

Joni Ranta

Testing AWS hosted Restful APIs
with Postman

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

10th of January 2023

PREFACE

In this study I learned a lot about testing and Postman tool that I use in my daily work.
With this new information about Postman, I do see new ways to use the tool and I most
likely will in the future. Surprising to me was that, what at first seemed like a straight
forward thing to do, turned out to be more complex what I imagined.

Big thanks to Sinch Finland QA team and my Operations team colleagues for support
they provided.

Vantaa, 10th of January 2023

Joni Ranta

Abstract

Author: Joni Ranta
Title: Testing AWS hosted Restful APIs with Postman
Number of Pages: 34 pages
Date: 10th of January 2023

Degree: Master of Engineering
Degree Programme: Information Technology
Professional Major: Networking and Services
Supervisors: Jarmo Heikintalo, Development manager
 Ville Jääskeläinen, Principal Lecturer

This thesis is for creating an automated testing setup to be used after quarterly
Version upgrade for production environments. This is to reduce manual testing
required after each upgrade. The testing setup was limited to a setup that is
reasonable to complete within a Masters´ thesis timeframe. Further development can
be done after the initial setup has been completed.

To reduce overlap in tools for company landscape, Quality assurance team was
interviewed for tools and for any possible scripts that they have and could be used for
this production environment testing setup. Target was also to use as much as
possible already existing internal landscape.

End product of this thesis is an automated (as much as is feasible) testing
process for customer environments using tools and methods that are already in use
within the Sinch Finland Systems Quality assurance and Operations team.

Keywords: AWS, Cognito, Postman, Restful API, HTTPS, Testing

Contents

List of Abbreviations

1 Introduction 1

1.1 Method and material 1

1.2 Thesis structure 2

2 Current state analysis 3

2.1 Contact Pro usage 3

2.2 Contact Pro production environment interfaces 5

2.3 Operation teams’ current testing 6

2.4 Information deposits 6

2.4.1 Databases 7

2.4.2 Customer link page 7

2.5 Summary and improvement points 8

3 Background information 10

3.1 Testing practices and needs 10

3.2 Postman for testing use 11

3.2.1 What is Postman 11

3.2.2 Testing APIs 13

3.2.3 HTTPS page request 13

3.3 AWS Cognito, identity pools and user pools 14

3.4 API: Restful interface 15

4 Test setup creation 17

4.1 GET request to customer link page 17

4.2 Authorization request to Amazon Cognito 18

4.3 GET request for CSRF token. 19

4.4 POST request with login information 20

4.5 Fetching customer data after authentication 21

4.6 Test cases 23

5 Running tests with created Postman collection 27

5.1 Postman collection Run options 27

5.2 CheckTenantECFS test run time 29

5.3 CheckTenantsVisitor test run time 30

5.4 Check TenantsVisitorQueues run time 30

5.5 Full test run 31

6 Conclusions and further improvement points 32

References 33

List of Abbreviations

API Application programming interface

AWS Amazon Web Services

CP Communications panel

CSRF or XSRF Cross-site request forgery

IA Infrastructure Admin

JWT JSON Web Token

MFA Multi-factor authentication

QA Quality assurance

SC System Configurator

SIP Session Initiation Protocol

SMS Short message service

VPN Virtual Private Network

1

1 Introduction

Sinch Finland Systems Oy (Sinch being the parent company) provides contact

center, named Sinch Contact Pro for customers to use. Contact center is a call

center product with added wider communications functionalities. “Sinch Contact

Pro is a true omnichannel solution, supporting all commonly used contact-center

communication channels including telephony, email, chat, video, SMS, and

messaging apps such as WhatsApp, Facebook Messenger, Viber, and more.” [1]

SMS is short messaging service, that is used mainly by mobile phones to send

text messages. This type of contact center product is aimed at companies to be

used for their customer communication.

In this thesis functionality testing is focused on customer environments that are

in active customer use, upkeep done by Sinch Operations team, and more

specifically to test their basic functionality after new version has been rolled out

to customer use. New version upgrades take place on quarterly windows, where

upgrades are done on weekend time frame to minimize customer use impact.

To reduce overlapping tools and methods, same tools were used as for

functionality testing in development phase. Quality Assurance (QA) team was

interviewed for tools that they use and also for any possible existing scripts that

could be used for Operations team testing.

Goal is also to automate, as much as possible, testing for production environment

customer base after product update. Depending on the automation outcome,

testing could also be run on the back ground and notify for any anomalies found.

1.1 Method and material

To find out what software and possible scripting QA team used at the moment of

writing this thesis, a meeting was held on 10th of June 2022, with QA team

manager.

2

Out of all testing tools used, Postman was selected during the meeting to be used

for this new testing setup. Postman provides tools that can be used for testing

API’s [2] and is used for both QA and Operations team. Application programming

interface (API) is used to fetch or modify existing data in other application. API´s

can be seen as a way for different applications to communicate with each other.

Operations team uses, when writing this thesis, Postman for creating new

customer instances in Amazon Web Services (AWS) cloud infrastructure but not

for testing purposes. QA team has experience on using the Postman tool to test

Contact Pro interfaces and could help creating the test patterns for production

test use cases.

Scripted testing fills in the requirements for testing process to be used for

production environment testing. “Whenever repeatability, objectivity, and

auditability are important, scripted testing can be used” [3 pp. 188]

1.2 Thesis structure

In Chapter 2 current state analysis is conducted. This will give overview of the

current production environment and testing methods used by Operations team.

Improvement points and summary of current state are also included in this

chapter.

Chapter 3 provides reader background information on topics that will be used in

Chapter 4, where the Postman requests are created for testing. In Chapter 5 tests

and analysis on test results, are conducted using the Postman collection created

in Chapter 4. Final conclusions and further improvement points are in Chapter 6.

3

2 Current state analysis

This chapter will go through the current state of Contact Pro usage for both

customers and internal Sinch usage, Operations teams testing for its usability

and where current setup could be improved.

2.1 Contact Pro usage

Customers’ end users use Contact Pro via user interface called Communications

Panel. End users in service description and manuals are often referred as agents.

“Sinch Contact Pro provides contact center agents with Communication Panel

(CP), a responsive HTML5-based user interface that runs in popular web

browsers is used without the need for any installations or browser add-ons”[4].

Communications panel provides the most commonly used user functions for the

end users [4]. Customers have access to Contact Pro globally via internet and

Contact Pro uses AWS cloud infrastructure for global reach.

4

Figure 1. Sinch Contact Pro Communications panel, user answering to an email

Each customer has its own tenant. This is to separate customers and their users.

Tenant environment contains its own virtual server for each customer on which

the Contact Pro software is run on. Tenants are unique with their usage

addresses and API´s.

For user creation and similar functions, Java-based configurator called System

Configurator (SC) is used [5]. System configurator is mainly used by customers’

power users, Sinch Service Desk and Project team or external partners that

provide configuration services.

Figure 2. User importing user data in System Configurator [5]

Operations team also uses Java-based Infrastructure Admin (IA) tool which is

used to configure Contact Pro connectivity and databases etc. Infrastructure

Admin tool is not mentioned in either service description [4] or Contact Pro

documentation [5]. This configuration work is entirety done by Sinch Operations

team in Contact Pro landscape.

Some configuration work that customer has no access to, is also done in System

Configuration level. Mainly this is for infrastructure related configuration such as

5

Email channel setup or Session Initiation Protocol (SIP) trunk setup. SIP trunks

are used by phone operators to route calls.

Before mentioned Infrastructure Admin tool is accessed directly from customers

tenant server and the usage is limited to Operations team. Tenant upgrades are

done via the Infrastructure Admin tool so if it would not work, it would be seen

during the upgrade. Because customers have no access to it and upgrades are

done with it, IA tool can be left outside the scope of this thesis.

2.2 Contact Pro production environment interfaces

Production environment interfaces are shown in below picture.

Figure 3. Sinch Contact Pro interfaces [4]

From the picture taken from service description, can be seen that customers’

agents access Sinch Contact Pro through internet regardless of what user

interface they use. Customer access is as such limited to internet and any

usability tests should follow the same route via internet.

6

2.3 Operation teams’ current testing

Operations teams’ customer environment functionality testing after quarterly

upgrade is currently limited to manual testing with either using same user

interfaces as customers’ users (logging in with Communications panel or similar

interface), or with direct links to test certain API´s if they respond as they should.

Direct API links require to be set up manually before testing and modifications

are required per customer.

API´s in this test scenario are tested only to respond. To fully test an API, usually

API secret and user id with password, are required to receive the requested

information from API. MFA API authentication is supported by AWS [6] but is not

used in Contact Pro APIs when writing this thesis.

Functionality testing is also done if customer reports an incident. Functionality is

tested by either Operations team or Service Desk team before investigating the

issue further from the Contact Pro logs. No active and alerting log reading tool is

in use and logs are read only for incident solving and product development.

On operation system and on level higher, AWS cloud level, alerts per customer

tenant exist but these usually do not translate well for how Contact Pro product

operates within the virtual container. This, and the fact that no active log reading

tool exists for Contact Pro logs, prevent using test triggers from such outputs.

Automation of any level on quarterly maintenance window would reduce manual

workload for the persons doing the upgrades on those windows.

2.4 Information deposits

Information can roughly be split into two categories, one that customer has

access to and one meant for Sinch personnel internal use, mainly the customer

link page.

7

2.4.1 Databases

Contact Pro databases are located at data centers on AWS cloud services across

the world on 4 different locations [4]. “By default, the tenant is provisioned in the

data center closest to the customer’s end users”[4].

Customers access Contact Pro data via integration interfaces through internet.

“They (integration interfaces) are published via AWS API gateway and access is

controlled with user authentication and API keys”[4]. As such, usability tests to

databases would need to follow the same route to mimic customer use efficiently.

2.4.2 Customer link page

Customer link page includes information where each customer tenant can be

found, meant for Service Desk and Operations team use for faster access to

customer tenants. Customers have no access to this link page.

Customer link page resides in AWS. Page itself is used with internet browsers

and uses AWS Cognito authentication for user login.

Database for customer link page is not located in the same servers as customers

databases are and is a separate database instance altogether.

For Sinch internal users’ customer link page uses AWS user pools (with Cognito

authentication) for login with personal certificates into customer tenants.

Customers use either user certificates or basic authentication as their login

methods for Contact Pro. Basic authentication means username and password

type of login. This login difference between Sinch internal use and customers’

users, creates a difference in login link naming. Both types of links are available

in the link page for Sinch personnel to manually test accessibility also from

customer perspective with a basic authentication test user.

Customer link page is the collective place where customer tenant names can be

found and are upkept manually. This is the only collection where information is

8

available as a list format and it contains all the tenants. Separation exists between

a customer region and production and test tenants on different tabs.

Other possible location instead of customer link page would be AWS, to fetch

customer tenants in production use but customer tenant information is divided

between AWS regions and would need to fetched from each region separately.

A customer link page does not currently contain customer API link information.

This information can only be found from AWS, separated by regions. Customer

API links contain information that is unique to each customer and can not be

directly created with just customer tenant name.

2.5 Summary and improvement points

Any form of testing automation after quarterly upgrade is an improvement to

current situation. Manual testing is error prone and requires a lot of time to do

properly.

Customer link page should be used for fetching live production tenants because

it is a single point to store such information and is maintained actively by

Operations team. Link data can be fetched and used to test Communications

panel interface and other interfaces that can added as a link information.

Requirement for manual link modification for each tenant for API testing is not

maintained easily as each person would need to maintain their own collection or

share collections with each other. If this information was available on customer

link page, testing automation could use it from there. For faster access to API

information, the information could be added to the customer link page if internal

guidelines for this type of data allows it.

Depending on the API, also API secret and user credentials, can be required to

fully test the interface. These are confidential information and customer specific.

Most likely this information will not be added to the customer link page

considering it is confidential and prone to change.

9

Usability tests should follow the same route as customers use the Contact Pro

product. Tests should access interfaces and API’s through internet instead of any

other possible routes that Sinch internal users have.

10

3 Background information

In this section background information is provided to give some understanding

for the methods and software involved. In Chapter 4 where the testing setup is

introduced in detail, these Chapter 3 topics will be deepened with each use case.

3.1 Testing practices and needs

Software testing can be done in multiple ways and forms. The book “A

Practitioner’s Guide to Software Test design” written in 2003 by Lee Copeland

mentions 11 different ways how software can be tested. Out of these 11 different

ways of testing, scripted testing is the most prominent one to be used for this

thesis.

As mentioned before in this thesis introductory chapter and quoted from Lee

Copelands book, scripted testing can be used when repeatability, objectivity, and

auditability are needed [3 pp 188]. Testing setup to be build needs to have these

qualities.

Operations team does not do testing as part of their daily work. This means that

repeatability is important regardless who from Operations team does the test

execution. As Lee defines repeatability in his book “Repeatability means that

there is a definition of a test -- at a level of detail sufficient other than the author

to execute it in an identical way.” [3 pp 189]. Postman helps with this requirement

since it enables test procedures to be shared among Operations team in exactly

the same format [2]. Variables such as user credentials would need to be

changed for each test user, but the test itself would be the same.

The next test requirement, objectivity, is described as such “Objectivity means

that the test creation does not depend on the extraordinary -- skill of the person

creating the test but is based on well understood test design princibles. [3 pp

189]”. Using Postman and its shared test procedure, this objectivity need is met.

11

“Auditability includes traceability from requirements, design, and code to the test

cases and back again. This enables formal measures of testing coverage. [3]”

Testing code is shared among testers in Javascript format and rest of the

information about used APIs can be found from service configuration

documentation [5]. Any user can see the test code used and modify it if needed.

3.2 Postman for testing use

Introductory chapter mentioned a meeting with QA team that scouted the testing

software that was in use with QA. Out of software already used, Postman was

selected to be used for this test setup. It also fulfils scripted testing practice

needs.

3.2.1 What is Postman

Postman is software that is described in their website as API platform that can be

used to build APIs and use them [2]. Further than this, Postman can be used to

test said Postman APIs and other APIs as well [7].

12

Figure 4. Postman user interface from Postman download page [8].

Postman software is either downloaded to the users´ computer (Windows, Mac

and Linux operation systems are supported) or used from the web browser with

Postman Web version. [8]

Postman itself is then used to send requests to APIs. “Requests can retrieve,

add, delete or update data” [9]. Requests can be used to send parameters, login

details, authorization information or any other body data that is needed [9].

These requests are then added to collections and collection can host multiple

requests. Data that request receives is called response. [9]

13

3.2.2 Testing APIs

Test is a functionality in Postman that can be “added to individual responses,

collections and folders in collection” [7]. Tests tab of individual request can be

seen in user interface picture of Postman. Test scripts need to be written in

programming language Javascript [7]. Javascript for testing scripts can be written

manually or by using Snippets in the code editor. Snippets are API requests in

code format [10].

Test scrips that Postman use “can use dynamic variables, carry out test

assertions on response data, and pass data between requests.” [7] In practice

this means that one test can lead to another depending on the received response

and requests can use data received in previous response.

3.2.3 HTTPS page request

HTTP is technology commonly used in internet for browsing webpages. HTTP

supports with the HTTP/1.1 specification GET, HEAD, POST, PUT, DELETE,

CONNECT, OPTIONS and TRACE request methods. The combination of

allowed methods can be configured per HTTP server. Server can support all of

the possible request methods or just some of them. Methods are case sensitive.

[11]

Used in customer link page is HTTPS version of HTTP technology. HTTPS is

secured version of HTTP protocol as it encrypts the data on Transport layer. This

is important because it protects sent data against different capture methods and

false data provider identity type of attacks. Using HTTP on a website can be seen

as deprecated technology and ”HTTPS is now used more often by web users

than the original non-secure HTTP.” [12]

HTTPS requests can be made with Postman to fetch data available on a website.

Received information can be further processed into new requests. [9]

14

3.3 AWS Cognito, identity pools and user pools

Amazon Cognito is way in AWS to implement user identification and sign up to

AWS hosted web and mobile applications. Cognito supports different types of

user identification and advanced security features. [13]

Cognito has two main components, user pools and identity pools. User pools,

consists of user data, login credentials and such. It also provides different types

of sign-in options if enabled to users. Identity pools are used to grant access to

other AWS services. These pools can be used together or separately. Below is a

picture of common AWS Cognito setup with both of these pools being used. [13]

Figure 5. Amazon Cognito common setup from developer guide [13]

In a setup like this, user is authenticated and then granted access to another

AWS service [13]. AWS Cognito developer guide [13] describes the flow in more

details as follows:

15

1. In the first step the app user signs in through a user pool and receives
user pool tokens after a successful authentication.

2. Next, the app exchanges the user pool tokens for AWS credentials
through an identity pool.

3. Finally, the app user can then use those AWS credentials to access
other AWS services such as Amazon S3 or DynamoDB.

This is the same setup as customer link page uses for user authentication. User

login information will be a variable in Postman that is required to be changed for

each user doing the test. Tokens that are changed to AWS credentials, will expire

within a set time frame, meaning that cookies created with each authentication

cycle most likely need to cleared after each full test run.

3.4 API: Restful interface

API can mean different things in terms of how each software communicates with

each other. REST (Representational State Transfer) APIs however try to unison

this by using a definitive architecture on how these REST APIs should work. This

helps when creating a module to communicate with this interface since it is not

completely black box on how it operates. [14]

Terms Restful API and REST API can be a bit confusing, Restful meaning the

Restful web APIs but these terms Restful and REST can be used

interchangeably. In common lingo, Restful API or REST API is usually meaning

the same thing. [14]

When Restful client requires a resource, it connects to the server by using the

Restful API. Restful API request and response will follow the basic flow below

[14]:

1. Client sends a request to the server following API format.

16

2. Server authenticates the sender client and confirms that client has the

rights for required access.

3. Server then starts processing the request if rights check is cleared.

4. Response is returned to the client from server. Response will tell if the

request was successful or if any errors occurred. If the request was

successful, the response will contain the information requested.

There can be slight variations on the Restful API functionality depending on the

developer of the Restful API. [14]

Contact Pro uses different APIs for different functionality, usually for providing

some information from Contact Pro to third party software. 8 of these interfaces

are following Restful API architecture [15]. Restful interface is also important for

Communication panel user interface since it uses the Restful APIs for monitoring

and directory data. If these Restful interfaces do not work properly, it would be

seen in Communication panel use as well.

17

4 Test setup creation

This chapter will cover the test setup creation in detail using Postman and deepen

upon the background information topics in Chapter 3. Customer and Sinch

production environment specific details in screen captures will be pixelated for

data protection. QA team provided guidance for creating these test setup

Postman requests.

4.1 GET request to customer link page

Authentication with Postman requires use of tokens and steps where data is

fetched from both the site that is to be accessed and from Amazons’ Cognito

services. The process starts with HTTPS GET request from the internal customer

link site.

Figure 6. Postman GET request to customer link page

In Figure 6 we can see that Tests part of GET request contains modified fields.

Indicator for this is the green dot next to Tests tab. Change indicator is the same

in Postman regardless of the tab that contains modified fields or information.

Scripts written in Tests tab are executed after the GET request has been made

and target the response that was given as a reply to the GET request.

18

In the Tests tab are “const” declarations for creating constants. Also used is pm

object which is Postman JavaScript API functionality. It is called with pm.* and it

provides access to response and request data including the variables used.

Received response text is searched for client_id value and is set for variable

“client_id” as value. This information is used in the next step.

4.2 Authorization request to Amazon Cognito

After client_id value has been fetched from the link server website, authorization

request is made to Amazon Cognito.

Figure 7. Postman authorization request to Amazon Cognito.

In this GET request, added information is sent using Params tab in Postman. Key

values defined here are added to the get request to Amazon Cognito. This can

be seen in Figure 7 request URL but exact values are pixelated. Noteworthy

information here is that Amazon Cognito authorize service targeted and

authentication method used is OAuth 2.0. Client_id defined in earlier request can

be seen used here as first value.

Redirect_uri is defined address where the server sends the user after successful

authentication. Response type and scope tells the authentication server how this

request is handled. State is mainly used to prevent cross-site request forgery type

19

of an attack on web applications. All of these fields are required in OAuth 2.0

authentication flow.

4.3 GET request for CSRF token.

Once authorization request is done, Amazon Cognito login page will be requested

to provide CSRF token. Token is server generated value, similar to that of the

State key used by requests sent from Postman in this setup.

Figure 8. Postman request for generating CSRF token, Params tab.

In Figure 8 GET request the same values in Params tab are used as before but

now Amazon Cognito login service is targeted instead of authorize service as in

previous request. From the green dots we can see that in this request Tests tab

also contains changed values. That is where CSRF token value is taken from

received response.

20

Figure 9. Postman request for generating CSRF token, Tests tab.

In the Test tab´s written code, Cheerio is used. Postman has this JavaScript

enabled by default and it is used to parse HTML and XML type of data [16]. The

code separates the CSRF token from the response received and prints the value

in console log. Console log is tool that can be used to debug Postman commands

should any issues arise. CSRF token value is added as environment variable

csrfID. This will be used in the next Postman request.

4.4 POST request with login information

Now that CSRF token is received, instead of GET requests, the next request is

of POST type. POST type requests are used to send information to a website or

service.

Figure 10. Postman post login request to Amazon Cognito, Params tab.

In Figure 10 Params tab information has the same values as in GET requests

before and Amazon Cognito login service is targeted.

21

Figure 11. Postman POST login request to Amazon Cognito, Body tab.

In the Body tab csrfID, that was obtained earlier, is used. CognitoAsfData is

Cognito access token generated outside Postman. The token is JSON Web

Token (JWT) and it was generated using the amazon-cognito-identity-js

JavaScript package [17]. Token includes information about the Amazon Cognito

user pools to be used for authentication etc. Information is encypted and not in

readable form but pixelated in picture for extra security measure. Token

generated this way is not permanent and will need to be renewed within set time.

Password and username are user credentials used to login via Cognito. They are

user specific and need to be changed for each Operations team member using

this Postman collection. SignInSubmitButton contains information that this user

is sign in. This can be visualised as a mouse click on Sign in - button.

On Settings tab, only change to default settings is, that Postman does not follow

redirects when this Post request is run. Default setting is to allow redirects.

4.5 Fetching customer data after authentication

At this point, all required information has been gathered and input to Amazon

Cognito to allow data to be fetched from customer link page.

22

Figure 12. Fetching customer data from customer link page

Response to this GET request is a list of customer tenants in use. Code written

in Tests tab in Figure 12 uses Cheerio to create an array of tenants from the

response data received. This array will be used in the following test cases.

Console log is used to print list length, meaning the number of tenants that was

received, and to print one the tenant names in array for troubleshooting.

Access is allowed in this case since access tokens have been exchanged before

and with this GET request, session cookies named AWSELBAuthCookie-0 and

AWSELBAuthCookie-1, are created into Postman. Created cookies can be seen

by clicking Cookies link in Postman, it provides view of all cookies created with

this request flow.

Figure 13. Cookies added and used with these requests.

23

XSRF-token cookie with amazoncognito.com name, is the CSRF token

mentioned earlier in cookie form. Both abbreviations CSRF and XSRF mean the

same thing, Cross-site request forgery.

4.6 Test cases

In Operations team meeting on 28th of October 2022 needed test cases were

discussed. Out of all possible Restful interfaces queries, three different ones were

selected to be tested and serve as test cases for this thesis. Test cases can be

seen in previous Figures in Chapter 4 and they are named CheckTenantECFS,

CheckTenantVisitor and CheckTenantVisitorQueues.

Figure 14. CheckTenantECFS Tests tab

On the GET row we can see that login page is targeted, customer name used

and ECFS service is called. This service returns 200 OK if everything is as it

should and can be seen as a way to check if customer tenants Restful Interface

is responding properly. If 404 or other any result is given, this can be seen as

failure to the normal functionality and investigation is needed on that customer

tenant. Testing this way is high level test if Restful Interface is up. If it is not, no

chat use or communications panel use could be done, to mention few examples.

24

Unlike in previous codes, where for loops can be seen, here test code uses if

structure. If number of tenants received is smaller than id used, go to this test

again. Every time this if structure is used, it adds 3 to the NextID value to be used.

This is because data received in previous list all tenants´ response contains other

information as well, not just customer tenant name. By skipping with 3, only

customer tenant names are targeted. In the else part of if structure NextID value

is returned to 0, to reset the pointer to the beginning. After this, Postman proceeds

to the next test case named CheckTenantVisitor.

Figure 15. CheckTenantVisitor Tests tab

Here is similar structure than in previous test case but targeted with GET function

is different address. Visitor and then ECFS is targeting Restful Interface used with

chat capabilities and Communications Panel functionality. Return is the same 200

OK if test is successful. This is more detailed answer to functionality testing than

previous test. If 404 or other value is returned, this would be seen in chat

functionality not working properly and in Communications panel use as well.

NextID value is set to 0 in the else part and then next test case is run, named

CheckTenantVisitorQueues.

25

Figure 16. CheckTenantVisitorQueues Tests tab

Similar test structure than in previous tests but with GET targeted is queues part

of ECFS service. This is to test if system returns queues list from ECFS service.

Information is used in many customer integrations where queue statuses are

needed. Communications panel uses this information as well. Returned here is

again 200 OK and if not, cause would need to be investigated. Where in previous

tests basic responsiveness is tested, this test fetches information deeper from the

system, testing database connection and basic responsiveness at the same time.

Simply viewing how long each query would take, is not good measure for

functionality however, since customer tenants have different number of queues

in their systems.

In the code when else part is run, null value is returned to setNextRequest. This

ends tests cycle and no further tests are run after this.

To summarize what these three tests do:

CheckTenantECFS, tests high level Restful Interface functionality, basically if it

is up and running or not.

CheckTenantVisitor, tests if connectivity to Restful Interface part where chat

capabilities, among others, are run.

26

CheckTenantVisitorQueues, tests if queue data can be fetched from database.

This tests both Restful Interface use and database connectivity.

27

5 Running tests with created Postman collection

In this chapter, Postman collection created in Chapter 4 is run and test cases

analysed.

5.1 Postman collection Run options

Postman has build-in feature for running collections to test API or other

functionality. This Run-option can be found from the collection level. Right mouse

click on collections name will bring menu where option is listed. This menu screen

will be split into two parts below for better visibility, run order part and how to run

collection part.

Figure 17. Postman Run order to be selected

Run order part contains the possibility to select or deselect part of the collection

to run. In this test setup, all pixelated selections are required to run in order for

the test setup to work. Tests, beginning with word “Check”, can be selected all or

some or one of them. In Figure 17 full collection is run and so all of the tests will

be run with this selection. This possibility is handy if only one or few tests are

required to run and tester is short on time.

28

Figure 18. Postman details on how to run collection

How to run collection part contains the possibilities to change details on how

collection is run and also has possibility to automate the collection run. Default

settings are Keep variable values and Save cookies after collection run to be

enabled. Because test setup created uses access tokens and cookies that are

only valid for certain time, Save cookies option needs to be disabled. Keep

variable values is disabled since in this test setup all values are wanted to be up-

to-date and so refreshed each time collection is run.

For measuring each test running time efficiently, the run order part for was

modified to contain one test and then collection was run 10 times for each test.

In the end whole test setup was run also 10 times to see the time it needed for

complete. From these 10 runs, also average values were calculated for each

29

step. All the tests were run on 6th of January 2023. Tests were run to 168 tenants.

As the most high level of the tests, CheckTenantECFS was run first and then in

order tests are in the Run order list.

5.2 CheckTenantECFS test run time

Figure 19. CheckTenantECFS run times

In Figure 19 duration is the time that test took to run and Avg. Resp. Time is value

provided by Postman and calculated average value from the response time each

tenant had.

Here we have two run abnormalities, Run 1 and Run 2. Run 1 had two wrong

data inputs from customer tenant list page. One of these was wrong tenant link

for region, corrected by selecting the correct region for the tenant. Second wrong

input was information about tenant that was no longer active. This wrong tenant

information can be seen in Run 2 as well. Wrong tenant information was then

corrected and not visible on Run 3 forward or with tests that come after this first

one.

Average run time was calculated to be 1minute 30 seconds but Run 1 and Run 2

increase this amount. If average for Run 3 to Run 10 was calculated, the value

would be 1 minute and 14 seconds. Similar value for average response time

would be 159 milliseconds.

CheckTenantsECFS Duration Avg. Resp. Time
Run 1 2min 59s 705ms
Run 2 2min 16s 507ms
Run 3 1min 19s 171ms
Run 4 1min 14s 165ms
Run 5 1min 11s 144ms
Run 6 1min 10s 149ms
Run 7 1min 20s 184ms
Run 8 1min 20s 178ms
Run 9 1min 1s 127ms
Run 10 1min 15s 150ms
Average 1min 30s 248ms

30

5.3 CheckTenantsVisitor test run time

Figure 20. CheckTenantsVisitor test run times

Since no failed tenants were found, values on Figure 20 CheckTenantsVisitor test

run times, have less variation. The most variation against average value can be

found from Run 8 where the run took 1 minute and 43 seconds to complete with

average response time of 183 milliseconds. Average running time is similar to

that of the test CheckTenantECFS.

5.4 Check TenantsVisitorQueues run time

Figure 21. CheckTenantsVisitorQueues test run times

CheckTenantsVisitor Duration Avg. Resp. Time
Run 1 1min 23s 179ms
Run 2 1min 15s 169ms
Run 3 1min 16s 166ms
Run 4 1min 17s 182ms
Run 5 1min 23s 179ms
Run 6 1min 25s 201ms
Run 7 1min 28s 177ms
Run 8 1min 43s 183ms
Run 9 1min 18s 159ms
Run 10 1min 11s 152ms
Average 1min 21s 175ms

CheckTenantsVisitorQueues Duration Avg. Resp. Time
Run 1 1min 32s 401ms
Run 2 1min 224ms
Run 3 51s 174ms
Run 4 1min 6s 193ms
Run 5 57s 208ms
Run 6 56s 207ms
Run 7 59s 223ms
Run 8 1min 194ms
Run 9 53s 168ms
Run 10 53s 185ms
Average 1min 1s 218ms

31

Where previous tests tested high level functionality TenantsVisitorQueues tests

both API accessibility and database availability. Values in Figure 21 are

interesting because test that seemed the most delicate is providing the fastest

response times on average. With average run time of 1 minute and 1 second,

and Run 1 taking more than 1 minute and 30 seconds, this test is the fastest to

execute.

5.5 Full test run

Figure 22. Full test run, running times

As could be estimated from run times in previous test runs, in Figure 22 we can

see that these three tests take average of 3 minutes and 11 seconds to complete

with average response time of 160ms. With 168 tenants, the average response

time is calculated from total of 504 individual connectivity tests.

Point to take here is that, if these connectivity tests have failures, the time it takes

to run is increased. Postman waits, by default, 60 seconds for response. In Run

1 where two failures were found, run took 120 seconds more time to complete. If

full test collection execution was made in this scenario, containing three tests

cases to be tested, the time is increased threefold. Running time would have

increased by 360 seconds. In scenario where a lot of tenants have connectivity

issues it would be sensible to run only the first test case CheckTenantECFS and

end full run before it finishes.

Full Run Duration Avg. Resp. Time
Run 1 3min 10s 162ms
Run 2 2min 55s 151ms
Run 3 2min 45s 140ms
Run 4 2min 53s 147ms
Run 5 2min 56s 156ms
Run 6 3min 31s 184ms
Run 7 3min 40s 179ms
Run 8 3min 36s 194ms
Run 9 3min 15s 145ms
Run 10 3min 3s 145ms
Average 3min 11s 160ms

32

6 Conclusions and further improvement points

The created test collection can be considered to be success. Test collection can

be run by anyone on Operations team so running the tests is not limited to just

few persons. Only limitation, outside of Operations teams know-how, comes from

the fact that in Chapter 4, CognitoAsfData access token was created using

amazon-cognito-identity-js JavaScript package. This token was created with QA

teams help and running such packages is not something Operations team does.

Token is long lived, active for one year once created, but replacement is required

in time.

Full test run taking less than 4 minutes, when 504 individual tests are executed

on 168 tenants. Active tenants are always fetched from customer link page when

collection is run so up-to-date information is used in execution. Fast execution

time also means that at this point all tenants can be tested at once. If tenant

amount increases by a lot, regional runs may need to be created in order to test

only the region that has been upgraded.

Improvement points for the future use would be:

1. Adding Communications panel login test to this Postman collection would

be beneficial.

2. Generate new CognitoAsfData access token automatically, or atleast add

notification when this is about to expire.

3. Automate this Postman collection run to run in background, either using

Postman’s own tools or with other means. Notifications about possible

failures would be needed to fully utilize this automation.

4. Regional runs, instead of testing all tenants, if full test run time increases

to tens of minutes.

33

References

1 Sinch. Contact Pro | Sinch’s Omnichannel Cloud Contact Center [Internet].
Stockholm: Sinch; 2022 [Cited 2022 Oct 25]. Available from:
https://www.sinch.com/products/customer-engagement/contact-pro/

2 Postman. Postman API Platform [Internet]. San Francisco: Postman; 2022
[Cited 2022 Oct 10]. Available from:
https://www.postman.com/product/what-is-postman/

3 Lee Copeland. A Practitioner’s Guide to Software Test design [Internet].
London: Artech House; 2003 [cited 2023 Nov 10]. Chapter 12. Available
from: https://ebookcentral.proquest.com/lib/metropolia-
ebooks/detail.action?docID=227688

4 Sinch Contact Pro Service Description [Internet]. Sinch; 2022. [Cited 2023
Jan 10]. [40 p]. Available from: https://docs.cc.sinch.com/cloud/service-
description/en/Service_Description.pdf

5 Sinch. Service Configuration [Internet]. Stockholm: Sinch; 2022. [Cited
2022 Oct 25]. Available from: https://docs.cc.sinch.com/cloud/service-
configuration/en/index.html visited

6 Amazon Web Services. Configuring MFA-protected API access – AWS
Identity and Access Management [Internet]. Seattle: Amazon Web
Services; 2022. [Cited 2022 Nov 26]. Available from:
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_c
onfigure-api-require.html

7 Postman. Writing tests | Postman Learning Center [Internet]. San
Francisco: Postman; 2022. [Cited 2022 Dec 05]. Available from:
https://learning.postman.com/docs/writing-scripts/test-scripts/

8 Postman. Download Postman | Get Started for Free [Internet]. San
Francisco: Postman; 2022. [Cited 2022 Dec 05].
https://www.postman.com/downloads/

9 Postman. Building requests | Postman Learning Center [Internet]. San
Francisco: Postman; 2022. [Cited 2022 Dec 05]. Available from:
https://learning.postman.com/docs/sending-requests/requests/

10 Postman. Generating client code | Postman Learning Center [Internet].
San Francisco: Postman; 2022. [Cited 2022 Dec 05]. Available from:
https://learning.postman.com/docs/sending-requests/generate-code-
snippets/

11 Wikipedia. Hypertext Transfer Protocol – Wikipedia [Internet]. San
Francisco: Wikipedia; 2022. [Cited 2022 Dec 29]. Available from:
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

34

12 Wikipedia. HTTPS [Internet]. San Francisco: Wikipedia; 2022. [Cited 2022
Dec 05]. Available from: https://en.wikipedia.org/wiki/HTTPS

13 Amazon Web Services. What is Amazon Cognito? – Amazon Cognito
[Internet]. Seattle: Amazon Web Services; 2022. [Cited 2022 Dec 06].
Available from:
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-
amazon-cognito.html

14 Amazon Web Services. What is RESTful API? – RESTful API Beginner’s
guide [Internet]. Seattle: Amazon Web Services; 2022. [Cited 2022 Dec
10]. Available from: https://aws.amazon.com/what-is/restful-api/

15 Sinch. Contact Pro Documentation [Internet]. Stockholm: Sinch; 2022.
[Cited 2022 Dec 25]. Available from:
https://docs.cc.sinch.com/cloud/api.html

16 Open source. Cheerio [Internet]. Global: Open source; 2022. [Cited 2022
Dec 28]. Available from: https://cheerio.js.org/

17 Amazon Web Services. Integrating Amazon Cognito with web and mobile
apps – Amazon Cognito [Internet]. Seattle: Amazon Web Services; 2022.
[Cited 2022 Dec 28]. Available from:
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-
integrate-apps.html

18 Amazon Web Services. AuthenticateCognitoActionConfig – Elastic Load
Balancer [Internet]. Seattle: Amazon Web Services; 2022. [Cited 2022 Dec
29]. Available from:
https://docs.aws.amazon.com/elasticloadbalancing/latest/APIReference/A
PI_AuthenticateCognitoActionConfig.html

