The stability of themodels is quantified by the shadows around the graphswhich represent the standard deviation of themetric across
the 10 randomly initialized training experiments.
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Lahdenoja et al2017,Tadi et al2018,Mehrang et al2020).Naturally, designing, implementing, and experimenting
withhand-crafted featureswere thefirst steps in the approaches proposedbyprevious studies. In contrast to those,
DNNsprovideuswith automatic end-to-end feature extraction and classification (Andreotti et al2017). As shown in
this study, the capabilities of theDNNscanbe extendedbeyond theordinary automatic feature extractionby
incorporating sensor fusion and channel recalibrationmechanisms.These all facilitate knowledgediscovery and
pattern recognitionwith less human intervention anddomainknowledgeprerequisites (Somani et al2021).One
drawbackofDNNbased approaches is the computational load and the size of thedatasets theyneed to be trained
with.DNNsare purely data-driven; therefore, it is the content of thedatasets thatmainly derives and constrains the
learningprocess (Somani et al2021). Similar to theotherDNNbased classificationuse-cases, the key challenge for
MCGanalysis is not necessarily the computational load, but the availability of sufficiently sizeddatasetswithhigh-
quality andhigh-resolution annotations.

WhenCNNs are adopted for feature extraction, feature learning is done in an end-to-end fashion together
with the classification (Goodfellow et al 2016).When training by plain stochastic gradient descent or its variants,
as themost popular optimization algorithm for trainingDNNs (Le et al 2011), we need precise and high-
resolution annotations. If the proportion of imprecise annotations increases, the optimizer gets confused and, as
a result, cannot find the optimal latent space and decision boundaries (Nigam et al 2020). This, in turn, results in
misclassifications for the inputs which are located close to the ground truth class boundaries. In our study, the
two classes, AFib and SR,were annotated by a teamof cardiologists, while a single senior researcher only
annotated theNoise class. In addition, the size of theNoise class in our dataset was quite limited comparedwith
the other two classes.Moreover, by definition, theNoise class covers awide variety ofmeasurement failure
conditions of which somemight be under-represented in our dataset. The size and the potentially inconsistent
annotations of theNoise class weremost likely the root causes of the lowprecision score of the segment-level
Noise class classification. Despite the potentially inconsistent annotations, themeasurement-level predictions
were sufficiently accurate and comparable to our previous contributions (Mehrang et al 2019).

To improve themodel’s generalization,we increased the size of our training andvalidation setswith adata
augmentation scheme tailored to theMCGdata at hand. Specifically,wedeployed segmentationwithoverlap (Tadi
et al2018,Mehrang et al2019) and rotation augmentation technique (Um et al2017)which is suitable for thedata
that hold a geometric description.Ourobservations showed that data augmentationhelped toprevent overfitting and
also improved theoverall classificationperformance.However, further inclusionof augmenteddatadidnot improve
the segment-levelNoise classification results, primarily becauseof the inconsistent ground truth labels.Wepostpone
the relabeling and additionofmore consistently labeledNoise class data to the future contributions.Besides,more
advancedunsupervised (Nurmaini et al2019), generative adversarial networks (Yoon et al2019), weakly supervised
(Tong et al2021), and self-supervised learning (Jawed et al2020, Sarkar andEtemad2020) techniques canbe adapted
to improve theprocess of feature learningwithout being constrainedby thequality of thehuman-generated
annotations.

Automated detection of cardiac rhythms is rapidly growingwith the emergence ofmobile andwearable
devices that facilitate personalizedmonitoring and early detection of life-threatening conditions.Modern
smartphone devices andmobile applications are profoundly enriching to serve the growing healthcare needs by
being affordable, non-invasive, and easy to use. Sensor-rich smartphones are today accessible tomost people
worldwide, offering ubiquitous heartmonitoring evenwithout acquiring extra peripherals viaMCG signals. As
the number of users, amount of data, and complexity of the gathered data are growing, advanced data-driven
knowledge discovery techniques are highly demanded.

Table 8. Statistics of the validation setmaximummacro-F1-score and the corresponding
epoch number of (a) the fullmodel versusmodels without (b) sensor fusion stage, (c) SE
blocks, or (d) stage-level dense connections. The arithmeticmean and the 95%CIs are
computed across 10 randomly initialized training experiments.

Model architecture
Max.macro-F1-score Epoch

Mean 95%CI Mean 95%CI

Fullmodel 0.81 0.80–0.81 44 30–59

W/Osensor fusion stage 0.8 0.80–0.80 60 48–71

W/OSEblocks 0.75 0.70–0.80 64 51–78

W/Ostage-level dense connections 0.77 0.76–0.79 66 59–73
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5. Conclusion

SmartphoneMCGdevicesmayoffer apractical and cost-efficient screening andmonitoring alternative forAFib
which can complement the othermonitoringmodalities. Analysis ofmulti-channelMCGdata via deep learning
facilitates the automatic and scalable extractionof thepotential pathological conditions.TheproposedCRNN
architecturedeliveredpromisingAFib classificationperformance, proving the applicability of data-drivenknowledge
discovery techniques onMCGdata.With the adoptionof these data-driven techniques,we can improve the
performanceofAFibdetection at scale, and as a result, increase the reliability ofAFib screening andmonitoring.
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