
 

 

ANDREA KOVALOVA 

Deep Learning-based Table 
Detection in Documents 

 
 
 
 
 
 
 

DEGREE PROGRAMME IN ARTIFICIAL INTELLIGENCE 
2023 

 



 

 

 

  

Author 

Kovalova, Andrea 

Type of Publication  

Bachelor’s thesis  

 

Date 

January 2023 

Number of pages 

44 

Language of publication: 

English 

Title of publication 

Deep Learning-based Table Detection in Documents 

Degree Programme 

Artificial Intelligence 

Abstract 

 

Extracting content from tables in documents was identified as problematic, especially in 

the cases of tables without clear borders. The proposed solution was to apply document 

layout analysis, particularly using the LayoutParser library, to identify tables in company 

documents. The hypothesis was that fine-tuning a model available in the Model Zoo of 

LayoutParser on the custom dataset would significantly improve the table detections, at 

least for the documents with borderless tables.  

 

As the custom dataset, 302 company documents were annotated and used for 

experiments with different data augmentations and their evaluations. A Faster R-CNN 

model trained on the TableBank dataset was selected as the pre-trained model for fine-

tuning. The results of experiments showed that fine-tuning the model with augmentations  

where only resizing of the input images was applied was the best approach and it 

substantially improved table detection in company documents, especially the detection 

of borderless tables. In accordance with the results, the thesis hypothesis was accepted. 

 

Keywords  

tables, document layout analysis, object detection, LayoutParser, convolutional neural 

network, deep learning 



 

FOREWORD 

I would like to thank my thesis supervisor at SAMK, Petteri Pulkkinen, for providing 

feedback and prompt responses to my numerous inquiries. I also want to express my 

appreciation to my manager at Wärtsilä, Tal Katzav, for initiating and supporting this 

thesis project, and to my colleagues Juho-Pekka Koponen and Teemu Sormunen for 

their unwavering support throughout the project. Finally, I am deeply grateful to my 

thesis supervisor at Wärtsilä, Tony Savander, for the productive discussions, 

constructive feedback, and timely guidance on deadlines that he provided throughout 

the process. 



 

CONTENTS 

 

1 INTRODUCTION .................................................................................................... 6 

2 THEORETICAL FRAMEWORK ............................................................................ 8 

2.1 Document Layout Analysis ................................................................................ 8 

2.2 LayoutParser .................................................................................................... 10 

2.3 Object Detection and Recognition ................................................................... 11 

2.4 Convolutional Neural Networks ...................................................................... 13 

2.4.1 Faster R-CNN ......................................................................................... 15 

2.4.2 Transfer Learning and Datasets .............................................................. 17 

2.4.3 Metrics for Evaluation ............................................................................ 18 

3 DATA ...................................................................................................................... 22 

4 EXPERIMENTS ..................................................................................................... 27 

4.1 Experiments setting .......................................................................................... 27 

4.2 Results .............................................................................................................. 30 

5 DISCUSSION ......................................................................................................... 40 

6 CONCLUSION ....................................................................................................... 43 

REFERENCES 

APPENDICES 

 



 

LIST OF SYMBOLS AND TERMS  

AP  Average Precision 

AR  Average Recall 

CNN  Convolutional Neural Networks 

CPU  Central Processing Unit 

DLA  Document Layout Analysis 

FN  False Negatives 

FP  False Positives 

IoU  Intersection over Union 

JSON  JavaScript Object Notation 

mAP  Mean Average Precision 

OCR  Optical Character Recognition 

PDF  Portable Document Format 

PNG  Portable Network Graphics 

R-CNN Region-based Convolutional Neural Network 

RoI  Region of Interest 

RPN  Region Proposal Network 

TN  True Negatives 

TP  True Positives 

 



6 

1 INTRODUCTION 

Documents, in paper or digitalized form, are an inseparable part of every company. 

Wärtsilä, as an international corporation with about 17 000 employees operating in 

marine and energy markets, naturally needs to process an immense number of different 

kinds of documents in various departments (About, n.d.). Some departments use 

software for intelligent automatic processing of their documents. However, 

information from some documents is not retrieved well enough using the current 

software. The team members, therefore, need to allocate their working time to manual 

data entry that could have been allocated elsewhere. Additionally, when manually 

extracting information from documents, the focus is on data required for the current 

business processes due to the high costs of manual extraction. Nevertheless, company 

documents may contain other data which if analyzed, might provide invaluable 

information and lead to higher business intelligence and smart and sustainable 

decisions. 

 Since manual data entry is not a sustainable solution, programmatic 

alternatives were explored. Various optical character recognition (OCR) tools were 

applied to the documents and different problems have been identified. One of the 

problems is information extraction from tables. There are several options for extracting 

tables from documents. For example, Camelot (Camelot, 2021) and tabula-py (Tabula-

py, 2022) are both Python libraries that enable extracting tables from PDF documents. 

Azure Form Recognizer (Form Recognizer, n.d.) and Amazon Textract (Tables, n.d.), 

on the other hand, are paid solutions provided by companies that belong among the 

world’s major ones in artificial intelligence. Apart from regular tables with clearly 

outlined borders, however, company documents also contain tables without some or 

any clear borders, and many tools are not able to detect tables without marked borders. 

For this problem, a tool for document layout analysis can be applied which recognizes 

elements of the documents, such as a figure, heading, table, and text, and can be 

customized for own datasets.  



7 

 The proposed tool for document layout analysis is a Python library called 

LayoutParser, which uses deep learning for layout analysis. The library allows the use 

of already pre-trained models to identify tables (and other layout elements) and 

provides tools for fine-tuning the existing models on custom data (Shen et al., 2021). 

Identifying tables in documents will then provide borders for the location of interest 

for extracting the information using OCR. In this thesis, however, only fine-tuning of 

a selected pre-trained model will be described and evaluated. The hypothesis is that 

fine-tuning an appropriate model available in the Model Zoo of LayoutParser on the 

custom dataset of documents provided by Wärtsilä will significantly improve the table 

detections, at least for the documents with borderless tables. 

 The rest of the thesis is organized as follows. The second chapter, Theoretical 

framework, explains document layout analysis and describes the LayoutParser library 

in detail. Furthermore, the chapter describes the type of task and important topics and 

terms for fine-tuning the selected pre-trained model. Next, the third chapter, Data, 

provides a detailed description of the documents used in this thesis and the process 

required for using the data for fine-tuning. In the fourth chapter, Experiments, training 

of models and their results are described and subsequently, explained in the fifth 

chapter, Discussion. The last chapter, Conclusion, naturally summarizes the findings 

of the thesis. 

  



8 

2 THEORETICAL FRAMEWORK 

This section will describe important topics and terms for fine-tuning a model for table 

detection with LayoutParser. The first and second parts will introduce document layout 

analysis of image documents and one of its tools called LayoutParser. Then, the object 

detection and object recognition tasks will be described in the third part. The last part 

is devoted to a type of neural network called convolutional neural networks. This part 

has further subparts introducing the used pre-trained model, Faster R-CNN, transfer 

learning and large datasets for object detection, and finally, metrics for measuring the 

performance of a trained model. 

2.1 Document Layout Analysis 

Document layout analysis (DLA) is one of the tasks in computer vision and its goal is 

to identify and categorize different content regions of a document image (Wu et al., 

2022). These regions can be figures, tables, and texts and one image usually represent 

one page (an example is illustrated in Figure 1). Among other applications, DLA 

contributes to content understanding and knowledge extraction from an image 

document (Wu et al., 2021). The result of DLA allows targeting information extraction 

from regions of the document rather than extracting text from the whole image 

document, which is typical for extracting process applying solely an OCR tool. Layout 

analysis is a part of the document image analysis and recognition process, in which 

image documents typically first undergo pre-processing operations such as clearing up 

noisy images and then, layout analysis and character and symbol recognition follow 

(Lombardi and Marinai, 2020).  

 Wu et al. (2022) divide the DLA task processing method into two groups – 

traditional and deep learning methods. In traditional methods, image segmentation 

algorithms are typically used to divide the layout. The increasing complexity of 

document layouts made the processing challenging for traditional methods. However, 

the continuous advances in the field of machine learning have had a great impact on 

the research in DLA as well, especially the use of deep learning to process the DLA 

tasks (e.g.  Xu et al., 2020; Shen et al., 2021). Yet despite the progress in research, 



9 

DLA still faces challenges in the real environment in terms of specificities of different 

languages, fonts, handwritten text, or document types (Wu et al., 2022). 

 

Figure 1. Example of layout detection with a figure, title, table, and texts as detected elements (Deep 

Layout Parsing, n.d.). 



10 

2.2 LayoutParser 

According to Shen et al. (2021), LayoutParser is a Python library allowing document 

image analysis and processing using deep convolutional neural networks. Among its 

components are a toolkit for applying deep learning models for layout detection, 

character recognition and other document image analysis tasks, and an archive of pre-

trained neural network models. In LayoutParser, layout analysis is formulated as an 

object detection problem. An image document is taken as an input of a layout model 

which produces a list of rectangular boxes of the content regions. The tool is built upon 

Detectron2 and uses state-of-the-art models like Faster R-CNN and Mask R-CNN for 

layout detection. While Mask R-CNN is typically used for image segmentation tasks, 

Faster R-CNN is used for object detection and will be used in experiments in this 

thesis. Detectron2 is a second-generation Python library implemented in PyTorch 

providing state-of-the-art detection and segmentation algorithms (Wu et al., 2019). 

 

Figure 2. The relationship between the key layout data structures – the coordinate, textblocks and layout 

(Shen et al., 2021). 

 Shen et al. (2021) describe the implemented series of data structures and 

operations as being a critical attribute of the tool because traditionally DLA required 

other post-processing steps to get the final outputs. As shown in Figure 2, the three 



11 

key parts are the Coordinate system, the Text Block, and the Layout. The coordinates 

of layout elements can be defined by an interval (class Interval), two points forming a 

rectangle (class Rectangle) or four points forming a four-sided polygon (class 

Quadrilateral) allowing the capture of regions in skewed or distorted image documents. 

Coordinates are part of the TextBlock class which stores, besides the location of the 

layout element within the image and the type of coordinate, other content-related 

information about the element such as the type of layout element (e.g., table) and the 

prediction confidence of the element. Lastly, the Layout class stores a list of the blocks, 

i.e., layout elements, including other layout elements.  

 Target image documents may substantially differ from the datasets that the 

existing layout models were trained on causing low detection accuracy. As Shen, et al. 

(2021) state, LayoutParser allows customization by providing tools for document 

image annotation and model tuning. The toolkit for the annotation of document layouts 

is using object-level active learning. Then only the most important regions in an image 

need to be annotated. The rest of the layout objects labelling is performed 

automatically using predictions from the layout detection model. 

 Additionally, LayoutParser provides a model hub and community platform to 

promote sharing and discussion of pre-trained models as well as practices (Shen, et al., 

2021). 

2.3 Object Detection and Recognition 

DLA aims to detect different regions in an image document. As stated above, DLA is 

a computer vision task, particularly an object recognition task as the regions to be 

detected on a page are objects. Therefore, common object recognition models can also 

be applied to this problem. One of the most prevalent types of neural networks for 

object recognition is a convolutional neural network. The approach to solving table 

detection in this thesis will include solely the usage of deep learning. However, before 

the popularization of artificial neural networks, models and algorithms such as 

Histogram of Oriented Gradients Feature Extractor and Support Vector Machine 

model (e.g., Mizuno et al., 2012), Bag of features model (e.g., Delaitre et al., 2010) or 

Viola-Jones algorithm (e.g., Castrillón et al., 2011) were widely used.  



12 

 

  

Figure 3. Object recognition and related tasks. 

 Object recognition is a task that identifies different types of objects in an image 

and video. It is one of the most widespread applications of machine learning. As 

illustrated in Figure 3, other tasks related to object recognition are image classification, 

object localization, object detection, and image segmentation (Szeliski, 2010, pp. 657-

721). Image classification identifies the type or class of the object and outputs class 

labels. Object localization identifies the presence of objects and their location in an 

image, and outputs bounding boxes that are drawn around these objects. Both tasks are 

illustrated in Figure 4 (in the left image). Object detection is a combination of both 

preceding tasks. It identifies the position in an image and the class of the objects as 

visualized in Figure 4 (in the middle image). Lastly, a further extension of object 

detection is image segmentation where the objects are identified by highlighting 

specific pixels of the objects and the output can be a mask. Unlike bounding box 

outputs, segmentation by pixels allows recognition shape of objects as depicted in 

Figure 4 on instance segmentation. According to Cyganek (2013, p. 408), some 

systems consider object recognition and object detection as two separate classifiers 



13 

that cooperate. In other systems, object detection also means the recognition of what 

object is in the image. In this thesis, the main task is to identify the location of one 

class, i.e., tables, in a document image and the task will be referred to as object 

detection. 

 

Figure 4. Comparison of object recognition tasks (Fei-Fei et al., 2018). 

 Humans and animals perform the detection and recognition of objects naturally 

in daily life based on their learned and inherited experiences. These processes are not 

so straightforward for machines. Nonetheless, biological systems have provided 

inspiration for some machine realizations. Among these are artificial neural networks 

and neurons, their basic building block.  

2.4 Convolutional Neural Networks 

Deep learning is a field of machine learning that is based on the training of artificial 

neural networks and has had several applications in computer vision. A convolutional 

neural network (CNN) is a type of neural network that has been widely used for 

processing images. An image is a two-dimensional grid of pixels where each pixel 

defines the color and brightness. Each pixel is an input node in a traditional neural 

network. Attempting to solve an object detection task by training a traditional neural 

network, where every input node interacts with every output node, with images would 

therefore require thousands of weights per node for even small images (e.g., images of 



14 

size 100×100 would require 10 000 weights per node). Optimization would likely be 

unmanageable.1 (Goodfellow et al., 2016, pp. 330-372; Burkov, 2019, Section 6) 

 Classification of complex images can be solved by a CNN because CNN 

significantly reduces the number of parameters in the neural network without much 

compromise in the quality of the model. Unlike traditional neural networks, CNN 

utilizes the correlation among pixels. For example, in the classification of dog images, 

any brown pixel is likely located next to a brown pixel, and it is likely that pixels 

further away would be less correlated. (Goodfellow et al., 2016, pp. 330-372; Burkov, 

2019, Section 6) 

 There are three types of layers in CNN: convolutional, pooling and fully 

connected layers. In the convolutional layers, CNN uses filters, i.e., kernels, to 

transform data before it is passed to another layer.  Kernels are usually very small (e.g., 

3×3 or 5×5) and they represent weights that are given to pixels in the image. By 

computing the dot product between two two-dimensional arrays, i.e., the input and the 

filter, the filter is convolved with the input. As depicted in Figure 5, the filter slides 

over the input from left to right starting at the top left corner and ending at the bottom 

right corner. A stride defines the number of pixels of the filter’s movement. In the 

pictured example, the stride is one and the filter, therefore, moves by one pixel at a 

time. Furthermore, there is no padding in the picture which would prevent the decrease 

of the input’s special dimensions. For a more precise analysis of an image, padding 

can be added around the image to keep the dimensions the same. After the addition of 

a bias, the result of the convolution operation is mapped to a feature map which 

summarizes the features of the input image.  Each cell in the feature map corresponds 

to a group of neighbouring pixels and hence utilizes correlations among the pixels. 

Then, an activation function is typically applied, for instance, ReLU2. (Goodfellow et 

al., 2016, pp. 330-372; Burkov, 2019, Section 6) 

 

 

1 If the reader is not familiar with the basics of neural networks, please review the topic in Goodfellow 

et al. (2016) and/or Burkov (2019).  
2 ReLU is defined as 𝑓(𝑥) = 𝑥+ = max⁡(0, 𝑥) and after application of the function all negative values 

are set to 0. 



15 

   

Figure 5. An example of convolution operation between a 6×6 matrix representing an image and a 3×3 

matrix representing an edge detection filter, and further application of ReLU activation function and 

max pooling operation. 

 The problem with the featured map is its sensitivity to the position of features. 

Even minor image augmentation would result in a different feature map. This problem 

can be addressed by downsampling which further summarizes the features in an image 

and reduces the size of the feature map. A common approach is to use a pooling layer 

where a pooling operation, e.g., max pooling, is applied to the feature map. A filter is 

again systematically moved over the feature map. This filter is typically 2×2 and does 

not overlap the areas of the feature map. As illustrated in Figure 5, the max pooling 

operation selects the maximum value in each area and the input size is further reduced 

by 75%. After these operations, the max pooled output is passed to a fully connected 

neural network in the fully connected layer.  (Goodfellow et al., 2016, pp. 330-372) 

2.4.1 Faster R-CNN 

R-CNN stands for Region-based Convolutional Neural Networks. As Ren et al. (2015) 

state, region proposal algorithms are used to hypothesize the locations of objects in an 

image. Faster R-CNN is an object detection model and was introduced with improved 

architecture and performance and reduced training and detection time as the successor 

of Fast R-CNN. Unlike its predecessor, it is designed as a single model. Yet, the model 

consists of two modules. Because of the two-module architecture, Faster R-CNN 

belongs to the group of two-stage detectors, in opposition to one-stage detectors such 

as YOLO (You only look once; Redmon et al., 2016) or SSD (Single Shot Detector; 

Liu et al, 2016). 



16 

 As illustrated in Figure 6, the first module is the Region Proposal Network 

(RPN), a CNN that proposes regions and types of objects in the regions. R-CNN and 

Fast R-CNN both used CPU-based algorithms, for instance, Selective Search, which 

had a significant negative impact on the region proposal time. The second module is 

the already mentioned Fast R-CNN, a CNN for extracting features, which is told by 

RPN where to look, and for classifying the image which then outputs class labels and 

bounding boxes. As depicted in Figure 6, region of interest (RoI) pooling is applied in 

the second stage which is essentially max pooling on the selected areas of interest. 

(Ren et al., 2015) 

 

Figure 6. Summary of Faster R-CNN architecture (Ren et al., n.d.). 

 Many algorithms attempt to optimize a loss function. Such a function maps 

non-negative errors made during training, the differences between the ground truth and 

the prediction, and aims to minimize the average loss. In object detection, models 

optimize a multitask loss function which is a combination of a classification loss and 

a bounding box regression loss (Equation 1; Elgendy, 2020, p. 307).  

Equation 1 

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑙𝑜𝑐 

 Faster R-CNN consists of two CNNs, an RPN and a classification network. 

The model performs multitask learning and both of its networks are trained with 



17 

multitask loss. Therefore, the model jointly trains altogether with four losses: RPN 

classification loss, RPN localization loss, bounding box regression loss and 

classification loss. RPN classification loss is a binary classification loss, and it 

represents the error of whether there is an object of interest or not in the proposed 

region. RPN localization loss regresses bounding box coordinates for each of the 

proposals. Bounding box regression loss indicates how tight the predictions are in 

comparison to ground truth, correcting errors coming from the RPN. And classification 

loss indicates the inaccuracy of predictions of object classes. (Ren et al., 2015) 

2.4.2 Transfer Learning and Datasets 

Transfer learning is a method in machine learning when knowledge from an existing 

model trained on some dataset is utilized in training another model on a different 

dataset which might have a different distribution (Goodfellow et al., 2016, p. 536). 

Goodfellow et al. (2016, p. 20) suggest that to achieve acceptable performance in 

supervised deep learning, an algorithm needs to be trained with around 5 000 labeled 

samples for each class and to achieve performance on the level of human or better, 10 

million labeled samples would be required. Not only gathering such an amount of data 

but also labeling would be considerably costly. This problem has been continuously 

tackled by researchers and companies that have been sharing their datasets of different 

kinds for the public to use in their machine learning problems. With the use of these 

datasets and transfer learning, it is possible to train a neural network with significantly 

fewer samples in the dataset, for instance, a few hundred, and achieve satisfactory 

results in a new setting. 

 Extensive datasets of labeled images have been created for computer vision 

research. ImageNet is an ongoing project to provide data for training large-scale object 

recognition models and it currently includes over 14 million images which were 

annotated and belong to over 20 thousand categories (About ImageNet, n.d.; Deng et 

al., 2009). MS COCO (Common Objects in Context) is a dataset for object detection 

and segmentation that consists of more than 330 thousand images, out of which over 

200 thousand are labeled (Lin et al., 2014). In the dataset, there are 80 object categories 

and 1.5 million object instances (Lin et al., 2014). 



18 

 In recent years, there have been efforts in publishing datasets consisting of 

image documents. As Zhong et al. (2019) state, PubLayNet is a dataset developed for 

document layout analysis. It contains over 360 thousand document images with 

annotations of typical layout elements including tables. The documents in this dataset 

are scientific papers. They also provided some pre-trained models in their GitHub 

repository (zhxgj, 2020).  

 Based on Li et al. (2020), another large dataset designed for document layout 

analysis is DocBank, which includes 500 thousand of document pages. In this dataset, 

the labels include various types of elements, including tables and the documents are 

also scientific papers. Pre-trained models on the DocBank dataset are available in their 

GitHub repository as well (Li and wolfshow, 2021). 

 A more specific dataset is TableBank that is specializing in images with just 

one layout element. According to Li et al. (2020), it is a table detection and recognition 

dataset, consisting of image documents with 417 thousand labeled tables. Documents 

were sourced from the Internet and includes Word and Latex documents in English, 

Chinese, Japanese, Arabic and other languages. Like with the previous document 

datasets, pre-trained models are shared in their GitHub repository (Li, 2021). The 

PubLayNet and TableBanks datasets are among the datasets on which the available 

pre-trained models for LayoutParser were trained (lolipopshock, 2021). 

 Furthermore, to address a problem with small datasets of images, data 

augmentation techniques can be employed. This method is one of the regularization 

techniques to improve the performance of a model and prevent overfitting (Burkov, 

2019, Section 8.4). The labeled dataset for training is expanded by adding synthetically 

transformed samples of the original samples. There are many different options for how 

images can be augmented, for instance rotating, flipping, cropping, or changing 

brightness. However, the original labels of objects in the images remain the same. 

2.4.3 Metrics for Evaluation 

To understand if the model achieved the desired accuracy and compare it to others, 

different methods are used for the evaluation of performance. Typically used 

evaluation methods for object detection tasks are precision, recall, and intersection 

over union. 



19 

 To calculate precision and recall, the components of the confusion matrix need 

to be described. As shown in Figure 7, a common confusion matrix for binary 

classification problems (e.g., is a table, not a table prediction) has a 2×2 size and shows 

actual values (according to labels) on one axis and predicted values by model on the 

other axis. The components are defined as follows: True positive (TP) is the number 

of correct positive predictions. False positive (FP) is the number of incorrect positive 

predictions. False negative (FN) is the number of incorrect negative predictions (e.g., 

missed predictions of tables). True negative (TN) is the number of correct negative 

predictions. In object detection, this would naturally be all possible bounding boxes 

that were correctly not predicting the labeled class and thus, the number is not used for 

evaluation. 

  Actual values 

  Positive Negative 

P
re

d
ic

te
d
 v

al
u
es

 

P
o
si

ti
v
e 

True positive 

(TP) 

False positive 

(FP) 

N
eg

at
iv

e 

False negative 

(FN) 

True negative 

(TN) 

Figure 7. Confusion matrix for binary classification. 

 Before defining precision and recall, it is important to understand how accurate 

the prediction of the bounding box was. Intersection over union (IoU) measures the 

overlap between the ground truth bounding box and predicted bounding box of the 

same object by diving their intersection area by their union area (see Figure 8). In an 

ideal situation, both areas would be the same and the result then equals 1. By setting a 

threshold to determine a correct or incorrect prediction and applying this evaluation to 

each prediction, true and false positives are identified. TP are predictions with IoU 

results equal to or bigger than the threshold. FP are predictions with IoU result smaller 

than the threshold. 



20 

 

Figure 8. Intersection over Union. 

 As defined in the equations below, precision is indicating what proportion of 

positive predictions are correct (Equation 2). Recall (or sensitivity) is indicating what 

proportion of actual positive values was correctly identified, i.e., how sensitive is the 

model to detect true cases (Equation 3). A perfect model would have zero FP and FN 

and both precision and recall would thus be 1.3 The precision and recall results are 

sensitive to the change of the threshold as the number of TP and FP changes with a 

different threshold. 

Equation 2 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑎𝑙𝑙⁡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Equation 3 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= ⁡

𝑇𝑃

𝑎𝑙𝑙⁡𝑔𝑟𝑜𝑢𝑛𝑑⁡𝑡𝑟𝑢𝑡ℎ𝑠
 

 Average Precision (AP) and Average Recall (AR) are defined as the weighted 

means of precision and recall at each threshold. They are calculated for each class and 

the average of AP for each class is called Mean Average Precision (mAP). In this 

thesis, only one class will be predicted, i.e., table, and mAP will therefore not be 

calculated. 

 Table 1 shows that AP in COCO detection evaluation metrics is calculated over 

10 different IoU thresholds. Two more APs are calculated for the IoU thresholds 0.5 

and 0.75. AR is the maximum recall of a determined number of detection per image, 

averaged over classes and IoUs. Furthermore, COCO metrics provide evaluations for 

different sizes of objects – small, medium, and large. However, this distinction is 

 

 

3 In this thesis, the average precision and averarage recall will be reported as a franction of 100, not 1. 

Thus, the closer the results will be to 100, the better. 



21 

irrelevant to the prediction of tables as they all fall under large objects. The result of 

APlarge is hence identical to AP. 

Table 1. COCO metrics (Detection Evaluation, n.d.). 

Average Precision (AP):   

  AP % AP at IoU=.50:.05:.95 (primary metric) 

  APIoU=.50 % AP at IoU=.50 (PASCAL VOC metric) 

  APIoU=.75 % AP at IoU=.75 (strict metric) 

AP Across Scales:   

  APsmall % AP for small objects: area < 322 

  APmedium % AP for medium objects: 322 < area < 962 

  APlarge % AP for large objects: area > 962 

Average Recall (AR):   

  ARmax=1 % AR given 1 detection per image 

  ARmax=10 % AR given 10 detections per image 

  ARmax=100 % AR given 100 detections per image 

AR Across Scales:   

  ARsmall % AR for small objects: area < 322 

  ARmedium % AR for medium objects: 322 < area < 962 

  ARlarge % AR for large objects: area > 962 

 

 Nevertheless, having two metrics might cause difficulties when comparing 

different models. Thus, a single-number evaluation metric F1 score is typically used. 

F1 score is defined as the harmonic mean between precision and recall and is 

calculated as in the equation below (Equation 4). 

Equation 4 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

  



22 

3 DATA 

The data used in experiments described in this thesis consisted of business documents 

provided by Wärtsilä.4 The documents were provided by two departments from 

Wärtsilä, and they were all in PDF (Portable Document Format). The majority of the 

documents were in English, some were in German and French. As described in the 

Introduction, the main aim of this thesis is to fine-tune a model for detecting tables in 

an image document. Thus, each document used for forming the datasets had to include 

at least one table. Some of the documents had an identical layout of the document, 

including the layout of the tables, and they only differed in the content of their tables. 

 

Figure 9. Data processing. 

 The whole data processing is illustrated in Figure 9. There were initially 280 

documents in PDF available for experiments. Most of the PDF documents consisted 

of a single page. Some documents could not be included in experiments due to their 

outlier nature, particularly photographed documents with heavily skewed tables and 

documents with tables overlapped by another piece of paper. After removing the 

outliers, the majority of documents were not scanned or photographed documents or 

showing any discoloration that can appear in scanned or photographed documents, and 

none of them was significantly rotated or skewed. Subsequently, the PDF documents 

were converted into images in PNG (Portable Network Graphics) format, so they could 

be labeled. After the conversion, there were 302 image documents available for 

experiments, where each image represented one page of a document.  

 

 

4 The documents provided by Wärtsilä showed in this thesis to illustrate examples of tables and their 

layouts have all text and information redacted by the author. Experiments were performed with the 

original documents. 



23 

 

 

Figure 10. Example of an annotated document in Label Studio. 

 Tables in the image documents were labeled using an open-source data labeling 

tool called Label Studio as illustrated in Figure 10.5 Labeling (also known as data 

annotation) is an important part of object detection as the quality of annotation has an 

impact on the performance of the trained model. Before starting, it was necessary to 

define classes of objects that would be labelled in the images. In this case, it was also 

necessary to approximately determine what is considered a table. A table was defined 

as a layout element that contains two or more column headings in the first row6 and 

one or more rows containing table items. Some image documents contained bordered 

layout elements that consisted of a heading and one row with an item. These elements 

resembled a table. However, since the rows with items were not expected to increase 

with different documents, these layout elements were not labeled as a table (see Figure 

11 a). Furthermore, some tables included a sum of table items at the bottom. This sum 

was sometimes located further away from the table. In these cases, the sum was not 

included in the table label (see Figure 11 c). Nevertheless, if the sum was located in a 

way that it appeared to belong to the layout of the table, it was included in the table 

label (see Figure 11 b). 

 

 

5 Label Studio is available in GitHub at https://github.com/heartexlabs/label-studio. 
6 In some image documents, the heading was split across the first two rows. The first column items were 

then located on the third row. 



24 

 

 

Figure 11. Example a) shows a document with a bordered table (yellow rectangle) and a bordered layout 

element (purple rectangle). Examples b) and c) show documents with tables (yellow rectangles) with 

sums (purple rectangles) relating to the content of the tables. 

 Afterwards, rectangle bounding boxes were drawn closely around each table 

in each image document. In this thesis, images were labeled only with one class – a 

table. Most image documents had one table per image (page). Then, the labeled dataset 

was exported from Label Studio in COCO format and saved in a JSON (JavaScript 

Object Notation) file. COCO format is a JSON structure determining the way of 

storing annotations and metadata for an image dataset. It is commonly used in object 

detection tasks, and it is an acceptable format of the dataset for training using the 

detectron2 library. An exported dataset consists of a JSON file and all images that 

include at least one labeled object.7 Images that do not contain an object of interest are, 

therefore, not included in the dataset. 

 After image annotation, the dataset was ready for splitting into datasets for 

training, validation, and testing.  However, before the splitting, the image documents 

were divided into two groups – documents with so-called bordered tables (125 

documents) and borderless tables (177 documents). A borderless table was a table 

without any lines on its sides or between rows and columns, or a table with some lines 

on the side, usually top and bottom, and/or between the rows (see Figure 12 a and b). 

A bordered table was defined as a table delimited by a line on each side (see Figure 12 

c). 

 

 

7 The size of the images does not change after the export from Label Studio. 



25 

 

Figure 12. Examples of image documents with borderless (a and b) and bordered tables (c). 

 In this thesis, the split was in approximately 60-20-20% ratio for the respective 

sets. To create a balanced dataset, the documents were picked randomly from the two 

groups in the same ratio. Therefore, as shown in Table 2, 59% of the image documents 

in each dataset were documents with borderless tables. The train dataset consisted of 

180 image documents. The validation and test datasets both had the same size, and 

each included 61 image documents.  

 

Table 2. Division of images into train, validation, and test datasets. 

  Train set 
Validation 

set 
Test set Total   

All  180 61 61 302 100% 

Bordered 

tables 
74 25 25 125 41% 

Borderless 

tables 
106 36 36 177 59% 

 

 Because some image documents included more than one table on the page and 

this was not taken into account during the dataset split, the number of bordered and 

borderless table instances was not as balanced as the number of documents belonging 

to each group per each set. However, as shown in Table 3, the ratio was still relatively 

close to 41% of bordered and 59% of borderless table instances per set. If the instances 

ratio was greatly disproportional, it could have produced a biased comparison of the 

average precision results of the sets. For example, if the validation set had a 

proportionally much lower ratio of borderless instances than the test set, it could have 



26 

resulted in better average precision results as borderless tables are more difficult to 

predict than bordered tables. Thus, the results in the next chapter will be also presented 

per each table group – bordered and borderless tables – to learn if the sets were 

balanced. 

 

Table 3. Division of table instances across train, validation, and test datasets. 

  Train set 
Validation 

set 
Test set Total 

All 275 91 105 471 

Instances 

of 

bordered 

tables 

103 39 42 184 

37% 43% 40% 39% 

Instances 

of 

borderless 

tables 

172 52 63 287 

63% 57% 60% 61% 

  



27 

4 EXPERIMENTS 

In the first part of this chapter, the setting of training of models is described, including 

the choice of the pre-trained model for fine-tuning, selected hyperparameters, and data 

augmentation. The second part describes four experiments from which the best model 

was chosen for further evaluation. 

4.1 Experiments setting 

The thesis hypothesis is that fine-tuning a pre-trained model available in Model Zoo 

of LayoutParser will significantly improve at least the detection of borderless tables 

using the LayoutParser library.8 All experiments to prove the hypothesis were 

conducted on an EC2 instance in AWS with GPU Tesla T4. All files required for 

training, datasets and configuration file, and outputs of training and evaluation runs 

were stored in an S3 bucket in AWS which was mounted to the EC2 instance. Training 

a model took from 6 to 7 hours when evaluation on the validation dataset was 

performed every 10 iterations of the training.  

 Python library Detectron2, on top of which is LayoutParser built, has an 

implementation for R-CNN models. In the Model Zoo of LayoutParser, there are 3 

types of models trained on 6 different datasets available. The datasets relevant for a 

table-detecting task are PubLayNet and TableBank because they both contain the table 

layout element in their label maps. PubLayNet is an image document dataset that is 

trained to recognize text, title, list, and figure layout elements besides a table. 

Nevertheless, a visual quality check of inferences on a validation dataset with a 

confidence threshold of 0.8 showed that most tables were not recognized, especially 

the borderless tables, and some tables were misidentified as other elements, e.g., 

figures (see Table 4). Additionally, other elements, e.g., text or parts of text or titles, 

were often misidentified as tables. That happened less often in inferences done by 

models trained on the TableBank dataset. There are two Faster R-CNN models trained 

 

 

8 LayoutParser is available in GitHub at https://github.com/Layout-Parser/layout-parser. 



28 

on the TableBank dataset available in the Model Zoo. Their table predictions on the 

validation dataset were both more precise than the predictions of the model trained on 

the PubLayNet dataset and less text around the tables was included in the predicted 

table bounding box. Again, the majority of misrecognized tables were borderless 

tables. Faster R-CNN R 50 FPN 3x was more successful in detecting the tables than 

Faster R-CNN R 101 FPN 3x (see Table 4).  

 

Table 4. Visual quality check of pre-trained models’ predictions with confidence threshold 0.8 on the 

validation dataset. 

  

Table 

missed  

Wrong 

element 

classification 

Detected 
Partly 

detected 

Faster R-CNN R 101 FPN 3x 

PubLayNet 
29 6 22 4 

Faster R-CNN R 50 FPN 3x 

TableBank 
25 -- 34 2 

Faster R-CNN R 101 FPN 3x 

TableBank 
28 -- 29 4 

Note: If a substantial area around a table is included in the predicted bounding box or if a group of 

tables is detected as one table, also classified as a "missed table". 

 

 However, as Table 5 shows, when the F1 score was calculated to compare the 

models, Faster R-CNN R 101 FPN 3x trained on the TableBank dataset had a better 

score than Faster R-CNN R 50 FPN 3x. On the other hand, Faster R-CNN R 50 FPN 

3x trained on the PubLayNet dataset scored close to 0. Therefore, Faster R-CNN R 

101 FPN 3x trained on the TableBank dataset was used for fine-tuning the table 

detector. 

  



29 

Table 5. Average precision and average recall results and F1 scores for pre-trained models. 

  AP AP50 AP75 

AR 

(Max 

Dets = 1) 

AR (10) 
AR 

(100) 

F1 

Score 

Faster R-

CNN R 101 

FPN 3x 

PubLayNet 

0.47 1.73 0.01 0.10 4.50 28.20 0.93 

Faster R-

CNN R 50 

FPN 3x 

TableBank 

40.29 53.94 42.25 38.50 54.60 54.60 46.36 

Faster R-

CNN R 101 

FPN 3x 

TableBank 

41.77 54.95 40.83 37.70 58.00 58.00 48.57 

 

 Appendix 1 includes the configuration file of Faster R-CNN R 101 FPN 3x 

trained on the TableBank dataset (lolipopshock, 2021). Most of the hyperparameters 

were kept as defaults. Maximum iterations were lowered to 10 000 iterations in 

training. According to the default configuration, one iteration trains on 2 images. To 

reflect the change in maximum iterations, iteration numbers when the learning rate 

decreases by 0.1 were changed to iterations 6 000 and 8 000. As mentioned earlier, the 

evaluation period on the test dataset was set to every 10 iterations. 

 Based on the default configuration file, the input images are augmented by 

resizing the image. The minimum size of the smaller side of the image during training 

is sampled from 640, 672, 704, 736, 768, and 800. The maximum size of the longer 

side of the image is 1333. The aspect ratio is kept unchanged. In addition to the size 

transformation, random flip and random rotation of the image are added by the default 

augmentation setting in the training script of LayoutParser. The image is flipped 

horizontally with 0.5 probability and rotated at an angle between -90 and 0 degrees. 

 Moreover, two more image augmentations were gradually added – random 

brightness and random contrast. Brightness intensity is uniformly sampled from values 

between 0.8 and 1.2. Equally, contrast intensity is uniformly sampled from values 

between 0.8 and 1.2. The intensity of brightness as well as contrast decreases with 

values below 1 and increases with values above 1. 



30 

 In inference, the transformation of image size is applied. The minimum size of 

the smaller side of the image is 800 and the maximum size of the longer side of the 

image is 1333. The aspect ratio is kept unchanged. 

4.2 Results 

Initially, four experiments were done using different data augmentation approaches. 

In Experiment I, the default augmentation setting from the training script of 

LayoutParser was applied, i.e., resizing, random flipping and random rotation of the 

images. In Experiment II, the data augmentation was reduced to image resizing. In 

Experiment III, random flipping and random brightness were added next to the image 

resizing. In Experiment IV, random contrast was added to the three types of 

augmentation from Experiment III. The evaluation of these experiments was done on 

the validation dataset. 

 During training, inference and subsequent evaluation are performed on unseen 

images from the validation dataset, and after training, evaluation is performed on the 

testing dataset. Training of a model outputs several files. The most important is the 

configuration file, which includes the changed hyperparameters, final weights9, and 

the metrics file which contains the progress of the training.  

 The figures below depict the comparison of total training loss and validation 

loss. For a better understanding of the learning progress, the moving average of the 

losses was plotted over the plotted loss curves. Experiment I had a slightly different 

learning experience than Experiments II, III, and IV. The losses continued to decrease 

considerably until approximately iteration 6500, then remained stable with a gap 

bigger than in Experiments II, III, and IV (see Figure 13). Training loss stabilized 

around 0.6 and validation loss around 0.16, however, the variation remained rather 

high. On the other hand, total training and validation losses in Experiments II, III, and 

IV considerably decreased until approximately iteration 2000, then continued slightly 

decreasing until around iteration 6500 and remained stable afterwards with a smaller 

gap than in Experiment I (see Figure 14, Figure 15, and Figure 16). In Experiment II, 

 

 

9 It is possible to choose the iteration number x and save weights every x iteration. 



31 

training loss stabilized around 0.03 and validation loss around 0.08. In Experiment III, 

training loss stabilized around 0.03 and validation loss around 0.06. In Experiment IV, 

training loss stabilized around 0.03 and validation loss around 0.06. There was still a 

variation of the losses present at the end of the training, nevertheless, it was smaller. 

 

 

Figure 13. Comparison of training losses from Experiment I and validation dataset over 10 000 

iterations. 

 

 

Figure 14. Comparison of training losses from Experiment II and validation dataset over 10 000 

iterations. 



32 

 

 

Figure 15. Comparison of training losses from Experiment III and validation dataset over 10 000 

iterations. 

 

 

Figure 16. Comparison of training losses from Experiment IV and validation dataset over 10 000 

iterations. 

 Average precisions and average recalls were obtained as outputs of the training 

of models and were used to calculate F1 scores for all four models. The F1 scores were 

used as the indicator of the best model. The model with the highest F1 score was then 

selected as the final model for evaluation on the test dataset. As seen in Table 6, the 

less strict AP50 metrics were very similar across all four models (95.4 for Experiment 

I, 96.0 for Experiment II, 95.9 for Experiment III, and 96.0 for Experiment IV). 



33 

However, the rest of the metrics were substantially smaller for the model from 

Experiment I with resizing, flipping and random rotation applied to the images (for 

example, AP was 67.5 for Experiment I, 89 for Experiment II, 86.6 for Experiment III, 

and 88.2 for Experiment IV; and AR (Max Dets = 100) was 72.7 for Experiment I, 

91.1 for Experiment II, 89.2 for Experiment III, and 90.7 for Experiment IV). The 

models from Experiments II, III, and IV had very small differences in their results. 

The close results of average precisions and average recalls were imprinted in the close 

scores of F1 scores for Experiments II, III, and IV. The worst model was the model 

from Experient I with an F1 score of 70. The best model was the model from 

Experiment II with an F1 score of 90. Thus, the model with just resizing applied as an 

augmentation to the input images was selected as the final model for evaluation on the 

test dataset. However, the difference in the F1 score between the best model 

(Experiment II) and the second-best model (Experiment IV) was only 0.6. 

  



34 

Table 6. Average precision and average recall results and F1 scores for Experiments I, II, III, and IV. 

  AP AP50 AP75 

AR 

(Max 

Dets = 

1) 

AR 

(Max 

Dets = 

10) 

AR 

(Max 

Dets = 

100) 

F1 

Score 

Experiment I: 

Resize Shortest 

Edge of Image + 

Horizontal Flip + 

Random Rotation 

67.5 95.4 80.2 50.0 72.5 72.7 70.0 

Experiment II: 

Resize Shortest 

Edge of Image 

89.0 96.0 94.9 61.0 91.1 91.1 90.0 

Experiment III: 

Resize Shortest 

Edge of Image + 

Horizontal Flip + 

Random 

Brightness 

86.6 95.9 94.6 60.1 89.2 89.2 87.9 

Experiment IV: 

Resize Shortest 

Edge of Image + 

Horizontal Flip + 

Random 

Brightness + 

Random Contrast 

88.2 96.0 94.9 60.8 90.7 90.7 89.4 

 

 The below tables show the evaluation of the final model not only on the test 

dataset but also on the train and validation datasets to understand whether the split of 

the dataset into training, testing and validation datasets was balanced. Moreover, a 

comparison of the pre-trained model, Faster R-CNN R 101 FPN 3x trained on the 

TableBank dataset, and the final fine-tuned model from Experiment II was performed 

to find out whether an improvement was achieved. As shown in Table 7, the average 

precisions of the fine-tuned model for the training dataset, on which the fine-tuned 

model was trained, are higher than for the testing and validation datasets. Nevertheless, 

the results were consistent across the datasets. The average precision results were also 

consistent across the datasets for the pre-trained model. For the majority of the results 

(AP and AP75), average precisions for the fine-tuned model were more than double 



35 

the average precisions of the pre-trained model. For example, AP for the pre-trained 

model on the validation was 41.77 set and 89 for the fine-tuned model which was a 2.1 

times better result. Then, on the test set, APs were 39.09 and 86.48 respectively which 

was a 2.2 times better result for the fine-tuned model.  

 

Table 7. Average precision evaluation on datasets including documents with bordered and borderless 

tables (mixed dataset) for the pre-trained and fine-tuned model. 

Bordered and borderless AP AP50 AP75 

Train 
Pre-trained model 41.01 56.12 39.61 

Fine-tuned model 96.88 98.96 98.96 

Validation 
Pre-trained model 41.77 54.95 40.83 

Fine-tuned model 89.00 96.01 94.87 

Test 
Pre-trained model 39.09 49.44 43.10 

Fine-tuned model 86.48 93.96 92.89 

 

 Additionally, as seen in Table 8 and Table 9, the evaluation was performed on 

images with bordered and borderless tables separately to learn whether the 

improvement was different for each group and also to see whether the split was 

balanced with respect to the table groups. As in the previous table, the results were 

consistent across the datasets for the pre-trained model as well as the fine-tuned model, 

even though the results for the training dataset were consistently higher for the fine-

tuned model and reached average precisions equal to or close to 100. 

 Whereas the pre-trained model scored significantly better on the datasets with 

only bordered tables than on the mixed datasets, the results decreased by more than 

half in some cases of average precisions on the datasets with only borderless tables in 

comparison to the results on the mixed dataset. For example, AP for the pre-trained 

model on the mixed test dataset was 39.09 (as shown in Table 7). Then, on the split 

test set according to the table groups, AP was 71.69 for the documents with bordered 

tables (as shown in Table 8) and 15.9 for documents with borderless tables (as shown 

in Table 9). 

 The results for average precisions for the fine-tuned model were substantially 

higher than for the pre-trained model for both, images with bordered as well as 

borderless tables. For example, on the test set for the documents with bordered tables, 

AP was 71.69 for the pre-trained model and 87.57 for the fine-tuned model (as shown 



36 

in Table 8). Then, for the documents with borderless tables, APs were 15.9 and 85.51 

respectively (as shown in Table 9). 

 As shown in Table 9, for the majority of the results (AP and AP75) on the 

validation and test sets for the documents with borderless tables, average precisions 

for the fine-tuned model were about five times better than the average precisions of 

the pre-trained model. For example, AP for the pre-trained model on the validation set 

was 16 and 87.62 for the fine-tuned model which is a 5.5 times improved result. Then, 

on the test set, APs were 15.9 and 85.51 respectively which is a 5.4 times better result 

for the fine-tuned model. 

 

Table 8. Average precision evaluation on datasets including documents with bordered tables for pre-

trained and fine-tuned models. 

Bordered AP AP50 AP75 

Train 
Pre-trained model 74.90 84.31 78.00 

Fine-tuned model 99.20 100.00 100.00 

Validation 
Pre-trained model 74.34 78.75 78.75 

Fine-tuned model 91.50 96.88 96.88 

Test 
Pre-trained model 71.69 78.17 78.17 

Fine-tuned model 87.57 95.05 91.98 

 

Table 9. Average precision evaluation on datasets including documents with borderless tables for pre-

trained and fine-tuned models. 

Borderless AP AP50 AP75 

Train 
Pre-trained model 19.11 37.41 14.02 

Fine-tuned model 95.94 98.91 98.91 

Validation 
Pre-trained model 16.00 33.88 10.30 

Fine-tuned model 87.62 96.04 93.90 

Test 
Pre-trained model 15.90 27.81 16.72 

Fine-tuned model 85.51 92.81 92.81 

 

 Lastly, a visual quality check was performed to evaluate predictions of the fine-

tuned model on the testing and validation datasets with a confidence threshold of 0.8, 

and classify them as detected, fully or partly, or missed, fully and partly. As fully 



37 

detected are considered predictions when a table is fully within a bounding box. Partly 

detected are detections missing part of the table such as half of the column. Fully 

missed were tables without any predictions and partly missed were image documents 

having only some tables on their page detected. Visual quality evaluation can not only 

evaluate the model’s predictions with respect to the practical use of the results after 

training the model, but also reveal what cases were problematic during the training. 

 As shown in Table 10, in both datasets, only 1 document did not have any table 

detected in the image. In both cases, it was a borderless table, and it was a unique 

sample of the borderless table layout across the datasets. In the rest of the documents 

with the borderless tables, all tables or at least some of them were detected in each 

image. 83% of the image documents in the testing dataset (30 out of 36) and 92% of 

the image documents in the validation dataset (33 out of 36) had all tables correctly 

detected. 

 The bordered tables had the same results for the testing as well as the validation 

dataset. In all image documents, bordered tables were detected at least partly and 92% 

of all bordered tables were correctly detected (23 out of 25). 

 

Table 10. Visual quality evaluation of fine-tuned model's predictions of bordered and borderless tables 

with confidence threshold 0.8 on validation and test datasets. 

  

Detected 

fully 

Detected 

partly 

Missed 

fully 

Missed 

partly 

Test set 
Bordered 23 2 0 0 

Borderless 30 5 1 0 

Validation 

set 

Bordered 23 2 0 0 

Borderless 33 2 1 0 

 

Moreover, the comparison of predictions of the pre-trained and fine-tuned 

models has shown two more improvements. Firstly, as mentioned earlier, most of the 

tables that were missed by the pre-trained model were borderless tables. Nevertheless, 

as illustrated in Figure 17, the predictions of bordered tables became more precise, i.e., 

closer to the ground truth and included the whole content of the table. Even though in 

this case the fine-tuned model incorrectly predicted the three small bordered layout 

elements, for the practical work with the final fine-tuned model, it is not an issue. 



38 

 

Figure 17. Example of improved prediction of a bordered table with confidence threshold at least 0.8 

by the fine-tuned model (right) in comparison to the pre-trained model (left). 

 Secondly, despite the previous example, the detection of the correct layout 

elements has improved with the fine-tuned model. As illustrated in Figure 18, whereas 

the pre-trained model detected the bordered element as a table and missed the 

borderless table, the fine-tuned model correctly detected the borderless table in the 

image document and correctly did not detect the bordered element above it. 



39 

 

Figure 18. Example of improved prediction of a borderless table with confidence threshold at least 0.8 

by the fine-tuned model (right) in comparison to the pre-trained model (left). 

  

  



40 

5 DISCUSSION 

The experiments in the previous chapter showed that the default combination of image 

augmentation setting of LayoutParser, i.e., application of resizing of the image’s 

shortest side, horizontal flipping and random rotation, was not the best approach for 

the custom dataset used in this thesis. The results were substantially better when the 

random rotation of the image was not applied to the training dataset. As the majority 

of image documents were not scanned documents and even the scanned documents did 

not appear to be significantly rotated or skewed, only slight changes in brightness and 

contrast were tested in combination with the resizing of images and horizontal flipping. 

The experiments proved that other tested combinations of augmentations do not make 

much difference in the results of the compared models. It is assumed that if the custom 

dataset contained more scanned or photographed image documents, the models with 

data augmentations reflecting the nature of these documents, such as random 

brightness, contrast, or even rotation and skewness, might have performed better. In 

previous studies of DLA on historical documents, random distortion, skewness and 

rotation did improve the performance of models (Baloun et al., 2021). Nonetheless, 

the results of the model with random rotation applied to the training images were also 

showing substantial improvement in the table detections, and would, therefore, still be 

a satisfactory improvement of the pre-trained model. 

 The maximum number of iterations chosen for the training of the models 

seemed to be optimal for learning the custom dataset. Even though the model was only 

slightly improving its loss approximately from 2000 iterations until 6500 iterations, 

the losses remained stable with a constant gap which suggests no overfitting or 

underfitting and that the model would not learn more with more time. As mentioned 

in the previous chapter, the learning rate was decreased by 0.1 after 6000 and 8000 

iterations which perhaps affected the stabilization of the learning. A gap between 

training and validation loss that is too big could mean that the model does not have a 

suitable capacity for the complexity of the custom dataset. Nevertheless, the difference 

between the training loss and validation loss after 6500 iterations was approximately 

0.05 which is not considered to be a big gap. 

 The evaluation of the final model on the testing and validation datasets showed 

that there was a very small difference in their results. The datasets were therefore 



41 

balanced. The results were higher for the training datasets which had been expected 

because that was the data seen during training.  

 Furthermore, the comparison of performances of the final model and the pre-

trained model proved that fine-tuning the model on the custom dataset substantially 

improved the results for detecting tables in the image documents used in this thesis. 

When comparing the performance separately on the image documents with bordered 

and borderless tables, the improvement was much bigger for the documents with 

borderless tables. Figure 19 illustrates the improved prediction on the comparison of 

predictions for the pre-trained and fine-tuned model on a document with a borderless 

table. The reason for this is probably a small representation of borderless tables in the 

TableBank dataset. In the performance of the final fine-tuned model, the results for 

borderless tables were slightly lower than for the bordered tables. This had been 

expected since it is generally easier to detect borders of tables with clear lines around 

all sides. IoU for the borderless tables could have been smaller and hence resulted in 

the smaller performance numbers. However, visually it could have still been a 

completely good prediction of the borderless table. That is why also visual quality 

check was performed. 

 

Figure 19. Example of improved prediction of a borderless table with confidence threshold at least 0.8 

by the fine-tuned model (right) in comparison to the pre-trained model (left). 

 



42 

 The visual quality evaluation confirmed the significant improvement of the 

table detections after fine-tuning the model. Almost all tables were correctly detected 

or at least detected in a way that the border could be adjusted to its correct position 

when working with the results (60 out of 61 in the validation as well as in the test 

dataset). The pre-trained model missed almost half of the tables in the validation 

dataset (28 out of 61). Whereas the fine-tuned model missed a table only in one 

document in the validation as well as in the testing dataset. In both cases, the table was 

a unique table layout in the whole custom dataset. This might suggest that the model 

would have problems with generalizing if applied to new image documents with 

unique table layouts. However, in other cases with unique tables, where the layout was 

more “traditional”, the model generalized well (see examples in Figure 20).  

 

Figure 20. The three documents are from the validation dataset and the training dataset does not include 

a document with the same table layout. On the left is the document that did not have a table prediction 

with a confidence threshold of 0.8 and its layout is rather complex. The documents in the middle and 

on the right did have a correct table prediction with a confidence threshold of 0.8 and their layouts are 

rather “traditional” based on the position of text in rows and columns. 

  

  



43 

6 CONCLUSION 

Big companies like Wärtsilä process an immense number of documents. Even if 

documents are digitalized, there might still occur an obstacle to extracting some 

information automatically. Apart from costs caused by extracting the information 

manually, documents may contain information that does not have the prime focus now 

but potentially is a source for higher business intelligence and better decisions in the 

future.  

One of the problematic areas of information extraction from documents is 

tables. The proposed solution was table detection using LayoutParser, a tool for 

document layout analysis which enables the detection of various page elements in a 

document including tables. LayoutParser also allows using and fine-tuning of the 

existing pre-trained models available in its Model Zoo on the custom dataset. The main 

goal of this thesis was to accept or reject the hypothesis that fine-tuning a selected pre-

trained model would significantly improve table detection in documents provided by 

Wärtsilä, at least in documents with borderless tables. 

The model chosen for fine-tuning was Faster R-CNN R 101 FPN 3x trained on 

the TableBank dataset. After training with different data augmentations on input image 

documents, the model with the best results was from the experiment where only 

resizing of the shortest image side was applied. However, all the experiments resulted 

in improvement in comparison to the pre-trained model. 

Further evaluation of the best model presented in this thesis, showed that the 

correctness of predictions has doubled on some metrics in comparison to the pre-

trained model. Moreover, when looking at the results only for documents with 

borderless tables, the correctness of predictions has improved five times on some 

metrics. In addition to the evaluation metrics, visual quality evaluation of the 

predictions showed that the majority of the tables were detected well enough for 

further practical use. Thus, the hypothesis was accepted as fine-tuning improved the 

table detection of borderless as well as bordered tables on the custom dataset provided 

by Wärtsilä. 

 The model seemed to generalize well on the documents available for training. 

Nevertheless, the image documents used for training of models in this thesis were 

mostly containing a simple table layout and they were not significantly rotated, skewed 



44 

or containing discoloration as a result of scanning or photographing the document. 

Further testing on table layouts unique to the dataset might show the need for 

additional fine-tuning. Further work could, therefore, improve the results on 

documents with more complex table layouts or documents that were poorly scanned 

or photographed. 

 



 

 

REFERENCES 

About Wärtsilä (n.d.). Wärtsilä. Retrieved January 8, 2023 from 

https://www.wartsila.com/about 

About ImageNet (n.d.). ImageNet. Retrieved November 27, 2022 from 

https://www.image-net.org/about.php 

Baloun, J., Král, P., & Lenc, L. (2021). ChronSeg: Novel Dataset for Segmentation 

of Handwritten Historical Chronicles. In ICAART (2) (pp. 314-322). 

Burkov, A. (2019). The hundred-page machine learning book (Vol. 1, p. 32). Quebec 

City, QC, Canada: Andriy Burkov. 

Camelot: PDF Table Extraction for Humans (2021, July 11). Camelot in GitHub. 

Retrieved January 13, 2023 from https://github.com/camelot-dev/camelot 

Castrillón, M., Déniz, O., Hernández, D., & Lorenzo, J. (2011). A comparison of 

face and facial feature detectors based on the Viola–Jones general object detection 

framework. Machine Vision and Applications, 22(3), 481-494.  

Cyganek, B. (2013). Object detection and recognition in digital images: theory and 

practice. John Wiley & Sons.  

Deep Layout Parsing (n.d.). Layout Parser documentation. Retrieved December 15, 

2022 from https://layout-

parser.readthedocs.io/en/latest/example/deep_layout_parsing/index.html 

Delaitre, V., Laptev, I., & Sivic, J. (2010). Recognizing human actions in still 

images: a study of bag-of-features and part-based representations. In BMVC 2010-

21st British Machine Vision Conference.  

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A 

large-scale hierarchical image database. In 2009 IEEE conference on computer 

vision and pattern recognition (pp. 248-255). Ieee. 

Detection Evaluation (n.d.). COCO - Common Objects in Context. Retrieved 

December 11, 2022 from https://cocodataset.org/#detection-eval 

Elgendy, M. (2020). Deep learning for vision systems. Simon and Schuster. 

Fei-Fei, L., Johnson, J., & Yeung, S. (2018, May). Lecture 11: Detection and 

Segmentation. CS231n: Deep Learning for Computer Vision. Retrieved November 

27, 2022 from http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf 

Form Recognizer – Automated Data Processing Systems (n.d.). Microsoft Azure. 

Retrieved January 13, 2023 from https://azure.microsoft.com/en-us/products/form-

recognizer/ 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.  

https://www.image-net.org/about.php
https://cocodataset.org/#detection-eval
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf


 

 

Li, M. [liminghao1630] (2021, September 28). Model Zoo. TableBank in GitHub. 

Retrieved November 27, 2022 https://github.com/doc-

analysis/TableBank/blob/master/MODEL_ZOO.md 

Li, M. [liminghao1630], & wolfshow (2021, September 28). Model Zoo. DocBank in 

GitHub. Retrieved November 27, 2022 from https://github.com/doc-

analysis/DocBank/blob/master/MODEL_ZOO.md 

Li, M., Cui, L., Huang, S., Wei, F., Zhou, M., & Li, Z. (2020). Tablebank: Table 

benchmark for image-based table detection and recognition. In Proceedings of The 

12th language resources and evaluation conference (pp. 1918-1925). 

Li, M., Xu, Y., Cui, L., Huang, S., Wei, F., Li, Z., & Zhou, M. (2020). DocBank: A 

benchmark dataset for document layout analysis. arXiv preprint arXiv:2006.01038. 

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, 

C. L. (2014). Microsoft coco: Common objects in context. In European conference 

on computer vision (pp. 740-755). Springer, Cham.  

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. 

(2016). Ssd: Single shot multibox detector. In European conference on computer 

vision (pp. 21-37). Springer, Cham. 

lolipopshock (2021, August 21). Model Zoo. LayoutParser in GitHub. Retrieved 

November 27, 2022 from https://github.com/Layout-Parser/layout-

parser/blob/main/docs/notes/modelzoo.md 

Lombardi, F., & Marinai, S. (2020). Deep learning for historical document analysis 

and recognition—A survey. Journal of Imaging, 6(10), 110.  

Mizuno, K., Terachi, Y., Takagi, K., Izumi, S., Kawaguchi, H., & Yoshimoto, M. 

(2012). Architectural study of HOG feature extraction processor for real-time object 

detection. In 2012 IEEE Workshop on Signal Processing Systems (pp. 197-202). 

IEEE. 

Nagy, G., & Seth, S. C. (1984). Hierarchical representation of optically scanned 

documents. International Conference on Pattern Recognition, IEEE, 347–349.  

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: 

Unified, real-time object detection. In Proceedings of the IEEE conference on 

computer vision and pattern recognition (pp. 779-788). 

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time 

object detection with region proposal networks. Advances in neural information 

processing systems, 28. 

Ren, S., He, K., Girshick, R., & Sun, J. (n.d.) Faster R-CNN: Towards Real-Time 

Object Detection with Region Proposal Networks. Retrieved November 27, 2022 

from https://asset-pdf.scinapse.io/prod/639708223/639708223.pdf 



 

 

Shen, Z., Zhang, R., Dell, M., Lee, B. C. G., Carlson, J., & Li, W. (2021). 

LayoutParser: A unified toolkit for deep learning based document image analysis. In 

International Conference on Document Analysis and Recognition (pp. 131-146). 

Springer, Cham.  

Szeliski, R. (2010). Computer Vision: Algorithms and Applications. 

Tables - Amazon Textract (n.d.). Amazon Web Services. Retrieved January 13, 2023 

from https://docs.aws.amazon.com/textract/latest/dg/how-it-works-tables.html 

Tabula-py (2022, November 24). Tabula-py in GitHub. Retrieved January 13, 2023 

from https://github.com/chezou/tabula-py 

Wu, X., Xiao, L., Du, X., Zheng, Y., Li, X., Ma, T., & He, L. (2022). Cross-Domain 

Document Layout Analysis via Unsupervised Document Style Guide. arXiv preprint 

arXiv:2201.09407. 

Wu, X., Zheng, Y., Ma, T., Ye, H., & He, L. (2021). Document image layout 

analysis via explicit edge embedding network. Information Sciences, 577, 436-448. 

Wu, Y., Kirillov, A., Massa, F., Lo, W. Y., & Girshick, R. (2019, October 10). 

Detectron2: A PyTorch-based modular object detection library. Meta AI. Retrieved 

December 4, 2022 from https://ai.facebook.com/blog/-detectron2-a-pytorch-based-

modular-object-detection-library-/ 

Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., & Zhou, M. (2020). Layoutlm: Pre-

training of text and layout for document image understanding. In Proceedings of the 

26th ACM SIGKDD International Conference on Knowledge Discovery & Data 

Mining (pp. 1192-1200).  

Zhong, X., Tang, J., & Yepes, A. J. (2019, September). Publaynet: largest dataset 

ever for document layout analysis. In 2019 International Conference on Document 

Analysis and Recognition (ICDAR) (pp. 1015-1022). IEEE. 

zhxgj (2020, March 26). Pre-trained Faster-RCNN and Mask-RCNN models on 

PubLayNet. PubLayNet in GitHub. Retrieved November 27, 2022 from 

https://github.com/ibm-aur-nlp/PubLayNet/tree/master/pre-trained-models 

 



 

 

APPENDIX 1 

CUDNN_BENCHMARK: false 

DATALOADER: 

  ASPECT_RATIO_GROUPING: true 

  FILTER_EMPTY_ANNOTATIONS: true 

  NUM_WORKERS: 4 

  REPEAT_THRESHOLD: 0.0 

  SAMPLER_TRAIN: TrainingSampler 

DATASETS: 

  PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 

  PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 

  PROPOSAL_FILES_TEST: [] 

  PROPOSAL_FILES_TRAIN: [] 

  TEST: 

  - word-val 

  - latex-val 

  TRAIN: 

  - word 

  - latex 

GLOBAL: 

  HACK: 1.0 

INPUT: 

  CROP: 

    ENABLED: false 

    SIZE: 

    - 0.9 

    - 0.9 

    TYPE: relative_range 

  FORMAT: BGR 

  MASK_FORMAT: polygon 

  MAX_SIZE_TEST: 1333 

  MAX_SIZE_TRAIN: 1333 

  MIN_SIZE_TEST: 800 



 

 

  MIN_SIZE_TRAIN: 

  - 640 

  - 672 

  - 704 

  - 736 

  - 768 

  - 800 

  MIN_SIZE_TRAIN_SAMPLING: choice 

MODEL: 

  ANCHOR_GENERATOR: 

    ANGLES: 

    - - -90 

      - 0 

      - 90 

    ASPECT_RATIOS: 

    - - 0.5 

      - 1.0 

      - 2.0 

    NAME: DefaultAnchorGenerator 

    OFFSET: 0.0 

    SIZES: 

    - - 32 

    - - 64 

    - - 128 

    - - 256 

    - - 512 

  BACKBONE: 

    FREEZE_AT: 2 

    NAME: build_resnet_fpn_backbone 

  DEVICE: cuda 

  FPN: 

    FUSE_TYPE: sum 

    IN_FEATURES: 



 

 

    - res2 

    - res3 

    - res4 

    - res5 

    NORM: '' 

    OUT_CHANNELS: 256 

  KEYPOINT_ON: false 

  LOAD_PROPOSALS: false 

  MASK_ON: false 

  META_ARCHITECTURE: GeneralizedRCNN 

  PANOPTIC_FPN: 

    COMBINE: 

      ENABLED: true 

      INSTANCES_CONFIDENCE_THRESH: 0.5 

      OVERLAP_THRESH: 0.5 

      STUFF_AREA_LIMIT: 4096 

    INSTANCE_LOSS_WEIGHT: 1.0 

  PIXEL_MEAN: 

  - 103.53 

  - 116.28 

  - 123.675 

  PIXEL_STD: 

  - 1.0 

  - 1.0 

  - 1.0 

  PROPOSAL_GENERATOR: 

    MIN_SIZE: 0 

    NAME: RPN 

  RESNETS: 

    DEFORM_MODULATED: false 

    DEFORM_NUM_GROUPS: 1 

    DEFORM_ON_PER_STAGE: 

    - false 



 

 

    - false 

    - false 

    - false 

    DEPTH: 101 

    NORM: FrozenBN 

    NUM_GROUPS: 1 

    OUT_FEATURES: 

    - res2 

    - res3 

    - res4 

    - res5 

    RES2_OUT_CHANNELS: 256 

    RES5_DILATION: 1 

    STEM_OUT_CHANNELS: 64 

    STRIDE_IN_1X1: true 

    WIDTH_PER_GROUP: 64 

  RETINANET: 

    BBOX_REG_WEIGHTS: 

    - 1.0 

    - 1.0 

    - 1.0 

    - 1.0 

    FOCAL_LOSS_ALPHA: 0.25 

    FOCAL_LOSS_GAMMA: 2.0 

    IN_FEATURES: 

    - p3 

    - p4 

    - p5 

    - p6 

    - p7 

    IOU_LABELS: 

    - 0 

    - -1 



 

 

    - 1 

    IOU_THRESHOLDS: 

    - 0.4 

    - 0.5 

    NMS_THRESH_TEST: 0.5 

    NUM_CLASSES: 80 

    NUM_CONVS: 4 

    PRIOR_PROB: 0.01 

    SCORE_THRESH_TEST: 0.05 

    SMOOTH_L1_LOSS_BETA: 0.1 

    TOPK_CANDIDATES_TEST: 1000 

  ROI_BOX_CASCADE_HEAD: 

    BBOX_REG_WEIGHTS: 

    - - 10.0 

      - 10.0 

      - 5.0 

      - 5.0 

    - - 20.0 

      - 20.0 

      - 10.0 

      - 10.0 

    - - 30.0 

      - 30.0 

      - 15.0 

      - 15.0 

    IOUS: 

    - 0.5 

    - 0.6 

    - 0.7 

  ROI_BOX_HEAD: 

    BBOX_REG_WEIGHTS: 

    - 10.0 

    - 10.0 



 

 

    - 5.0 

    - 5.0 

    CLS_AGNOSTIC_BBOX_REG: false 

    CONV_DIM: 256 

    FC_DIM: 1024 

    NAME: FastRCNNConvFCHead 

    NORM: '' 

    NUM_CONV: 0 

    NUM_FC: 2 

    POOLER_RESOLUTION: 7 

    POOLER_SAMPLING_RATIO: 0 

    POOLER_TYPE: ROIAlignV2 

    SMOOTH_L1_BETA: 0.0 

    TRAIN_ON_PRED_BOXES: false 

  ROI_HEADS: 

    BATCH_SIZE_PER_IMAGE: 512 

    IN_FEATURES: 

    - p2 

    - p3 

    - p4 

    - p5 

    IOU_LABELS: 

    - 0 

    - 1 

    IOU_THRESHOLDS: 

    - 0.5 

    NAME: StandardROIHeads 

    NMS_THRESH_TEST: 0.5 

    NUM_CLASSES: 1 

    POSITIVE_FRACTION: 0.25 

    PROPOSAL_APPEND_GT: true 

    SCORE_THRESH_TEST: 0.05 

  ROI_KEYPOINT_HEAD: 



 

 

    CONV_DIMS: 

    - 512 

    - 512 

    - 512 

    - 512 

    - 512 

    - 512 

    - 512 

    - 512 

    LOSS_WEIGHT: 1.0 

    MIN_KEYPOINTS_PER_IMAGE: 1 

    NAME: KRCNNConvDeconvUpsampleHead 

    NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true 

    NUM_KEYPOINTS: 17 

    POOLER_RESOLUTION: 14 

    POOLER_SAMPLING_RATIO: 0 

    POOLER_TYPE: ROIAlignV2 

  ROI_MASK_HEAD: 

    CLS_AGNOSTIC_MASK: false 

    CONV_DIM: 256 

    NAME: MaskRCNNConvUpsampleHead 

    NORM: '' 

    NUM_CONV: 4 

    POOLER_RESOLUTION: 14 

    POOLER_SAMPLING_RATIO: 0 

    POOLER_TYPE: ROIAlignV2 

  RPN: 

    BATCH_SIZE_PER_IMAGE: 256 

    BBOX_REG_WEIGHTS: 

    - 1.0 

    - 1.0 

    - 1.0 

    - 1.0 



 

 

    BOUNDARY_THRESH: -1 

    HEAD_NAME: StandardRPNHead 

    IN_FEATURES: 

    - p2 

    - p3 

    - p4 

    - p5 

    - p6 

    IOU_LABELS: 

    - 0 

    - -1 

    - 1 

    IOU_THRESHOLDS: 

    - 0.3 

    - 0.7 

    LOSS_WEIGHT: 1.0 

    NMS_THRESH: 0.7 

    POSITIVE_FRACTION: 0.5 

    POST_NMS_TOPK_TEST: 1000 

    POST_NMS_TOPK_TRAIN: 1000 

    PRE_NMS_TOPK_TEST: 1000 

    PRE_NMS_TOPK_TRAIN: 2000 

    SMOOTH_L1_BETA: 0.0 

  SEM_SEG_HEAD: 

    COMMON_STRIDE: 4 

    CONVS_DIM: 128 

    IGNORE_VALUE: 255 

    IN_FEATURES: 

    - p2 

    - p3 

    - p4 

    - p5 

    LOSS_WEIGHT: 1.0 



 

 

    NAME: SemSegFPNHead 

    NORM: GN 

    NUM_CLASSES: 54 

  WEIGHTS: https://www.dropbox.com/s/6vzfk8lk9xvyitg/model_final.pth?dl=1 

OUTPUT_DIR: outputs/faster_rcnn_R_101_FPN_3x/ 

SEED: -1 

SOLVER: 

  BASE_LR: 0.0005 

  BIAS_LR_FACTOR: 1.0 

  CHECKPOINT_PERIOD: 30000 

  CLIP_GRADIENTS: 

    CLIP_TYPE: value 

    CLIP_VALUE: 1.0 

    ENABLED: false 

    NORM_TYPE: 2.0 

  GAMMA: 0.1 

  IMS_PER_BATCH: 2 

  LR_SCHEDULER_NAME: WarmupMultiStepLR 

  MAX_ITER: 270000 

  MOMENTUM: 0.9 

  NESTEROV: false 

  STEPS: 

  - 210000 

  - 250000 

  WARMUP_FACTOR: 0.001 

  WARMUP_ITERS: 1000 

  WARMUP_METHOD: linear 

  WEIGHT_DECAY: 0.0001 

  WEIGHT_DECAY_BIAS: 0.0001 

  WEIGHT_DECAY_NORM: 0.0 

TEST: 

  AUG: 

    ENABLED: false 



 

 

    FLIP: true 

    MAX_SIZE: 4000 

    MIN_SIZES: 

    - 400 

    - 500 

    - 600 

    - 700 

    - 800 

    - 900 

    - 1000 

    - 1100 

    - 1200 

  DETECTIONS_PER_IMAGE: 100 

  EVAL_PERIOD: 0 

  EXPECTED_RESULTS: [] 

  KEYPOINT_OKS_SIGMAS: [] 

  PRECISE_BN: 

    ENABLED: false 

    NUM_ITER: 200 

VERSION: 2 

VIS_PERIOD: 0 


