
       
      
      
      
       

 

PLEASE NOTE! THIS IS PARALLEL PUBLISHED VERSION /  
SELF-ARCHIVED VERSION OF THE OF THE ORIGINAL ARTICLE 
 
This is an electronic reprint of the original article.  
This version may differ from the original in pagination and typographic detail. 
 
Author(s): Sipola, Tuomo; Alatalo, Janne; Kokkonen, Tero; Rantonen, Mika 
 
Title: Artificial Intelligence in the IoT Era: A Review of Edge AI Hardware and Software 
 
Year: 2022 
  
Version: Accepted Manuscript 
 
Copyright: © 2022 Authors 
 
Rights: In Copyright 
 
Rights url: http://rightsstatements.org/page/InC/1.0/?language=en 
 
 
 
Please cite the original version: 
 
Sipola, T., Alatalo, J., Kokkonen, T. &, Rantonen, M. Artificial Intelligence in the IoT Era: A Review of Edge 
AI Hardware and Software. In: 2022 31st Conference of Open Innovations Association (FRUCT), Helsinki, 
Finland, 2022, 320-331. doi: 10.23919/FRUCT54823.2022.9770931 
 
https://doi.org/10.23919/FRUCT54823.2022.9770931 
 
 

http://rightsstatements.org/page/InC/1.0/?language=en
https://doi.org/10.23919/FRUCT54823.2022.9770931


© 2021 The Authors. This manuscript version is made available under the CC BY-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/). This is the authors’ accepted
manuscript version of the article. The original article appeared as: Tuomo Sipola, Janne Alatalo, Tero Kokkonen and Mika Rantonen. “Artificial Intelligence in the IoT Era: A
Review of Edge AI Hardware and Software.” In Proceedings of the 31st Conference of Open Innovations Association FRUCT. Ed. by Sergey Balandin and Tatiana Shatalova. Vol.
31. Helsinki, Finland: FRUCT Oy & IEEE, April 2022, pp. 320–331. https://doi.org/10.23919/FRUCT54823.2022.9770931
Available online under the CC BY-ND license at: https://fruct.org/publications/fruct31/

Artificial Intelligence in the IoT Era: A Review of
Edge AI Hardware and Software

Tuomo Sipola, Janne Alatalo, Tero Kokkonen, Mika Rantonen
JAMK University of Applied Sciences
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Abstract—The modern trend of moving artificial intelligence
computation near to the origin of data sources has increased
the demand for new hardware and software suitable for such
environments. We carried out a scoping study to find the current
resources used when developing Edge AI applications. Due to the
nature of the topic, the research combined scientific sources with
product information and software project sources. The paper
is structured as follows. In the first part, Edge AI applications
are briefly discussed followed by hardware options and finally,
the software used to develop AI models is described. There are
various hardware products available, and we found as many as
possible for this research to identify the best-known manufactur-
ers. We describe the devices in the following categories: artificial
intelligence accelerators and processors, field-programmable gate
arrays, system-on-a-chip devices, system-on-modules, and full
computers from development boards to servers. There seem to be
three trends in Edge AI software development: neural network
optimization, mobile device software and microcontroller soft-
ware. We discussed these emerging fields and how the special
challenges of low power consumption and machine learning
computation are being taken into account. Our findings suggest
that the Edge AI ecosystem is currently developing, and it has its
own challenges to which vendors and developers are responding.

I. INTRODUCTION

In the last ten years, Artificial Intelligence (AI) solutions
have become common in several application areas. In par-
ticular, Machine Learning (ML) based solutions are applied
to solving a wide range of real-life problems. This variety
extends from analysing diseases based on healthcare imaging
to predicting energy consumption or detecting anomalous
intrusions in network traffic. These AI-based solutions com-
monly require a large amount of computational capability,
which is usually achieved using cloud-based solutions relying
on High Performance Computing (HPC) clusters.

However, the rapidly increasing number of Internet of
Things (IoT) applications has also raised the number of
devices and applications that are producing, collecting and
analysing data on the edge of the network. This has naturally
increased the interest in applying AI computation on the edge.
This concept of using AI near the devices that are producing
data is called Edge AI. One of the earliest publications about
Edge AI [1] notices two requirements promoting the use of
Edge AI: (i) connection robustness and its latency and (ii)
privacy issues when uploading data to cloud-based servers.
Lee et al. present following examples of those issues: the
AI calculation of self-driving cars must be immediate and

cannot be in the cloud behind the network latencies or bad
network connection, similarly uploading of the video recording
with personal data to the cloud based servers raises privacy
considerations [1]. The concept of fog computing, i.e., placing
computation nodes below the cloud, between edge and the
cloud [2], covers similar technologies in the same problem
space.

However, even if the concept of Edge AI seems to be
coherent, there are some known issues with it. As stated by
Shi et al. [3], deploying complete AI models (such as deep
neural networks) to the Edge device is generally impracticable
because of the hardware boundaries; the size of the model
is too large or the computational requirements are too high.
A potential implementation is to accomplish collaboration
between different Edge AI devices and solutions [3]. Bharwaj
et al. [4] identify three challenges for Edge AI:

1) Computation-aware learning on IoT. Most of the IoT
devices are power and/or memory constrained and in that
sense the computation-aware compression of AI models
is required.

2) Data-independent model compression for learning from
small data. The original private data sets of big-data
models cannot be used for model compression.

3) Communication-aware deployment of deep learning
models on multiple IoT devices. Distributing compu-
tation with IoT devices could be difficult because of
limited communication resources.

As can be seen, IoT-based Edge AI devices produce distinct
data. The analysed information must be exchanged between
collaborating Edge AI devices in order to achieve sufficient
overall capability. Lin et al. [5] introduce blockchain-based
architecture for a knowledge market for trading the knowledge
of Edge AI devices. Security and privacy issues of Edge AI
should be considered thoroughly, as with any data processing
systems. Sachdev presented security and privacy issues of
Edge AI in digital marketing and concluded that one of
the main challenges is how Edge AI can extensively be
implemented in that context [6]. Kumar et al. proved by
using the classical k-means algorithm in Edge AI concept the
feasibility of maintaining privacy preservation of data with
Edge AI processing [7].

There have been earlier reviews about Edge AI focusing on
different aspects of the emerging field. Wang et al. [8] present



a survey of technologies related to Edge AI emphasising
edge intelligence and intelligent edge. Edge intelligence is the
concept of deploying machine learning models to the devices
using those models on the edge. This is done in order to lower
latency and make the applications more reliable. The concept
of intelligent edge focuses on maintenance and management of
edge devices. The intelligence via machine learning is used to
adaptively control the shared edge resources. The survey also
introduces various applicable scenarios for both technologies.
Similar classification of the types of Edge AI is introduced by
Deng et al. [9], but instead of using the terms edge intelligence
and intelligent edge they are using the terms AI on Edge and
AI for Edge. In addition of making the distinction between the
classes, the paper also reviews the state of the art and grand
challenges in both categories. Reuther et al. [10] have surveyed
machine learning accelerators. They present and categorise
close to hundred chips and systems covering everything from
low power solutions to data center systems. Li and Liewig
have done a similar review [11]. The paper also lists some
future trends that AI accelerators might implement in the
future. Crespo [12] has collected a list of hardware, software
and other resources that are related to Edge AI to a GitHub
project where community members can contribute to share
knowledge of the topic. Merenda et al. [13] have carried out a
literature review on the topic of running Edge AI on resource
constrained devices. They review different algorithms, hard-
ware, infrastructure architectures, wireless standards, privacy
issues and solutions, and edge training solutions that can be
used with these devices. Furthermore, the authors performed
a test deployment of a convolutional neural network model to
a real world microcontroller system. Ray [14] has carried out
an extensive review of machine learning state-of-the-art and
prospects on embedded devices (TinyML).

This scoping study aims to create an overview of the Edge
AI ecosystem and provide answers to the following questions:

1) What application areas can be identified for Edge AI?
2) What Edge AI hardware platforms exist?
3) What Edge AI software packages exist?
The first question is meant to be a cursory glance at the

possibilities and latest trends in applications. The hardware
and software sections provide a fresh look at the tools available
for Edge AI development.

II. METHODOLOGY

This research is structured as a scoping study that describes
and summarises an emerging field [15]. We use the stages of
scoping study described by Arksey and O’Malley [16]:

1) Identify the question,
2) Identify relevant studies and product descriptions,
3) Select relevant studies and product descriptions,
4) Chart the data,
5) Collate, summarize, report the results.
Since the topic we are interested in heavily depends on

hardware products and software packages, we have changed
the process to include vendor marketing material in addition to

studies. As queries about the three research questions revealed
information about use cases, hardware and software, the found
articles and resources were included in the three categories
accordingly. For Edge AI applications, we queried Google
Scholar and IEEE Xplore with the search phrases ”Edge AI”
and ”Edge AI application”. Our search resulted in several
articles about hardware platforms and those were included in
the hardware platforms chapter. The goal here was to gain
a general overview about different applications, so the most
relevant and diverse ones were chosen.

AI hardware platforms were searched in Google with the
phrase ”edge AI hardware platform”. The first 50 results were
evaluated. We excluded offerings that focused on providing
services or projects centered around data. This method is
useful because this is the way most users would search for
products. However, we must be aware that search engine op-
timization for marketing purposes and Google’s own ranking
can skew the results. New devices and manufacturers were
discovered when going through the found product descriptions
and results from the software and applications searches. Those
were also included in the study where needed. Especially
Crespo’s list was found useful [12].

For the Edge AI software section we settled on three distinct
categories that clearly can be placed under the Edge AI
software term. These categories are neural network model
optimization, Edge AI on mobile devices and Edge AI on
embedded devices. For the neural network optimization cate-
gory, we studied recent review publications about the different
optimization methods and then reviewed the two most popular
neural network frameworks, TensorFlow and PyTorch for sup-
port to these methods. For Edge AI on mobile devices section,
we reviewed the two most popular mobile device operating
systems, Android and iOS, for machine learning support. The
final category, Edge AI on embedded devices, turned out to
be problematic. Finding the software products that belong to
this category was a challenging task. There does not seem to
be a single search term that reliably finds these projects. The
problem might be that the terminology and workflows have
not yet properly settled for the Edge AI field of study. We
tried to use search terms such as TinyML software, IoT AI
software, embedded devices AI software and microcontrollers
AI software, but the results were saturated by blogspam like
content. Finally, the best sources for actual software projects
that belong to this category were community collected lists
on open forums [12], [17]. After finding projects that way,
some additional projects were discovered by searching survey
and benchmarking publications and blog posts with those
project names. Often the projects were compared to some other
projects that were not listed yet. After the projects were found,
their features were evaluated using their publicly available
documentation and compared with each other.

III. EDGE AI APPLICATIONS

As with traditional AI solutions, there exists a wide range
of applications in the Edge AI world. Because the Edge AI
concept is relatively new, the published research papers started



appearing in 2018 and most of them after 2019. The research
of published studies on Edge AI applications identifies five
main categories of applications: Security, Mobile networks,
Healthcare, Voice and Image Analysis and Frameworks.

AntiConcealer is an Edge AI approach for detecting ad-
versary concealed behaviors in the IoT [18]. For the security
solutions, Edge AI is also used for anomaly detection in the
advanced metering infrastructures [19], while Nawaz et al. in-
troduce Ethereum blockchain based solution for analysing the
data and tracking the parties accessing that analysis data [20].

Examples of Edge AI solutions for mobile communication
and networking are the paper about learning method to support
mobile target tracking in the edge platform [21] and another
one introducing a resource allocation scheme for 6G [22].

In the healthcare domain Edge AI is for example applied for
detecting diabetic retinopathy [23]. Queralta et al. proposed
an architecture for health monitoring [24]. Edge AI is used
for predicting diseases such as respiratory diseases [25] and
chronic obstructive pulmonary disease [26].

As in the traditional AI applications, Edge AI applications
are heavily used for voice and image detection and analysis.
Shen et al. [27] introduce Edge AI based human head detection
algorithm, and Gamanayake et al. propose an Edge AI based
method for image pruning [28]. Edge AI based solution is
implemented for acoustic classification to be deployed in the
autonomous cars [29]. Miyata et al. [30] illustrate Edge AI
based mobile robot including voice and object recognition.
Application for tangible real-world problem solving is the An
Edge AI based apple detection solution has been created to
count apples and estimate their sizes [31].

There are also different frameworks published for Edge AI
solutions, for example NeuroPilot, a cross-platform framework
for Edge AI [32] and an Edge AI framework for telemetry
collection and utilization, evaluating both graphics card (GPU)
and field-programmable gate array (FPGA) platforms. [33]

IV. EDGE AI HARDWARE PLATFORMS

The concept of Edge AI is tied to the idea of placing com-
puting power physically near the data source. Any desktop or
server rack computer could serve as an edge device. However,
many environments are not optimal for such devices. Their size
and power consumption are also a major concern. For these
reasons, specific Edge AI devices have been designed. Their
size and wireless connectivity make them easily attachable to
industrial environments. Limited power consumption is also
essential when many devices are deployed at once. Moreover,
the need for specific mathematical capabilities has given rise
to the AI accelerator modules.

Developments in the Edge AI ecosystem drive the devices to
be more efficient. Benchmarking hardware platforms has also
interested researchers from computing and power consumption
points of view. Baller et al. measured five edge devices and
give their recommendations for best performance in continu-
ous and sporadic scenarios [34]. Operating AI inference in
industrial conditions could be made more robust by using
magnetoresistive random access memory (MRAM) [35], [36]

Energy efficiency is a constant concern with Edge AI, and
there are developments in this area, such as Levisse et al. with
their functionality enhanced memories [37]. Liu et al. propose
hybrid parallelism, which makes hierarchical training of AI
models for Edge AI situations efficient [38].

A. AI acceleration units

Special-purpose acceleration units can either be used as
additional processors in any electronic device or as machine
learning co-processors in devices that are designed to include
such capabilities in addition to traditional processing power
and connectivity. AI acceleration units are fast at executing
vector and tensor computation and have optimal pipelines for
machine learning operations, usually neural network methods.
Unfortunately, it is difficult to find meaningful details about
many of these devices. Intel Neural Compute Engine is an
accelerator for deep neural networks. It supports native FP
16 floating point and 8-bit fixed point data types and can
be used to deploy neural networks in Caffe and TensorFlow
formats [39]. MediaTek’s AI Processing Unit (APU) is an AI
accelerator with multimedia features. APU lists TensorFlow,
TensorFlow Lite, Caffe and others as supported neural network
formats. APU can perform 8-bit and 16-bit integer and 16-
bit floating point calculations. It supports Android Neural
Networks API (NNAPI) and a custom API [40], [41]. Google
Edge TPU is an application specific integrated circuit (ASIC)
designed to run TensorFlow Lite models. [42]. The NVIDIA
Deep Learning Accelerator (NVDLA) is built specifically for
neural network operations. Its processors map to the corre-
sponding mathematical operations used during deep learning.
It supports a wide range of data types [43]. The Gyrfalcon
Matrix Processing Unit (MPE) is built to compute matrix
operations related to neural networks [44]. Mythic has created
an analog matrix processor called M1076 Mythic AMP, which
uses the Mythic Analog Compute Engine (ACE). Supported
data formats are 4-bit, 8-bit and 16-bit integers, and PyTorch,
Caffe and TensorFlow models can be used [45]. Syntiant has
created a product line of Neural Decision Processors in order
to create faster possibilities for neural network solutions, in-
cluding speech recognition [46], [47], sensor applications [48],
[49] and vision [50]. Hailo offers an AI processor that supports
8- and 16-bit numeric presentations and TensorFlow and
ONNX for software [51].

B. Field-programmable gate arrays

One trend in Edge AI devices is to employ a field-
programmable gate array (FPGA) to build a processor suitable
for the specific task of using machine learning methods.
Because FPGAs allow great flexibility in what the processor
does, they are very useful in building AI accelerators. Intel has
produced FPGAs whose applications cover Edge AI: MAX V
CPLD [52], Cyclone 10 LP FPGA [53] and Cyclone 10 GX
FPGA [54]. For example, a CPU intended for IoT and Edge AI
has been developed using the MAX 10 FPGA [55]. There have
also been, e.g., frameworks using a FPGA for accelerating
machine learning in edge environments [56]



C. System-on-a-chip and system-on-module devices

Intel’s Movidius Myriad X Vision Processing Unit is a video
processor with neural network inference capabilities. It has 16
cores and a dedicated on-chip Neural Compute Engine and can
be used with up to 8 high-definition cameras [39]. Intel has
also produced a USB device based on the Movidius Myriad X
unit [57] and vision accelerators for edge applications [58].
Systems such as UP Squared 6000 use Movidius Myriad X as
an optional visual processing unit [59], Luxonis DepthAI [60]
and Luxonis megaAI [61]. HiSilicon’s Kirin 970 is a processor
for AI computing. It has a dedicated NPU for AI and features
aimed at solving computer vision and audio tasks. It also has
connectivity in the cellular network using an LTE modem [62].
Qualcomm’s Snapdragon 855+/860 is aimed at photography
and gaming. However, the on-device AI engine can perform
vector and tensor acceleration. It has an LTE modem for
cellular connectivity along with Wi-Fi, Bluetooth and near
field communication (NFC) [63], MediaTek’s Helio P90 is
also geared towards imaging, photography, and gaming and
features cellular connectivity (LTE), Wi-Fi and Bluetooth. The
AI system is marketed for image processing [64]. MediaTek
also has AIoT Chipset Platforms specifically for IoT and Edge
AI casesincluding displays [65], voice recognition [66], audio
and video processing [67] and AI vision [68], although only
the last two have a dedicated AI processor. Other devices
using the APU units include Helio P95 [69], the Dimensity
1000 series [70] and Dimensity 9000 [71]. MediaTek has also
released a short paper about their Edge AI solutions [72].
Nowadays, Rock Chip offers two processor models for Edge
AI. These processors are aimed at image and voice processing,
especially for mobile devices [73], [74] Kendryte K210 is a
chip designed for face recognition. It uses the TinyYOLO
object detection neural network [75]. JeVois-A33 [76] is an
open-source camera with computer vision AI capabilities.
JeVois-Pro [77] has in internal neural processing unit but can
also be updated with Coral and Movidius Myriad X units.

D. Coral

Google’s Coral Accelerator Module [42] is a solderable
module that contains the tensor processing unit Edge TPU. It
is also offered using various connectors: Coral USB Acceler-
ator [78], Coral M.2 Accelerator [79], Coral M.2 Accelerator
with Dual Edge TPU [80] and Coral Mini PCIe Accelera-
tor [81]. The Coral Dev Board Mini [82] can be used to
develop and test applications to be used with the accelerator
itself. Coral System-on-Module [83] is an integrated system
that includes the Edge TPU accelerator. The module is meant
for deployment into production environments. It has a devel-
opment board counterpart called Coral Dev Board [84]. There
are also camera [85] and sensor add-ons available [86].

E. Jetson

NVIDIA has produced devices for edge computing using
graphical processing units, which can be used for the vector
calculations needed in machine learning. These Jetson models
with additional connectivity include Jetson Nano [87], Jetson

TX2 NX [88], Jetson TX2 4GB [89], Jetson TX2 [90] and
Jetson TX2i [91]. As discussed earlier, NVIDIA’s NVDLA is
a deep learning accelerator. The use of a separate process-
ing unit for neural network calculations releases the GPU
for multimedia tasks. There are various Jetson models that
use this technology: Jetson Xavier NX 16GB [92], Jetson
Xavier NX [93], Jetson AGX Xavier 64GB [94], Jetson AGX
Xavier [95], Jetson AGX Xavier Industrial [96], Jetson Orin
NX [97] and Jetson AGX Orin [98]. Both the GPU-based
and NVDLA-based devices have developer kits available:
Jetson Nano Developer Kit [99], Jetson Nano 2GB Developer
Kit [100], Jetson Nano Xavier NX Developer Kit [101],
Jetson AGX Xavier Developer Kit [102] and Jetson AGX Orin
Developer Kit [103]. These kits can be used for prototyping
and testing before moving on to the production versions.

F. Gyrfalcon MPE

Gyrfalcon produces its MPE-based devices for Edge AI.
Their products cover a wide area of hardware from MPE
processors to servers that use that technology. Lightspeeur
2801S Neural Accelerator can be deployed as a USB dongle
or as an embedded device. It supports TensorFlow, Caffe
and PyTorch [44]. Lightspeeur 5801S Neural Accelerator is
the more efficient (operations/Watt) model for consumer edge
devices [104]. Lightspeeur 2803S Neural Accelerator provides
even more computational power [105]. Lacelli Edge Inferenc-
ing Server AI Acceleration Subsystem uses Lightspeeur 2803S
chips on M.2 cards [106]. Gainboard 2801 provides MPE
capabilities via the PCIe connector [107]. Gainboard 2803
does the same for the other neural accelerator [108]. Janux
G31 AI Server is an AI server with 32 MPE cards [109].

G. Mythic

Mythic’s unique perspective is using an analog engine to run
its M1076 processor [45]. MP10304 Quad-AMP PCIe Card
has four processors [110]. MM1076 M.2 M key card makes
one processor usable via the M.2 bus [111]. ME1076 M.2 A+E
key card offers it in smaller size and bandwidth [112]. There
is also an evaluation system MNS1076 AMP [113].

H. Development boards

Beagle Bone AI is an open-source device featuring TI
C66x digital signal processor (DSP) cores and TI embedded
vision engines (EVE). It is marketed as focusing on everyday
automation, including industrial applications. It has USB and
Ethernet connectivity, along with Wi-Fi and Bluetooth [114].
OpenMV Cam is a microcontroller board for machine vision.
It has a 480p resolution camera and a USB connection. This
small device can run TensorFlow Lite models in addition to
multiple basic machine vision tasks [115]. SparkFun Edge
Development Board Apollo3 Blue is a low-power board
that can run TensorFlow Lite models [116]. Syntiant’s Tiny
Machine Learning Development Board uses their NDP101
Neural Decision Processor. [117] STMicroelectronics’ STM32
microcontroller units can be used for Edge AI solutions [118],
[119], e.g., the STM32L4 Discovery kit IoT node provides a



development board for IoT [120]. Hailo offers its AI processor
via M.2 and PCIe bus. There are also two evaluation boards
available [51]. Other possible Edge AI hardware vendors in-
clude Adlink [121], Blaize [122], Aetina [123] and ARM with
the Ethos-U65 [124]. Another popular platform is the Rasp-
berry Pi, for example the newest model Raspberry Pi 4 [125].

I. Device tables

Tables I and II list the devices and their basic specifications:
central processing unit (CPU) and possible graphics processing
unit (GPU), neural processing unit (NPU), memory and type of
the device. The NPU can also be a digital signal processing
(DSP) unit. Maximum indicated RAM is also reported. Not
all details were relevant for the device, available, or they
were too ambiguous, so this information is indicated by a
dash (–). We follow the hardware taxonomy proposed by
Li and Liewig [11], but we have extended the system-on-
module to indicate the connection type. We have also marked
server devices as a separate category. Thus, the categories are:
system-on-a-chip (SoC), system-on-module (SOM), single-
board computer (SBC) and server. SOM connection types
include external universal serial bus device (USB), external
M.2 card slot device (M.2), PCIe slot device (PCIe).

V. EDGE AI SOFTWARE

This section lists and explains software projects and tools
that are useful in the context of Edge AI. The section is
subdivided in the following way. Subsection V-A lists the
software that is generally useful for preparing neural network
models for running on resource constrained devices. Subsec-
tion V-B lists the software that is useful when deploying
machine learning models to modern smart phones and other
powerful mobile devices. Subsection V-C lists the software
that is useful when the target is a microcontroller.

A. Neural network model optimization

When speaking about deep learning, the most popular
frameworks are TensorFlow [126], Keras [127] (high level
TensorFlow API) and PyTorch [128] according to Kaggle 2021
survey [129]. These frameworks are optimized at running on
GPUs and other specialised hardware that accelerate the model
training process. After the model has been trained, inference is
not as computationally expensive operation, but even that re-
quires moderate amounts of memory and computation power.
Devices running on the edge are often resource constrained
on that front. There exist techniques that can be used on deep
learning models that reduce the model complexity, memory
and computation requirements with little or no affect to the
model accuracy [130]. Both, TensorFlow and PyTorch, have
some of these methods built in to the frameworks that can be
used to optimize the model performance on low power devices.
TensorFlow has collected the tools and documentation about
this topic under TensorFlow Lite subproject [131]. PyTorch
has a somewhat similar situation with PyTorch Mobile [132],
except that PyTorch Mobile is more of a workflow than a
proper subproject and the tooling is included in the main

PyTorch API. PyTorch Mobile can also target only mobile
devices running Android and iOS, while TensorFlow Lite can
also target embedded systems.

The study by Alqahtani et al. [130] concluded that quan-
tization is the most effective method for model optimization.
In quantization optimization, the 32-bit floating point model
parameters are converted to lower precision integers, which
allows the devices to use more computationally efficient inte-
ger math operations and the model storage requirements are
reduced. Both, TensorFlow and PyTorch, have documentation
and easy to use support for model quantization, although
PyTorch API is still in beta.

In addition to quantization, TensorFlow also supports model
pruning and weight clustering. In model pruning, the model
weights are sparsified so that the model compresses better.
TensorFlow pruning method is explained in detail in [133].
Weight clustering has the same goal with better model com-
pression. The short explanation of weight clustering is that
the layer weights are clustered to N clusters and only the
centroid of every cluster is saved. Weight clustering is ex-
plained in [134]. PyTorch also supports pruning, but it does
not currently have built in support for weight clustering.

B. Edge AI software on mobile devices

Mobile devices that have specialised hardware for neu-
ral network acceleration expose the hardware for developers
through application programming interfaces (API). On devices
that use Android operating system, the API is called Android
Neural Networks API (NNAPI) [135]. On Apple operating
systems the API is called Core ML [136]. The Android NNAPI
is not designed to be used directly by the developers. Instead,
it is intented to be used through some higher-level API like
TensorFlow Lite. The TensorFlow Lite neural network models
are executed on the specialised hardware with TensorFlow Lite
NNAPI delegate [137]. PyTorch also has NNAPI support, but
it is currently still in beta and not very well documented [138].
NNAPI only supports inference on the device, so it cannot be
used for on-device learning. The Apple Core ML framework
also supports both TensorFlow and Pytorch through its Unified
Conversion API [139], and in addition to that, Apple also has
the Create ML framework [140]. It is an easy-to-use interface
for developers to create machine learning models that work
with Core ML. In comparison to NNAPI another difference
is also that Core ML supports on-device training that can be
used to personalise a model to user’s needs on-device.

In addition to Android NNAPI hardware acceleration API,
many vendors have their own software development kits
(SDK) for running hardware accelerated models on their
systems. Qualcomm has the Qualcomm Neural Processing
SDK for AI product [141], Huawei has the HUAWEI HiAI
foundation product [142], Mediatek has the Mediatek Neu-
ropilot product [143], and Samsung has the Samsung Neural
SDK product [144] although Samsung does no longer provide
the SDK to third party developers. Ignatov et al. have a good
section about the vendor specific SDKs in [145], [146]. The
problem with vendor specific SDKs is that the model created



TABLE I
HARDWARE DEVICE SPECIFICATIONS.

Device C/GPU NPU memory type

Movidius Myriad X [39] 16-core CPU 700 MHz Neural Compute Engine 2.5 MB SoC
Neural Compute Stick 2 [57] 16-core CPU 700 MHz Neural Compute Engine 2.5 MB USB

Vision Accelerator [58] CPU Neural Compute Engine 4 GB M.2/PCIe
UP Squared 6000 [59] 4-core CPU 2.0 GHz, GPU Neural Compute Engine 64 GB SBC

Kirin 970 [62] 8-core CPU, 12-core GPU Dedicated NPU – SoC
Snapdragon 855+/860 [63] 8-core CPU 2.96 GHz, GPU DSP 16 GB SoC

RK1808 [73] 2-core CPU 1.6 GHz NPU (DDR) SoC
RK3399Pro [74] 6-core CPU NPU (DDR) SoC
Helio P90 [64] 8-core CPU 2.2 GHz, GPU APU 2.0 8 GB SoC
Helio P95 [69] 8-core CPU, GPU APU 2.0 8 GB SoC

i300a [65] 4-core CPU 1.5 GHz, GPU – (DDR) SoC
i300b [66] 4-core CPU 1.3 GHz – 3 GB SoC
i350 [67] 4-core CPU 2.0 GHz, GPU APU 1.0 (DDR) SoC
i500 [68] 8-core CPU 2.0 GHz, GPU APU 2-core 500 MHz (DDR) SoC

Dimensity 1000 [70] 8-core CPU, GPU APU 3.0 16 GB SoC
Dimensity 9000 [71] 8-core CPU, GPU APU 590 (DDR) SoC

Beagle Bone AI [114] 2-core CPU 1.5 GHz, GPU 2x DSP, 2x EVE 1 GB SBC
Coral Accelerator Module [42] – Edge TPU – SoC

Coral USB Accelerator [78] – Edge TPU – USB
Coral M.2 Accelerator [79] – Edge TPU – M.2

Coral M.2 Accelerator with Dual Edge TPU [80] – 2x Edge TPUs – M.2
Coral Mini PCIe Accelerator [81] – Edge TPU – PCIe

Coral Dev Board Mini [82] 4-core CPU 1.5 GHz, GPU Edge TPU 2 GB SBC
Coral System-on-Module [83] 4-core CPU 1.5 GHz, GPU Edge TPU 4 GB SOM

Coral Dev Board [84] 4-core CPU 1.5 GHz, GPU Edge TPU 4 GB SBC
JeVois-A33 [76] 4-core CPU 1.34 GHz, GPU – 256 MB SOM
JeVois Pro [77] 6-core CPU, GPU Neural Processing Unit 4 GB SOM

Lightspeeur 2801S Neural accelerator [44] 100 MHz MPE – SoC
Lightspeeur 5801S Neural accelerator [104] 200 MHz MPE – SoC
Lightspeeur 2803S Neural accelerator [105] 250 MHz MPE – SoC

Lacelli Edge Inferencing Server [106] 32-core CPU 4x MPE 32x 8 GB server
Gainboard 2801 [107] – MPE – PCIe
Gainboard 2803 [108] – MPE – PCIe

Janux G31 AI Server [109] 16-core CPU 32x MPE – server
M1076 [45] – ACE – SoC

MP10304 Quad-AMP PCIe Card [110] – 4x ACE – PCIe
MM1076 M.2 M [111] – ACE – M.2

ME1076 M.2 A+E [112] – ACE – M.2
MNS1076 AMP [113] – ACE – SBC
Kendryte K210 [75] 2-core – – SoC
OpenMV Cam [115] CPU 480 MHz – 1 MB SOM

SparkFun Edge Dev Apollo3 Blue [116] CPU 48 MHz – 384 kB SBC
Syntiant Dev Board [117] CPU 48 MHz NDP101 32 kB SBC

STM32L4 [120] CPU 80 MHz – 128 kB SBC
Hailo-8 [51] – Hailo-8 – SoC

Hailo-8 M.2 [51] – Hailo-8 – SOM
Hailo-8 Mini PCIe [51] – Hailo-8 – SOM

Hailo-8 Century Evaluation Platform [51] – Hailo-8 – PCIe
Hailo-8 Evaluation Board [51] – Hailo-8 – SOM

Raspberry Pi 4 [125] 4-core CPU 1.5 GHz – 8 GB SBC



TABLE II
JETSON HARDWARE DEVICE SPECIFICATIONS.

device C/GPU NPU memory type

Jetson Nano [87] 4-core CPU, GPU – 4 GB SOM
Jetson TX2 NX [88] 6-core CPUs, GPU – 4 GB SOM
Jetson TX2 4GB [89] 6-core CPUs, GPU – 4 GB SOM

Jetson TX2 [90] 6-core CPUs, GPU – 8 GB SOM
Jetson TX2i [91] 6-core CPUs, GPU – 8 GB SOM

Jetson Xavier NX 16GB [92] 6-core CPU, GPU 2x NVDLA v1, 2x PVA v1 16 GB PCIe
Jetson Xavier NX [93] 6-core CPU, GPU 2x NVDLA v1, 2x PVA v1 8 GB PCIe

Jetson AGX Xavier 64GB [94] 8-core CPU, GPU 2x NVDLA v1, 2x PVA v1 64 GB SOM
Jetson AGX Xavier [95] 8-core CPU, GPU 2x NVDLA v1, 2x PVA v1 32 GB SOM

Jetson AGX Xavier Industrial [96] 8-core CPU, GPU 2x NVDLA v1, 2x PVA v1 32 GB SOM
Jetson Orin NX [97] 8-core CPU 2.0 GHz, GPU 2x NVDLA v2, PVA v2 12 GB SOM

Jetson AGX Orin [98] 12-core CPU 2.0 GHz, GPU 2x NVDLA v2, PVA v2 32 GB SOM
Jetson Nano Developer Kit [99] 4-core CPU 1.42 GHz, GPU – 4 GB SBC

Jetson Nano 2GB Developer Kit [100] 4-core CPU1.43 GHz, GPU – 2 GB SBC
Jetson Nano Xavier NX Developer Kit [101] 6-core CPU, GPU 2x NVDLA, PVA 8 GB SBC

Jetson AGX Xavier Developer Kit [102] 8-core CPU, GPU 2x NVDLA, PVA 32 GB SBC
Jetson AGX Orin Developer Kit [103] 12-core CPU, GPU 2x NVDLA v2.0, PVA 2.0 32 GB SBC

with one SDK can run only in devices that the vendor specific
SDK supports. For that reason it is better to use the more
generic NNAPI interface if possible.

C. Edge AI software for microcontrollers

Even when a device does not have specialized hardware
for model execution acceleration, the model can always be
executed on CPU. This means that neural network model
inference can be performed on-device even on the tiniest
microcontrollers if the model size is small enough to fit into
memory. The problem with microcontrollers is that very often
they are not running the operating system that projects such
as TensorFlow Lite depend on. This can be solved with Ten-
sorFlow Lite for Microcontrollers library [147]. The project
was created by merging the uTensor project into the main
TensorFlow project [148]. The library is written in C++11 and
works on any 32-bit platform. The model data is stored as a C
array to read-only program memory on the device where the
library can read it. Thus, the library does not need an operating
system or a file system for model creation and inference.

Similar to TensorFlow Lite for microcontrollers is the
deepC project [149]. The project has the same goal of getting
neural network models to work on microcontrollers, but the
approach is very different. The project includes a compiler
that compiles neural network models directly to C++ code
that can then be included in the actual project that uses the
model. All neural network models that can be stored in the
basic neural network variant of the Open Neural Network
Exchange (ONNX) format [150] can be compiled with the
deepC compiler. The ONNX format has good support for
every major deep learning framework, so the project can be
used with a variety of different models and is not restricted
to models created by TensorFlow Lite like the TensorFlow

Lite for microcontrollers is. The project does not support the
ONNX-ML extension of the format that has support for other
machine learning algorithms not based on neural networks.

Somewhat similar to deepC project are the deep learning
compiler projects Glow [151], ONNC [152], TVM [153]
and openVINO [154]. None of these tools are specifically
made for compiling code to microcontroller targets, but many
of them support microcontroller chips. Sponner et al. have
done a good review and a benchmark about these tools
targeting embedded platforms in [155]. From these tools the
TVM project is probably the most interesting. It does not
only contain a compiler for compiling the models to target
platforms, but it also contains an auto-tuning feature that
tests different compilation optimizations on the target platform
to find more optimal compilation results. The project also
includes microTVM subproject specially made for compiling
models to bare metal microcontroller targets, although the
documentation includes a disclaimer that the project is still
under heavy development.

Probably not an exhaustive list, but other libraries and
toolkits for converting neural network models to microcon-
trollers are Neural Network on Microcontroller (NNoM) [156],
X-CUBE-AI [157], e-AI [158], eIQ [159], nncase [160],
NNCG [161] and Embedded Learning Library (ELL) [162].
From these, the NNoM project is the most similar when
compared to TensorFlow Lite for Microcontrollers library and
the deepC project. It is vendor independent, but it supports
only models that are created using Keras. The project includes
a compiler that compiles the Keras code to pure C code. If
the target platform is ARM Cortex-M processor, the compiler
can generate optimized code by utilizing ARM CMSIS NN
Software Library [163], [164]. The ARM CMSIS NN library
includes optimized versions of the functions that are often used



in neural network models, but it does not include the automatic
conversion tool from other deep learning frameworks, so the
conversion step would be manual without a tool like NNoM.

The X-CUBE-AI project is an extension package from
STMicroelectronics to their STM32CubeMX product.
STM32CubeMX is a graphical user interface that allows
users to create configuration and initialization code to
STM32 microcontrollers [165]. The extension package
supports pretrained machine learning models that are made
with TensorFlow Lite, or that are exported to the ONNX
standard from some other framework. It outputs an optimized
code library that works on STM32 microcontrollers. The
e-AI project from Renesas is similar to this. Instead of
targeting STM32, the tool generates code for Renesas own
microcontroller families. It supports deep learning models
made with TensorFlow, Pytorch or TensorFlow Lite. The
third tool in the same class of vendor specific tools is eIQ
by NXP Semiconductors, supporting TensorFlow and ONNX
input formats. The compilation target is more modular as the
tool supports more inference engines. It can use TensorFlow
Lite, Glow, ARM CMSIS-NN or DeepViewRT [166] to run
the model on the target platform. The last vendor specific
tool is nncase. The generated code targets Kendryte K210 or
K510 chips. It supports TensorFlow Lite and ONNX formats.

From the last two neural network conversion tools listed,
NNCG is more of a research project and the authors discourage
using the tool in production. The project is very similar when
compared to NNoM. It converts Keras models to C code.
The last listed tool, the Embedded Learning Library (ELL)
project is made by Microsoft. It is work in progress, and
the authors warn about unexpected API changes. The project
documentation is also lacking with only few tutorials about
deploying machine learning models to Raspberry Pi single
board computers. The project repository commit history shows
that the project has received only few updates in recent years,
so the project might be obsolete.

Table III summarizes the vendor neutral open-source deep
learning model compilers and converters in a table format for
easier comparison.

The previously listed tools are made for getting neural
network inference to work with microcontrollers. In addition
to them, the more traditional machine learning models can
also be used to do inference on the edge devices. Often
the traditional models are not computationally as demanding
as neural networks, but the problem is that very often the
models are created using some Python based framework
like scikit-learn [167]. It is possible to run Python code on
microcontrollers with a project like MicroPython [168], but
this creates unnecessary overhead for code execution. It is
better to convert the model to more efficient machine code
to save as much as possible of the limited resources that
the microcontrollers have. This is probably not an exhaustive
list, but some of the existing projects to do this conver-
sion are: sklearn-porter [169], emlearn [170], m2cgen [171],
EmbML [172], micromlgen [173], Micro-LM [174], micro-
learn [175] and weka-porter [176]. Except for Micro-LM and

weka-porter, the other conversion projects convert scikit-learn
models to C or C++ code. Support for different models varies.
sklearn-porter and m2cgen can also convert the model to some
other programming language such as Javascript or Java. The
weka-porter project supports only WEKA [177] decision tree
conversions, and the Micro-LM project supports only models
trained with the Desk-LM module [174], although the Desk-
LM module in turn depends on and uses scikit-learn library.

VI. CONCLUSION

The Edge AI ecosystem is still in its infancy. Various
products and services are offered, but many of them are placed
under the umbrella term for marketing purposes. However, the
development of Edge AI as a discipline of its own is evident.

Hardware ranges from special-purpose processors and AI
accelerators to full servers. For many users, the various
system-on-chip solutions can be useful for the final product.
On the other hand, the various development boards and single-
board computers provide a good starting point and prototyping
possibilities. In addition, the USB, M.2 and PCIe bus devices
bring the power of AI acceleration to other devices.

Both of the most popular deep learning frameworks, Tensor-
Flow and PyTorch, can be used to do Edge AI. Between them,
TensorFlow is more suitable for Edge AI purposes. The frame-
work includes better documentation and more out of the box
methods for model optimization than PyTorch. TensorFlow
also supports microcontroller targets with the TensorFlow Lite
for microcontrollers subproject while PyTorch only supports
mobile device operating system targets.

Between Android and Apple mobile device operating sys-
tems support for AI acceleration on hardware, Apple maybe
has a better edge by supporting on-device training and having
the Create ML framework for creating AI models in addition
of supporting all of the most popular AI frameworks.

Edge AI for microcontrollers comes with the most software
offerings. The workflow of getting AI models running on
microcontroller hardware has not yet found a best practice that
everyone uses. There seem to be three competing approaches:

1) Using a runtime that loads the model data from read-
only device memory at runtime

2) Using transcompiler that compiles model to C or C++
code that then can be used in the project

3) Using a compiler that compiles the model to a library
that is statically or dynamically linked to the project

The good thing is that many of these projects support the
ONNX model format, which could mean that benchmarking
the different projects with the same model might be easier.

In the future, a standardized software API to access hard-
ware acceleration could offer a more productive develop-
ment experience. Standardized software workflows or, at least,
commonly accepted reference specifications would be highly
useful. Software terminology needs unification across research
and vendors. Furthermore, security considerations should be
studied further, as many of the Edge AI solutions could suffer
from the same vulnerabilities as common IoT systems.



TABLE III
OPEN-SOURCE DEEP LEARNING MODEL COMPILERS.

Project License Supported models Tool output Platform support requirements

TensorFlow lite
for microctonrollers [147] Apache-2.0 TensorFlow TensorFlow lite flat buffer C++ compiler

deepC [149] Apache-2.0 ONNX C++ code C++ compiler

Glow [151]* Apache-2.0 ONNX, Caffe2,
TensorFlow Lite

Compiled library bundle
(object, header and weight files) LLVM support

ONNC [152] BSD-3-Clause ONNX C code and binary weight files C compiler

TVM [153] (microTVM) Apache-2.0

TensorFlow, TensorFlow Lite,
Keras, PyTorch, ONNX,
Core ML, caffe2, mxnet,

PaddlePaddle

C code or compiled object file,
Graph JSON file and

Parameter file

C compiler and
standard library

NNoM [156] Apache-2.0 Keras C code C compiler

* Ahead-of-time compilation mode
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