

Janne Kinnunen

Designing a Node.js full stack web
application

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Bachelor’s Thesis

3 April 2023

Abstract

Author: Janne Kinnunen

Title: Designing a Node.js full stack web application

Number of Pages: 39 pages + 1 appendix

Date: 3 April 2023

Degree: Bachelor of Engineering

Degree Programme: Information and Communication technology

Professional Major: Smart IoT-systems

Supervisors: Kimmo Sauren, Head of major

The aim of this thesis was to design and develop a full stack web application for an

internet service provider, which can be used to manage and control its customers’

internet connections.

The application was designed to be used on different devices, for example on mobile

devices from the worksite, or on computer from the office. Bootstrap CSS framework

which is designed for creating mobile-friendly websites was used for this purpose.

The application’s server was built to a Node.js environment, which allowed for

building a secure and versatile server thanks to its large ecosystem. In addition to the

application’s server, an API was built on to the same Node.js process, which the

application uses to access the database. A separate program reads changes from

the database and executes them on physical devices.

As a result, the desired features were implemented to the application, and it was

launched on the company’s intranet so that employees can use it.

This thesis examined the structure and operation of a full-stack web application, the

requirements of the project and the selected technologies. The thesis discussed the

architecture of the application, as well as the different stages of its development.

Finally, possible future improvements and developments were discussed, such as

new features or turning the user interface to a Progressive Web App.

Keywords: Full stack, web application, Node.js, API

Tiivistelmä

Tekijä: Janne Kinnunen

Otsikko: Node.js Full stack web sovelluksen suunnittelu

Sivumäärä: 38 sivua + 1 liite

Päivämäärä: 3.4.2023

Tutkinto: Insinööri (AMK)

Tutkinto: Tieto- ja viestintätekniikan tutkinto-ohjelma

Ammatillinen pääaine: Älykkäät IoT -järjestelmät

Ohjaajat: Kimmo Sauren, Smart IoT Systems tutkintovastaava

Tämän opinnäytetyön tavoitteena oli suunnitella ja kehittää internet

palveluntarjoajalle full stack web sovellus, jota voidaan käyttää asiakkaiden internet-

yhteyksien hallintaan ja valvontaan. Sovellus suunniteltiin käytettäväksi eri laitteilla,

esimerkiksi mobiililaitteilla työmaalta tai tietokoneella toimistolta. Tätä varten

käytettiin Bootstrap CSS -kehystä, joka on suunniteltu mobiiliystävällisten

verkkosivustojen luomiseen.

Sovelluksen palvelin rakennettiin Node.js-ympäristöön, mikä mahdollisti turvallisen ja

monipuolisen palvelimen rakentamisen Node.js:n suuren ekosysteemin ansiosta.

Sovelluksen palvelimen lisäksi rakennettiin rajapinta samalle Node.js -prosessille,

jonka kautta sovellus käyttää tietokantaa. Erillinen ohjelma lukee muutoksia

tietokannasta ja suorittaa tarvittavat muutokset fyysisiin laitteisiin.

Lopputuloksena rakennettiin sovellus, johon lisättiin halutut ominaisuudet ja sovellus

käynnistettiin yrityksen sisäverkossa, jolloin työntekijät pääsivät käyttämään sitä.

Tässä opinnäytetyössä tarkastellaan full stack web sovelluksen rakennetta ja

toimintaa, projektin vaatimuksia ja valittuja teknologioita. Opinnäytetyössä käydään

läpi sovelluksen arkkitehtuuri sekä kehityksen eri vaiheet. Lopuksi käsitellään

mahdollisia tulevia kehityksiä, kuten uusia ominaisuuksia tai käyttöliittymän

muuttamista progressiiviseksi web sovellukseksi.

Avainsanat: Full stack, web application, Node.js, API

Contents

1 Introduction 1

2 What is full stack web application? 2

2.1 Frontend 2

2.2 Backend 2

2.3 Database 3

2.4 Application Programming Interface 3

3 Project requirements 4

3.1 Node.js 5

3.2 MariaDB 6

3.2.1 Data validation 6

3.2.2 REST API 7

3.3 Bootstrap 8

3.4 Information security 10

3.4.1 Client-server communication 10

3.4.2 Client authentication 13

3.4.3 API security 15

4 Application structure 18

4.1 Backend structure 18

4.2 Frontend structure 23

4.3 API Structure 24

4.4 Error handling 25

5 Project Roadmap stages and tools 26

5.1 Tools 26

5.2 Roadmap stages 27

6 Conclusion 30

6.1 Overview of the project 30

6.2 Results 31

6.3 Improvements 32

6.4 Future development 33

References 35

Appendices

Appendix 1: Roadmap

1

1 Introduction

In the past, websites were content-based sites and they were meant to

distribute information. However, as the internet has evolved, they have become

a delivery platform for applications that used to be desktop applications or so

called “web applications”. [1.]

Because web applications are used through a web browser, they can be used

on different devices, such as computers or smart phones, if the web browser is

compatible. Other benefits of a web application are the following:

• Every user has the same version of the application, meaning there are

no compatibility issues.

• There is no need to install web applications to the device.

• Reduces the company’s costs because the application requires less

maintenance and upkeep.

• Reduces the user’s costs by lowering the devices minimum system

requirements.

[2.]

The goal of this thesis was to design and build a full-stack web application to

Nivos Verkot Oy, so its employees can use the application to administer

customers’ internet connections: change the connection speed, turn the

connection on or off, and change other settings that help maintaining

connections.

2

2 What is full stack web application?

Web application is a computer program that users can use through their web

browsers. Full-stack applications have at least three main parts: User interface,

called frontend, server, called backend and a database. Users use the frontend

to send commands and requests to backend. Backend takes care of the cyber

security, receives the commands and requests from user and uses the

database. Figure 1 illustrates the structure of a full-stack web application. [3.]

Figure 1. Structure of a full-stack system. [3.]

2.1 Frontend

Frontend means the user interface, in other words the part that user sees. A

web application’s frontend is usually programmed using web browser-compliant

programming languages, such as HTML, JavaScript, and CSS.

HTML is a markup language that web browsers can open and show to users.

JavaScript code makes the frontend dynamic, for example, it will make buttons

work. CSS is used to define the frontend’s appearance, such as colors, fonts or

formatting. [1;4.]

2.2 Backend

When a user visits a website, the web browser sends a request to the web

application’s server, also known as backend. Backend performs commands and

3

requests that user sends, such as fetching data from database, processes the

data and sends it back to user. User does not use backend directly but

communicates with it using frontend. [1.] The backend is also responsible for

the cyber security, performance and scalability of the web application.

2.3 Database

Database is a collection of organized data that is stored in a computer’s

memory. A Database Management System (DBMS) is an application that

serves as a user interface between the user and the database. This allows

users to fetch and update data and manage the way data is stored. The most

common way of organizing data in a database is to arrange it into tables, rows

and columns, in order to make data processing and usage as efficient as

possible. [5.] Figure 2 illustrates a typical table of a database. This table holds

different customer information, such as first and last name and contact

information. Each row represents an individual customer, and the columns in

that row describe their information.

Figure 2. Typical table from a database [6.]

2.4 Application Programming Interface

Application Programming Interface (API) is used for communication between

different software applications. Using an API, different software can

communicate without needing to understand how each other one is

programmed. This simplifies software development. [7.] APIs abstract away the

4

more complex code and offer higher-level, simpler syntax instead. [8.] For

example, software applications can fetch data from a database using an API.

3 Project requirements

The goal of this thesis project was to create a full-stack web application that

employees can use to manage customers’ internet connections anywhere, from

a work site via smart phone or from the office using a computer. The connection

information is stored on a database, from which an external software reads

changes and performs necessary operations, such as modifying the download

speed setting of a physical end device.

The application will have multiple features, such as managing the settings of

existing connections, such as download and upload speeds, activation, and

deactivation, creating new connections, making mass changes to multiple

connections and scheduling changes.

For accessing the database, a REST-API is created, which is an interface that

allows different computer systems to transfer information and data over the

internet.

Since users must be able to use the web application on smart phones or

computers, the frontend must be responsive. This means that the user sees the

same HTML file at the same URL address regardless of the user’s device, but

the content may look different depending on the screen size. [9.]

The entire application should be secure, easy to maintain, require minimal

maintenance and be easy to update in the future.

5

3.1 Node.js

Node.js is an open-source cross-platform JavaScript runtime environment. It is a

popular tool for many different project and solutions, for an example, as an HTTP-

server. One of its big advantages for frontend web developers is JavaScript

programming language on the backend, removing the need to learn a new

language. [10.]

Node.js application runs as a single process, so it does not create a new thread

for each request. Node.js can perform a I/O operation, such as reading data from

database, in two ways: blocking or non-blocking. Blocking way stops the Node.js

process and waits for the data to be received. In non-blocking way, the process

does not stop and wait, but the process returns to the operation when the data is

received. This allows a Node.js process to handle thousands of requests and

concurrent connections on a single server. [11.]

The JavaScript programming language has mechanisms, which can be used to

divide the code to different modules that can be imported to the process if

needed. [12.] This enables easier maintenance and readability of the code, as it

can be divided into multiple smaller files instead of one large file. Node.js supports

the CommonJS standard, which is a standard for adding modules primarily for

servers. This standard does not work on web browsers, so JavaScript’s own

standard, ECMAScript, which aims to ensure website functionality across

different devices and browsers [13], has created its own standard for importing

modules. ECMAScript’s standard, ESModules, works both on server and

browsers, and is a modern approach to using modules.

Node.js has its own modules, that can, for example, create an HTTP server, read

local files or even create child processes that can access the operating system in

which the Node.js process runs. [14;15;16]

When Node.js is installed, a Node Package Manager (npm) is also installed. It is

a package manager, which developers can use to download modules created by

6

other developers or upload their own modules. [17.] Npm is the largest software

registry in world with more than two million packages. [18.]

Node.js was selected as a server-side environment for its flexibility, JavaScript

programming language and its comprehensive ecosystem.

However, the modules that Node.js provided, does not provide all necessary

features, additional modules must be added through npm. The selection of these

modules must be based on their popularity, maintenance status and their

publisher. This ensures that the selected modules are safe to use, and their life

cycle is as long as possible, and they are actively maintained.

3.2 MariaDB

The Connection database has been built to a MariaDB -server before this

project was started. The MariaDB -server runs in a company’s Local Area

Network, so the API must work within this environment. The API must integrate

with the database as seamlessly as possible, allowing for any possible changes

in database structure to be easily implemented into the API.

3.2.1 Data validation

The data in database must be in a correct format because a separate software

reads data from the database and updates settings to physical devices.

MariaDB provides the option to use enumerations as a datatype, which are

predefined values. [19.] This way, the application can provide predefined

options to user to choose from.

However, this option cannot be used in every case, as the value of the

information may depend on the characteristics of the physical device. For an

example, Nivos Verkot Oy provides internet connections to apartment building

residents, but depending on the cabling of the building, the speed parameters

may vary: If the building does not have CAT-cabling, fastest possible internet

7

speed is 100/100M, but if the buildings with CAT-cabling, fastest possible speed

might be as high as 1000/500M. [20;21.] This is the reason why enumerations

cannot be used as a data format for all data in the database, as the value of the

data may depend on the physical device’s properties, because then the web

application might offer same options for every connection. To overcome this

problem, database stores information about device types and their supported

parameters, such as speeds. The web application must check the suitable

parameters based on the connection technology from the database and offer

them to the user.

3.2.2 REST API

The API architecture used is Representational State Transfer (REST), which

sets conditions on how the API should function. REST was originally created as

a guideline for communicating in a complex network, such as the internet.

Basically, REST API’s functionality is same as surfing in the web: User sends a

request to the REST API’s servers using HTTP protocol, and server returns the

requested data to user in a predefined format. The request must include the

following information:

• Unique resource identifier (URI): Server identifies every resource with

a unique resource identifier.

• Method: REST-APIs typically operate using the Hypertext Transfer

Protocol (HTTP). The HTTP method informs the server what it needs to

do to the resource. There are several methods available, with the most

common ones being:

o GET, which is used by the user to request information.

o POST, which allows the user to send new data to the server.

o PUT, which enables the user to update existing information.

o DELETE, which is used by the user to request the server to

remove information.

8

[22.]

Because REST-API works on the same HTTP-protocol as a web application,

the API can be built to a Node.js -process. MariaDB provides its own npm -

package for Node.js, making it easy and secure to use the database. [23.]

3.3 Bootstrap

Responsiveness of websites plays a significant role in today’s world as an

increasing number of people use devices other than computers to browse

websites. [9.] The responsivity can be achieved by using CSS code, which

modifies the layout of a website, depending on what size is the screen of the

user’s device. [4.] Due to the increasing need for websites to be mobile-friendly,

there are CSS frameworks available that help creating responsive websites. In

this project Bootstrap framework is used, which is one of the most popular CSS

frameworks. It is designed to build mobile-first websites. [24.] One of the

advantages of a CSS framework is that it is easy and quick use in a project.

Instead of creating a separate file that refers to the HTML-elements, the

framework provides predefined commands that can be directly written into the

HTML-elements’ class attribute to define their appearance, as shown in figure 3,

Bootstrap provides components and features, which can be used to build

different layouts. In figure 3, Bootstrap’s “card” feature is used to build a card to

a website.

Figure 3. Bootstrap’s example how “card” feature is used to build a card. [25.]

9

Bootstrap provides a grid system, that can be used to divide the website into a

grid. In the grid system, webpage is divided to rows and columns, with the

content is within the columns. Each row is divided to 12 parts, where one

column’s width can be at least one part, but at most 12 parts. Each row can

hold at most 12 columns if every column’s width is one part. It is possible to

assign each column its own width, but if it is not assigned, then Bootstrap will

automatically set the width of column. [26.] In figure 4, an example row has

been built using Bootstrap’s grid system. Notice that there is a div element with

class “row” that and inside that element there are three div elements that have

classes “col“. Columns width can be assigned by adding a number from 1 to 12

after the “col” class attribute. The width of the first “col” element has been set to

two parts, the width of the second element is determined by Bootstrap, and the

width of the third “col” element is six, which has also been assigned an sm-

breakpoint.

Figure 4: Example code of a Bootstrap row.

Bootstrap offers breakpoints, that define how the appearance of a webpage

behaves on different screens. [27.] Breakpoint is a minimum width defined by

Bootstrap, that can be assigned to elements, for an example, columns. If the

width of the device’s screen is bigger than the breakpoint, the column remains

the same size as defined, for example, taking up three parts of the row. If the

device’s screen is smaller than the breakpoint, then the width of the column is

12 parts. [26.] Bootstrap’s grid system will arrange the remaining columns

evenly.

10

The example in figure 5 has the same source code as figure 4, but the width of

the screen is 572 pixels instead of 578 pixels. The column that had the

breakpoint assigned, is now 12 parts wide. The column that had a width of two

parts, will remain at the same size. The middle column that had no assigned

width, fills the remaining space of the row. Note that the overall row height

remains the same, so the Bootstrap’s grid system adjusts the column heights as

needed.

Figure 5. Same example code with Figure 4, but the screen size is reduced.

3.4 Information security

In today’s world, information security plays a crucial role by protecting files and

software from unauthorized and malicious use. [28.]

3.4.1 Client-server communication

HTTP protocol is used for communication between a website and a server, and

most of the data transmission on the internet uses this. Downside of this

protocol is that data transmissions can read by anyone who is monitoring the

session, because this protocol is sending plain text data. To prevent this,

HTTPS protocol is used instead of HTTP. HTTPS is almost the same as HTTP,

but it uses TLS/SSL method to encrypt normal, plain text HTTP messages.

TSL/SSL method uses public key cryptography: Two keys are generated, public

11

and private. Public key is shared with the client. When client connects to the

server, both server and client uses both keys to create a new key, session key,

that will be used to encrypt messages. [29.] This protocol must be used both in

the API and in the web application.

When a user wants to browse websites, user must know the address of the

server and a port number. Port is an application-specific software construct,

that works as a communication end point. A server must be configured with a

specific port that it will use to listen or incoming connections.

In 1991, Tim Berners-Lee defined that “if the port number is not specified, 80 is

always assumed for HTTP.” [30.] This is the reason why users don’t have to

know the port number, because browsers can send the data to port 80 by

default. Because the communication between the client and the server needs to

use HTTPS protocol, port 80 cannot be used. HTTPS has a default port

number, 443, which has been defined in year 1994. [31.] To address this issue,

two servers must be created to the Node.js process. One server listens to the

port 443 and second listens to port 80. The purpose of the second port is only to

redirect users to the first server, that will work as the main server for this project.

This way client-server communication uses HTTPS -protocol and the data

transmission is secured.

Figure 6 illustrates the creation of these two servers. On rows 102-104, server

that listens to port 443 is created with parameters of options and app. Options -

parameter includes SSL keys, and app parameter is the express-framework that

the server will use for every request. On rows 106-111, server that listen to port

80 is created. Its only purpose is to redirect requests to the other server. Note

that at row 107, HTTP status code 301 is given, so the client knows to

communicate to the port 443 in the future.

12

 Figure 6. Creating two servers to node.js process

Usually, a server adds headers to HTTP protocol, such as the X-Powered-By

header, which describes what technologies the server is using. When using

Express framework, it adds “Express” to this by default. This information can

reveal to potential attackers what server is used, which they can use to search

for vulnerabilities in the server. [31.] Npm package called Helmet has been

created to hide this information. Using Helmet, headers can be hidden or

modified, making it more difficult for attackers to determine which server is

being used. [32.] Figure 7 shows what are the basic headers that Express sets,

and in Figure 8 are the headers that Helmet sets by default.

Figure 7. Default headers that Express -framework sets.

13

Figure 8. Default headers that Helmet sets.

3.4.2 Client authentication

Users must be logged in before they can use the web application. To create a

secure way to authenticate users, Passport is used, which is an authentication

middleware that is directly compatible with Express middleware. Passport is a

popular middleware, with a weekly download count of 2 068 408 as of March

22, 2023. [33.]

14

The purpose of passport is to authenticate user. Passport provides many

different strategies for this, 538 different strategies as of March 22, 2023.

Different strategies that Passport provides, are for example, Facebook-,

Google- or Twitter authentications, or Local strategy, where username and

passport has been stored, as the strategy name suggests, locally. This is a

popular option, as the time of writing on March 27, 2023, it has been

downloaded 603 610 times in the last week. [34.] This strategy is suitable for

the project, as it makes it easy for the company to manage users.

To make the authentication more secure, passwords must be encrypted before

storing them. If an unauthorized person gains access to user credential, they

will not obtain the plaintext password but a protected version that cannot be

used to logged in. [37.] To encrypt passwords, the Bcrypt npm package is used,

which provides tools for this purpose. [37.]

HTTP protocol is stateless, meaning that every request that client sends, can be

treated as a separate message – with no knowledge of last requests or

messages. This presents a problem for web applications because it requires

users to log in between every request. [38.]

To solve this problem, sessions must be created between the client and the

server. When user logs into the application, the server creates a session and an

HTTP cookie, which contains the session data. Then this cookie is sent to the

user, and the user will send it back to the server with every request. The server

can use this cookie to identify the session and the user. This way a stateful

protocol can be created on top of HTTP protocol. [38.] Express middleware has

an additional npm package, express-session, that will also work with Passport.

[38.]

In addition, users are assigned their own roles, which can be used to restrict the

access to resources and features. This can be used to give, for example,

customer service only read access or limited editing rights, such as increasing

speed or disconnecting a connection.

15

3.4.3 API security

Just like the web application, API must be protected from malicious use. The

interface is stateless, as information is only requested from it when needed, so

there is no need for the sessions that are used in web application.

To protect the API, a JSON Web Token (JWT) method is used. JWT is an

independent way to securely transfer information in JSON format, such as

identification data. This information can be verified as it is digitally signed. The

JSON Web Token can also have an expiration time, for example, one hour,

during which time Token will work. After this API stops approving this token.

JWT is an encrypted string, which contains three parts:

Header

Header is built from two parts, type of the token, which is JWT in this case, and

a signature algorithm that will be used.

Payload

Payload contains the information that will be transferred, such as user

information and expiration time.

Signature

Signature is used to make sure that the message has not changed. To create a

signature, a string must be created that holds the header, payload, and a secret

key, which will be encrypted with an algorithm that is mentioned in header.

Figure 9 illustrates what information JWT can hold and what it looks like

encrypted:

16

Figure 9. Encoded and decoded JSON Web Token. [39]

When user logs into the web application and requests data from server, server

authenticates user, uses the JWT that is created for the user, and sends it to

API in a HTTP Authorization Header. Then API checks the JWT and makes

sure that the user has access to the resources they have asked.

Using this method API is not limited only for the web application, but JSON Web

Tokens can be created for other software applications that intended to use the

API.

One of the most common hacking techniques is SQL injection, where SQL

commands are added to the normal user input. This way a hacker can have

sensitive data from database, change it or even remove data. SQL injection is

possible, if API adds user given parameters straight to the SQL command it

intends to execute. [40.]

By default, hackers cannot use API if they do not have a valid JSON Web

Token, as mentioned previously. However, it is still a good practice to add

protection against SQL injection. The MariaDB npm package offers a ready-

17

made solution for this: this package only allows one SQL command to be

executed at a time and parameters can be added as placeholders to the

command. This way, the MariaDB package can verify that the parameters are in

the correct format and are not harmful.

Figure 10 shows an example from MariaDB’s own website, how to add

parameters to the SQL command using placeholders. In the figure,

connection.query() function executes SQL command and returns the received

data. Function can take parameters in the form of JSON objects that are

common in JavaScript. The first parameter contains the SQL command with the

placeholders :id, :img and :db added to it for the parameters. The second JSON

object parameter contains the parameters entered by the user. [41.]

Figure 10. Example from MariaDB on how to add parameters to SQL command.

Cross-site scripting is a vulnerability, that hackers can use to inject malicious

scripts to website, that gets executed when other users visit the website. These

scripts can steal sensitive information, such as credentials, or they can modify

website’s information. Common way for hackers to perform this, is to save

scripts into database through normal user input. Then, when unsuspecting user

visits the website, the malicious script is loaded from the database and

executed. [42.]

This is not a danger in this project, as the web application is limited only to

specifically designated employees. However, Helmet npm package provides a

security layer that helps to identify and prevent certain types of attacks, such as

Cross-site scripting and data injections. [32;43.]

18

4 Application structure

To make the source code of the application as easy to maintain as possible, its

structure must be easy to understand. Therefore, the structure of the software

must be carefully planned.

4.1 Backend structure

The API and the backend of the web application are built to the same Node.js

process, since the web application is the only software that will use the API and

the API is mainly built for the web application. This simplifies the development

work and software management since this removes the need for doing changes

to multiple different software.

Even though API is in the same process as the web application, web

application’s backend uses API to fetch data. This way information security is

simplified, as it is the only way to access the database, and also makes it easier

to separate API to an independent process, if needed.

The chosen architecture for the web application’s backend follows a practice

similar to the MVC architecture, which consists of the Model, View and

Controller components. [44.] Figure 11 illustrates how the MVC architecture

works.

19

Figure 11. MVC architecture [45.]

Model

The role of the model is to handle the data processing. Because data is fetched

from API, the model does not use the database but instead uses the Node.js’

Axios module to make HTTP requests to API.

The Axios module is used to create instances for all the data in the database,

such as connections, apartment buildings or fiber optic terminal devices. Each

instance is defined with functions that will send requests to the API. Figure 12

illustrates the creation of the connection client that is created using Axios.

These instances can have their own functions that will send the requests to the

API.

20

Figure 12. Creating a connection client using Axios.

View

The role of the view is to handle presentation layer, which means modifying the

page that the user sees as needed.

There are different ways to implement the View’s task, such as client-side

rendering, where user’s device receives the requested data and dynamically

modifies the HTML file to display the data. This method reduces server load and

allows for a more dynamic user interface but can slow down the loading

especially in slow networks and requires additional programming to create

functions that receive and organize data into the HTML file. [46.]

Another method is server-side rendering, where the server adds user requested

data to HTML file before server sends it to the user. This way, only the desired

information can be displayed to the user, without sending any unnecessary

information, for example, creation time of the connection and other metadata,

which is returned by the API. This approach is faster for the initial load and

21

reduces the required performance of the user’s device. However, this method

requires more resources from the server. In addition, creating dynamic pages is

more difficult because the server returns a new HTML file instead of just the

desired information. [46.]

In this project, server-side rendering is used, since it reduces the amount of

programming and it increases the information security, because user’s device

does not communicate with the API, and only the desired information is added

to the HTML file, that is then sent to the user.

To implement server-side rendering, EJS (embedded JavaScript) module is

used. EJS is a simple template language, which can generate a HTML file using

JavaScript. HTML code can be written in an EJS file and JavaScript can be

used in necessary places with tags. [47] Because of this, it has a low learning

curve, making it easier to make modifications to the software. Figure 13

illustrates how EJS tags work: JavaScript can be written inside the “<%” and

“%>” tags on the first line, for example to check if the “user” variable exists. This

line is not shown for users, because “<%” tag is so called scriptlet tag, which

does not produce text for the client. On the second line, the JavaScript code

written after “<%=” tag, will produce text to the client. In this example, the

user.name variable’s data is written to the HTML file. On the last row, the

JavaScript code between the scriptlet tag closes the if -statement. This method

allows the middle line to be rendered to the HTML file only if the “user” variable

has been defined during the rendering phase. [47]

Figure 13. Example use of the EJS tags.

22

Controller

The purpose of the Controller is to work between the view and the model. It

receives the user requests, asks data from the model, and provides the data to

view. [44] Because model returns all the requested data from API, the controller

can handle this data and select what is sent to the view.

Managing the codebase

To keep the management and maintenance as easy as possible, code files are

divided into directories and subdirectories. This makes it easy to navigate to a

specific part of the software. Figure 14 illustrates the files and folders that the

project requires. Every directory and file are not accessible for the normal

application user, except the Public directory. This directory contains the

necessary CSS and JavaScript files that the frontend requires. The app.js file

works as a ”core” for the application. It contains the code that configures and

starts all the necessary parts of the process, such as connecting to the

database and opening a HTTPS-server.

Figure 14. Directories of the project

23

4.2 Frontend structure

Because the web application has multiple different features, such as modifying

connection, creating new connections, or performing mass changes to

connections, every feature needs a separate .EJS file, which the server can use

to render all necessary data.

Because of the multiple features, a navigation bar is needed so user can

navigate between different features. This navigation bar needs to be added to

every .EJS file. This creates a problem: If the navigation bar needs an update,

the update needs to be done for every .EJS file, to keep the navigation bar

consistent. This problem is solved by using a Partial View method, where large

HTML styled markup files are divided into smaller components. This makes

construction and maintenance of the frontend easier. [48.] In this project, a

separate HTML file is created for the navigation bar, which contains only the

navigation bar elements. Then this HTML file is sent to the user’s device inside

the Public -directory with a separate JavaScript code, that will attach the

navigation bar to the HTML file at the frontend. With this method, there is need

for only one navigation bar file and the JavaScript file can be added as a link to

the .EJS file, like shown in Figure 15.

Figure 15. Link for a JavaScript file that attaches sidebar to the HTML file in

client side.

For making the web application responsive, Bootstrap framework is used.

Bootstrap can be added to the project by installing it as a npm package or using

the Content Delivery Network (CDN) approach. CDN is a geographically

distributed group of servers, from which users can download files. [49.] Using

CDN, there is no need to install any Bootstrap files into the project. By adding a

24

link to the HTML file, user’s device can load necessary files and script using the

Content Delivery Network [49.], like shown in Figure 16. This also makes it

possible to always have the latest version of Bootstrap available to the user.

Figure 16. Bootstrap’s example for using CDN approach. [50.]

4.3 API Structure

A similar structure to the backend is created for API, with the difference that

there is no Views section. The API’s Controller receives requests and uses

Model that retrieves requested data from database and then returns it to the

Controller. Then Controller sends the retrieved data as a HTTP response to the

sender of the HTTP request.

MariaDB’s npm package is used to read the database, and a custom Model is

built for the API. Using this Model, API can access the database, such as

reading and modifying data, or even get information about the structure of the

database.

To ensure that the API works as seamlessly with the database as possible, the

API does not hard code the names of the database columns in SQL commands.

Instead, the user must input the column names and values to the request.

Before creating a SQL command, API fetches the real column names from the

database and compares these names to the ones that user has input. If column

25

names match, then API adds that parameter to the SQL command. This

ensures that no invalid SQL command is built. As a result, any potential

changes to the database, such as adding or removing a column, will not

necessarily require any modifications to the API software.

4.4 Error handling

One downside of the Node.js process is that if an error occurs, the whole

process shuts down. Therefore, it is important to design the error handling

carefully. Errors could occur for example, faulty code, API returns something

unexpected, the process cannot connect to API, or some file is missing.

One way to handle the errors is to use JavaScript’s throw mechanism, which is

used in a “try..catch” structure. [51.] The use of a throw mechanism generates

an exception, that must handle using try..catch structure, or Node.js process

shuts down immediately. [52.] In Figure 17 is illustrated, how try..catch structure

is built. When the example program is trying to execute the function called in

line 2, an exception occurs and program jumps over to line 4, after which the

program executes lines 5-9.

Figure 16. Example of a try..catch structure

In both API and web application’s backend, the try..catch structure is built to the

Controller to handle errors that occur somewhere later in the process that user

has started. An error handler -functions are created for both parts, the purpose

of these functions is to additional information, like the HTTP status, to the error

26

information, to modify error information to a user-friendly form, and to send the

error information to the user. The API’s error function sends the error

information in a JSON -format, whereas the web application’s backend renders

the error information to a .EJS file and sends that to user.

The try..catch structure can handle errors created by the software, but also

custom errors defined by the developer. For an example, the API can check the

request from user and if this request does not contain all the necessary

information, or user does not have the rights, then a custom error can be thrown

with custom messages. Then this error can be handled in a same way as the

default errors are handled. [53.]

5 Project Roadmap stages and tools

5.1 Tools

To identify and track different stages of the project, Miro, a browser-based

whiteboard platform was used alongside with Microsoft Word. The roadmap of

the project was created in Miro, which helped to organize different parts of the

project and enable tracking of the required steps. (Appendix 1)

Microsoft Word was used to record in detail the different features what the

project has, and in what stages the features are. Additionally, a journal was

maintained in Word, documenting what was achieved during the day, identifying

any issues that arose, and highlighting what needed to be clarified to solve

these issues.

Regular meetings were not held during the project, but instead meetings were

arranged if there was need to discuss about the features or issues.

For programming, Visual Studio Code was used, which is a free lightweight

source code editor provided by Microsoft. [54.] It has an integrated terminal

[55.], which is a convenient way to initiate, debug, monitor and terminate

27

Node.js processes during development. Npm packages can also be installed

using this terminal.

Another tool available for development is Nodemon, which can be installed from

npm. Nodemon makes development of Node.js processes easier. Using

Nodemon, Node.js process restarts automatically, when file changes in the

directory. [56.] This makes it easier and faster to test Node.js processes.

For saving the codebase to cloud and controlling versions, GitHub was used,

which is a code hosting platform for version control and collaboration. [57.]

GitHub can be used, among other things, to review changes made to the

project.

For testing the API, an application called Postman is used. This application

allows customized HTTP requests to be send to the API, and its functionality to

be checked. This makes it easier and faster to test and develop API. [58.]

5.2 Roadmap stages

The stages of the project have been divided into main headings in roadmap to

keep the overall picture clear. In addition, the biggest stages in roadmap can be

opened in Miro and write more detailed information about what needs to be

done.

In the initial stage of the work, the necessary directories are created for the

application, but the files within the directories are created as the work

progresses. In addition to the directories, a package.json file is created, that

contains metadata about the project, such as project name, version, starting

commands, license and installed modules and packages, which are also

referred to as dependencies.

By default, Node.js does not support the ESModules standard, it must be

enabled by installing and using an esm package from npm. After installing,

28

Node.js process can be started by adding a parameter “esm” to the starting

command. For example, the normal starting command is “node app.js”, so using

“node esm app.js” will enable ECMAScript standard. To simplify the start and

use of the process, a separate starting script will be created, that loads and

enables the esm module before starting the app. [59.] This way the process can

be started with the normal starting command, but instead using app.js, the

starting script, start.js is used. Figure 17 shows what happens inside the starting

script.

Figure 17. start.js script

After these initial stages, the application can be constructed according to the

order planned in the roadmap.

At the beginning of the project, express server is built, which works as a base

for whole application. In this stage, the initial settings and configurations are set

to the express, for example, which directory can be shared to the client and in

what format client will send data. At this stage, Helmet package is also

initialized.

Next step involves creating a login system and establishing a connection to the

database. By creating the login system at this stage, user authorization can be

added to all necessary parts of the project during the development, eliminating

the need to add them later.

The biggest stage is to build the web application and API. This approach allows

for a better understanding of the requirements that web application needs from

the API. For example, to search connections by address, the SQL command

needs to have a “LIKE” clause with a wildcard for searching all connection in the

same building, instead of searching only for the specific apartment in the

building. However, the use of this feature should be limited to address

29

parameter searches only, so the API needs to recognize when a user is

searching by address to activate this feature.

When web application and API is ready, the JWT authentication is created. This

is done only after the API is completed, to speed up the process of building and

testing it, as there is no need to login and create a JWT every time API is

tested.

When the application is deployed to production, TLS encryption is enabled. To

enable encryption, SSL certificates are required, which contain information such

as the web page address where the TLS encryption will be used, the company

to whom the certificate was issued, the issuer of the certificate, etc. [60] The

certificate comes with a public and private key, which are stored in the

application’s directory. These keys are read when the process starts, and the

keys are entered into the express server so that the server can use them to

protect communication between the serve and the user.

During the development, the application has been running locally on the

computer, that is used for development. The last stage of the project is to move

the application to a Linux server that is operating within the company’s internal

network, so it can be used by the employees. During the development, the

application has been started with Node.js commands, but in production, a PM2

daemon process manager is utilized. PM2 can launch the application as a

background process, restart it in case the Linux server restart or the application

crashes, and write log information about the process. [61.]

30

6 Conclusion

6.1 Overview of the project

The goal of this thesis was to design and create a full-stack web application to a

company, so its employees can monitor and manage customers’ internet

connections more easily, using a smart phone or a computer. The application

has multiple features, such as creating a new connection, modifying settings of

an existing connection, or executing mass changes to multiple connections at

the same time. The application was supposed to be as secure as possible, easy

to maintain and require minimal maintenance. Another requirement was that it

can be easily updated in the future.

Node.js runtime environment was chosen as the server, as its advantages

include the JavaScript programming language, versatile ecosystem, and its

versatility.

Web application’s server and API was built to a Node.js process. Web

application uses the API to read and modify data from the database. The

database had been built on a MariaDB server, so it was necessary that the API

can use this database. The MariaDB provided an npm package that was used

by the API.

Both the web application and the API were built within the same Node.js

process. This simplified the development and software management, as

changes did not have to be made separately to multiple software programs.

However, the web application uses the API instead of reading data directly from

the database, even though it would have been possible to do so. This allows

easy separation of the API into its own Node.js process in the future, if

necessary.

Web application’s frontend had to be made responsive, so it can be used on

different devices, such as smart phones or computers. Bootstrap CSS

31

framework was used for this purpose, which is designed with mobile-first

approach. Bootstrap provided its own grid system, which made it easy to create

a responsive frontend.

6.2 Results

The result of the project was a functional full-stack web application that met all

the project requirements. The project was developed in the order outlined in the

roadmap, but additional features emerged during development, such as the

ability to add various additional parameters and generate report information.

Despite this, the project was successfully launched on the company’s intranet,

and employees were able to use the application. Figure 18 shows an example

view from the page that users can use to execute changes to a connection.

Most of the parameters can be altered by the users, and they are predefined

and added to a dropdown list, ensuring that the selected value is exact. Users

can also specify time and date when new settings will take effect. On the left-

hand side is the navigation bar that users can use to navigate between different

features.

32

Figure 18. Screenshot of the web application

At the time of writing of this thesis, the application was not in full use, since the

external software that executes changes to the physical devices, was not

finished.

6.3 Improvements

After the deployment of the application, a few areas for improvement were

identified. When Node.js process started, the API established a connection to

the database and kept it open. However, MariaDB server terminates idling

connections. This happens after eight hours [62.], so this problem was not

discovered during the development. The issue arose the following day when the

application suddenly stopped working.

There were two choices to fix this: Establish a new connection every time the

API is used or build a mechanism that first checks the connection status and

reopens it if it is closed. However, the connection should remain open

33

throughout the entire user session, as depending on which feature the user is

using in the application, the application reads multiple different pieces of

information from the database. If the connection is disconnected and reopened

after each read operation, it would significantly increase loading times and lower

the user experience. For this reason, the second solution was chosen, where

the connection status is checked and reopened if necessary.

Another area of improvement would be redesigning the fronted layout. Even

though the current frontend allows users to perform necessary tasks, due to the

added features in the application, “pieces” were added to the frontend, which

did not result in the best possible user interface.

6.4 Future development

The application was designed to require as little maintenance as possible, while

also making it easy to add possible updates. Thanks to the Node.js environment

and JavaScript programming language, maintaining the application is easier

since the entire project is written in one language, which lowers the threshold

for other developers to make changes. Additionally, the Node.js environment’s

ecosystem allows new features to be added, existing modules to be updated, or

even replaced with better ones.

During the development phase, employees came up with many ideas for

additional features that could be added to the application. For example, features

such as checking the status of the connections, or fetching log data from

external log. These would help troubleshooting situations. For these, Node.js

provides an easy solution: Node.js provides child_process module, that can be

used to create separate subprocesses, which can start and execute different

programs and applications outside the node.js process. [16.]

 The frontend could be turned into a Progressive Web App (PWA), which is a

web-based application built with technologies such as HTML, CSS and

34

JavaScript. PWA can be installed on smartphones and computers. PWA offers

a similar user experience to traditional mobile applications. When installed,

PWA can among other things, save data on the user’s device and offer offline

functionality. [63.] These features can shorten loading times and help operate in

slow internet connections.

35

References

1 Chris Northwood 2018; The Full Stack developer
https://link.springer.com/book/10.1007/978-1-4842-4152-3 Accessed 24
March 2023

2 Indeed; What is a web application (With benefits and jobs).
https://www.indeed.com/career-advice/career-development/what-is-web-
application Accessed 24 March 2023

3 MongoDB; Full Stack Development Explained
https://www.mongodb.com/languages/full-stack-development Accessed 24
March 2023

4 World Wide Web Consortium; HTML & CSS
https://www.w3.org/standards/webdesign/htmlcss Accessed 24 March
2023

5 Oracle; What is a Database? https://www.oracle.com/database/what-is-
database/#WhatIsDBMS Accessed 24 March 2023

6 MariaDB; Temporal Tables Part 1: Introduction & Use Case Example
https://mariadb.com/resources/blog/temporal-tables-part-1/ Accessed 24
March 2023

7 Red Hat 2022; What is an API?
https://www.redhat.com/en/topics/api/what-are-application-programming-
interfaces Accessed 24 March 2023

8 Mozilla Developer Network 2023; Introduction to web APIs
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-
side_web_APIs/Introduction Accessed 24 March 2023

9 Google; Mobile site and mobile-first indexing best practices
https://developers.google.com/search/docs/crawling-
indexing/mobile/mobile-sites-mobile-first-indexing Accessed 24 March
2023

10 Node.js; Introduction to Node.js https://nodejs.dev/en/learn/ Accessed 24
March 2023

11 Node.js; Overview of Blocking vs Non-Blocking
https://nodejs.org/en/docs/guides/blocking-vs-non-blocking Accessed 24
March 2023

12 Mozilla Developer Network 2023; JavaScript modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
Accessed 24 March 2023

https://link.springer.com/book/10.1007/978-1-4842-4152-3
https://www.indeed.com/career-advice/career-development/what-is-web-application
https://www.indeed.com/career-advice/career-development/what-is-web-application
https://www.mongodb.com/languages/full-stack-development
https://www.w3.org/standards/webdesign/htmlcss
https://www.oracle.com/database/what-is-database/#WhatIsDBMS
https://www.oracle.com/database/what-is-database/#WhatIsDBMS
https://mariadb.com/resources/blog/temporal-tables-part-1/
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developers.google.com/search/docs/crawling-indexing/mobile/mobile-sites-mobile-first-indexing
https://developers.google.com/search/docs/crawling-indexing/mobile/mobile-sites-mobile-first-indexing
https://nodejs.dev/en/learn/
https://nodejs.org/en/docs/guides/blocking-vs-non-blocking
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

36

13 Allen Wirfs-Brock, Brendan Eich 2020; JavaScript: The first 20 Years
https://dl.acm.org/doi/10.1145/3386327 Accessed 24 March 2023

14 Node.js; HTTP https://nodejs.dev/en/api/v19/http/ Accessed 24 March
2023

15 Node.js; File System https://nodejs.dev/en/api/v19/fs/ Accessed 24 March
2023

16 Node.js; Child process https://nodejs.org/api/child_process.html#child-
process Accessed 24 March 2023

17 Mozilla Developer Network 2023; Node.js https://developer.mozilla.org/en-
US/docs/Glossary/Node.js Accessed 24 March 2023

18 Npmjs; website https://developer.mozilla.org/en-US/docs/Glossary/Node.js
Accessed 24 March 2023

19 MariaDB; ENUM https://mariadb.com/kb/en/enum/ Accessed 24 March
2023

20 Nivos website; https://www.nivos.fi/kotiin/valokuitu/valokuituyhteys-
taloyhtion-asukkaalle Accessed 24 March 2023

21 Nivos website; https://www.nivos.fi/kotiin/valokuitu/mantsalan-kodit-oy-
nettiliittyma Accessed 24 March 2023

22 Amazon Web Services; What Is A RESTful API?
https://aws.amazon.com/what-is/restful-api/ Accessed 24 March 2023

23 MariaDB; Getting Started With the Node.js Connector
https://mariadb.com/kb/en/getting-started-with-the-nodejs-connector/
Accessed 24 March 2023

24 Bootstrap website; https://getbootstrap.com/ Accessed 24 March 2023

25 Bootstrap; Cards https://getbootstrap.com/docs/5.3/components/card/
Accessed 24 March 2023

26 Bootstrap; Columns https://getbootstrap.com/docs/5.3/layout/columns/
Accessed 24 March 2023

27 Bootstrap; Breakpoints
https://getbootstrap.com/docs/5.3/layout/breakpoints/ Accessed 24 March
2023

28 Cisco; What is IT Security
https://www.cisco.com/c/en/us/products/security/what-is-it-security.html
Accessed 24 March 2023

https://dl.acm.org/doi/10.1145/3386327
https://nodejs.dev/en/api/v19/http/
https://nodejs.dev/en/api/v19/fs/
https://nodejs.org/api/child_process.html#child-process
https://nodejs.org/api/child_process.html#child-process
https://developer.mozilla.org/en-US/docs/Glossary/Node.js%20Accessed%2024%20March%202023
https://developer.mozilla.org/en-US/docs/Glossary/Node.js%20Accessed%2024%20March%202023
https://developer.mozilla.org/en-US/docs/Glossary/Node.js
https://mariadb.com/kb/en/enum/
https://www.nivos.fi/kotiin/valokuitu/valokuituyhteys-taloyhtion-asukkaalle
https://www.nivos.fi/kotiin/valokuitu/valokuituyhteys-taloyhtion-asukkaalle
https://www.nivos.fi/kotiin/valokuitu/mantsalan-kodit-oy-nettiliittyma
https://www.nivos.fi/kotiin/valokuitu/mantsalan-kodit-oy-nettiliittyma
https://aws.amazon.com/what-is/restful-api/
https://mariadb.com/kb/en/getting-started-with-the-nodejs-connector/
https://getbootstrap.com/
https://getbootstrap.com/docs/5.3/components/card/
https://getbootstrap.com/docs/5.3/layout/columns/
https://getbootstrap.com/docs/5.3/layout/breakpoints/
https://www.cisco.com/c/en/us/products/security/what-is-it-security.html%20Accessed%2024%20March%202023
https://www.cisco.com/c/en/us/products/security/what-is-it-security.html%20Accessed%2024%20March%202023

37

29 Cloudflare; Why is HTTP not secure? |HTTP vs HTTPS
https://www.cloudflare.com/learning/ssl/why-is-http-not-secure/

30 World Wide Web Consortium; The original HTTP as defined in 1991
https://www.w3.org/Protocols/HTTP/AsImplemented.html Accessed 24
March 2023

31 J. Reynolds; Assigned numbers https://www.rfc-
editor.org/rfc/pdfrfc/rfc1700.txt.pdf Accessed 24 March 2023

32 Npmjs; Helmet
https://www.npmjs.com/package/helmet?activeTab=readme Accessed 24
March 2023

33 Open Worldwide Application Security Project; HTTP headers Cheat Sheet
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_S
heet.html Accessed 24 March 2023

34 Npmjs; Passport https://www.npmjs.com/package/passport Accessed 24
March 2023

35 Passport; Strategies https://www.passportjs.org/packages/ Accessed 24
March 2023

36 Vaadata; How to Securely Store Passwords in Database?
https://www.vaadata.com/blog/how-to-securely-store-passwords-in-
database/ Accessed 24 March 2023

37 Npmjs; bcrypt https://www.npmjs.com/package/bcrypt Accessed 24 March
2023

38 Passport; Sessions
https://www.passportjs.org/concepts/authentication/sessions/ Accessed 24
March 2023

39 Auth0; Introduction to JSON Web Token https://jwt.io/introduction
Accessed 24 March 2023

40 Open Worldwide Application Security Project; SQL Injection
https://owasp.org/www-community/attacks/SQL_Injection Accessed 24
March 2023

41 MariaDB; Promise API documentation
https://mariadb.com/kb/en/connector-nodejs-promise-api/ Accessed 24
March 2023

42 Mozilla Developer Network 2023; Types of attacks
https://developer.mozilla.org/en-
US/docs/Web/Security/Types_of_attacks#cross-site_scripting_xss
Accessed 24 March 2023

https://www.cloudflare.com/learning/ssl/why-is-http-not-secure/
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://www.rfc-editor.org/rfc/pdfrfc/rfc1700.txt.pdf%20Accessed%2024%20March%202023
https://www.rfc-editor.org/rfc/pdfrfc/rfc1700.txt.pdf%20Accessed%2024%20March%202023
https://www.npmjs.com/package/helmet?activeTab=readme
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html
https://www.npmjs.com/package/passport
https://www.passportjs.org/packages/
https://www.vaadata.com/blog/how-to-securely-store-passwords-in-database/
https://www.vaadata.com/blog/how-to-securely-store-passwords-in-database/
https://www.npmjs.com/package/bcrypt
https://www.passportjs.org/concepts/authentication/sessions/
https://jwt.io/introduction
https://owasp.org/www-community/attacks/SQL_Injection
https://mariadb.com/kb/en/connector-nodejs-promise-api/
https://developer.mozilla.org/en-US/docs/Web/Security/Types_of_attacks#cross-site_scripting_xss
https://developer.mozilla.org/en-US/docs/Web/Security/Types_of_attacks#cross-site_scripting_xss

38

43 Mozilla Developer Network 2023; Content Security Policy (CSP)
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP Accessed 24
march 2023

44 Kevin Goldberg IBM 2010; Developing dynamic Web sites with
CodeIgniter https://developer.ibm.com/articles/os-
codeigniter/?mhsrc=ibmsearch_a&mhq=MVC Accessed 24 March 2023

45 Geeks for Geeks 2021; Benefit of using MVC
https://www.geeksforgeeks.org/benefit-of-using-mvc/ Accessed 24 March
2023

46 Scythe studio 2002; Client-Side vs Server-Side rendering https://scythe-
studio.com/en/blog/client-side-vs-server-side-rendering Accessed 24
March 2023

47 EJS website; https://ejs.co/ Accessed 24 March 2023

48 Microsoft; Partial Views in ASP.NET core https://learn.microsoft.com/en-
us/aspnet/core/mvc/views/partial?view=aspnetcore-7.0 Accessed 24
March 2023

49 Akamai; What is a CDN (Content Delivery Network?)
https://www.akamai.com/our-thinking/cdn/what-is-a-cdn Accessed 24
March 2023

50 Bootstrap; Quick start https://getbootstrap.com/docs/5.3/getting-
started/introduction/#quick-start Accessed 24 March 2023

51 Mozilla Developer Network 2023; Try..catch
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/try...catch Accessed 24
March 2023

52 Node.js; Errors https://nodejs.org/api/errors.html#errors Accessed 24
March 2023

53 Mozilla Developer Network 2023; Throw https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/throw Accessed 24 March
2023

54 Visual Studio; Getting Started https://code.visualstudio.com/docs
Accessed 24 March 2023

55 Visual Studio; Terminal Basic
https://code.visualstudio.com/docs/terminal/basics Accessed 24 March
2023

56 Npmjs; Nodemon https://www.npmjs.com/package/nodemon Accessed 24
March 2023

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.ibm.com/articles/os-codeigniter/?mhsrc=ibmsearch_a&mhq=MVC
https://developer.ibm.com/articles/os-codeigniter/?mhsrc=ibmsearch_a&mhq=MVC
https://www.geeksforgeeks.org/benefit-of-using-mvc/
https://scythe-studio.com/en/blog/client-side-vs-server-side-rendering
https://scythe-studio.com/en/blog/client-side-vs-server-side-rendering
https://ejs.co/
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/partial?view=aspnetcore-7.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/views/partial?view=aspnetcore-7.0
https://www.akamai.com/our-thinking/cdn/what-is-a-cdn%20Accessed%2024%20March%202023
https://www.akamai.com/our-thinking/cdn/what-is-a-cdn%20Accessed%2024%20March%202023
https://getbootstrap.com/docs/5.3/getting-started/introduction/#quick-start
https://getbootstrap.com/docs/5.3/getting-started/introduction/#quick-start
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch
https://nodejs.org/api/errors.html#errors
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/throw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/throw
https://code.visualstudio.com/docs
https://code.visualstudio.com/docs/terminal/basics
https://www.npmjs.com/package/nodemon

39

57 GitHub; Get started https://docs.github.com/en/get-started/quickstart/hello-
world Accessed 24 March 2023

58 Postman; What is Postman? https://www.postman.com/product/what-is-
postman/ Accessed 24 March 2023

59 Npmjs; esm https://www.npmjs.com/package/esm Accessed 24 March
2023

60 Cloudfare; What is an SSL certificate?
https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/
Accessed 24 March 2023

61 PM2; Quick Start https://pm2.keymetrics.io/docs/usage/quick-start/
Accessed 24 March 2023

62 MariaDB; System Variables
https://mariadb.com/docs/server/ref/mdb/system-variables/wait_timeout/
Accessed 24 March 2023

63 Google Developers 2023; What are Progressive Web Apps?
https://web.dev/what-are-pwas/ Accessed 24 March 2023

https://docs.github.com/en/get-started/quickstart/hello-world
https://docs.github.com/en/get-started/quickstart/hello-world
https://www.postman.com/product/what-is-postman/
https://www.postman.com/product/what-is-postman/
https://www.npmjs.com/package/esm
https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/
https://pm2.keymetrics.io/docs/usage/quick-start/
https://mariadb.com/docs/server/ref/mdb/system-variables/wait_timeout/
https://web.dev/what-are-pwas/

Appendix 1 (1)

Roadmap

