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The aim of this thesis was to explain what quantum computing is.  
 
The information for the thesis was gathered from books, scientific publications, and 
news articles.  
 
The analysis of the information revealed that quantum computing can be broken 
down to three areas: theories behind quantum computing explaining the structure of 
a quantum computer, known quantum algorithms, and the actual physical realiza-
tions of a quantum computer. 
 
The thesis reveals that moving from classical memory bits to quantum bits obeying 
the laws of quantum mechanics allows more complicated operations to be per-
formed. This leads to new algorithms that seem to outperform classical computing 
on some important problems.  
 
Quantum computers can search for information and calculate mathematical Fourier 
transforms much faster than classical computers, which allows them to break mod-
ern encryption techniques.   
 
The quantum mechanical nature of quantum bits also leads to new challenges. The 
quantum bits are very unstable and the complicated nature of quantum computing 
makes it very hard to figure out new quantum algorithms.  
 
Only very small quantum computers, consisting of a few quantum bits, have been 
built. Theories about large quantum computers and quantum programming lan-
guages are being studied, but it is not known whether or not it is possible to build a 
large quantum computer. Quantum phenomena tend to stay on microscopic dis-
tances and there might be physical barriers that prevent large quantum computers 
from being built.  
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1 Preface 

Computers are computing devices that manipulate data stored in bits that obey the 

laws of classical mechanics. However, the fundamental theories of physics that govern 

the structure of matter, are theory of relativity and quantum mechanics. Relativity ex-

plains gravity, the structure of the universe, and phenomena that occurs when objects 

are moving with velocities close to the speed of light. Quantum mechanics explains the 

dynamics of low energy objects of subatomic scales. Relativity is not likely to offer too 

much to computing because interstellar computing or high energy computing are in 

conflict with the usual idea of stable and local computer memory. In the other hand, it 

is quite reasonable to ask whether it is possible to build a computer manipulating data 

stored in medium governed by the laws of quantum mechanics. The progress of mak-

ing smaller and smaller classical electric circuits is already reaching the limit where 

quantum effects start to disturb the circuits. 

 

Quantum computers are interesting because they seem to expand the boundaries of 

computing. Some redoubts of important unsolvable problems crumble when a quan-

tum computer sets its eye on them. At the moment, many uses have been figured out 

for a quantum computer, but only very small quantum computers have been built. 

What will change if a large quantum computer is one day built? Has it already been 

done? 

 

This thesis aims to explain quantum computing to a reader with no knowledge on 

quantum mechanics. Theoretical section is limited to subjects that are needed in order 

to understand how a quantum computer works. The influence of quantum computing 

on other fields, like the theory of computation, information theory, and quantum com-

munication are mostly left out.  

 

Basic terms of theory of computation and quantum mechanics are defined and ex-

plained in the theoretical section, so the reader can, in principle, understand everything 

written in the thesis. The red line is always to show how quantum computing differs 

from classical computing and how the more complicated structure of quantum bits 

leads to more complicated basic logical processes and new algorithms.  
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Theoretical history of quantum computing is reviewed, giving the credit to those who 

have developed the theories behind quantum computing. Thesis also reviews the actual 

physical experiments where quantum computation has been performed.  

 

Terminology in this thesis used in describing quantum computing and quantum com-

puters is so, that quantum computing and quantum computation are synonymous, 

meaning  the area of research studying computer technology based on quantum me-

chanical properties of matter. The actual device doing the computation is a quantum 

computer. If a quantum computer can run any quantum algorithm, it is called an uni-

versal quantum computer. If a quantum computer can be programmed with a pro-

gramming language, it is called a programmable quantum computer. 

 

The process of writing the thesis started in the fall of 2013, when I, amongst other new 

students, was starting my studies at Haaga-Helia. We were told that we should start to 

think about the thesis so it would not slow our graduation at the end of our studies. I 

took it literarily, and at the end of 2013, I had my thesis subject chosen. I didn’t know 

anything about the subject then, but had studied theoretical physics in the past. I 

started to seek out everything written about quantum computing. I gathered books, sci-

entific publications, and news articles and tried to understand the subject. At the spring 

of 2014, I thought that I understood the subject and wrote the thesis.  

 

 

 

 

  



 

 

3 

2 Classical computation 

This chapter covers the basics of classical theory of computation. In order to under-

stand quantum computation in comparison to classical computation, the reader must 

be familiar with computational terminology, different computational models, and the 

basic logical processes of computation. The circuit model is explained in more detail, 

because it is the model used in generalizing classical computation to quantum compu-

tation. 

 

2.1 Theory of computation and complexity of algorithms 

A computational problem is a problem that a computer might try to solve. A solution 

to a computational problem is called an algorithm. It is a set of instructions that tells 

how to solve the problem. A measure for the difficulty of a computational problem is 

how much resources are needed to perform the calculation with the best known algo-

rithm. Although energy and memory needed are also resources, the most important re-

source used in classifying computational problems is how much time it takes to reach 

the solution. Time taken is proportional to the number of calculational steps which is 

usually proportional to size of the input data. Because we are especially interested in 

how the time taken behaves as the input data size grows, the difficulty of a problem is 

usually given as an expression, which tells how the time taken behaves asymptotically, 

as the size of the input data size is large. A major distinction is made by finding out 

whether the dependence is polynomial or more than polynomial (usually exponential). 

Problems taking polynomial time are called easy problems and problems taking expo-

nential time are called hard problems. Easy problems are also called computable or ef-

ficiently computable problems. In many cases hard problems have no useful algorithm 

and must be solved by a brute force search. A central principle of classical computing 

is that solving a problem is hardware independent. Easy problems are easy and hard 

problems hard on all computers. (Pathak 2013, 33-44.) 

 

To show the difference between easy and hard problems, an example of two problems 

is reviewed. First one is easy taking time 𝑇 = 0.5𝑁3 + 3𝑁 to run the algorithm, where 

𝑁 is the size of the input data in bits. For large 𝑁, 𝑁3 ≫ 𝑁 and thus asymptotically 
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𝑇 = 0.5𝑁3. This asymptotic behavior is denoted 𝑇 = 𝑂(𝑁3). It shows the meaningful 

behavior of the relationship as the input data size increases. In this case, if the input 

data size is changed from 100 to 10000, the time taken would roughly be million 

(106) times longer. The second problem is hard taking  𝑇 = 2𝑁. If the input data size 

is changed from 100 to 10000, the time taken is changed from 2100~1030 to 

210000~103010. The time taken is roughly 102980 times longer. This shows how easily 

resources can run out solving hard problems. 

 

In chapter four it is shown that some important problems that are hard on classical 

computers turn out to be easy on quantum computers.  

 

2.2 Models of computation 

There are different mathematical models that describe computation. They differ by the 

basic operations that can be performed. In respect of computability, they are all equiva-

lent formulations. Few of the most important ones are: 

 

− Turning machine. Used mainly as the main model of complexity theory. 

− Lambda calculus. Forms the basis of many functional programming languages. 

− Boolean circuits. Uses logical gates to perform operations on memory bits. 

− Random-access machine (RAM). Consists of memory registers holding integer 

numbers and a program which is a list of simple commands for arithmetic, logi-

cal, comparing and jump operations.  

− Universal programming languages. Artificial languages which are used for creat-

ing programs that express algorithms to a computer. 

 

Logical circuits capture the essential structure of electrical components. It is a good 

model to express small algorithms. RAM-model resembles the structure of modern 

computers and, in contrast to the Turing model, has the benefit that any memory regis-

ter can be accessed directly. For expressing large complicated algorithms and pro-

grams, programming languages are needed. (Miszczak 2011, 2-3.) 
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2.3 Circuit model 

The classical circuit model is a simple and realistic model of computation and it shows 

the basic processes of classical computation. Also, the simplest way to explain quantum 

computing, is to generalize circuit model into quantum circuit model. Circuits are made 

of bit registers, wires and logical gates. Gates transform input bits into output bits and 

the functionality of the gate can be expressed showing how the bits transform. Some 

of the most important gates are shown in the table (Table 1). 

 

Table 1. Logical gates 

 

 

 

Because circuit input and output data are in bits, a circuit defines a function  

(Equation 1). 
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𝑓: {0,1}𝑛 → {0,1}𝑚 

Equation 1. Function defined by a circuit 

 

It can be shown that using only the first three gates from the table (Table 1), any such 

function and so any circuit can be constructed. Therefore the group {NOT, AND, 

OR} is called an universal gate set. The TOFFOLI gate, which flips the third bit if the 

first two bits are 1, is an example of a gate that is universal by itself. (Katzgraber & 

Renner 2008, 5-13.) 

 

Usually, when gates operate on bits, some information is lost. If the input state of the 

bits can be retrieved from the output state, it is said that the gate is reversible. Heat 

production in electric circuits is due to the information loss and therefore reversible 

circuits produce no heat (Landauer 1961, 183-191.) Of the five gates in the table (Table 

1), only NOT and TOFFOLI are reversible. Therefore, a typical circuit made out of 

the universal gate set {NOT, AND, OR}, will produce heat. There are many reversible 

universal gate sets like {TOFFOLI} and the study of heat loss free circuits is ongoing. 

(Drechsler & Wille 2012.)   
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3 Quantum computing 

A quantum computer stores data in qubits instead of classical bits. This chapter covers 

the basics of quantum mechanics, so the reader can understand what qubits are and 

what operations can be performed on qubits. Different computational models are re-

viewed and the basic logical processes are explained using the quantum circuit model. 

Data stored in qubits is unstable, because interaction with the environment disturbs the 

states of the qubits. Error correction is therefore an essential part of quantum compu-

tation leading to fault tolerant quantum computing. 

 

3.1 Quantum mechanics 

Quantum mechanics describes dynamics of microscopic particles with low energies. 

This means that the energies are not so large that particle production from kinetic en-

ergy is meaningful. Different physical states of a quantum mechanical system are de-

scribed by a vector in a complex linear space called a Hilbert space.  

 

3.1.1 Complex numbers ℂ 

Complex numbers have the following properties (Equation 2). 

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝛼 = 𝑎 + 𝑖𝑏, 𝑤ℎ𝑒𝑟𝑒 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑢𝑛𝑖𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑖2 = −1 

𝐶𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝛼∗ = 𝑎 − 𝑖𝑏   

𝑀𝑜𝑑𝑢𝑙𝑢𝑠 |𝛼| = √𝑎2 + 𝑏2 

𝐸𝑢𝑙𝑒𝑟′𝑠 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 𝑒𝑖𝑎 = cos (𝑎) + 𝑖 sin (𝑎) 

Equation 2. Complex numbers 

 

3.1.2 State space 

State of a quantum mechanical system means all the information about the system. 

States form a complex linear space called a Hilbert space. It means, that states can be 

multiplied by complex numbers and added together forming new states. There is also 
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an inner product between the states, which transforms two states into a complex num-

ber (Equation 3). 

 

⟨ѱ|𝜗⟩ → ℂ 

Equation 3. Inner product 

 

The inner product defines the notions of orthogonality and distance in the state space. 

Later it is shown that inner product is also used in the probabilistic interpretation of 

quantum mechanics. States are said to be orthogonal, if the inner product is zero. Usu-

ally it is easiest to work with normalized states satisfying the normalization condition 

(Equation 4).  

 

⟨ѱ|ѱ⟩ = 1  

Equation 4. Normalized state 

 

If a state is multiplied with a complex number, the result represents the same physical 

state (Equation 5). 

 

|ѱ⟩ ~ 𝛼|ѱ⟩ 

Equation 5. Physically meaningless coefficient 

 

Complex coefficients of states become meaningful when states are added together. (Sa-

kurai & Napolitano 2011, 10-14.) 

 

3.1.3 Eigenvalues 

Usually it is needed to measure something about the system. Every observable quantity 

has a set of possible real values for the measurement, called eigenvalues (Equation 6). 

 

𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 

Equation 6. Eigenvalues 

 . 
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The spectrum of the eigenvalues can be discrete or continuous. For example, the en-

ergy spectrum of a system of particles in a finite size space is discrete, but the spectrum 

of possible locations of particles is continuous. The allowed energy values of a discrete 

energy spectrum are separated by small intervals, or quantums, hence the name quan-

tum mechanics. For every eigenvalue, there exist a state where it is certain that we will 

measure exactly the specific eigenvalue. These states are called eigenstates and denoted 

as (Equation 7) (Sakurai & Napolitano 2011, 12.) 

 

|𝑎1⟩, |𝑎2⟩, … , |𝑎𝑛⟩  

Equation 7. Eigenstates 

 

3.1.4 Basis and superposition 

 Eigenstates of an observable form a basis for the state space. It means that in addition 

to the eigenstates, where we are certain to measure the corresponding eigenvalue, we 

can also have states that are superpositions of those eigenstates. A general state can 

then be expressed as a complex linear combination of the eigenstates (Equation 8). 

 

|ѱ⟩ = 𝛼1|𝑎1⟩ + 𝛼2|𝑎2⟩ + ⋯+ 𝛼𝑛|𝑎𝑛⟩ 

Equation 8. General state 

 

When there is a basis, an inner product of two states can be calculated (Equation 9) 

(Sakurai & Napolitano 2011, 17-18.) 

 

⟨ѱ|𝜗⟩ = ⟨(𝛼1|𝑎1⟩ + 𝛼2|𝑎2⟩ + ⋯+ 𝛼𝑛|𝑎𝑛⟩)|(𝛽1|𝑎1⟩ + 𝛽2|𝑎2⟩ + ⋯+ 𝛽𝑛|𝑎𝑛⟩)⟩ 

            = 𝛼1
∗𝛽1 + 𝛼2

∗𝛽2 +⋯+ 𝛼𝑛
∗𝛽𝑛 . 

Equation 9. Inner product expansion 

 

3.1.5 Measurement 

When a measurement is made, it will give a result 𝑎𝑖 with a probability (Equation 10), 
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𝑃(𝑎𝑖) = |⟨𝑎𝑖|ѱ⟩|
2 = |𝛼𝑖|

2 

Equation 10. Measurement probabilities 

 

showing that the probability to measure each eigenvalue is calculated by squaring the 

modulus of the eigenstate coefficient. These probabilities must add up to value one 

(Equation 11),  

 

|𝛼1|
2 + |𝛼2|

2 +⋯+ |𝛼𝑛|
2 = 1 

Equation 11. Total probability 

 

because when a measurement is made, it will always give exactly one result. When the 

measurement is made, and the result is 𝑎𝑖 , the state changes (Equation 12). 

 

|ѱ⟩ → |𝑎𝑖⟩ 

Equation 12. Collapse of the state 

 

Measurement in quantum mechanics usually changes the state of the system. (Sakurai 

& Napolitano 2011, 23-24.) 

 

As an example, a state shown in the equation (Equation 13) can be considered. 

 

|ѱ⟩ =
2

3
|0⟩ +

2 + 𝑖

3
|1⟩ 

Equation 13. Example state 

 

The probabilities for measuring 0 and 1 are calculated by squaring the modulus of the 

corresponding coefficient (Equation 14) using the properties of complex numbers 

(Equation 2). 
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𝑃(0) = |
2

3
|
2

= (
2

3
)
2

=
4

9
  

𝑃(1) = |
2 + 𝑖

3
|
2

= (
2

3
)
2

+ (
1

3
)
2

=
4

9
+
1

9
=
5

9
 

Equation 14. Calculation of the example 

 

This also shows that the state is normalized because the probabilities add up to one. 

 

The state of a system is an abstract object, which is not directly observable. The system 

can be prepared to a state and its time development follows deterministic equations. 

The state of the system can be found out by preparing the system many times and 

making many different measurements. Then the coefficients of the eigenstates can be 

found out and therefore the state is known with some margin of error. The situation is 

different if the calculation shows that the state is certainly in one of the eigenstates and 

not in superposition of states. Then the state can be found out by making only one 

measurement. (Sakurai & Napolitano 2011, 10-24.) System in an eigenstate resembles 

classical mechanics where observables have fixed values. 

 

3.1.6 Time development 

Time development of an eigenstate corresponding to energy ei is (Equation 15), 

 

|𝑒𝑖⟩ → 𝑒(
−𝑖𝑒𝑖𝑡
ħ

)|𝑒𝑖⟩ 

Equation 15. Time development of energy eigenstates 

 

where time is denoted with t and ħ is the planck constant divided by 2π. Time devel-

opment is unitary, which means that it is essentially a rotation in the state space. No in-

formation is lost and it is always possible to find out en earlier state by rotating the 

state back. (Sakurai & Napolitano 2011, 66-73.) In quantum computing, physical sys-

tems used as qubits are usually chosen so, that the states corresponding to 0 and 1  

have the same energy, and thus there is no real time development. Time development 

only happens when the states are operated on in a controlled way, for example with 

quantum gates.  
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Measurement is a special process, because it doesn’t follow the usual rules of motion 

and conservation of probabilities. Measurement loses information and therefore is not 

an unitary process. (Pathak 2013, 74-75.) 

 

3.1.7 Entanglement 

In systems with several particles, states can be entangled so that measurements of one 

particle affect measurements of another particle. For example, if there are two particles 

that have two possible values 0 and 1  when some observable is measured, and the sys-

tem is prepared in a state (Equation 16), 

 

|ѱ⟩ =
1

√2
(|00⟩ + |11⟩) 

Equation 16. Bell state 

 

where the first number in the state refers to the eigenstate of the first particle and the 

second number to the second particle. Something strange happens if the particles are 

separated far away from each other after preparing them. Measurement of either of the 

particles will give a random result of 0 or 1 with equal ½ probabilities, because both ei-

genstates have the same 
1

√2
 coefficient. However, measuring of one of the particles will 

instantly fix the future measurement of the other particle to the same value. The curi-

ous thing about this experiment is that the measurement of one particle instantly af-

fects the other particle far away. (Pathak 2013, 81-88.) This famous experiment was 

proposed in 1964 by John Stewart Bell. It shows that quantum mechanics is in conflict 

with quite natural assumptions of reality and locality. Reality means that physical ob-

servables have some predefined values waiting to be measured. Locality means that 

changes affect only nearby things. (Bell 1964.) The Bell experiment was based on a 

thought experiment made in 1935 by Albert Einstein, Boris Podolsky and Nathan 

Rosen (Einstein, Podolsky & Rosen 1935). The Bell experiment was done experimen-

tally in 1982 (Aspect, Dalibard & Roger 1982).   

 



 

 

13 

3.2 Qubits 

If an observable in a quantum mechanical system has only two possible values, such a 

system is called a qubit. It is the simplest of all quantum systems. These two eigenstates 

can be named |0⟩ and |1⟩ and a general state can be given as a complex linear combi-

nation (Equation 17) (Valiron 2012a, 2-3.) 

 

|ѱ⟩ = α|0⟩ + 𝛽|1⟩ 

Equation 17. Qubit 

 

Using the equation for measurement probabilities (Equation 10), the probabilities for 

measuring 0 and 1 become |𝛼|2 and |𝛽|2, provided that the state is normalized. This 

means that the state of a system is not directly observable. By preparing and measuring 

the superpositional state many times, a better approximation of the coefficients  α and 

𝛽 is gotten. If it is somehow known that the system is not in superposition, but in one 

of the eigenstates, then the state can be found out with just one measurement. 

 

One example of a physical system that can be used as a qubit is angular momentum of 

an electron. If the angular momentum of the electron is measured along some axis, the 

result is always either +ħ/2  or  – ħ/2. (Sakurai & Napolitano 2011, 3.)   

 

A qubit is a vector in 2-dimensional Hilbert space. If the basis vectors are denoted as 

(Equation 18), 

 

|0⟩ = [
1
0
] 

|1⟩ = [
0
1
] 

Equation 18. Basis vectors 

 

a general state can be written as (Equation 19). 
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|ѱ⟩ = α|0⟩ + 𝛽|1⟩ = [
α
𝛽] 

Equation 19. General state as a vector in Hilbert space 

 

States of a qubit are parametrized by two complex parameters which means four real 

parameters. Because states should be normalized (Equation 4) and a constant factor 

multiplying a state is meaningless (Equation 5), all these parameters are not really phys-

ical. Different physical states of a qubit can be parametrized by two continuous real pa-

rameters. These parameters turn out to be angles that specify points on an unit sphere, 

called the Bloch sphere (Figure 1). (Valiron 2012a, 3-6.) 

 

Figure 1. Bloch sphere 

 

The Bloch sphere shows the difference in complexity between a classical bit and a 

qubit. A classical bit is represented by just the north and south poles, while the states 

of a qubit cover the whole unit sphere.  

 

For two qubits, a 4-dimensional basis can be created (Equation 20), 

 

{|00⟩, |01⟩, |10⟩, |11⟩} 

Equation 20. Two-qubit basis 
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where the first number in a state vector refers to the eigenvalue of the first particle and 

the second number to the second particle. For example, if the system is in the state 

|01⟩ , the measurement will always give 0 for the first particle and 1 for the second 

particle. A general 2-particle state has four complex parameters for the four basis 

vertors (Equation 21). 

 

|ѱ⟩ = [

α
𝛽
𝛾
𝜉

] 

Equation 21. General vector in 4-dimensional Hilbert space 

 

For three qubits 8 basis states are needed (Equation 22), 

 

{|000⟩, |001⟩, |010⟩, |011⟩|100⟩, |101⟩, |110⟩, |111⟩} 

Equation 22. Three-qubit basis 

 

and the general state is a 8-dimensional vector. For n qubits, the state is parametrized 

by 2n complex parameters forming a vector in a 2n -dimensional Hilbert space. (Valiron 

2012a, 7-11.) 

 

Operators in linear spaces are represented by square matrices. An operator in n-dimen-

sional Hilbert space transforms vectors to vectors (Equation 23), 

 

|ѱ⟩(𝑛⨯1) → 𝐴(𝑛⨯𝑛)|ѱ⟩(𝑛⨯1) 

Equation 23. Hilbert space operator 

 

where dimensions are marked in the subscript. (Valiron 2012a, 2-10.) This means that 

while classical operations transform input bits into output bits, quantum operations 

change the states of the qubits by modifying the coefficients of the basis states accord-

ing to the operation matrix. 

 

Transpose matrix and adjoint matrix are defined by (Equation 24). 
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𝐴𝑖𝑗
𝑇 = 𝐴𝑗𝑖 

𝐴+ = (𝐴∗)𝑇. 

Equation 24. Transpose and adjoint matrices 

 

Adjoint matrix is made by conjugating each element and then transposing the matrix. 

A matrix A is unitary if fulfills the unitarity condition (Equation 25), 

 

𝐴+𝐴 = 𝐼, 

Equation 25. Unitary matrix 

 

where 𝐼 denotes a unit matrix that does nothing to the operated vector. The fact, that 

unitary operations are reversible, is clear by the definition of unitarity (Equation 25), 

because there always exists an adjoint operation that reverses the operation. (Pathak 

2013, 66-67.) 

 

3.3 Quantum information 

The state of a classical bit can be specified with one boolean variable, and the state of n 

bits with n boolean variables or one integer variable. The state of one qubit is specified 

with two continuous real variables or infinite number of boolean variables. Therefore, 

one might argue that the information content of a qubit is infinitely larger than that of 

a classical bit. The situation in not so clear, because the quantum state is not directly 

observable, and when a measurement is made, only one bit of information is gotten 

out from the measurement. (Girvin 2013, 10.) 

 

It is later shown that although qubits are much more complicated than bits and there 

are more basic processes that can be performed on qubits which leads to more possi-

ble algorithms, and quantum calculations take advantage of entanglement and superpo-

sition, there exist only a few cases where major speedup over classical calculation is ob-

tained by a quantum algorithm. The problem is that quantum calculations usually start 

with qubits on eigenstates and the states are then mixed up with operations. In order to 

get the results out, the state must somehow be transformed to a state where the qubits 

that contain the result are again in eigenstates.  
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The advantage of using superposition can be seen by considering a quantum process 

similar to classical calculation of boolean function 𝑓: {0,1} → {0,1}. Because this pro-

cess is not reversible, an unitary process must be constructed, which describes this clas-

sical function. Such process is called a quantum oracle. The unitary process corre-

sponding to calculating the function 𝑓 is 𝑈(𝑓) defined for  the basis states 𝑥, 𝑦 ∈ {0,1} 

by (Equation 26), 

 

|𝑥⟩ → |𝑥⟩ 

|𝑦⟩ → |𝑦 +2 𝑓(𝑥)⟩ 

Equation 26. Quantum oracle 

 

where  +2  means modulo 2 addition, where the results are always Boolean. Odd re-

sults are converted to 1 and even results to 0. The first qubit is left unchanged and the 

second qubit is flipped if 𝑓(𝑥) = 1. This way the value of the function is gotten out 

and the initial values can be determined from the output values. Extra bits added to the 

circuit this way, because of reversibility, are called ancilla bits and output bits that are 

not used later in the calculation, are called garbage bits. Classically, finding out what the 

function is, requires two runs of the oracle in order to get results 𝑓(0) and 𝑓(1). In 

the quantum case, an entangled state can be used as an input giving the result (Equa-

tion 27). 

 

𝑈: (|0⟩ + |1⟩)|0⟩ → |0⟩|𝑓(0)⟩ + |1⟩|𝑓(1)⟩ 

Equation 27. Oracle result 

 

With just one run of the process 𝑈(𝑓), information about both values of the function 

are obtained. The resulting state as an entangled state is not directly observable and 

serves only as an intermediate step during calculation. This phenomena of making sim-

ultaneous operations is called quantum parallelism. (Katzgraber & Renner 2008, 69.) 
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3.4 Models of quantum computation 

There are different computational models that describe quantum computing. They 

have different basic operations that can be performed on the qubits. 

 

− Quantum Turing machine. Generalization of the classical Turing machine to 

quantum calculation. It has qubits intead of memory tape and the state of the 

read and write head operates on the qubit states (Deutsch 1985, 97-117.) It is 

hard to describe algorithms using quantum Turing machine, because processes 

are described as operations between states of the read and write head and the 

qubits (Miszczak 2011, 5).  

 

− Quantum circuits. The most popular model for expressing quantum algorithms. 

Circuits are made of qubits, wires, and quantum gates. Quantum circuit model 

is explained in chapter 3.5. 

 

− 1-way quantum computer. Starts with a highly entangled cluster state. Computa-

tion is performed by only doing 1-qubit measurements. Because of the meas-

urements, calculation is not reversible. (Katzgraber & Renner 2008, 163.) 

 

− Adiabatic quantum computer. Starts by finding out a complicated qubit system, 

where the lowest energy state (ground state) contains the solution. Qubits are 

then cooled into the ground state of a simpler system. This simpler system is 

them slowly transformed into the more complicated system. Adiabatic quantum 

calculation is well suited for solving minimization and optimization problems. 

(Martikainen 2007. Lecture 10, 60-63.) 

 

− Topological quantum computer. Uses global topological properties of a quan-

tum system to make calculation more stable. Model uses two-dimensional qua-

siparticles known as anyons, which can form braids, which function as logic 
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gates. Topological properties protect braids against small errors. (Colbert 2011, 

8-9.) 

 

− Quantum RAM (QRAM). Extension of classical RAM model. Quantum calcu-

lation is controlled by a classical computer. The quantum device holds the 

qubits and can change the number of qubits, measure them, and operate the 

basic unitary operations. The quantum device takes instructions from the classi-

cal computer and returns the results of the measurements. (Valiron 2012b, 3.) 

 

− Quantum programming languages. Similarly to classical computing, in order to 

express complicated algorithms on large quantum computers, we will eventually 

need to use some kind of programming language. At minimum, it should have 

commands for allocating quantum registers, applying logical gate operations, 

measuring the registers and using subroutines. Several such languages have been 

proposed in the literature. (Valiron 2012b, 7-9.) 

 

If programmable universal quantum computer is taken as the ultimate goal of quantum 

computing research, the models that are most suited to link hardware and program-

ming lanquages are QRAM, quantum circuits and 1-way quantum computing. Quan-

tum Turing machine and adiabatic quantum computer don’t seem to be suitable. 

(Valiron 2012b, 2.)  

 

3.5 Quantum circuits 

Quantum circuit model is the most used model for expressing simple quantum algo-

rithms and understanding the basic processes of quantum computing (Miszczak 2011, 

8).  

 

Time development of quantum mechanics is unitary. Simple unitary operations that 

operate on qubits are called quantum gates. It turns out that similarly to classical com-

puting, where all circuits can be built from an universal gate set {AND, OR, NOT}, it 

is possible to find universal quantum gate sets. Possibilities of quantum computing can 

then be analyzed using chosen gate set. Unitarity of quantum computing means that all 



 

 

20 

operations are reversible and this implies that quantum calculation produces no heat 

and therefore requires no energy. Only operations that are not unitary are measure-

ments. Measurements are usually performed at the end of the calculation. (Pathak 

2013, 75,137,151.) 

 

Because quantum mechanical operations are unitary, the operation can be specified by 

giving the unitary matrix that operates on the Hilbert space vectors. Because unitary 

matrices have equal number of files and ranks, quantum gates always have equal num-

ber of input and output qubits. (Pathak 2013, 137.) 

 

3.5.1 Quantum gates 

In classical circuit model, the only possible one bit gates are the identity gate which 

does nothing, and NOT gate that flips the bit. In the quantum circuit model, there are 

infinite number of different one qubit gates. Because quantum operations are linear, it 

is enough to specify how the operation acts on the basis states. Attachment 1 shows 

the most important quantum gates and how they operate on state vectors. Pauli X gate 

flips the qubit. Pauli Z gate flips the relative phase of a superpositional state. Pauli Y is 

combination of qubit and phase flip. Hadamard gate transforms an eigenstate into su-

perpositional state. Phase gate makes an arbitrary phase transformation. Phase sift and 

π/8 are especially important phase transformations. CNOT gate flips the second qubit 

if the first qubit is in the state |1⟩. SWAP gate swaps the qubit states. Any 1-qubit gate 

U can be made into a 2-qubit gate called Controlled-U, where the first qubit if the con-

trol qubit, and the 1-gubit gate U acts on the second qubit if the first qubit is in the 

state |1⟩. CNOT gate is in fact Controlled-NOT gate, as the name implies. Three qubit 

gates are usually controlled 2-qubit gates or controlled controlled 1-qubit gates. TOF-

FOLI gate is Controlled-Controlled-NOT and FREDKIN gate is Controlled-SWAP. 

(Pathak 2013, 137-147.) 

 

Because classical NOT and TOFFOLI gates are reversible, they can easily be general-

ized into quantum gates. Irreversible gates like AND and OR have no quantum analo-

gies. Therefore it is not possible to straightforwardly simulate classical circuits made 
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out of {AND,OR,NOT} gate library using a quantum computer. However, any classi-

cal circuit can be constructed from reversible TOFFOLI gates, which has a quantum 

counterpart. (Pathak 2013, 46-47.) This is an easy way to show that any classical com-

putation can be run on a quantum computer. 

 

3.5.2 Circuit examples 

As the basic quantum gates are known, it is possible to express quantum circuits and 

simple quantum algorithms using them. As an example, a random number generator 

and the entangled state used in the EPR experiment are generated using quantum 

gates. 

 

 

Figure 2. Random number generator 

 

With a single Hadamard gate, a random number generator (Figure 2) can be generated. 

The measurement gives 0 and 1 with equal ½ probabilities. (Valiron 2012a, 5.) 
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Figure 3. Bell state generator 

   

 

Combination of Hadamard gate and CNOT gates (Figure 3) can produce exactly the 

state used in the EPR experiment, which was reviewed in chapter 3.1.7 (Pathak 2013, 

149-150). 

 

3.5.3 Universal quantum gate sets 

It can be shown, that any unitary quantum operation can be approximated to arbitrary 

accuracy by a set of universal quantum gates. One such set is {All 1-qubit gates, 

CNOT}. This set is not convenient, because the number of gates is infinite, and there-

fore error correction becomes problematic. However, any 1-qubit operation can be ap-

proximated by Hadamard and π/8 gates. Therefore {H, π/8, CNOT} is universal. The 

phase sift gate is usually included in this universal gate set because it is used in error 

correction, making another universal gate set {H, S, π/8, CNOT} . (Martikainen 2008. 

Lectures 5-6.) 

 

3.6 Decoherence and error correction 

Information stored in qubits is unstable, because interaction with the environment af-

fects qubits and causes errors, eventually destroying the quantum superposition. De-

pending on the qubit technology, the lifetimes of the qubits range from milliseconds to 
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tens of seconds. (Valiron 2012a, 14-15.) Because of this unstability, error correction is 

an essential part of quantum computation.  

 

There are two basic reasons why quantum error correction is problematic. Firstly, 

quantum states cannot be cloned. Measurement of a state destroys the state sending it 

to one of the eigenstates. Secondly, the continuous structure of a qubit (Equation 28) 

  

|ѱ⟩ = α|0⟩ + 𝛽|1⟩ 

Equation 28. Qubit 

 

means that there can be an infinite number of different errors. Classically the only pos-

sible error is that the bit flips 0 ↔ 1. Until 1995, when Peter Shor developed tech-

niques for quantum error correction, it was believed that quantum error correction was 

impossible. (Pathak 2013, 207-211.) 

 

Classically, the simplest error correction code is a repetition code. Every bit is cloned 

into an odd number of bits and from time to time bits are aligned by majority voting.  

In three bit repetition, this means that finding the bits to be 001 would conclude that 

the last bit had flipped and it should be corrected back to 0. (Pathak 2013, 209-210.) 

 

Repetition code cannot be generalized to qubits, because quantum states cannot be 

cloned. However, it can be shown that a general 1-qubit error is a combination of a 

qubit flip (Equation 29) 

 

α|0⟩ + 𝛽|1⟩ → α|1⟩ + 𝛽|0⟩ 

Equation 29. Qubit flip 

 

and a phase flip (Equation 30). 

 

|0⟩ + |1⟩ → |0⟩ − |1⟩ 

Equation 30. Phase flip 
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In 1995 Peter Shor developed a 9-qubit code that can correct an arbitrary 1-qubit error. 

The circuit has the following structure (Figure 4). 

 

 

Figure 4. Shor code circuit 

 

Each qubit is encoded into nine qubit system and after some operations decoded back. 

(Shor 1995.) 

 

The Shor code is not optimal, because the minimum number of qubits needed for cor-

recting an arbitrary 1-qubit error is five. Such a code was published in 1996. 

(Laflamme, Miquel, Paz & Zurek 1996, 198-201.) 

 

Just using error correcting codes with quantum gates is problematic because encoded 

information must be decoded before each gate operation. This leads to massive 

amount of extra operations. Error correcting codes are themselves made out of quan-

tum gates which also produces errors. Better approach is to integrate error correction 

into the quantum gates producing fault tolerant quantum gates. Study of fault tolerant 
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quantum circuits is one of the main areas of quantum computing research. (Pathak 

2013, 221-223.) 
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4 Quantum algorithms 

Knowledge of universal quantum gate sets means that the basic building blocks of 

quantum computing are known. This allows the analysis of possible quantum algo-

rithms. The goal is to find quantum algorithms for important problems giving signifi-

cant speedup over classical algorithms.  

 

4.1 Simple quantum algorithm 

In 1985, the first quantum algorithm was developed by David Deutsch. It proved that 

there are some problems were quantum computers outperform classical computers. It 

is also a good example of the basic structure of quantum algorithms. The problem con-

siders a boolean function (Equation 31). 

 

𝑓: {0,1} → {0,1} 

Equation 31. Boolean function 

 

There are four such functions, because each input value has two possible input values. 

Quantum mechanically, an unitary process called an oracle, must be constructed 

(Equation 32). 

 

𝑈𝑓: 

|𝑥⟩ → |𝑥⟩ 

|𝑦⟩ → |𝑦 +2 𝑓(𝑥)⟩ 

Equation 32. Quantum oracle 

 

This oracle can perform classical calculation, if we use only eigenstates as input values, 

but can also take superpositional states as an input and perform quantum calculation. 

Classically the function is found out using input values |00⟩ and |10⟩, and measuring 

the function values from the second qubit (Equation 33). 
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|0⟩ → |0⟩ 

|0⟩ → |0 +2 𝑓(0)⟩ = |𝑓(0)⟩ 

|1⟩ → |1⟩ 

|0⟩ → |0 +2 𝑓(1)⟩ = |𝑓(1)⟩ 

Equation 33. Measuring the function classically 

 

Quantum mechanically, the problem of finding out the function is equally hard, be-

cause using a superpositional state as an input produces (Equation 34), 

  

(|0⟩ + |1⟩)|0⟩ → |0⟩|𝑓(0)⟩ + |1⟩|𝑓(1)⟩ 

Equation 34. Output of a superpositional state 

 

which doesn’t help, because the resulting state is entangled superpositional state. Func-

tion values cannot be red even with two measurements. However, If another problem 

of finding out whether the function f is constant or balanced, is considered, it turns out 

that quantum mechanical properties can be taken advantage of. Function f is constant 

if the function values are the same (Equation 35), 

 

𝑓(0) = 𝑓(1) = 0 𝑜𝑟 𝑓(0) = 𝑓(1) = 1 

Equation 35. Constant boolean function 

 

and balanced, if the function values are different (Equation 36). 

 

𝑓(0) = 0, 𝑓(1) = 1 𝑜𝑟 𝑓(0) = 1, 𝑓(1) = 0 

Equation 36. Balanced boolean function 

 

Classically, the function must again be run twice to get the function values, which can 

be used to determine whether the function is constant or balanced. Quantum mechani-

cally, only one run of the process is needed. The following circuit (Figure 5) shows 

how it is done. 
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Figure 5. Deutsch algorithm circuit 

 

The calculation starts with qubits in eigenstates (Equation 37). 

 

|ѱ⟩0 = |01⟩ 

Equation 37. Initial state 

 

The states are then mixed up into entangled superpositional states with Hadamard 

gates (Equation 38). 

 

|ѱ⟩1 = [
|0⟩ + |1⟩

√2
] [
|0⟩ − |1⟩

√2
] 

Equation 38. 

 

After the oracle operation the state is (Equation 39). 
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|ѱ⟩2 =

{
 
 
 
 

 
 
 
 [

|0⟩ + |1⟩

√2
] [
|0⟩ − |1⟩

√2
] , 𝑖𝑓 𝑓(0) = 𝑓(1) = 0

− [
|0⟩ + |1⟩

√2
] [
|0⟩ − |1⟩

√2
] , 𝑖𝑓 𝑓(0) = 𝑓(1) = 1 

[
|0⟩ − |1⟩

√2
] [
|0⟩ − |1⟩

√2
] , 𝑖𝑓 𝑓(0) = 0, 𝑓(1) = 1

− [
|0⟩ − |1⟩

√2
] [
|0⟩ − |1⟩

√2
] , 𝑖𝑓 𝑓(0) = 1, 𝑓(1) = 0.

 

Equation 39. 

 

This can be rewritten as (Equation 40). 

 

|ѱ⟩2 =

{
 
 

 
 

± [
|0⟩ + |1⟩

√2
] [
|0⟩ − |1⟩

√2
] , 𝑖𝑓 𝑓(0) =  𝑓(1)  → 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓

± [
|0⟩ − |1⟩

√2
] [
|0⟩ − |1⟩

√2
] , 𝑖𝑓 𝑓(0) ≠  𝑓(1) = 0 → 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑓.

 

Equation 40. 

 

Applying Hadamard gate to the first qubit yields (Equation 41). 

 

|ѱ⟩3 =

{
 
 

 
 ±|0⟩ [

|0⟩ − |1⟩

√2
] , 𝑖𝑓 𝑓(0) =  𝑓(1)  → 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓

±|1⟩ [
|0⟩ − |1⟩

√2
] , 𝑖𝑓 𝑓(0) ≠  𝑓(1) = 0 → 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑓

 

Equation 41. Deutch algorithm result 

 

Now the first qubit is always in an eigenstate and with one measurement on the first 

qubit it can be found out whether the function is constant or balanced. (Pathak 2013, 

174-176.) The Deutsch algorithm was originally presented in (Deutsch 1985, 97-117) in 

a more complicated probabilistic form and later converted to this simpler form pre-

sented here. 
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The Deutch algorithm is not very useful but rather shows that some things can be cal-

culated faster using a quantum calculation. It also shows the basic structure of quan-

tum computation. The input qubits are initialized into eigenstates and then mixed up 

into entangled superpositions. Quantum operations are then performed and finally the 

qubits that contain the result are transformed back into eigenstates. Only this way the 

results can be obtained with single measurements from the output qubits. One could 

say that quantum calculation in the circuit model starts and ends in the classical world, 

and visits the quantum world during the calculation. 

 

The Deutch algorithm can be generalized from the one qubit case to a n-qubit case. 

There we have a function (Equation 42), 

 

𝑓: {0,1}𝑛 → {0,1} 

Equation 42. 

 

which has n bits input and one bit output. The promise is that the function is either 

constant with all function values either 0 or 1, or balanced with exactly half of the val-

ues 0 and half 1. There are 2𝑛 different inputs and classically the function must be cal-

culated for 2𝑛−1 + 1 input values to find out the answer. Quantum mechanically, only 

one run of the oracle is needed. The procedure is similar to the Deutsch algorithm dis-

cussed earlier. This generalized case shows an exponential speedup over the classical 

calculation. (Pathak 2013, 176-178.) This generalized Deutsch-Jozsa algorithm was first 

published in (Deutsch & Jozsa 1992, 553). 

 

4.2 Central quantum algorithms 

Although moving from bits to qubits leads to more basic logical operations and there-

fore to new possibilities in creating algorithms, the number of known algorithms that 

outperform classical algorithms is very small. There are many possible reasons for this. 

Quantum calculation involves entangled superpositional states and it is hard to pro-

duce the result into qubits in eigenstates. The logic and structure of a quantum com-

puter is hard to imagine and very fast becomes impossible to simulate with a classical 

computer. Therefore designing new quantum algorithms is not easy. It is also possible, 
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that the number of quantum algorithms that outperform classical algorithms is in fact 

very small. (Shor 2003.)  

 

A list of known quantum algorithms can be found at http://math.nist.gov/quan-

tum/zoo/. On 3 Apr 2014 it lists 214 quantum algorithms that offer speedup over 

classical computation. Most of the algorithms are however applications of two power-

ful quantum algorithms, namely Grover’s search algorithm and quantum Fourier trans-

form. There are also some applications involving simulation of quantum mechanical 

systems on quantum computers and quantum walk. 

 

4.2.1 Simulation of quantum systems 

In 1982, it was proven by Richard Feynman, that simulating quantum mechanical sys-

tems is a hard problem for classical computers. He also had an idea that it could be 

possible to build a quantum computer that could efficiently simulate quantum mechan-

ical systems. (Feynman 1982.) Since then, many applications of this idea have been de-

veloped. Amongst them, an algorithm for simulating systems of elementary particles 

(Abrams & Lloyd 1997), and an algorithm for simulating chemical reactions in (Kassal, 

Jordan, Love, Mohseni & Aspuru-Guzik 2008). 

 

4.2.2 Quantum walk 

Many classical algorithms are formed using random walk. Quantum mechanical gener-

alization is called quantum walk. The walker is in superposition of positions and can 

offer speedup when going through graph- or tree-like information structures. (Farhi & 

Gutmann 1998.)  

 

4.2.3 Amplitude amplification and quantum search 

Grover’s search algorithm is a quantum algorithm for searching in unsorted data. Clas-

sically, finding the wanted entry in a database of N entries, requires N queries in the 

worst case and 𝑁/2 queries in average. Therefore the complexity of the problem is 

classically 𝑂(𝑁). If the data is stored in quantum bits, it takes only  
𝜋

4
√𝑁 = 𝑂(√𝑁) 
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queries to find the solution. The algorithm uses a method called amplitude amplifica-

tion, which uses certain quantum operations to iterate the solution from a superposi-

tion of all entries. (Grover 1996.) Grover’s search algorithm is important, because 

searching is a basic process of computing. Many mathematical and computational algo-

rithms involve searching and Grover’s search algorithm can offer a quadratic speedup 

moving from classical to corresponding quantum algorithms. Although the speedup is 

not exponential, even a quadratic speedup can be tremendous when dealing with large 

data sizes.  

 

4.2.4 Quantum Fourier transform 

Fourier transform is a mathematical process that is used in mathematics and all over 

natural sciences. An example of a Fourier transform is dividing a sound wave into 

component waves of different wavelengths. Moving from the values of the function to 

the coefficients of different component waves, is the Fourier transform.  

 

Fourier transform is a hard process for classical computers and thus many problems 

involving Fourier transform are not efficiently solvable. Quantum computers however 

solve Fourier transforms easily. (Girvin 2013, 7-8.) 

 

For real functions, a Fourier transform means expressing the function as an integral or 

a sum over sine and cosine functions of different wavelengths. For complex valued 

functions, the sum runs over different exponential functions. If the data set is not con-

tinuous but discrete, the transformation is called a discrete Fourier transform.  

 

For a discrete data set (Equation 43) 

 

𝛼(𝑗) = {𝛼0, 𝛼1, … , 𝛼𝑁−1}, 𝑗 = 0,1, … , 𝑁 − 1 

Equation 43. Discrete data set 

 

of 𝑁 complex numbers, the data set can be expressed as a sum (Equation 44). 
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𝛼(𝑗) =
1

√𝑁
∑𝛽(𝑘)𝑒−2𝜋𝑖𝑗𝑘/𝑁
𝑁−1

𝑘=0

,         𝑗 = 0,1, … ,𝑁 − 1 

Equation 44. Fourier expansion 

 

Moving from the function values 𝛼 to the coefficients of the exponential functions 𝛽 

is the Fourier transform. The function 𝛽 can be calculated by (Equation 45). 

 

𝛽(𝑗) =
1

√𝑁
∑𝛼(𝑗)𝑒2𝜋𝑖𝑗𝑘/𝑁
𝑁−1

𝑗=0

,         𝑘 = 0,1, … ,𝑁 − 1 

Equation 45. Fourier coefficients 

 

Quantum Fourier transform operates on a quantum state (Equation 46). 

 

|ѱ⟩ = ∑ α(j)|𝑗⟩

𝑁−1

𝑗=0

 

Equation 46. Quantum state 

 

Quantum Fourier transform is just a regular discrete Fourier transform on the discrete 

data set α(j). For n-qubit system, the dimensionality is 𝑁 = 2𝑛. The quantum fourier 

transform can be expressed as a 𝑁𝑥𝑁 matrix (Equation 47). 

 

𝐹 =
1

√𝑁

[
 
 
 
 

1 1 1
1 𝜔 𝜔2

1 𝜔2 𝜔4
⋯

1
𝜔𝑁−1

𝜔2(𝑁−1)

⋮ ⋱ ⋮

1 𝜔𝑁−1 𝜔2(𝑁−1) ⋯ 𝜔(𝑁−1)(𝑁−1)]
 
 
 
 

 ,         𝑤ℎ𝑒𝑟𝑒 𝜔 = 𝑒2𝜋𝑖/𝑁 

Equation 47. Quantum Fourier transform matrix 

  

For a single qubit system (Equation 48), 

 

|ѱ⟩ = α|0⟩ + 𝛽|1⟩ 

Equation 48. Qubit 
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the Fourier transform is (Equation 49), 

 

𝐹 =
1

√2
[
1 1
1 −1

] 

Equation 49. One-qubit Fourier transform 

 

which is just the Hadamard gate. This shows that, at least for a single qubit, quantum 

gates quite naturally solve Fourier transforms. The quantum circuit for the 1-qubit 

Fourier transform is then simply (Figure 6). 

 

 

Figure 6. One-qubit Fourier transform circuit 

 

For three qubits, the circuit is more complicated (Figure 7). 

 

 

 

Figure 7. Three-qubit Fourier transform circuit 

 

For n qubits, the Fourier circuit is also constructed from Hadamard and rotation gates 

(Pathak 2013, 191-194.) The number of quantum operations is 𝑂(𝑛2). Classically the 

best known algorithm takes 𝑂(𝑛2𝑛) steps, so the quantum speedup for performing a 

Fourier transform is exponential. (Girvin 2013, 7.) 

 

Because the output of a quantum Fourier transform is given as coefficients of a super-

positional quantum state, it cannot be used to actually calculate a Fourier transform 
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(Martikainen, Lecture 7, 3). It can however be used to gain speedup on many im-

portant mathematical problems. All known exponential quantum speedups are found 

on a group of problems called hidden subgroup problem. Examples of such problems 

gaining an exponential speedup are order finding, discrete logarithm, and factoring. 

(Martikainen 2007, Lecture 8, 24.) 

 

An efficient quantum algorithm for factoring was developed in 1994 by Peter Shor. It 

is of special interest at the moment, because the assumption that factoring is a hard 

problem is an integral part of RSA cryptographic protocol used in most of modern se-

cure communication protocols. If a large universal quantum computer is one day built, 

or at least a quantum computer capable of running Shor’s algorithm, it would make 

modern RSA encryption unsecure and out of date. (Pathak 2013, 22.)  
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5 History of  theories behind quantum computing 

The progress of quantum computing has been mainly theoretical progress over the last 

35 years. There has been many developments on the fields of quantum information 

and quantum communication, but here the most important theoretical developments 

relating directly to quantum computing are listed: 

 

− In 1980-82 Paul Benioff developed the idea that a quantum device could simu-

late classical computation with no energy expense (Benioff 1982). 

−  In 1982, Richard Feynman proved that simulating quantum systems is hard for 

classical computers. He also proposed that perhaps quantum systems could be 

easily simulated using a computer that took advantage of quantum mechanics. 

(Feynman 1982.) 

− In 1985, David Deutsch formulated an universal quantum computer and a 

quantum Turing machine. He also proved that a quantum computer could solve 

some problems faster than classical computers by introducing the Deutsch algo-

rithm. (Deutsch 1985.) 

− In 1994, the first quantum algorithms for computing something meaningful 

were developed. Peter Shor developed algorithms for factoring and discrete log-

arithm problems. (Shor 1994.) 

− In 1995, Peter Shor published an error correcting algorithm for correcting an 

arbitrary 1-qubit error (Shor 1995). 

− In 1996, Peter Shor developed the concept of fault tolerant quantum computing 

(Shor 1996). 

− In 1996, Lov Grover designed an algorithm for searching an unordered data-

base (Grover 1996). 

− In 2000, David DiVincenzo introduced the criteria for a scalable quantum com-

puter (DiVincenzo 2000).  
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6 Physical realizations and results 

Roughly 20 years after quantum computers were theoretically modelled, actual physical 

realizations started to emerge at the start of the current millennium. There are still only 

a couple of scientific experiments where quantum computing has been performed. 

This chapter reviews the criteria for successfully building a quantum computer and 

then reviews the history of actual constructions. Recent findings and ongoing projects 

are also reviewed. 

 

6.1 Requirements for a quantum computer 

In order to perform quantum computation, a physical system must fulfill certain crite-

ria. Qubits must be scalable, well characterized, and with low enough error rate. Deco-

herence times (lifetimes) of the qubits must be much lower than gate operation times. 

There must also be a way to initialize and measure the qubits. In order to perform any 

algorithm, there must be operations that correspond to some universal set of quantum 

gates. These criteria can be used to test the adequacy of a realizations of a quantum 

computer. (DiVincenzo 2000.) 

 

Using the terminology of this thesis, these criteria correspond to building an universal 

quantum computer. For building a quantum computer that runs some specific algo-

rithm, one can do with limited scalability and no universal set of operations. 

 

6.2 Qubit realizations 

A large number of different physical realizations of qubits are being studied. Some ex-

amples are reviewed here concentrating on ones that have provided proven results. 

Every realization has its pros and cons. Most of the systems can be put into following 

categories: 

− Photons are fine candidates for qubits because they interact weakly with the en-

vironment and are therefore naturally quite free from decoherence. The main 

problem is how to make photons interact. There are several ways to make 

qubits from photons. Photon polarization states and position of the photon are 

two natural possibilities.  
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− Ions, which are electrically charged atoms, can be trapped in free space by elec-

tric fields. Ions are arranged into an array and lowest energy state is obtained by 

laser cooling. Interaction with one ion is done with laser and interaction be-

tween ions by local interaction or photonic interaction. At small scale the model 

seems to be working but the problem is how to scale up the system. 

− Atomic nuclei are naturally isolated from the environment behind the electron 

cloud. Nuclear spin is therefore very stable. It can be operated on either by an 

electric field or by nuclear magnetic resonance (NMR). Problems with nuclei are 

related to initialization of the system and scaling up the system. 

−   Quantum particles can be stored into a solid host such as a semiconductor, a 

piece of silicon, a crystal like for example a diamond. The fact that the quantum 

particle is trapped into a solid host makes the qubit realization more stable. 

There is also possibility to manage without cooling the system to very cold tem-

peratures.  

− Electron spins are natural candidates for qubit realizations, but in typical electric 

hardware, decoherence due to resistivity is extremely high. Superconductors 

however minimize resistivity, and quantum computing has be experimented on 

superconducting systems. (Valiron 2012a, 16-19.) 

 

6.3 Constructions and results 

This chapter reviews experiments were an algorithm has been run on a quantum com-

puter. The list is not complete, but tries to show how the area has evolved. 

− In 1998, the first 2-qubit quantum computer was built. It used NRM technique 

on chloroform nuclei. The computer was able to run Grover’s search algorithm 

on 4 states. (Chuang, Gershenfeld & Kubinec 1998.) 

− The NRM technique was later used to produce several results. Grover’s search 

algorithm was run on a 3-qubit quantum computer (Vandersypen et al. 2000a). 

Order finding algorithm was run on a 5-qubit quantum computer (Vandersypen 

et al. 2000b). Shor’s factoring algorithm was run on a 7-qubit quantum com-

puter, successfully factoring 15 = 3𝑥5 (Vandersypen et al. 2001). A 4-qubit 

quantum computer factored 143 = 11𝑥13 (Nanyang et al. 2011). 
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− The first 2-qubit solid state quantum processor was created, that was able to run 

basic algorithms. Superconducting chip, cooled near absolute zero temperature, 

used two qubits, each made up out of a billion aluminium atoms. This was the 

first quantum computer that resembled typical electronic device. Earlier, all 

quantum computing had been performed using atoms, nuclei, or photons. (Yale 

news 2009.) 

− A silicon based quantum computing chip using quantum optics was able to run 

Shor’s algorithm (NewScientist 2009). 

 

Several interesting techniques have also been developed. In 2012 Australian engi-

neers created qubits from single silicon atoms. This is interesting because qubits 

were generated using the same material used in typical classical electronics. (Griffith 

2012.) In the same year, a 2-qubit quantum computer was created on a crystal of a 

diamond. It worked on room temperature and might be scaled up in size. (Perkins 

2012.) 

 

The first commercial quantum computer D-Wave One, was put to sale in 2011 by 

D-Wave Systems (D-Wave 2011a). The company claims that the chip, costing $10 

million, is a 128-qubit adiabatic quantum computer that can solve optimization 

problems (Anthony 2011). On May 25 2011, the first D-Wave One system was sold 

to Lockheed Martin (D-Wave 2011b). On May 16 2013, D-wave announced that 

their new 512-qubit D-Wave Two quantum computer was going to be installed at 

the new Quantum Artificial Intelligence Lab founded by NASA, Google and the 

Universities Space Research Association (USRA) (D-Wave 2013). Because D-Wave 

chips are commercial devices, it becomes very hard to verify that the chip is actually 

doing quantum computing. Scientists do not know the exact structure of the chip 

and are not allowed to look inside the chip. Determining the quantumness of a de-

vice from the input and the output is an ongoing research problem of its own. 

(Zagoskin, Ilichev, Grajcar, Betouras & Nori 2014.) At the moment, it is not clear 

whether the D-Wave chips are classical computers, quantum devices doing classical 

computing, or real quantum computers (Shin, Smith, Smolin & Vazirani 2014). Ad-

iabatic quantum computing limits the use of D-Wave chips to some optimization 
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problems. As stated in chapter 3.4, adiabatic quantum computing is not likely plat-

form for building an universal quantum computer, or a programmable universal 

quantum computer. 
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7 Summary and conclusions 

This thesis has shown that theoretically it is quite well known what is required in order 

to build a large quantum computer. The basic logical processes of quantum computa-

tion are known and some powerful quantum algorithms have been developed. These 

algorithms offer quadratic speedup on processes involving searching and turn some 

important unsolvable mathematical problems into solvable ones. One such a problem 

is factoring of large integer numbers into a product of prime numbers, which allows 

quantum computers to break all the modern public key encryption algorithms used in 

network communication. Another advantage of quantum computation is that it pro-

duces no heat and therefore requires no energy source. Only measurement of the 

qubits at the end of the computation and error correction produce heat, which makes 

quantum computation much more energy efficient than classical computation.  

 

Only very small quantum computers, made out of a couple of qubits, have been built. 

A large quantum computer would stretch quantum phenomena into macroscopic dis-

tances, and it is not known whether or not it is possible to build one. Qubits are also 

very unstable because interaction with the environment disturbs the states of the 

qubits. The qubits must therefore be isolated but somehow made to interact when 

wanted. The continuous structure of qubits also makes error correction hard.  

 

Personal learning experience during the thesis process was quite straightforward. I 

started to think about the thesis right after my studies had started at Haaga-Helia in the 

fall of 2013. In the spring of 2014 I had my subject chosen, but didn’t know anything 

about it. My goal was to write the thesis during the first school year, so I could concen-

trate of finishing the rest of the courses during the second year. The spring courses 

went well and I had enough time to learn the basics of the thesis subject. I devoted the 

April of 2014 to writing the thesis. Writing the thesis was very instructive, because I 

hadn’t written any long texts in many years. It was also a delightful practice on my 

English language skills.   
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Käsiteet 

Complex linear space Avaruus, jossa alkioita voidaan kertoa kompleksiluvuilla, las-

kea yhteen ja ottaa alkioiden pistetuloja. 

Easy problem Ongelma, jonka ratkaisuun kuluva aika riippuu lähtödatan 

määrästä lineaarisesti. 

Eigenstate Ominaistila, jossa mitattava suure saa aina tietyn arvon. 

Eigenvalue  Mitattavan suureen mahdollinen arvo. 

Entanglement Usean hiukkasen tila, jossa hiukkasen mittaus vaikuttaa toisen 

hiukkasen mittaukseen. 

Exponential  Lauseke jossa muuttuja on eksponentissa. 

Hard problem Ongelma, jonka ratkaisuun kuluva aika riippuu lähtödatan 

määrästä eksponentiaalisesti. 

Hilbert space Kvanttimekaanisten tilojen muodostama kompleksinen line-

aariavaruus. 

Heat Elektroniset komponentit tuottavat lämpöä ja energiaa kuluu. 

Linear  Lauseke jossa muuttuja ei esiinny eksponentissa. 

Normalized Todennäköisyyksien laskemiseksi tilat täytyy normalisoida eli 

kertoa sopivalla vakiolla. 

Observable Mitattava suure. 

Oracle Klassista bittioperaatiota vastaava kvanttioperaatio. 

Orthogonal Suorakulmainen.  

Prepare Systeemin saattaminen haluttuun alkutilaan. 

Qubit Kvanttibitti. Yksinkertaisin kvanttimekaaninen systeemi. 

Reversible Käännettävissä oleva. Muutos, joka voidaan perua. 

State Systeemin tila. Sisältää kaiken tiedon systeemistä. Kvanttime-

kaniikassa tilat muodostavat Hilbertin avaruuden. 

Superposition Systeemin mielivaltainen tila on ominaistilojen lineaarikombi-

naatio. 

Unitary Kvanttimekaaniset operaatiot ovat unitaarisia eli kiertoja Hil-

bertin avaruudessa. 
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Attachments 

Attachment 1. Quantum gates 

 

𝑁𝑂𝑇 = 𝑃𝑎𝑢𝑙𝑖 𝑋 = [
0 1
1 0

]   𝑜𝑟   

 |0⟩ = [
1
0
] → [

0 1
1 0

] [
1
0
] = [

0
1
] = |1⟩ 

 |1⟩ = [
0
1
] → [

0 1
1 0

] [
0
1
] = [

1
0
] = |0⟩ 

 [
𝛼
𝛽] → [

0 1
1 0

] [
𝛼
𝛽] = [

𝛽
𝛼
] 

𝑃𝑎𝑢𝑙𝑖 𝑌 = [
0 −𝑖
𝑖 0

]   

 |0⟩ = [
1
0
] → [

0 −𝑖
𝑖 0

] [
1
0
] = [

0
𝑖
] = 𝑖|1⟩ 

 |1⟩ = [
0
1
] → [

0 −𝑖
𝑖 0

] [
0
1
] = [

−𝑖
0
] = −𝑖|0⟩ 

 [
𝛼
𝛽] → [

0 −𝑖
𝑖 0

] [
𝛼
𝛽] = [

−𝑖𝛽
𝑖𝛼
] = 𝑖 [

−𝛽
𝛼
] 

𝑃𝑎𝑢𝑙𝑖 𝑍 = [
1 0
0 −1

]   

 |0⟩ = [
1
0
] → [

1 0
0 −1

] [
1
0
] = [

1
0
] = |0⟩ 

 |1⟩ = [
0
1
] → [

1 0
0 −1

] [
0
1
] = [

0
−1
] = −|1⟩ 

 [
𝛼
𝛽] → [

1 0
0 −1

] [
𝛼
𝛽] = [

𝛼
−𝛽] 

𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑 =
1

√2
[
1 1
1 −1

]   

 |0⟩ = [
1
0
] →

1

√2
[
1 1
1 −1

] [
1
0
] =

1

√2
[
1
1
] =

1

√2
(|0⟩ + |1⟩) 

 |1⟩ = [
0
1
] →

1

√2
[
1 1
1 −1

] [
0
1
] =

1

√2
[
1
−1
] =

1

√2
(|0⟩ − |1⟩) 
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𝛼
𝛽] →

1

√2
[
1 1
1 −1

] [
𝛼
𝛽] =

1

√2
[
𝛼 + 𝛽
𝛼 − 𝛽

] 

𝑃ℎ𝑎𝑠𝑒 = 𝑃(∅) = [
1 0
0 𝑒𝑖∅
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 |0⟩ = [
1
0
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1 0
0 𝑒𝑖∅
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1
0
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1
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0
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𝛼
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𝛼
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2
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0 𝑖
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𝜋/8 = 𝑃 (
𝜋

4
) = [

1 0
0 𝑒𝑖𝜋/4
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1
0
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0 0

0 1
1 0

]    

 |00⟩ = [

1
0
0
0

] → [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

] [

1
0
0
0

] = [

1
0
0
0

] = |00⟩    

|01⟩ → |01⟩  

 |10⟩ → |11⟩ 

 |11⟩ → |10⟩ 

𝑆𝑊𝐴𝑃 = [

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

]    

  

 |00⟩ = [

1
0
0
0

] → [

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

] [

1
0
0
0

] = [

1
0
0
0

] = |00⟩ 

 |01⟩ → |10⟩  

 |10⟩ → |01⟩ 

 |11⟩ → |11⟩ 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 𝑈 = [
𝐼2 02
02 𝑈

] , 𝑤ℎ𝑒𝑟𝑒 𝐼2 = [
1 0
0 1

]  𝑎𝑛𝑑 02 = [
0 0
0 0

]  
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𝑇𝑂𝐹𝐹𝑂𝐿𝐼 = 𝐶𝐶𝑁𝑂𝑇 =

[
 
 
 
 
 
 
 
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0]

 
 
 
 
 
 
 

  

 |000⟩ → |000⟩ 

 |001⟩ → |001⟩ 

 |010⟩ → |010⟩ 

 |011⟩ → |011⟩ 

 |100⟩ → |100⟩ 

 |101⟩ → |101⟩ 

 |110⟩ → |111⟩ 

 |111⟩ → |110⟩ 

𝐹𝑅𝐸𝐷𝐾𝐼𝑁 = 𝐶𝑆𝑊𝐴𝑃 =

[
 
 
 
 
 
 
 
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1]

 
 
 
 
 
 
 

  

 |000⟩ → |000⟩ 

 |001⟩ → |001⟩ 

 |010⟩ → |010⟩ 

 |011⟩ → |011⟩ 

 |100⟩ → |100⟩ 

 |101⟩ → |110⟩ 

 |110⟩ → |101⟩ 

 |111⟩ → |111⟩ 

 

 

 


