

Karina Raiküla

Implementation of Automated

End-To-End Testing in

Web Applications

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Bachelor’s Thesis

13 April 2023

Abstract

Author: Karina Raiküla

Title: Implementation of Automated End-To-End Testing in

Web Applications

Number of Pages: 35 pages

Date: 13 April 2023

Degree: Bachelor of Engineering

Degree Programme: Information and Communication Technology

Professional Major: Media Technology

Supervisor: Matti Peltoniemi, Senior Lecturer

Web automation is a growing practice and having a high-quality product is crucial,

as the market is greatly saturated with web applications. This thesis follows the

implementation process of an automated Cypress testing environment for a

Finnish sports competition organisation Reppi. End-to-end testing is used as it

tests the application from the viewpoint of the end user, thus making sure the

application delivers exactly what real world users need.

Three test suites for the most popular functionalities were outlined and the tests

for these were created. Tests were optimized by including custom commands,

sessions, and tools. Finished tests will be included into daily programming

practices, to ensure a high standard for the final product, customer satisfaction

and user retention.

The work argues for the benefits of implementing an automated testing

framework into development practises. Though this project is focused on End-to-

end testing with Cypress, other frameworks and methods are outlined, as the

technology of choice is unique to each development team and should be

implemented regardless of chosen framework.

Keywords: Test Automation, Web Testing, End-To-End, Cypress, Web

Application, Angular, AWS

Tiivistelmä

Tekijä: Karina Raiküla

Otsikko: Automatisoidun päästä päähän -testauksen

käyttöönotto verkkosovelluksissa

Sivumäärä: 35 sivua

Aika: 11.4.2023

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Tieto- ja viestintätekniikka

Ammatillinen pääaine: Mediatekniikka

Ohjaaja: Lehtori Matti Peltoniemi

Insinöörityön tarkoitus oli luoda ja ottaa käyttöön automatisoitu Cypress-

testausympäristö suomalaiselle urheilukilpailujärjestö Repille sekä tutkia

automaatiotestauksen menetelmiä ja käytäntöjä. Reppi halusi tuotteelleen

automaatiotestausta, koska se mahdollistaa laadukkaan tuotteen kehittämistä ja

sen systemaattista ylläpitoa. Korkealuokkainen verkkosovellus edesauttaa

yrityksiä erottumaan massasta ja varmistamaan käyttäjien uskollisuuden.

Insinöörityössä luotiin Cypress-testiympäristö toimeksiantajalle, Repille.

Tärkeimmiksi toiminnoiksi valittiin kolme kokonaisuutta, ja niille luotiin

luotettavat testit. Työssä todettiin automatisoidun Cypress-testausympäristön

helppo ja nopea käyttöönotto, sekä monipuoliset komennot, istunnot ja työkalut.

Valmiit testit sisällytetään päivittäisiin ohjelmointikäytäntöihin, jotta varmistetaan

korkealaatuinen tuote, asiakastyytyväisyys ja käyttäjien pysyvyys.

Työssä käytetty päästä päähän -testaus tarkastelee sovellusta loppukäyttäjän

näkökulmasta ja varmistaa, että sovellus tarjoaa juuri sitä, mitä tosielämän

käyttäjät tarvitsevat. Vaikka insinöörityössä keskityttiin Cypress-testaukseen,

muitakin ohjelmia on olemassa, kuten Selenium ja Appium. Päästä päähän -

testauksen lisäksi on mahdollista soveltaa valkoisen tai mustan laatikon

testausta, toiminnallista testausta ja regressiotestausta. Valitusta

menettelytavasta tai ohjelmasta riippumatta automaatiotestaus on hyvä ottaa

käyttöön jokaisessa kehitysympäristössä.

Avainsanat: Automaatiotestaus, End-To-End, Cypress, verkkosovellus, Angular,

AWS

Table of Contents

1 Introduction ... 1

2 Importance of Testing in Web Applications ... 2

2.1 Disadvantages of Automated Testing .. 3

2.2 Testing Methods ... 4
2.2.1 Functional Testing .. 5
2.2.2 White and Black Box Testing ... 5
2.2.3 End-To-End Testing ... 6
2.2.4 Regression Testing .. 7

2.3 Available Testing Frameworks ... 8

3 Technologies Used in the Project ... 9

3.1 Cypress .. 9

3.2 Amazon Web Services ... 11

4 Setup of Testing Environment ... 11

4.1 Local Installation of Application .. 11

4.2 Access to Database ... 12

4.3 Installing Cypress ... 12

5 Test Specification ... 14

5.1 Single Athlete Full Test .. 15

5.2 Pair Competition Full Test .. 19

5.3 Team Competition Full Test ... 23

6 Execution of Tests .. 25

6.1 Cypress Commands and Session .. 25

6.2 Cypress Locators.. 27

6.3 Cypress Actions.. 29

6.4 Custom Tools ... 30

7 Results ... 31

7.1 Successes of Testing ... 31

7.2 Challenges with Testing ... 32

7.3 Future Development Opportunities .. 33

8 Conclusion ... 35

9 References ... 36

1

1 Introduction

Testing a web application is a critical part of the development lifecycle. It is the

process of determining if the product meets its working requirements. The

product must satisfy consumer needs as well as technical demands to ensure

an optimal working product. A well working, high-quality product can be a

deciding factor when securing users’ loyalty. The testing process of a web

application includes the creation of test cases, overseeing and validating their

successes and failures, and maintaining the validity. Automating the testing

process saves time and resources in the long run, but it does require a

significant initial investment of both time and resources.

The topic of this thesis was given by Reppi. Reppi is a sports competition and

results platform, with a focus on CrossFit. It was founded in 2018 when

competition organisers noticed a gap in the results services on the market. They

wanted an easy-to-use platform and decided to create one themselves. The

platform was originally meant for CrossFit competitions and at its core, it is

designed as such. Nevertheless, it is also used for other sports such as

weightlifting, functional fitness, and strongman and strongwoman competitions.

The goal of this thesis is to set up an automation environment for Reppi and

automate repetitive tasks in advance of their front-page reform. The chosen

framework for testing is Cypress, and three test suites for an initial testing plan

are outlined as: single-athlete competition functions, pair competition functions

and team competition functions. These functions are repetitive and include

signing up for competitions and modifying personal details.

The goal for this project is to create an efficient End-to-end testing environment

with Cypress. Three testing suites that can be used during development and for

continuous integration will be developed. The finished work is intended to be

integrated into daily practices to ensure the application works as expected.

2

2 Importance of Testing in Web Applications

Every application is tested before it is published, sent to the customer, or

redeployed. A well-working application has a higher rate of user retention than

one filled with flaws. In smaller web applications testing can easily be done

manually by going through the application and ensuring that all features work as

intended, and no errors arise. However, as applications scale up in size, manual

testing becomes time-consuming, costly, and prone to errors.

Manually testing a web application during development, to see if it behaves as

expected, seems simple, since you only interact with the application as any

end-user would. However, this approach is unreliable and tedious, especially if

done multiple times a day. Small changes to functions might seem insignificant,

and not worth manually testing the whole application for, which can later cause

issues ranging from simple inconveniences and user dissatisfaction to

economic problems and loss of business [1 p.195]. Implementing testing from

the early stages of development reduces issues, bugs, and the possibility of

complete failure upon implementation [2 p.126].

Validation refers to the evaluation of the application at the end of its

development to ensure compliance with the intended usage. Verification is the

process of determining whether the product fulfils the technical requirements

that have been established. Verification is usually more technical and focuses

on the technology behind implementation, such as software requirements and

specifications, whereas validation assesses if the product works as intended for

the end user and depends heavily on domain knowledge. [3 pp.8-9.] As the

verification and validation of a conventional testing process are usually

performed by different persons, efficient automation provides a better relation

between verification and validation [2 p.126].

Many teams automate their web application testing using several different

methods. The main benefits of automated testing come from its fast and

unattended testing, finding issues in the early stages of development,

3

streamlining validation and verification, and reusing test code for regression

testing at all stages of the application’s lifetime [1 p.195].

2.1 Disadvantages of Automated Testing

Taipale et. al [4], in their qualitative study of the benefits and drawbacks of test

automation, found that the main disadvantages of automated testing are the

associated costs. Costs include implementation costs such as direct

investment, time, and human resources, as well as maintenance, and training

costs [4 p.123]. Leotta et. al [1] also argue the costs associated with the

maintenance of fragile tests, are the biggest setback of automated testing.

Automating the testing process does not exclude human involvement and can

require retraining of testing staff. The reusability of automated tests is therefore

crucial for ensuring the profitability of testing. [4 p.123].

Tests are fragile when they are easily broken with a slight modification to the

application. Broken tests might be unable to locate links, input fields or correct

paths and therefore yield a failed test. Repairing broken tests is a time-

consuming task that must be performed by a Testing Engineer. Repair activities

of a web application can be categorised into two types: logical and structural,

depending on the kind of maintenance that is needed [5 p.274].

Logical repairs are needed after a functionality of the web application has been

modified. Tests may not be able to find the correct path to a web page anymore,

or the target functionality has changed, therefore generating a failed test. [5

pp.274-275.] A simple example of this would be adding a new, compulsory, field

to a form, which has not been included in the previous tests. As the test was not

written to include this new field, form submission will be unsuccessful, and the

test will fail. The logic of the test must now be updated to include the new

functionality for it to become accurate again.

Structural repairs only involve changes in the layout or structure of the web

page and are significantly easier to repair than logical changes [5 p.275]. These

4

repairs might simply include updating the test locator ID from ‘name’ to

‘username’. However, depending on the size of the application and the

framework that is being used for testing, it is better to use custom locator

attributes, instead of relying on IDs or class names, to minimise fragility.

Targeting dynamic elements is considered to be bad practice.

Testing must be supervised in case of failed tests, maintained as old features

are refactored, and developed when new functions are added. [4 p.122.]

Therefore, despite being automated, testing still needs human

involvement. Automated tests are excellent for repetitive tasks but not as useful

for non-standardised tasks. Manual testing is a better option for functions that

are not repetitive. The choice of what to test manually and what to automate

should be decided early in the project, to maximise the efficiency of testing

practices. [4 p.114.]

2.2 Testing Methods

There are many available approaches to testing depending on what the purpose

of testing is. Application testing can roughly be divided into White box and Black

box testing. White box testing can be described as Functional testing and has

four levels: Unit, Integration, System and Acceptance testing, as shown in figure

1 [6].

Figure 1. Functional testing pyramid.

5

At each level, a different approach to testing is implemented. Black box testing

looks at the application, without knowing its inner workings. End-to-end testing,

which looks at how the application performs from the users' perspective, whilst

validating backend functionalities, is also a type of Black box testing.

Regression testing tests how new features work together with existing ones and

is a good practice to implement during development.

2.2.1 Functional Testing

Unit testing happens at the individual unit levels and tests methods and classes.

As this is done at the code level, it is usually done by developers. Unit tests are

done on low-level components to verify their desired functionality. Testing

multiple units as a group, or module testing, can be automated for maximum

efficiency. [7 p.146.]

Integration testing is performed after integrating two or more modules that

interact with each other. Again, this is done on the code level, and not from the

perspective of the end user. Units and modules are tested again early on in this

step to minimise possible fixing costs. Testing the whole application from the

user's perspective, System testing, verifies that the system is working as

intended and up to user requirements and needs. System testing includes

Functional and non-Functional testing, as well as Regression testing. [7 p.145.]

At the last level of Functional testing lies Acceptance testing. At this time, the

product is tested in its production environment to check whether it works as

expected. [7 p.145.] This is sometimes done by users or individual testers,

instead of developers.

2.2.2 White and Black Box Testing

White box testing ensures that the application code performs correctly, and it

requires comprehensive knowledge of the logic and internal structure of the

6

application code. Black box testing does not require the tester to have any

knowledge of the inner logic of the application and only tests the application

functions from the end user's perspective. Black box testing can be applied

during any development life stage from Unit to Acceptance testing. White box

method can be applied during Unit, Integration and System testing however, it is

most often used at the Unit level. [3 p.26; 7 p.12.]

Drawbacks to White box testing include high testing costs, as an experienced

software developer is usually needed to perform these tests. Due to the

demanding testing process, not all functionalities can be tested for hidden errors

and maintaining the manual testing of these can be difficult. [8 p.13.] However,

automating some of the repeated functionalities would decrease the costs and

effort of this structural testing significantly.

Disadvantages of Black box testing include its test coverage. Test coverage can

be poor if not all use case scenarios are tested. Black box tests need to be

designed well for the coverage to be sufficient. [8 p.13.] Black box and End-to-

end testing are used in the work done for this thesis.

2.2.3 End-To-End Testing

In End-to-end (E2E) testing, the software is tested from the end user’s

perspective, whilst validating its backend functionalities. E2E is a type of Black

box testing. It is a method that evaluates the entire application flow and ensures

that all features work as expected in a real-world scenario. The purpose of this

testing is to validate the overall behaviour of the application as well as its

functionality, reliability, and performance. By testing the whole application from

the intended point of view, its backend functionality, database, and network

communication a comprehensive understanding of how different parts of the

application work together, will be gathered. E2E testing is usually performed

after Integration testing to ensure that all modules are working together

seamlessly and meet expectations. After E2E testing, Acceptance testing is

7

performed to ensure that the application meets real-life user requirements and

expectations. [9.]

Benefits of End-to-end testing range from quality assurance to reduced costs.

E2E testing helps to ensure that all aspects of the application are working as

intended and are meeting their technical requirements. As the software is tested

from the viewpoint of the end user, it increases confidence that the end product

will work well once published. Software that meets its technical requirements is

more likely to be also accepted by the intended users. The cost associated with

defects and bugs that were detected late into the development process can be

eliminated by implementing E2E testing early on and continuously throughout

the development. [9.]

2.2.4 Regression Testing

Regression testing is done after any code changes or improvements to ensure

that the application still functions properly, and no old bugs have resurfaced. It

is a method responsible for the overall functionality and stability of existing

features in the application. Regression testing must be applied after any code

changes to ensure that the system stays sustainable throughout the

development process.

Changes to code include new requirements to existing features, new features,

code optimization, patch fixes, added dependencies or changes in

configuration. The role of regression testing also includes ensuring that

previously used test code remains operational after these changes. An

application usually goes through multiple tests before it is integrated into the

main development branch. [10.] Regression testing is usually done throughout

the development progress and especially after integrating any units or changing

any code. As functional tests only look at the behaviour of newly added

features, they tend to overlook their compatibility with existing features.

Therefore, regression testing helps prevent these time-consuming future issues.

[10.]

8

2.3 Available Testing Frameworks

Framework selection is usually done depending on the application under

development. The selection might depend on test coverage, ease of use,

compatibility, and scalability. As the focus of this thesis is on End-to-end testing,

three main frameworks for E2E testing will be introduced: Cypress, Selenium

and Appium. Appium, as the name might suggest, started as a testing

framework for mobile applications, but has since developed into a full testing

environment for mobile and desktop applications. Selenium offers a wide range

of customisation depending on the kind of testing that needs to be done, and

the browser in which the testing will be performed. Cypress has the advantage

of being easy to implement in web development teams, since it does not require

any configuration to get the test writing process going. It is designed to only test

web-based applications.

Appium is an open-source UI testing framework that automates mobile testing

on native and hybrid mobile apps. Native applications are only made for either

Android or iOS, whereas Hybrid applications work on both. Appium allows

developers to test on physical devices as well as in emulators or simulated

environments. Cross-platform testing is also possible for example for both

Android and iOS platforms using the same test. [11.]

Selenium is a versatile testing framework that can be used for End-to-end,

Functional and Regression testing. It supports most browsers and programming

languages, enabling developers to create their personalised testing

environment. Selenium utilises WebDriver and HTTP network requests to

interact with the page. Before you can start using Selenium, you must install the

desired language binding libraries, the browser, and the driver for that browser

[12].

Cypress is a testing tool that runs directly in the browser and in the application,

which is the biggest difference between Cypress and Selenium. Installing

Cypress also instals all the tools needed to start writing tests immediately.

9

Cypress will be further introduced in the next chapter, as it is the chosen testing

framework for this thesis.

3 Technologies Used in the Project

Reppi uses a technology stack of Angular and Amazon Web Services. Angular

is a popular platform built on TypeScript for building web applications utilising

components to develop scalable applications. The use of Angular does not hold

much significance for the testing in this project, other than Cypress is

recommended for its automated testing. Amazon Web Services (AWS) provides

on-demand delivery of technology services through the Internet with pay-as-

you-go pricing as it is a cloud computing platform [13]. For the testing of the

main features, Cypress will be used.

3.1 Cypress

Cypress is an End-to-end testing framework. It focuses on testing web

applications specifically and is designed to be used by developers and Quality

Assurance Engineers. Cypress only supports JavaScript (JS) as that is the only

language for automated web testing. As most front-end teams use JS in their

development, Cypress has a quick learning curve and is beginner friendly.

Installing Cypress only takes one line command, and the installation comes as a

bundle with everything needed to start writing tests immediately. [14 p.16.]

Cypress comes packed with tools and features that make its usage enjoyable

and seamless. The setup bundle includes Cypress Test Runner, a browser, and

an assertion framework. These elements make it easy for developers to start

testing their applications.

Cypress Test Runner is an interactive user interface that comes by default with

the installation of Cypress. It enables real-time, step-by-step viewing of tests

and shows the application that is being tested as Cypress interacts with it. Test

10

runner shows each test command, its passes and failures and provides

feedback to failed tests in its built-in command log. The command log highlights

each failed test giving feedback on exactly which part of the command has

failed. Again, as Cypress is built by JS developers for JS developers, it is easy

to identify errors and fix them, as the language and errors are already familiar.

[14 p.25.]

Cypress utilises a universal driver and runs directly in the browser. Running in

the browser gives it an advantage over other testing frameworks, as it makes

Cypress significantly faster. Furthermore, it comes with automatic wait

sequences that would otherwise need to be defined in the tests. Cypress

interprets commands, such as a network request, and adds a necessary wait

time. [14 p.17.] Despite running in the browser, Cypress also has access to

everything the application has access to, such as the DOM (Document Object

Model) and any processes and methods [14 p.20]. DOM is created by the

browser when a web page is loaded. It enables JavaScript to change the HTML

elements, events, and attributes and is a standard for interacting with the

HTML.

Running directly in the browser gives Cypress an advantage, but it also has

limitations that cannot be changed due to this architecture. The only language

that Cypress can ever support is JavaScript, as the test code will always be

checked in the browser. Even though it is possible to have Cypress receive data

from outside the browser, for example from a database, this can be

cumbersome. [14 p.21.] In addition, testing in more than one browser tab at

once is not permitted with Cypress. If this is needed, Cypress can be configured

to use other tools to achieve this. In the same regard, within one test, Cypress

only supports visits to URLs that are of the same origin. For example,

navigating from GitHub to Facebook would yield an error, but navigating within

any GitHub page is permitted. [14 p.22.]

Cypress is a tool designed specifically for web application testing. Though it has

its limitations, it provides a good framework for quick and easy test setup. It

11

comes packed with tools and features other testing frameworks do not have that

make the testing process enjoyable for testers.

3.2 Amazon Web Services

Cloud computing delivers IT resources over the Internet with pay-as-you-go

pricing. It enables you to access storage and databases without buying and

maintaining physical servers. Cloud computing ensures that the application can

handle peak levels of activity as you can scale the resources instantly for any

application needs. Scalability ensures that you do not need to pay for storage

that you do not consume, resulting in cost savings. In addition, AWS has

infrastructure all over the world, allowing applications to be deployed in close

proximity to end users to improve their experience. [15]

Amazon DynamoDB is a fully managed NoSQL database service provided by

Amazon Web Services. It promises fast and predictable performance with

seamless scalability. It can be used to create database tables that store and

retrieve any amount of data and are capable of handling any degree of request

traffic. [13]

4 Setup of Testing Environment

Testing environment consists of the application itself, AWS database and the

Cypress testing interface. Firstly, the application was installed locally, database

access was granted after, followed by installation of Cypress.

4.1 Local Installation of Application

The first challenge was to set up the Reppi application locally. After being

added to Reppi’s version control system, the application was cloned through a

code editor. Writing rights were enabled for the testing repository and viewing

rights for the Reppi application repository. For everything to function as needed,

12

several rights were added to local files. Npm had to be installed and the

application was then functioning locally.

Npm (Node Package Manager) is a free-to-use JavaScript software library,

package manager and installer. It is used to manage development or share

software packages. [16.] To install npm, Node.js server environment must be

installed, which can be easily done from their webpage. Npm is used to

download, share, or run tools and packages. Packages can be run without

downloading them locally with npx (Node Package Execute). Both npm and npx

will be used during the testing process to install and use the Cypress library.

4.2 Access to Database

Reppi uses Amazon's DynamoDB as their database service and as they are a

fully established product, it was essential to be careful with which rights were

appropriate to grant for the testing process. Amazon DynamoDB data tables

were created specifically for the testing environment, and writing rights to those

were granted. DynamoDB and all Amazon services were not familiar prior to

starting the testing process, but this did not hinder the process at all, as enough

assistance was given to testing tasks that needed database modification.

4.3 Installing Cypress

Cypress is extremely simple to install as prefaced in the earlier chapters. Only

one line command is needed to fully install the whole framework using npm.

Npm must be installed prior to using it to install Cypress.

npm install cypress --save-dev

13

After the installation is complete, Cypress can be opened, and the testing

process can begin.

npx cypress open

This will open the Cypress Launchpad and the application will guide you

through your testing process. It will be possible to choose between End-to-end

testing and Component testing, as shown in figure 2. For the purpose of this

thesis, E2E testing was chosen.

Figure 2. Cypress Launchpad testing type choice.

Launchpad then shows Cypress configuration files and asks for modifications.

None were needed in this case and files stayed as default. A preferred browser

is then chosen, in this case, Google Chrome (figure 3). All these decisions can

be changed later if desired.

14

Figure 3. Cypress Browser choice.

It is time to create a test. Cypress will ask if you want to create a new spec and

by choosing so, it will ask you to name it. The newly generated test, a spec, will

now show up in your code editor of choice, and the test writing process can

begin.

5 Test Specification

Testing was asked to be done for repetitive tasks, such as competition sign-up

and athlete information modification. The testing started with competition sign-

ups for individual athletes. This included finding an available competition and

filling out its sign-up form. As some competitions are for individual participants

and others are completed in pairs, it affects their sign-up process and a test

written for one participant will not be viable for a group competition.

Once the testing was underway, it became clear that the three test suites would

include individual athletes, pairs, and teams. Therefore, three tests were

outlined as individual athlete competition sign-up and information editing, pair

sign-up and information editing and team sign-up and editing. The goal was to

make the tests as resilient to changes as possible, to ensure that they would not

break in case of any modifications.

15

5.1 Single Athlete Full Test

The first full test consisted of a single athlete signing up for a competition and

modifying their details. The goal was to make sure that the modified details

were saved and auto-filled correctly in future competition enrolments and didn’t

affect the enrolment status. Figure 4 shows the five objectives that “Single

athlete full test” consists of besides logging in: “Enters competition

successfully”, “Modifies profile info and checks if saved”, “Checks new details in

signup form”, “Modifies profile into” and “Checks enrolment status”.

Figure 4. Single athlete test objectives.

Two Test User data objects are used throughout this testing process, Test User

A and Test User B. The first step of this test was to log the user in. The same

user login credentials are used for all the tests.

Competition sign-up is a process used by almost all Reppi users and was

therefore the main testing target. The test included choosing an upcoming

competition “Turun Tuomiopäivä” from a list of all available competitions. As

there are multiple different competitions available, the test must choose the

specific competition that meets the requirements of testing objectives. The

competition should be for individual athletes only and, in this case, be free of

16

charge. This is not specified in the test itself. The competition choice is

manually written into the test.

Competitions can sometimes have different divisions depending on age or

gender. The options are not always the same, as they are unique to each event

organiser, so the selection must be written in the test manually. In this case, the

test was written for the open male division “Avoin, miehet”, as seen in figure 5.

Figure 5. Age category selection.

Figure 6 illustrates the sign-up process which consists of filling out a form with

your information, such as first and last name, email, phone number, address

details and birthday. Some information is auto filled from the user's profile if it

has been added by the user. The competition was signed up using Test User A.

17

This particular test also included further fields for the athlete's CrossFit ID, food

allergies and shirt size.

Figure 6. Personal information form.

The first part of this test “Enters competition successfully” was considered

successful if a container named “enroll-success-container” was visible on the

page after going through the sign-up process (figure 7). It is worth

acknowledging that there are more reliable ways to check whether a form

submission has been successful, but with the time constraints of this process,

this method of confirmation was chosen instead.

18

Figure 7. Successful sign-up banner.

The test is then redirected to the user's profile, as for individual athlete

competitions there is no option to edit details through the competition page.

Profile info modification is very similar to filling out a competition sign-up form,

as it has the same format. Test User A data was replaced with Test User B data

and saved. New data is searched for in the profile, and if found in the correct

fields, the test “Modifies profile info and checks if saved” has been successful.

As mentioned earlier, autofill is used on some of the competition sign-up forms.

Even though the application receives the data for the profile from a database,

and having the correct details saved on the profile, should also yield correct

details on the sign-up form, it does not hurt to be thorough. The athlete is

deleted from the competition they previously signed up for and is signed up

again. When the sign-up form comes up again, each field is checked for Test

User B data. If all input fields match the test data, the competition is signed up

to and “Checks new details in signup form” -test has been successful.

The test is wrapped up by changing the personal details back to Test User A,

with a quick check that the profile name has been updated after saving,

concluding our penultimate test “Modifies profile data”. Lastly, the enrolment

status for the competition is checked, by searching for the competition on the

athlete's profile tab “competitions” (figure 8).

19

If a correct competition is found from items in the said tab, “Checks enrolment

status” is successfully complete.

“Single athlete full test” checks all the most necessary functions that can be

performed by a single athlete. From logging in, to enrolling in a competition and

editing personal information, this test catches any errors that may arise.

5.2 Pair Competition Full Test

The second test completed was testing the sign-up and detail editing for a pair

competition. Pair competition sign-up is very similar to single-athlete

competitions, but it has additional input fields for a competition partner.

The main goal of this test is to ensure that detail editing saves successfully.

Figure 9 shows that this test consists of three objectives: “Enters pair

competition successfully”, “Modifies pair info” and “Checks if info modified

successfully”. This competition was not free to enter and had an additional

Figure 8. Turun Tuomiopäivä competition found in user’s profile.

20

aspect of paying for entry. Again, two Test User objects were defined, and Test

User A was logged in.

Much like the first competition sign-up process, an upcoming competition

“Häjyin” was chosen. This competition choice must meet the criteria of being

open for sign-up and having a pair competition division. Like with the previous

competition, this selection was written into the test.

The pair competition in the testing environment was not free of charge and

therefore had to include slight modifications to the sign-up test code. The sign-

up form is identical to the single athlete sign-up form, with the exception of

adding the information of a competition partner. Regarding the payment for

entry, for the scope of this test, it is good to note that an entry is valid for 15

minutes before it needs to be paid (figure 10).

During these 15 minutes, the entry can be edited and tested exactly like a paid

entry. For the purpose of this project, it is not necessary to test the payment

Figure 9. Pair competition test objectives.

Figure 10. Reserved entry banner.

21

functions, as that will fall out of the scope of the application functionalities. As

the scope is focused on competition entry and information editing, this

unconfirmed entry is enough. The test finds and clicks a “Pay” button and the

test moves on to the competitions tab in the user's profile.

If the page contains the competition that was just signed up for (figure 11), the

entry is considered successful and the objective “Enters pair competition

successfully” has been finalised.

Once the pair has been signed up for the competition, the test moves on to

editing their details. In this test, Test User A and Test User B were used, and for

the purpose of editing their details, they were swapped around. At the start,

Test User A is considered the captain of their team, and Test User B is a

regular member as seen in figure 12.

Figure 11. Competition found in user profile.

22

Figure 12. Test User A and B before information editing.

These rankings do not have any other significance, other than which user is the

main contact person for the pair. Their detail editing form is, again, identical to

the sign-up form and Test User A details are replaced with Test User B details

and vice versa. Changes are saved and the second objective “Modifies pair

info” is finalised. Lastly, the changes are checked on the team details page. If

Test User B is now considered to be the team captain and Test User A is a

regular member, the information editing was successful (figure 13).

“Checks if info modified successfully” is now complete, as is the pair

competition sign-up and info modification test “Pair-competition-full-test”.

It would later be decided that captain editing through this form and the team

editing forms should be removed, as those are the account holder’s details, and

should only be editable through the profile tab. Further details of this will be

provided in chapter 7.2 Challenges with Testing.

Figure 13. Test Users A and B after information editing.

23

5.3 Team Competition Full Test

The final test that was written for the application, was testing the sign-up

function for team competitions. Again, the main objectives of this test are

competition sign-up and athlete information editing. The sign-up process is

identical to the sign-up of a pair competition, with the addition of two more team

members.

This test also consists of three objectives: “Enters team competition

successfully”, “Modifies team info” and “Checks if info modified successfully”

(figure 14). This competition also had the additional aspect of paying for entry.

Four Test User objects were defined, and Test User A was logged in.

Figure 14. Team competition objectives.

Just like the first two competition sign-up processes, an upcoming competition

“Yyteri Sandstorm” was chosen. This competition choice must meet the criteria

of being open for sign-up and having a team competition division. Again, this

choice was explicitly written into the test. The chosen competition had team

entries that consisted of four team members, one of which is the team captain.

Other team members are Test User B, Test User C and Test User D. The test

code that was used for the pair competition test could also be used for this test,

with the addition of two more team members.

The competition is, again, not free to enter, and therefore utilised the same test

code as the pair competition. The entry is valid for 15 minutes before needing to

24

be paid, which is enough for the purpose of this test. The team is signed up for

the “Yyteri Sandstorm” competition, and the sign-up is checked from the

competitions tab in the user's profile (figure 15).

Figure 15. Competition found in user's profile.

If the page contains the competition, the sign-up has been successful, finalising

the “Enters team competition successfully” objective.

Information editing follows the same logic as in the previous tests in the

objective “Modifies team info”. Captain and the first team member are swapped

around, and other team members' last names are edited to include an additional

letter. An additional letter is added to the remaining members, rather than

swapping the members' places, since in the final view, the members are in

alphabetical order, and the result of editing would not otherwise be noticeable.

25

Figure 16. Team information after successful editing.

As seen in figure 16, if the test finds that Test User B is the captain, and

members include Test User A, Test User CC and Test User DD, the objective

“Checks if info modified successfully” is deemed successful. This objective

finalises the team testing as well as the whole suite. As prefaced at the end of

the previous chapter, team captain’s information editing will be deemed

unnecessary and removed later.

6 Execution of Tests

With Cypress, starting the testing process is extremely simple and testing can

be jumped in to as soon as the application is up and running. The first step of

every test is navigating to the desired webpage, in this case to localhost:4200,

where the testing version of the app is running. From there, each test will differ

in its objectives, but the overall use of commands, locators and actions will stay

the same.

6.1 Cypress Commands and Session

Each test starts with the user logging in. Logging in is a repetitive process with

reusable code that is utilised across many different tests. As with any good

coding practices, reusing code is commendable, but duplication should be

26

avoided. Duplicating the same lines of code across different files can harm

productivity and be time-consuming in case of any arising errors or issues. To

shorten the code for each of the tests written for Reppi, logging in was saved

into a Cypress Command. As illustrated below in listings 1 and 2, this shortened

the code from seven lines to one single line. The longer code is still found in the

commands file however, it is only found once, instead of three times across

three tests.

cy.visit("http://localhost:4200/");
 cy.get('[data-cy="login_button_nav"]').click();
 cy.url().should("include", "/login");
 cy.get('[data-cy="login_email"]').clear().type(loginemail);
 cy.get('[data-cy="login_password"]').clear().type(loginpassword);
 cy.get('[data-cy="login_button"]').click();
 cy.url().should("include", "/competitions");

Listing 1. Full login test code.

cy.login(loginemail, loginpassword);

Listing 2. Login command code.

Saving reusable code as Cypress Commands allows for quicker test writing and

more readable code. Cy.login() holds the longer code in a separate

commands file, and therefore, does not need to be repeated in every test file.

Parameters loginemail and loginpassword are defined in each test file, for clarity

and to allow quick customisation. Nevertheless, using the UI to log in is not the

most effective way and can take a toll on performance and testing time,

depending on the structure of the application. As login is the process that

oftentimes has the longest loading time, it was saved into a Cypress Session

with cy.session(), as seen in listing 3.

cy.session("login", () => {

cy.login(loginemail, loginpassword);

 });

Listing 3. Login wrapped in Cypress Session.

27

With wrapping the login command in cy.session(), Cypress will save it for

the entirety of the testing session, until the test is closed. After running the

command ‘login’ once, it is saved, and a session is created (figure 17).

Figure 17. Login session created.

When the test is run again, instead of running the whole command again,

Cypress will restore the session (figure 18). This reduces login loading time by

roughly five seconds.

Figure 18. Login session restored.

Reducing test loading time by a few seconds does not seem significant,

however, it can drastically save time, especially when running the test dozens of

times an hour. Once signed in, the test was redirected to the competitions page

and the three tests can begin.

6.2 Cypress Locators

As seen in the code examples above, a locator [data-cy="login_email"] is

used to select the right elements from the HTML. It is best to choose selectors

that can stand the test of time and are resilient to changes. To avoid any

problems, it is recommended to avoid targeting elements based on their

dynamic attributes. These include class, tag, ID, or elements that may

change their textContent. The worst way one could target an element is by

28

using generic attributes such as ‘button’. Targeting by ID or class is

discouraged, as those are highly likely to change. IDs can be changed, and

classes added or removed, which causes the test to be fragile and prone to

breaking.

Adding a data-cy attribute makes it easier to select the right elements. For

example, in the login function, an email input field must be selected. A data-

cy="login_email" attribute is added to the input HTML element and then

accessed via cy.get('[data-cy="login_email"]') in the Cypress test file.

Cy.get() usually includes a selector to find matching HTML and DOM

(Document Object Model) elements. Cy.get() is a query that is usually

followed by further action commands, such as .click() or .type().

In some cases, a data-cy attribute cannot be added to HTML. This can either

be because an element is generated to the DOM from a database or a

JavaScript file. Though it is possible to get Cypress to select elements from

these, due to time constraints, this was not done for a few of the testing

objectives. In these cases, cy.contains() was used. Cy.contains()

yields a DOM element based on its text content that a user can see on the

page. For example, cy.contains(“Login”) will yield a button with the text “Login”

on it. This was used for choosing competitions from the competition array as

shown in listing 4, instead through their database tag.

cy.get('[data-cy="competition"]').contains("Turun Tuomiopäivä").click();

cy.get('[data-cy="competition"]').contains("Häjyin").click();

cy.get('[data-cy="competition"]').contains("Yyteri Sandstorm").click();

Listing 4. Competition selection by text content.

The same method was also used when selecting age categories as shown in

listing 5.

29

cy.get('[data-cy="age_select"]').click().contains("miehet").click();

cy.get('[data-cy="age_select"]')

 .click()

 .contains("Parisarja, Miehet")

 .click();

Listing 5. Age category selection by text content.

6.3 Cypress Actions

For Cypress to be able to interact with the elements on the page, it must be

given actionable commands to do so. These commands include .click(),

.clear(), .type(), .eq() and many others. These action commands

simulate the user's interaction with the application.

.Click(), .clear() and .type() are the most common commands used

during this testing process. As the names indicate, .click() clicks on a

chosen element, .clear() clears a field and .type() types into a chosen field.

These actions, however, must meet a few rules to work properly. For example,

Cypress cannot click on an element that is not visible on the page, even if it can

find it on the back end. It is not possible to clear fields or type into fields that do

not support these actions.

A problem was run into whilst writing the second test, pair-competition-full-test,

regarding a form field not being clearable. Clearing some form fields before

typing into them was needed when modifying auto-filled information. Despite

looking and behaving like regular input fields they were rpi-form-fields. RPI

stands for Reading Position Indicator and due to this, Cypress did not see it as

a clearable field. This is not an unknown issue amongst test writers and a

workaround for this is available, as these fields are indeed clearable. .Clear()

is an alias for .type(“{selectall}{backspace}”) and using this instead of

.clear() worked well on these fields.

To fill in team competition sign-up forms, .eq() was used. .Eq() stand for

“equal” and it finds a DOM element at a specific index in an array of elements.

30

As the necessary number of member input fields are generated automatically

and therefore use the same Cypress locator, .eq() was used to indicate which

of these fields was needed (listing 6).

cy.get('[data-cy="signup_member_name"]').eq(0).clear().type(info2.fname);
cy.get('[data-cy="signup_member_name"]').eq(1).clear().type(info3.fname);
cy.get('[data-cy="signup_member_name"]').eq(2).clear().type(info4.fname);

Listing 6. Cypress locator .eq() used to select different name fields from a form.

6.4 Custom Tools

For the testing to be successful, it was essential to get access to the database

through Cypress. As a user can only sign up for a competition once and cannot

drop out of a competition through the application themselves, Cypress needed

to remove the athlete from the competition before each test. This enabled the

same user to sign up for the same competition repeatedly. To be certain, that

the competition is cleared of any athletes altogether, all athletes that were

signed up were removed before the beginning of the test. Database clearing

can be done before, after or in the middle of each test. It was decided that

clearing the database before each test was a better option. This enables the

tester to go and interact with the application in the state it was at the end of

each test. For example, in case of failed detail editing, the tester can attempt to

edit details themselves and search for any console errors, without having to

sign up the user manually beforehand.

Two custom tools for clearing out the database were done by a helpful Reppi

developer. One for cleaning out a competition of its athletes and another for

deleting a user completely. There has not yet been any reason to use the tool

for deleting users, however, it does present opportunities for future

development.

A future development opportunity is also related to editing the database during

a test. Sometimes competitions can fill up whilst an athlete is still signing up.

The sign-up should then fail and not allow the extra athlete to participate. This

31

feature could be tested by filling the competition during the sign-up process, and

therefore failing the sign-up. The test would be successful if the sign-up fails.

7 Results

Three test suites were successfully completed for Reppi. At the moment of

writing this thesis, it is unknown when Reppi will integrate the tests into their

development process; however, that was the goal for the completed tests. Like

any project, this one did not come without its successes and challenges.

7.1 Successes of Testing

As can be seen in figure 19, three working tests were completed according to

the requirements that Reppi had set; a test for each of the competition sign-up

cases; single athlete, pair competition and team competition.

Figure 19. Three successful tests.

Tests were done by upholding the best practices set by Cypress testing

professionals, to the best extent that was possible, considering the time

constraint. Writing rights to the Reppi application repository were granted and a

separate branch for Cypress was created where Cypress locators were pushed

to. Completed tests were pushed to their respective repository one final time.

32

7.2 Challenges with Testing

The first challenge that was encountered, was finding the right HTML elements

from the application code to add selectors to. As with any large application, it

takes time to realise where each component stems from and what it affects.

Though Black box and End-to-end testing do not by definition need in-depth

knowledge of the application's logic, it inevitably becomes familiar to the tester,

to some degree, throughout the testing process. To make the tests as resistant

to changes as possible, every single input field needs to be found in the

application code for Cypress to type into it. However, when code duplication is

avoided and components are reused, can Cypress locators be reused as well.

Nevertheless, this also brought up challenges that were mentioned in the 6.3

Cypress Actions chapter. If an input field was not explicitly an HTML input, form

or text field, cumbersome workarounds followed from one test to another.

Another challenge was related to limited knowledge of the application's logic.

During the final test for team competition sign-up and info editing, the lack of

knowledge of how that application functions was the culprit to many failed tests.

As in team competitions, there was more than one team member, these were

listed together in alphabetical order. This order was not known when writing the

tests. At first, it seemed as if the detail editing did not work, as the sequence of

Users stayed the same and the test failed as it was looking for a different

sequence. Finally, it became clear that detail editing did work, and Users were

simply always listed in a specific order, the test logic was easily fixed, and it

became successful.

In previous tests after a pair has been signed up for a competition and their

details need to be edited, the two User objects were simply swapped around.

Captain User A became a member User B and vice versa. However, as the

testing was near completion, the tests were run multiple times to ensure that

they were successful every time, a rare but persisting problem occurred. Very

rarely the detail editing for a team captain failed, as shown in figure 20. The test

33

could not find the swapped details of Test User B in the captain’s slot, but

correct details would be in the member field.

After discussing this with the developers and asking for advice, the conclusion

was drawn that editing the captain’s details should not be possible through the

team editing form at all, as these are the account holder’s details. The error was

the result of a previous, lingering, logic that had since been modified. Testing of

this was removed from pair and team tests, and the possibility to modify

captain’s details might be locked in the future altogether. This again illustrated

the challenge behind not having the knowledge of the application’s logic, or

history, but also how the testing process had already uncovered some possible

future improvements.

7.3 Future Development Opportunities

Although the tests are done well and by upholding best practices as much as

possible, they are not perfect and will need checking and updating as the

application develops. As mentioned previously, not all functions were able to be

given their own selectors and, for example, competitions are chosen by their

name and shirt sizes by their gender and size. This can be developed further,

and competitions or shirt sizes could be chosen based on their database tag or

Figure 20. Team captain editing error.

34

ID, to avoid any language-related changes. Though changing the application

language does not currently affect any of the competitions that were tested, it is

a possibility that in the future it might. This could be avoided by including

language changes in the tests themselves.

Currently, only regular user functions are tested. Administrative functionalities

like adding competitions or scores can, and should, also be tested. These tasks

are repetitive for the administrative users. As there are significantly less

administrative users, than regular users, testing of these features was not the

priority during this project, but does present a future development opportunity.

To keep up with the best testing practices, it is necessary that tests don’t

depend on other tests to be viable. The state of the previous test shouldn't

matter when testing a related feature. Even if tests would always be run one

after another, they should not be dependent on each other. For example, detail

modification should not be dependent on the outcome of competition sign-up.

This can be achieved with database manipulation to ensure that there is always

a clear starting base for each testing block. Each test needs to be treated as a

separate use case to ensure longevity and resilience to change.

The testing practices that were implemented during this project, are not limited

to one company or application. This approach can be used by any development

team in any sector. Automated testing with Cypress or any other testing

framework could be integrated into development teams with continuous

integration practices. In continuous integration, developers integrate their newly

written code more often than normally, and this code is tested by automated

tests. This way, any errors caused by small code changes are caught early and

fixed quickly. In practice, the tests can be run each time code is pushed into a

repository.

35

8 Conclusion

Testing is an integral part of the web application development lifecycle. It should

always be done for all web applications. Developers and Quality Assurance

Engineers must ensure that the application aligns with the set guidelines:

customer needs and technical requirements. Testing can be done manually, or

it can be automated to the extent that is fit for purpose. Despite the initial costs,

it is recommended that testing for repetitive tasks, such as signing up, logging

in, editing details or any other tasks that do not vary from user to user, are

automated. Automating repetitive tasks does not fully absolve developers and

testers from their testing responsibilities, as tests do need to be observed and

maintained. Nevertheless, a well-written test can catch errors more efficiently

than manual testing, making the initial investment of time and resources

worthwhile, especially in the case of larger web applications.

Web application testing can be done in a plethora of different ways. Each team

chooses the best approach for their needs, whether that is Functional testing

throughout the applications lifecycle or Regression testing, to ensure all

features work as intended after any additions. Moreover, automated testing is a

cornerstone of continuous integration. Whichever approach it may be, there is a

programme available for their specific needs and expertise. It is up to the team

to decide which functions to test and where to start their testing process.

Regardless of where they may start, a clear understanding of testing

requirements should be outlined for the most efficient process.

Automating web application testing has been gaining popularity for an obvious

reason: high-quality end product. Catching errors early on in development, fast

test reruns, and eliminating human error are just a few of the examples of how

automated web testing can save time and resources when developing a high-

quality product. Automating web application testing is a worthwhile progress

that yields many benefits throughout the application's lifecycle.

36

9 References

1 Leotta, M., Clerissi, D., Ricca, F., & Tonella, P. 2016. Approaches and

tools for automated end-to-end web testing. In Advances in Computers.

Elsevier.

2 Shakya, S. and S., S. 2020. Reliable automated software testing through

hybrid optimization algorithm. Journal of Ubiquitous Computing and

Communication Technologies, 2(3).

Available at: https://doi.org/10.36548/jucct.2020.3.002.

3 Ammann, P. and Offutt, J. 2016. Introduction to software testing.

Cambridge: Cambridge University Press. ISBN: 9781107172012.

4 Taipale, O., Kasurinen, J., Karhu, K., Smolander, K. 2011. Trade-off

between automated and manual software testing. International Journal of

System Assurance Engineering and Management, 2(2).

Available at: https://doi.org/10.1007/s13198-011-0065-6.

5 Leotta M, Clerissi D, Ricca F, Tonella P. 2013. Capture-replay vs.

Programmable web testing: An empirical assessment during Test Case

Evolution. 20th Working Conference on Reverse Engineering (WCRE).

Available at: https://doi.org/10.1109/wcre.2013.6671302.

6 Paspelava, D. 2023. What is unit testing in software: Why Unit Testing Is

Important, Exposit. Available at: https://www.exposit.com/blog/what-unit-

testing-software-testing-and-why-it-important/

(Accessed: April 11, 2023).

7 Vila, E., Novakova, G. and Todorova, D. 2017. Automation testing

framework for web applications with selenium WebDriver. Proceedings of

the International Conference on Advances in Image Processing.

Available at: https://doi.org/10.1145/3133264.3133300.

8 Ehmer, M. and Khan, F. 2012. A comparative study of white box, black

box and grey box testing techniques. International Journal of Advanced

Computer Science and Applications, 3(6).

Available at: https://doi.org/10.14569/ijacsa.2012.030603 .

9 What is end to end testing? 2023. BrowserStack.

Available at: https://www.browserstack.com/guide/end-to-end-testing

(Accessed: March 7, 2023).

https://doi.org/10.36548/jucct.2020.3.002
https://doi.org/10.1007/s13198-011-0065-6
https://doi.org/10.1109/wcre.2013.6671302
https://www.exposit.com/blog/what-unit-testing-software-testing-and-why-it-important/
https://www.exposit.com/blog/what-unit-testing-software-testing-and-why-it-important/
https://doi.org/10.1145/3133264.3133300
https://doi.org/10.14569/ijacsa.2012.030603
https://www.browserstack.com/guide/end-to-end-testing

37

10 Katalon. What is regression testing? Software testing definition & tools,

katalon.com. Katalon.

Available at: https://katalon.com/resources-center/blog/regression-testing

(Accessed: March 7, 2023).

11 Appium. Cross-platform Automation Framework for all kinds of your apps

built on top of W3C Webdriver Protocol. GitHub.

Available at: https://github.com/appium/appium

(Accessed: March 8, 2023).

12 Getting started. Selenium. Available at:

https://www.selenium.dev/documentation/webdriver/getting_started/

(Accessed: February 22, 2023).

13 AWS What is Amazon DynamoDB? - Amazon DynamoDB. Available at:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Int

roduction.html

(Accessed: February 24, 2023).

14 Mwaura, W. 2021. End-to-End Web Testing with Cypress: Explore

techniques for automated frontend web testing with Cypress and

JavaScript. Packt Publishing Ltd.

15 AWS. What is cloud computing? – AWS.

Available at: https://aws.amazon.com/what-is-cloud-computing/

(Accessed: February 24, 2023).

16 About NPM. npm Docs. Available at: https://docs.npmjs.com/about-npm

(Accessed: April 4, 2023)

https://katalon.com/resources-center/blog/regression-testing
https://github.com/appium/appium
https://www.selenium.dev/documentation/webdriver/getting_started/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://aws.amazon.com/what-is-cloud-computing/
https://docs.npmjs.com/about-npm

38

	1 Introduction
	2 Importance of Testing in Web Applications
	2.1 Disadvantages of Automated Testing
	2.2 Testing Methods
	2.2.1 Functional Testing
	2.2.2 White and Black Box Testing
	2.2.3 End-To-End Testing
	2.2.4 Regression Testing

	2.3 Available Testing Frameworks

	3 Technologies Used in the Project
	3.1 Cypress
	3.2 Amazon Web Services

	4 Setup of Testing Environment
	4.1 Local Installation of Application
	4.2 Access to Database
	4.3 Installing Cypress

	5 Test Specification
	5.1 Single Athlete Full Test
	5.2 Pair Competition Full Test
	5.3 Team Competition Full Test

	6 Execution of Tests
	6.1 Cypress Commands and Session
	6.2 Cypress Locators
	6.3 Cypress Actions
	6.4 Custom Tools

	7 Results
	7.1 Successes of Testing
	7.2 Challenges with Testing
	7.3 Future Development Opportunities

	8 Conclusion
	9 References

