

Retrievimage - Online Image

Retriever

Tuan Nguyen

BACHELOR’S THESIS
May 2023

Bachelor of Engineering
Software Engineering

ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Degree Programme in Software Engineering

TUAN NGUYEN:
Retrievimage - Online Image Retriever

Bachelor's thesis 38 pages, appendices 5 pages
May 2023

The purpose of this project was to provide a solid foundation of knowledge on
image retrieval systems, including necessary theoretical definitions, components
of such applications, and basic concepts of image retrieval. More specifically, it
aimed to create a schema, some instructions, and a starting point to quickly pick
up for prototyping machine learning models. From that, the idea of an online
platform that was able to match the target with its equivalent in the set, given a
collection of images and a query image, was decided.

To achieve this, Python 3 was chosen as the main programming. The application
was structured according to a pipeline that was particularly designed to integrate
machine learning models into web applications, and further on, continuous
delivery for machine learning. However, instead of training a model from end-to-
end, Transfer Learning was introduced, and the idea of using a pre-trained model
was considered better and saved time and resources. The pre-trained model put
into use was from OpenVINO, an open-source toolkit boosting the performance
of machine learning models significantly. The program was meant to be set up
as an online service running on a server that could handle uploads of images
from users, and exchange information with them via API endpoints. Every time
the app was shut down, it automatically erased all the stored data, so there was
no need to implement authentication functionality at the moment. The server was
developed in Python with Flask as the web framework, and the Jinja2 template
engine for rendering the user interface.

In the end, the web application was able to achieve the initial goals set for it. At
the bare minimum, the expected counterpart of the target image was successfully
found by the image retrieval model, with satisfactory accuracy, then presented on
the website's front end. Literature in the field, journals, books, articles, and
research papers were studied and referenced for conceptual sections of this
thesis. On the other hand, on some occasions, the model failed to capture the
expected result, as images were not uniformly pre-processed before being fed
into the model. It was plain to see that larger image batches required more
predicting and rendering time. Examples were described to demonstrate the work
in the Appendix section. From this, remarks were given, and enhancements were
suggested to improve the overall production of this online image retriever.

Key words: machine learning, openvino, web development, image retrieval,
python, flask

CONTENTS

1 INTRODUCTION ... 6

2 BACKGROUND AND OBJECTIVE... 7

2.1 Project Background .. 7

2.2 Project Goal .. 8

2.3 Technology Stack ... 9

2.3.1 Python ... 9

2.3.2 Flask .. 9

2.3.3 Jinja ... 10

2.3.4 OpenVINO .. 10

3 IMAGE RETRIEVAL WEB APPLICATION REQUIREMENTS 12

3.1 Web Application Development ... 12

3.2 Functional Requirements ... 13

3.3 Non-functional Requirements... 13

4 TECHNICAL IMPLEMENTATION ... 15

4.1 Planning .. 15

4.2 Transfer learning .. 15

4.3 Application Model ... 16

5 CODE EXPLANATION .. 19

5.1 Introduction to the Image Retrieval Model of OpenVINO 19

5.2 Configurations for Flask Web Application 19

5.3 Helper functions for Web Application ... 20

5.4 Running Image Retrieval In CLI ... 22

5.5 Web Application Endpoints .. 22

5.5.1 Uploading Image List .. 22

5.5.2 Choosing Target Image .. 23

5.6 User Interface ... 24

6 DISCUSSION AND FURTHER DEVELOPMENT 27

REFERENCES ... 29

APPENDICES ... 34

Appendix 1. Football Manager 2023 Team Logos Experiment 34

4

ABBREVIATIONS AND TERMS

API Application Programming Interface

arXiv A free, online repository of academic papers, often

preprints, in multiple fields of studies

CBIR Content-based Image Retrieval

CLI Command line interface

CNN Convolutional Neural Network

CPU Central Processing Unit

CSS Cascading Style Sheets

FM 23 Football Manager 2023

GET A method of REST API to obtain necessary information

legally from a service

Git Free and open-source distributed version control

system authored by Linus Torvalds for software

development

GitHub online platform providing hosting for software

development and version control using Git

GPU Graphics Processing Unit

HTML HyperText Markup Language

JPEG Joint Photographic Experts Group

MobileNetV2 A convolutional neural network architecture designed

by Google for efficient mobile and embedded vision

applications

OpenVINO Open Visual Inference and Neural network

Optimization

PNG Portable Network Graphics

POST A method of REST API to write or register information

legally to a service

REST Representational State Transfer

REST API API conforming to the contraints of REST architectural

styles

RGB Red-Green-Blue color model

TAMK Tampere University of Applied Sciences

5

UI User interface

VPU Vision Processing Unit

6

1 INTRODUCTION

Over the last few years, the fields of machine learning and image retrieval have

experienced remarkable growth, offering creative and pragmatic solutions to

intricate challenges. With the emergence of powerful learning algorithms and the

rise of extensive data, machine learning has emerged as a significant driving

force behind countless technological breakthroughs, extending from speech-

based assistants to self-driving automobiles (Goodfellow, Bengio & Courville,

2016). Meanwhile, image retrieval approaches have empowered users to shift

through and inspect vast image databases, thereby facilitating novel applications,

including facial recognition, object detection, and content-based image retrieval

(Smeulders, Worring, Santini, Gupta & Jain, 2000).

As a consequence of these accomplishments, there has been a marked

enhancement in the construction of internet-enabled applications that apply

machine learning and image retrieval. Among these, web-based image retrieval

systems are a typical representation, which allow users to navigate and access

images from a vast database using distinct search criteria such as color, texture,

and shape (Baeldung, no date). The application can be employed in diverse

domains, spanning from commercial transactions and social media to medical

services and security.

This thesis aimed to develop a web-based image retrieval application leveraging

the Python-Flask duo and image retrieval methodologies. More specifically, the

application capitalizes on deep learning models such as Convolutional Neural

Networks (CNNs) to extract attributes from images and conduct similarity

assessments, enabling the retrieval of comparable images from a massive

database. The objective of this project was to create a web-based platform that

allows users to upload images and conduct image-to-image searches within a

database, catering to those looking for close or identical images. Through this

thesis, we aim to make an impact in the thriving field of image retrieval, while

illustrating the practical applications of machine learning in real-world scenarios.

7

2 BACKGROUND AND OBJECTIVE

2.1 Project Background

Image retrieval is a term describing the process of acquiring an image in the

database. There has been research and comparisons on how to return the most

accurate result given the conditions of the input query. Up to now, the most widely

used and effective method for image retrieval demonstrations is content-based

image retrieval or CBIR. How CBIR works is that model sorts out the desired

image stored in a database that is most similar to the query image based on

shapes, colors, texture, and spatial information. (Baeldung, no date)

Over recent years, machine learning has been the talk of the town from all over

the globe, and research in the field has been hotter than ever. In 2021, an average

of about 15136 papers were submitted to arXiv per month, accounting for 33.6%,

which was the highest among all categories (arXiv info, no date). And in 2022,

according to ame5, a contributor on arXiv blog, the page reached a milestone of

more than 2 million articles in total, and up to 1200 new submissions every day

(ame5, 2022). This has led to inventions and discoveries of never-seen-before

aspects of machine learning like semi-supervised learning, self-supervised

learning, and so on, concentrating more on the architecture of models able to

perform tasks of both computer vision and natural language processing.

However, in 2018, there was a post on University World News mentioning the

reason behind the explosion of research publications and the consequences it

brought about. According to Philip G Altbach and Hans de Wit (2018), academic

publishing experienced a crisis because of the pressure on top journals,

emergence of predatory publishers, and focus on unnecessary publications. The

growing trend of requiring doctoral candidates to publish their research in

academic journals and replace traditional dissertations made a huge contribution

to the explosion of research publications, which led to difficulties in evaluation

and peer reviews.

8

With a total of 181630 research papers being published on arXiv platform during

the year 2021 (arXiv info, no date), from the perspective of Philip G Altbach and

Hans de Wit, it is obvious that only a fraction of publications get the most attention

and applied to real-life applications. The common environment settings used for

research are usually ideal and equipped with some of the most optimal tools and

hardware for computing and processing, which makes it almost impossible to

replicate when put into use with ordinary and affordable setups, and leave most

papers unnoticed with little to no impact.

2.2 Project Goal

For a long time, individuals have employed text-based queries to search for

images. However, this method is not as effective as using images to search for

images. This is because it depends on the user's ability to accurately describe

the image in words, which can be challenging, especially if the user is unfamiliar

with the technical vocabulary used to describe images. Moreover, searching for

images using text necessitates that the image has been properly annotated with

appropriate keywords and metadata. However, by shifting to content-based

image retrieval, the limitations of text-based queries can be overcome, as this

technique relies on the image's visual features to search for similar images rather

than relying on keywords or metadata (Baeldung, no date).

Nowadays, websites are a no-brainer for us when it comes to displaying,

accessing, and gathering information, latest news all around the world. Thanks

to the advancements of web development alongside machine learning

frameworks over the recent years, with just some steps, people that are not

familiar with machine learning can still get a taste of the model without in-depth

knowledge of software engineering through a web-based user interface.

With that being said, this project is conducted to provide users with an

environment to experiment with how image retrieval looks in the form of a web

application. It is achieved by applying OpenVINO's Image Retrieval model, which

is backboned by one of Google's most famous architectures for mobile models,

MobileNetV2 (Intel, no date).

9

2.3 Technology Stack

2.3.1 Python

Python was first introduced to the world by Guido Van Rossum in 1991. It is a

high-level interpreted programming language, and arguably the world's most

popular programming language because it is beginner-friendly and pragmatic

language. The language can be used to develop server-side applications with

frameworks like Django, desktop graphical user interfaces, or scientific and

numeric analysis. (Fireship, 2021)

Ever since the booming of Big Data, Artificial Intelligence, and Machine Learning

has always been the top news topics when it comes to the field of Computer

Science. With its ease to learn, use, and understand as well as its numerical and

analytical power, Python takes first place as the programming of choice

implementations of algorithms, models, or libraries related to machine learning

and data visualization in both research and practice.

Besides the libraries and frameworks available for machine learning, there is

plenty of tools and support available for learning and using Python because it

also has a sizable and vibrant developer community. (Python, no date)

2.3.2 Flask

Flask is a Python-based micro-framework designed for web application

development. Its micro-framework feature, which results in lightweight and

flexible characteristics, means that it does not require any specific frameworks or

tools. As per the official Flask documentation (2020), "Flask is user-friendly and

an excellent tool for building web applications and sites." By prioritizing simplicity

and flexibility, Flask offers developers a faster path to creating web applications.

Flask can be used to create web applications that let users interact graphically

with machine learning models. Besides, Flask operates on the server rather than

in web browsers of users due to its server-side characteristic. When using

10

machine learning models, this is an advantage because it enables the model to

be trained and operated on a server, which may have more resources than end

devices. (Flask, no date). Although Javascript, which is mainly a client-side

language, can be used for machine learning purposes, it is not as effective as

Python due to a large number of dynamic libraries and frameworks specifically

designed for creating machine learning models, so it may be more convenient to

use the Flask-Python duo for web applications involving machine learning models

(Grinberg, 2018).

2.3.3 Jinja

Jinja, or jinja2, is a powerful and widely used templating engine for Python that is

designed to be fast, flexible, and easy to take up (Jinja, no date). It is specifically

the number one contender when used alongside the Flask web framework

(Grinberg, 2018).

How Jinja works simply is the template contains so-called "special placeholders",

and these enable developers to write code that has almost the same syntax as

the Python programming language. After that, data is collected and passed to the

template to render the final document. One of the key features of Jinja is the

ability to support template inheritance, which allows easy reusing of common

elements across multiple templates. Cutting down on the amount of repeated

code can significantly ease the process of creating and maintaining a web

application. Jinja is a useful tool for running dynamic web applications as it

supports a broad variety of expressions, including mathematical and logical

operators. (Jinja, no date)

2.3.4 OpenVINO

OpenVINO, or Open Visual Inference and Neural network Optimization, is an

open-source toolkit developed by Intel that allows developers to optimize deep

learning models that have already been pre-trained for plenty of hardware

platforms, such as CPUs, GPUs, and VPUs. It, as well, supports the deployment

of machine learning models to edge devices with efficient performance, low

power consumption, and a compact footprint. Moreover, OpenVINO offers

11

various pre-trained models that may be picked up to quickly get started with

developing deep learning applications, without the need to implement them from

scratch. (Intel, no date)

OpenVINO is extensively put into use in numerous applications regarding image

and object recognition, facial recognition, and object detection. Developers can

test and evaluate the performance of models on various hardware platforms using

the demo suite included in the toolkit (Condon, 2018). Along with support for

many popular frameworks like TensorFlow or PyTorch, OpenVINO toolkit also

facilitates several libraries and APIs that have the capability to enhance the

performance of deep learning models (Intel, no date).

12

3 IMAGE RETRIEVAL WEB APPLICATION REQUIREMENTS

3.1 Web Application Development

The fascinating history of web development can be traced back to the 1980s,

when a British scientist named Tim Berners-Lee, who was working at CERN at

the time, launched World Wide Web (WWW) in 1989, and the first web page and

web server in 1991, which users can now still visit at info.cern.ch (CERN, no

date). The history of web development is also intertwined with the development

of the Internet. The 1990s saw the rise of web browsers like Netscape Navigator

and Internet Explorer, which gave users access to websites and interact with

them. Early websites were virtually built on HyperText Markup Language (HTML)

and Cascading Style Sheets (CSS). Then came the introduction of Javascript to

the world in 1995 which enabled developers to extend the limits of HTML and

start creating dynamic web pages (MacManus, 2020). In recent years, the drastic

emergence of mobile devices and mobile web has further transformed web

development, making responsive designs increasingly essential, and allowing

websites to adjust their layouts to fit different screen resolutions (Marcotte, 2011).

Nowadays, thanks to their implementations and easy-to-get-started

characteristic, web frameworks like React and Vue are preferred to build and

scale web applications rapidly.

The growth and demand for web development have also increased significantly

over the last several years. As per the US Bureau of Labor Statistics (no date), it

is estimated that the employment of web developers tends to go up 23 percent

during the period between 2021 and 2031, which is much quicker than the usual

rate for all occupations. The remarkable explosion of digital marketing and e-

commerce, as well as the widespread adoption of mobile devices, are driving this

demand. The change towards remote work and online services has also been

accelerated by the COVID-19 pandemic, increasing the demand for qualified web

developers. Additionally, the growth of emerging technologies is opening new

opportunities for web developers to innovate and produce cutting-edge web

apps.

info.cern.ch

13

3.2 Functional Requirements

The functional requirements that are compulsory to function the web application

in this project are as follows:

• Application must start when accessing the URL generated by either using

Python and Flask from the command line or free public hosting services

after deployment.

• Web app must show its initial state when users first access the link.

• Buttons in the application must be present sufficiently and suitably.

• Users must be able to choose any number of images to upload, upload

them to the web app, and view the images under the form of a table with

uploaded dates.

• Actions in each item on the list must work properly, meaning that each

image should be able to be deleted or selected as target.

• Users should be able to add more images to the list by uploading new

images.

• Radio buttons below the query image table should assist users in choosing

the right number of images to show in the result section.

• "Predict" button must trigger the Image Retrieval model at the back and

returns results to the frontend, if and only if a target image is decided.

• Each predicted image should have an according score calculated by

distance from it to target image in the prediction table.

• "Refresh" button should be able to clear the current state, taking users

back to the application's initial state.

3.3 Non-functional Requirements

The non-functional requirements that are compulsory to function the web

application in this project are as follows:

• Application should have a table to display a list of query images that acts

as a mock image database.

14

• Each item on the query image list should have information on its uploaded

date, and actions to be deleted or selected as target.

• Target image and predicted results should appear separately as a

prediction section.

• Application should have a table to display a list of predicted results taken

from the query image list.

15

4 TECHNICAL IMPLEMENTATION

4.1 Planning

The first step in the technological execution of Retrievimage is to plan what can

be created so as to demonstrate machine learning in general, and image retrieval

to be specific, in production and how the product can achieve the desired goal.

For this project to be successful, the following questions should be taken into

account and analyzed:

• How should the image retrieval model be trained? Should we start from

scratch, or pick up a pre-trained model on the internet?

• If we choose to start from scratch, how many resources do we need? How

is the pipeline constructed? How is success defined and how long does it

take for the model to reach expected results?

• What technologies should be picked up for developing the web

application?

• Where should the images be temporarily stored when users upload them

onto the web application?

After careful consideration, it is decided that Retrievimage will be constructed as

a middleman to help find similar images given an input photo from clients. Using

a website is excellent to demonstrate image retrieval in an interactive

environment to those interested in playing around with applications of image

retrieval and seeing the model function in production. Moreover, Retrievimage

provides everyone with a template as a starting point to quickly pick up and start

building an interface prototyping the machine learning model of choice.

4.2 Transfer learning

Transfer learning refers to a machine learning technique whereby a model pre-

trained on a source task is subsequently utilized as a starting point to facilitate

the learning of a target task (Pan & Yang, 2010). The pre-trained model serves

16

as a starting point for the new task, with its learned internal representation being

a feature extractor (Yosinski, Clune, Bengio & Lipson, 2014). This approach can

significantly reduce the computational cost of training a new model from scratch

while improving its accuracy and generalization ability. Transfer learning

leverages the pre-existing knowledge learned by models trained on large and

complex datasets, allowing for the recognition of generalizable features that can

be applied to other related tasks (Weiss, Khoshgoftaar & Wang, 2016). Thanks

to the efficiency and flexibility of pretrained models, the potential applications of

transfer learning span across various areas, such as natural language

processing, computer vision, and speech recognition, and the technique can

significantly reduce the amount of data required for training new models, making

it a valuable tool for addressing data scarcity issues (Oquab, Bottou, Laptev &

Sivic, 2014).

4.3 Application Model

FIGURE 1. Pipeline to build and integrate an ML model into web application for

production (Sato, Wider & Windheuser, 2019).

FIGURE 1 depicts the most common pipeline for a machine learning model from

training to web development codebase integration, and deployment onto the

Internet for public use. The pipeline begins with collecting data, preprocessing

data using different techniques like data labeling and data cleaning, feature

engineering, and writing the code to train the model from scratch. The

preprocessed data is split into training, validation, and test sets to evaluate how

model performs after the training process completes with the appropriate choice

17

among various architectures and techniques. The trained model is then evaluated

on the validation and test sets, and optimized with the help of hyperparameter

tuning and other techniques. The web app code will be modified, and the machine

learning model will be embedded into the web application for a specific task once

optimized and ready to serve. The whole application is then packaged and

deployed in a production environment for the purpose of generating predictions

in real-time. This description is a shorter version big-picture, extended view of

continuous delivery for machine learning, where production environment is

continually monitored, model is incrementally improved by re-training with new

online input data, feedback loops from user feedback, production metrics, and

model performance metrics to keep the machine learning application from being

ineffective and irrelevant, but all of them are beyond the scope of Retrievimage.

The application design of Retrievimage is modeled after the pipeline

demonstrated above. However, the approach taken is different from the

conventional way of training machine learning models from scratch. Instead, with

the idea of Transfer Learning, a pre-trained model is used to attain the desired

results more efficiently in terms of both time and resources. The rationale behind

this decision is that creating a fully-functional and high-performing machine

learning model requires a significant amount of time and effort to go through the

end-to-end training, testing, and evaluation processes, which are conducted in

multiple loops to allow the model to enhance its learning after each iteration, and

can be both computationally expensive and time-consuming.

That being said, the concentration is primarily on developing Python code for

machine learning model application and web development. The image retrieval

model is referenced from the source code of a demo on GitHub, where the model

helps to identify similar images in each frame of a video using dependencies and

helper functions from OpenVINO™ Toolkit. The source code contains classes

that build up the structure for an ImageRetrieval object, providing each instance

with essential public methods to complete tasks such as handling input video or

image lists, searching for images in the gallery, and processing images by

computing embeddings and distances for each item. With this foundation in place,

another Python file is created to serve the primary purpose of image retrieval,

with a function defined to instantiate the ImageRetrieval class. The instance is

18

then populated with appropriate arguments, mainly from user inputs and uploads,

when they interact with the user interface. The program proceeds to process all

the images, converting them into scalars or vectors, and returns the number of

results based on the conditions specified by users.

Regarding the web development aspect, Flask-Jinja is a popular combination for

Python developers because it is easy to use, fast, and straightforward for demo

applications and prototypes. When the application is accessed for the first time,

it automatically directs users to the home path, which is "/", and activates the

home() method to create the initial user interface. Users can start interacting with

the website by selecting images and uploading them to the site from this UI. Since

the home route accepts both GET and POST methods and uploads are classified

as POST requests, the home() method is activated again to process the inputs

and save them in the app as a Python dictionary with items that are numbered

and indexed at 0, each containing a file-name and upload date. Once the POST

request has been properly processed, the method returns the processed

variables to the HTML template for rendering.

One useful feature of Jinja in the frontend is its ability to incorporate inline Python

code into HTML templates using curly brackets. As a result, it is much easier to

list images on the user interface with just a few steps of Python for-loop. Each

item on the list has specific actions that users can activate, and each of these

actions directs users to its API endpoint and methods, which are delete() to

remove an image, select() to designate an image as the target, and deselect() to

remove the image from being the target. After images are uploaded, and a target

is chosen, it is time for predictions. The predict() method manages everything

related to image retrieval. When the "Predict" button is clicked, predict() is called,

and in that function, it combines all the necessary values for the model and

triggers the Retriever function with that set of arguments. Finally, the "/refresh"

endpoint points to the refresh() method, which erases everything with one click

of "Refresh", including the result section, and takes users back to the starting

view.

19

5 CODE EXPLANATION

5.1 Introduction to the Image Retrieval Model of OpenVINO

The image retrieval model utilized in the web application runs on the backend

and its code is derived from the official Image Retrieval Python demo

implemented by OpenVINO. This demo provides users with step-by-step

instructions on how to achieve the same level of performance and results using

a CLI program provided by the user interface. In addition, there is also further

information on the model's implementation from OpenVINO with maximum

performance, color model, and input/output dimensions. (Intel, no date)

On the other hand, the demo was designed to handle target files in video format,

which is not in line with the goal of this research paper. Therefore, adjustments

have been made to enable processing of images as target files. Additionally, the

user interface component of the program has been eliminated, so that when

activated from the web user interface, the program quietly executes the complete

process in the backend, returns the outcomes, and exhibits them on the frontend

of the web application.

5.2 Configurations for Flask Web Application

Environment variables are defined as a collection of parameters facilitating the

operation of applications developed in Flask. Essentially, an environment is a

directory or a placeholder that consists of all the prerequisites for an application

to run successfully. Thanks to environment variables, users can modify built-in or

even add more personalized settings and test the overall environment without

affecting system-wide variables, as well as categorizing the type of environment

for the Flask application directly from the codebase. (EDUCBA, no date)

20

FIGURE 2: Defining configuration variables.

FIGURE 3: Importing configuration variables to main program.

According to Todd Birchard of Hackers and Slackers, though considered to be

fast and convenient, inline configuration of environment variables for Flask

applications is never a good practice at all. In fact, this has the possibility to

serious problems when configurations are mutated while the app is running, or

leaks of sensitive values such as secret keys declared in the middle of source

code. Another slightly better method is to update the variables in bulk, but this

resembles the above-mentioned pattern only with a different look. (Birchard,

2018)

Then there is the method that I am using to configure environment variables. It is

said to be the simplest way, yet clean and efficient, as it allows us to remove the

mess from the main program by seperating configuration into its file, while

maintaining the app logic flow. (Birchard, 2018)

5.3 Helper functions for Web Application

These modules play a big role during the coding phase of the application as they

are defined at the top and enable reusing the functionality without the need to

rewrite the whole procedure each time it needs referring to, which saves a whole

lot of time at both ends.

21

The condition for a procedure to be modularized is how frequently the function is

called and how complex the procedure code can be. It is clear that a procedure

should be modularized if it is used in many places for the same purpose, with just

different inputs. There might be times when the procedure is only called once,

but the logic is complicated, and it takes up a lot of spaces between the lines of

code in the main program. That is a sign of modularization of the function for later

references.

FIGURE 4: Helper function generating list of images.

The figure above demonstrates the process of getting the filenames from the

dictionary of images and listing them into a text file, each associated with an index

number, in such a way that this text file will later be sent to the backend, where

the Image Retrieval model is triggered and processes the images mentioned in

the text file.

FIGURE 5: Helper function validating an uploaded image file.

Every time users upload files onto the website, procedure described in FIGURE

5 has the responsibility to check whether the files are valid images or not. It is

done by simply separating the filename into two parts: name (before the dot), and

extension (after the dot). Since a list of extensions is already created, the file

extension is the only part that is put to the test. Additionally, both parts of the

filename must be all converted to lowercase characters, which makes the

checking process easier. Since we only process simple RGB images, the

application only accepts common image extensions like PNG or JPEG.

22

5.4 Running Image Retrieval In CLI

From OpenVINO's demo for Image Retrieval in Python, the code has been

referenced and modified in order to execute on an input image and display the

results in form of log messages instead of processing frame to frame from a video

or webcam. Also in Python, users can run the program in the command line

interface given this simple syntax template:

"python retriever.py <path-to-target-image> <path-to-image-list> <k>"

• path-to-target-image: relative path to the target image file

• path-to-image-list: relative path to the text file containing image paths

• k: number of elements chosen as final result display

In this way, users have the flexibility to define the arguments of the Image

Retrieval model without having it hard-coded into the program's codebase. At the

end of the execution, there are prompts for the elapsed time - how long it takes

for the whole procedure and result. Each element in the first component of result

consists of the image filename associated with a metric score, defined by the

distance from this image to the target image. In Python, list slicing still works

perfectly even if the upper bound is set beyond the length. Therefore, unless k is

set to 0 or image list is empty, application will work properly, and result list is

prompted in ascending order of distance score.

5.5 Web Application Endpoints

5.5.1 Uploading Image List

When receiving a POST request from a user, the web application investigates the

request body and searches for list of images (StackOverflow, 26.6.2019). Then,

the list gets iterated through, and each element is examined from the filename to

its extension (Flask, no date). If satisfied, every image is associated with the

period of time it is uploaded to the app, so that the app can provide more

information to the user interface. In Python, dictionaries are known for fast

23

indexing of keys and values, equivalent to hashmaps, so all the image-date pairs

are appended to a dictionary predefined at the top of the program.

This endpoint, at the same time, also serves as the main path, or homepage, for

the application. In case of a GET request, such as a page refresh or a first-time

visit to the page, render_template renders the HTML template along with some

of the keyword variables given as arguments of the method (Flask, no date).

FIGURE 6: Image uploading and homepage rendering.

5.5.2 Choosing Target Image

Instead of implementing another file uploading field for the target image like how

it is done with uploading the initial image list, it seems to be more convenient to

give users the choice to select the target image right from the uploaded list.

Generally speaking, there is no method clearly better or more efficient than the

other, so it really comes down to the preference of the developers when choosing

the suitable implementation for the project.

24

FIGURE 7: Selecting target image endpoint.

FIGURE 8: Deselecting target image endpoint.

The figures above are the behind-the-scenes of what happens at the back after

an image has been selected or deselected as target. Each function involves

dealing with the environment variables TARGET_IMAGE, the image itself, and

IMAGE_LIST, a text file containing list of images used to feed the Image Retrieval

model. Furthermore, if the target image is deleted from the image list, deselection

is triggered as a way to reset the image list and leave the target spot available for

the rest. It is much simpler to delete the file and regenerate another one instead

of a whole process of opening and editing it with Python.

5.6 User Interface

When first accessed or got refreshed, Flask renders the bare HTML template

containing a title, image table column names with no image yet, choices of the

number of results to display, and some buttons to function the uploading of

images and trigger the image retrieval model inference. After extracted from the

request body, the list is looped through in such a way that for every row that is

loaded to the table, there comes along with an image, date of the upload, and

actions for the item to be either deleted or selected/deselected as target image.

25

After images are present on the website, each of them has a fair chance to be

picked as the target and compared with the others for close matches. The predict

button is initially set to be disabled, and it remains in its state until an image is

selected, as to prevent frontend from providing missing arguments to the image

retrieval model in the backend. Another small and not-so-different section, yet

worth mentioning, is the radio buttons to decide how many results users want the

application to display for results, also known as k, or top-k results, and there are

choices of 1, 3, and 5 now. These number of result images are considered

sufficient for users to observe the overall performance as each element of image

takes up quite much space. By default, k is always set to 1 meaning to just pick

the photo closest to the target image, and that is usually the case for most users.

However, another reason for this default setting of k is to back up the case that

users forget to choose with a top-k value determined already, so that the model

always gets a full set of arguments to proceed, and the web application has the

information to list at least 1 result image.

When the "Predict" button is enabled, it is a sign that you are good to go, and the

model is ready to be utilized. After the button is triggered, all the information

needed is collected into a set of arguments and passed to the module in the

backend for image processing and comparison. The processing speed depends

on the number of images there are in the list. The longer the list, the longer it

takes for the model to produce answers. The sign when result is up is that target

image is shown once again underneath the "Predict" button, and then comes the

result list. Each result comprises an image, and a quotient indicating the distance

between it and the target, as the smaller the distance, the closer the pair. These

rows are arranged in ascending order of distance so as to rank the images from

closest to furthest.

Last but not least, there is a button titled "Refresh" on top of the query image list.

As the name refers, this button is used to refresh the whole application and return

to its original state. When "Refresh" is clicked, what happens is that all the

information about the query images, target image, or results are erased, meaning

that they are all set back to their default values, and the user interface redirects

to its initial display, which users see when the app pops up in the first access.

26

With this button, users manage to erase everything present on the website with

just a simple click, and it can even remove the whole predictions section in the

cleanest way possible while deleting every item on the list single-handedly neither

hides the whole prediction section nor presents the images in the prediction list

since the image sources are nowhere to be found.

27

6 DISCUSSION AND FURTHER DEVELOPMENT

The goal of this project was to create a platform where people could upload any

collection of images of their choice and were able to pick out those that most

closely matched the target image. After a period of researching and working on

the application, what was acquired has achieved the desired objectives:

• Broadening knowledge in the field of image retrieval, with its best

technique up to now CBIR, and how it works.

• Structuring the application design with a general pipeline for integrating a

machine learning model into a web application.

• Learning about transfer learning, how different it is from other learning

types, and how a project is able to apply transfer learning to an application

pipeline, instead of training a model from scratch.

Research on image retrieval was done and the web application was successfully

built. Later, the project was put to the test and the results were shown in

APPENDIX 1. The application completed what it was assigned when the final

retrieved image was the exact same as the target image, selected among the

image list, as well as ranking from closest to furthest according to distances

between them. Besides, the API endpoints appeared to function properly to

transmit information from frontend to backend, and the inference predictions vice

versa.

Nevertheless, implementations encountered limitations as flaws and

inaccuracies were revealed under performance testing. In APPENDIX 1, it was

pointed out that the model only worked best when the number of images was

low, and pixel features needed to be somewhat distinct between the images.

However, when there was a small increase in the quantity of images, the model

tended to fall off the beaten track and made the wrong decisions, hence

irrelevant retrievals. The reason for this was that a huge image set caused the

model to be confused anticipated predictions with other items. Moreover, the

more images users uploaded onto the app, the longer it took the model to run a

complete process toward final answers.

28

From the problems discussed above, there is always room for improvement. In

the aspect of machine learning, if given enough time, and powerful computing

resources, it is possible to obtain a better-performed image retrieval model that

is trained from scratch, tested, and well-evaluated within multiple iterations. Web

development needs enhancements as well. The app requires implementation

that can assist in dealing with POST requests and processing the images faster.

In addition, the images should be arranged differently, possibly in grids, so that

scrolling to the result section underneath remains as few as there can be.

29

REFERENCES

Altbach, P. & de Wit, H. 2018. Too much academic research is published. Read

on 12.02.2023.

https://www.universityworldnews.com/post.php?story=20180905095203579

arXiv.org blog. 2022. Two million articles and counting!. Read on 08.02.2023.

https://blog.arxiv.org/2022/01/03/two-million-articles-and-counting/

arXiv info. no date. arXiv submission rate statistics. Read on 08.02.2023.

https://info.arxiv.org/help/stats/2021_by_area/index.html

Baeldung. no date. What is Content-based Image Retrieval?. Updated on

10.12.2022. Read on 20.02.2023.

https://www.baeldung.com/cs/cbir-tbir

Birchard, T. 2018. Configuring Your Flask App. Read on 19.01.2023.

https://hackersandslackers.com/configure-flask-applications/

CERN. no date. A short history of the Web. Read on 25.02.2023.

https://home.cern/science/computing/birth-web/short-history-web

Condon, S. 2018. Intel launches toolkit to bring computer vision to the edge.

Read on 19.01.2023

https://www.zdnet.com/article/intel-launches-toolkit-to-bring-computer-vision-to-

the-edge/

EDUCBA. no date. Flask Environment Variables. Read on 12.01.2023.

https://www.educba.com/flask-environment-variables/

Fireship. 2021. Python in 100 Seconds. Read on 28.12.2022.

https://www.youtube.com/watch?v=x7X9w_GIm1s

Goodfellow, I., Bengio, Y. & Courville, A. 2016. Deep learning. MIT press. Read

on 15.03.2023.

https://blog.arxiv.org/2022/01/03/two-million-articles-and-counting/
https://info.arxiv.org/help/stats/2021_by_area/index.html
https://www.baeldung.com/cs/cbir-tbir
https://hackersandslackers.com/configure-flask-applications/
https://home.cern/science/computing/birth-web/short-history-web
https://www.zdnet.com/article/intel-launches-toolkit-to-bring-computer-vision-to-the-edge/
https://www.zdnet.com/article/intel-launches-toolkit-to-bring-computer-vision-to-the-edge/
https://www.educba.com/flask-environment-variables/
https://www.youtube.com/watch?v=x7X9w_GIm1s

30

https://mitpress.mit.edu/9780262035613/deep-learning/

Grinberg, M. 2018. Flask Web Development, 2nd Edition. Read on 28.12.2022.

https://www.oreilly.com/library/view/flask-web-development/9781491991725/

Intel. no date. Image Retrieval Python* Demo. Read on 10.01.2023.

https://docs.openvino.ai/latest/omz_demos_image_retrieval_demo_python.html

Intel. no date. image-retrieval-0001. Read on 10.01.2023.

https://docs.openvino.ai/2021.1/omz_models_intel_image_retrieval_0001_descr

iption_image_retrieval_0001.html

Intel. no date. Overview — OpenVINO™ documentation — Version(latest).

Read on 19.01.2023.

https://docs.openvino.ai/latest/home.html

Jayaram, S. 2017. Integrating a Machine Learning Model into a Web app. Read

on 12.03.2023.

https://github.com/shivasj/Integrating-a-Machine-Learning-Model-into-a-Web-

app

MacManus, R. 2020. 1995: The Birth of Javascript. Read on 25.02.2023.

https://webdevelopmenthistory.com/1995-the-birth-of-javascript/

Marcotte, E. 2011. Responsive Web Design. Read on 25.02.2023.

https://abookapart.com/products/responsive-web-design

Mozillia. no date. JavaScript Guide. Read on 28.12.2022.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide

Oquab, M., Bottou, L., Laptev, I., & Sivic, J. 2014. Learning and Transferring

Mid-level Image Representations Using Convolutional Neural Networks. In

Proceedings of the IEEE Conference on Computer Vision and Vattern

Recognition, 1717-1724. Read on 11.03.2023.

https://ieeexplore.ieee.org/document/6909618

https://mitpress.mit.edu/9780262035613/deep-learning/
https://www.oreilly.com/library/view/flask-web-development/9781491991725/
https://docs.openvino.ai/latest/omz_demos_image_retrieval_demo_python.html
https://docs.openvino.ai/2021.1/omz_models_intel_image_retrieval_0001_description_image_retrieval_0001.html
https://docs.openvino.ai/2021.1/omz_models_intel_image_retrieval_0001_description_image_retrieval_0001.html
https://docs.openvino.ai/latest/home.html
https://github.com/shivasj/Integrating-a-Machine-Learning-Model-into-a-Web-app
https://github.com/shivasj/Integrating-a-Machine-Learning-Model-into-a-Web-app
https://webdevelopmenthistory.com/1995-the-birth-of-javascript/
https://abookapart.com/products/responsive-web-design
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://ieeexplore.ieee.org/document/6909618

31

OpenVINO™ Toolkit. 2019. Image Retrieval Python* Demo. Read on

10.01.2023.

https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/image_r

etrieval_demo/python

Pan, S. J., & Yang, Q. 2010. A Survey on Transfer Learning. IEEE Transactions

on Knowledge and Data Engineering 22 (10), 1345-1359. Read on 12.03.2023.

https://ieeexplore.ieee.org/document/5288526

Python. no date. About Python | Python.org. Read on 28.12.2022.

https://www.python.org/about/

Red Hat. 2020. What is a REST API?. Read on 14.03.2023.

https://www.redhat.com/en/topics/api/what-is-a-rest-api

Sato, D., Wider, A. & Windheuser, C. 2019. Continuous Delivery for Machine

Learning. Read on 12.03.2023.

https://martinfowler.com/articles/cd4ml.html

Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A. & Jain, R. 2000.

Content-Based Image Retrieval at the End of the Early Years. IEEE

Transactions on Pattern Analysis and Machine Intelligence 22 (12), 1349-1380.

Read on 15.03.2023.

https://www.researchgate.net/publication/3193201_Content-

based_image_retrieval_at_the_end_of_the_early

Sports Interactive. 2022. Football Manager 2023. Read on 18.03.2023.

https://www.sigames.com/games/football-manager-2023

StackOverflow. 2019. Uploading multiple files with Flask. Read on 11.01.2023.

https://stackoverflow.com/questions/11817182/uploading-multiple-files-with-

flask

https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/image_retrieval_demo/python
https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/image_retrieval_demo/python
https://ieeexplore.ieee.org/document/5288526
https://www.python.org/about/
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://martinfowler.com/articles/cd4ml.html
https://www.researchgate.net/publication/3193201_Content-based_image_retrieval_at_the_end_of_the_early
https://www.researchgate.net/publication/3193201_Content-based_image_retrieval_at_the_end_of_the_early
https://www.sigames.com/games/football-manager-2023
https://stackoverflow.com/questions/11817182/uploading-multiple-files-with-flask
https://stackoverflow.com/questions/11817182/uploading-multiple-files-with-flask

32

TCM Logos. 2022. TCM23 – Logopack FM23 / FM2023. Updated on

02.01.2023. Read on 18.03.2023.

https://www.tcmlogos.com/tcm23-logos-fm23/

The Pallets Projects. no date. Introduction - Jinja Documentation (3.1.x). Read

on 19.01.2023.

https://jinja.palletsprojects.com/en/3.1.x/intro/

The Pallets Projects. no date. Quickstart - Flask Documentation (2.2.x). Read

on 11.01.2023.

https://flask.palletsprojects.com/en/2.2.x/quickstart/#rendering-templates

The Pallets Projects. no date. Template Designer Documentation - Jinja

Documentation (3.1.x). Read on 19.01.2023.

https://jinja.palletsprojects.com/en/3.1.x/templates/#template-inheritance

The Pallets Projects. no date. Uploading Files - Flask Documentation (2.2.x).

Read on 11.01.2023.

https://flask.palletsprojects.com/en/2.2.x/patterns/fileuploads/

The Pallets Projects. no date. Welcome to Flask - Flask Documentation (2.2.x).

Read on 28.12.2022.

https://flask.palletsprojects.com/en/2.2.x/

U.S. Bureau of Labor Statistics. no date. Web Developers and Digital

Designers. Updated on 14.09.2022. Read on 25.02.2023.

https://www.bls.gov/ooh/computer-and-information-technology/web-

developers.htm

Weiss, K., Khoshgoftaar, T. M., & Wang, D. 2016. A Survey of Transfer

Learning. Journal of Big Data 3 (1), 1-40. Read on 15.03.2023.

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-016-0043-6

White, M. 2022. Football Manager 2023: Everything we know about FM23,

including best price, new features, wonderkids and more. Read on 18.03.2023.

https://www.tcmlogos.com/tcm23-logos-fm23/
https://jinja.palletsprojects.com/en/3.1.x/intro/
https://flask.palletsprojects.com/en/2.2.x/quickstart/#rendering-templates
https://jinja.palletsprojects.com/en/3.1.x/templates/#template-inheritance
https://flask.palletsprojects.com/en/2.2.x/patterns/fileuploads/
https://flask.palletsprojects.com/en/2.2.x/
https://www.bls.gov/ooh/computer-and-information-technology/web-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/web-developers.htm
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-016-0043-6

33

https://www.fourfourtwo.com/features/football-manager-2023-everything-we-

know-about-fm23-including-preorders-new-features-release-date-and-more

Wikipedia. no date. Bamboutos FC. Updated on 01.10.2022. Read on

18.03.2023.

https://en.wikipedia.org/wiki/Bamboutos_FC

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. 2014. How transferable are

features in deep neural networks?. In Advances in neural information

processing systems, 3320-3328. Read on 14.03.2023.

https://arxiv.org/abs/1411.1792

https://www.fourfourtwo.com/features/football-manager-2023-everything-we-know-about-fm23-including-preorders-new-features-release-date-and-more
https://www.fourfourtwo.com/features/football-manager-2023-everything-we-know-about-fm23-including-preorders-new-features-release-date-and-more
https://en.wikipedia.org/wiki/Bamboutos_FC
https://arxiv.org/abs/1411.1792

34

APPENDICES

Appendix 1. Football Manager 2023 Team Logos Experiment

This appendix is dedicated to documenting how well the web-based image

retrieval application performs. The optimal approach to testing its capabilities is

to apply it to a particular task. In this case, the task was associated with Football

Manager 2023 (FM 23), a well-known football management simulation game.

FM 23, developed by Sports Interactive and released in 2022, is a well-known

sports simulation video game that allows players to take over the management

of a football club and navigate various aspects of running a team, from training

and tactics to transactions and finances. The Football Manager series has long

been welcomed and enjoyed by fans for its updated features, improved

gameplay, and new challenges. The only downside of the game is that not all

football clubs have their official logos in the gameplay. Instead, Sports

Interactive replace them with their designs. In fact, in the Premier League, one

of the most prestigious league divisions in the world, there are only a few

teams, like Manchester City (White, 2022) or Watford, carrying the true logo.

The fact that whether the logo displayed in the game is genuine or not depends

on partnerships between football clubs and Sports Interactive, and it seems

reasonable to only display those that are in partnerships with the game

developers.

FIGURE 9: Manchester United logo in Football Manager 2023 (Sports Interactive,

2022)

35

FIGURE 10: Liverpool logo in Football Manager 2023 (Sports Interactive, 2022)

As a fan, it is always more fun and exciting to experience the game with the latest

updates on football teams, players, transfers, graphics, and so much more. On

the Internet, there are numerous logo packs designed and published by fans of

the series. This megapack includes logos for every single club, league, and

competition throughout regions and levels. Each item in the pack contains a serial

number and it is directly indicated in the filename. Moreover, in order to

successfully insert the pack into the game, pairs of images need to be matched

from the pack and the source directory of the game, via the mutual serial number.

That said, this was an excellent opportunity to put the image retriever to the test.

The goal was to figure out the filename of the official logo of Liverpool football

club. The target image was an image of the logo of Bamboutos FC, a football

team based in Mbouda, Cameroon (Wikipedia, no date), outside the FM 23

megapack, and an image set included logos of Machester United, Liverpool, and

those from Africa.

In this experiment, there were two test cases: image retrieval with a small dataset,

around 50-60 images, and a slightly bigger set of approximately 200 images.

36

FIGURE 11: Application interface with total number of images.

FIGURE 12: Result section of the application in the first experiment.

FIGURE 13: Filename result of the first experiment.

In the first example, it was apparent that the model retrieved the desired image

as its top 1 contender effortlessly, with its distance being the least towards the

query image, and the serial number needed was 391.

37

FIGURE 14: Application interface with total number of images.

FIGURE 15: Result section of the application in the second experiment.

FIGURE 16: Filename result of the second experiment.

When there was a small change in the total number of images, as the model

processed and took more images into consideration, it tended to get more

confused with all the features, colors or shapes down to pixel level. This

combined would later cause the model to make the wrong decisions. Even though

38

the desired item was in second place, the model still needs improving to perform

better on other logos or service other tasks more effectively as well.

39

	1 INTRODUCTION
	2 BACKGROUND AND OBJECTIVE
	2.1 Project Background
	2.2 Project Goal
	2.3 Technology Stack
	2.3.1 Python
	2.3.2 Flask
	2.3.3 Jinja
	2.3.4 OpenVINO

	3 IMAGE RETRIEVAL WEB APPLICATION REQUIREMENTS
	3.1 Web Application Development
	3.2 Functional Requirements
	3.3 Non-functional Requirements

	4 TECHNICAL IMPLEMENTATION
	4.1 Planning
	4.2 Transfer learning
	4.3 Application Model

	5 CODE EXPLANATION
	5.1 Introduction to the Image Retrieval Model of OpenVINO
	5.2 Configurations for Flask Web Application
	5.3 Helper functions for Web Application
	5.4 Running Image Retrieval In CLI
	5.5 Web Application Endpoints
	5.5.1 Uploading Image List
	5.5.2 Choosing Target Image

	5.6 User Interface

	6 DISCUSSION AND FURTHER DEVELOPMENT
	REFERENCES
	APPENDICES
	Appendix 1. Football Manager 2023 Team Logos Experiment

