
Nicolas Kyejo

Implementation of a Forensic
Analysis System for Malicious
Network Traffic

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Bachelor’s Thesis

1 May 2023

Abstract

Author: Nicolas Kyejo
Title: Implementation of a forensic analysis system for malicious

network traffic
Number of Pages: 34 pages
Date: 1 May 2023

Degree: Bachelor of Engineering
Degree Programme: Information and Communication Technology
Professional Major: IoT and Cloud Computing
Supervisors: Janne Salonen, Head of School (ICT)

The objective of this thesis was to develop and evaluate a forensic system for
detecting malicious network traffic, focusing on its practical implementation and
effectiveness as a low-cost security solution. To support this goal, only open and
freely available tools were used.

The main solution used in the thesis project was the creation of machine learning
models to detect malicious network traffic. These models were created from
K-nearest Neighbors, Logistic Regression, Random Forest, and Multi-Layer
Perceptron algorithms. The dataset used in the training of the models was the
CICIDS2017 dataset. As a final evaluation step, traffic captured in a virtual LAN was
used the assess the models.

The performance and predictions of the models indicated that they could be used
effectively in a network forensic system for identifying cyberattacks. The thesis
showed that such an implemented system was profoundly reliant on the availability of
open datasets, hence the cost in terms of effort seems to be justified if quality and
open datasets are available and used.

Keywords: network forensics, packets, intrusion detection,
machine-learning, cybersecurity

Tiivistelmä

Tekijä: Nicolas Kyejo
Otsikko: Haitallisen verkkoliikenteen rikosteknisen

analyysijärjestelmän toteuttaminen
Sivumäärä: 34 sivua
Aika: 1.5.2023

Tutkinto: Insinööri (AMK)
Tutkinto-ohjelma: Tieto- ja viestintätekniikka
Ammatillinen pääaine: IoT ja Pilvipalvelut
Ohjaajat: Janne Salonen, Osaamisaluepäällikkö, ICT ja

tuotantotalous

Insinöörityön päätavoitteena oli koneoppimismallien luominen pahantahtoisen
verkkoliikenteen havaitsemiseksi. Nämä mallit luotiin käyttäen ‘K-nearest
Neighbors’-, ‘Logistic Regression’-, ‘Random Forest’-, ja ‘Multi-Layer Perceptron’
-algoritmeja. Mallien koulutuksessa käytetty datasetti oli CICIDS2017-datasetti.
Lopullisessa arviointivaiheessa virtuaalisessa lähiverkossa kaapattua liikennettä
käytettiin mallien arvioimiseen.

Mallien suorituskyky ja ennusteet viittasivat siihen, että niitä voitaisiin käyttää
tehokkaasti verkkorikostekniikassa kyberhyökkäysten tunnistamiseksi. Insinöörityö
osoitti, että tällainen toteutettu järjestelmä oli erittäin riippuvainen avoimien
datasettien saatavuudesta, joten vaiva näyttää olevan perusteltua, jos laadukkaita
avoimia datasetteja on saatavilla ja käytössä.

Avainsanat: tunkeutumisen tunnistusjärjestelmä, koneoppiminen,
kyberturvallisuus

Contents

List of Abbreviations

Glossary

1 Introduction 1

2 Current State Analysis 2

3 Theoretical background 4

3.1 Malicious Network Traffic 4
3.1.1 SQL Injection 4

3.1.2 Command Injection 5

3.1.3 Cross-Site Scripting Attack 5

3.1.4 Denial-of-Service Attack 6

3.1.5 Brute Force Attack 7

3.2 Intrusion Detection System 7
3.3 Supervised Machine Learning Methods 8

3.3.1 K-nearest Neighbors 8

3.3.2 Logistic Regression 10

3.3.3 Random Forest 11

3.3.4 Multi-layer Perceptron 12

4 Implementation 14

4.1 Network Environment Setup 14
4.2 Model Training 16

4.2.1 Dataset 17

4.2.2 Training Process 18

4.2.3 Prediction Process 21

5 Results 24

5.1 Model Performance 25
5.2 Prediction Results 29

6 Conclusion 31

33 References

List of Abbreviations

AIDS: Anomaly-based Intrusion Detection System.

ANN: Artificial Neural Network.

DDoS: Distributed Denial-of-Service.

DNS: Domain Name System.

DOM: Document Object Model.

DoS: Denial-of-Service.

DVWA: Damn Vulnerable Web Application.

FTP: File Transfer Protocol.

GUI: Graphical User Interface.

HTTP: Hypertext Transfer Protocol.

ICMP: Internet Control Message Protocol.

IDS: Intrusion Detection System.

IPS: Intrusion Prevention System.

KNN: K-nearest Neighbors.

LAN: Local Area Network.

MLP: Multi-Layer Perceptron.

PCAP: Packet Capture.

SIDS: Signature-based Intrusion Detection System.

SIEM: Security Information and Event Management.

SQL: Structured Query Language.

SSH: Secure Shell.

XSS: Cross-Site Scripting.

Glossary

cross-validation: a method to test the accuracy of a machine learning model by

splitting the dataset into smaller subsets, training the model on

some subsets and testing it on the others. This process is

repeated multiple times to ensure the model’s performance is not

overfitting and to estimate its generalization performance on new

data.

decision threshold: a probability value that is used to classify observations into

one of two (or more) classes. If the predicted probability of an

observation belonging to one class is above the decision

threshold, it is classified as belonging to that class; otherwise, it

is classified as belonging to the other class.

ensemble method: a technique that combines the predictions of multiple

learning algorithms to improve prediction.

false-negative: a missed positive prediction.

false-positive: an incorrect classification of a negative prediction as positive,

that is to say, noise.

feature extraction: a process of selecting and transforming raw data into a set of

meaningful features that can be used for model training and

prediction.

hyperparameters: parameters set before training in a machine learning model

and are not learned from the data. They control the behavior of

the learning algorithm and can significantly impact the

performance of the trained model.

Linear Regression: a statistical method used to model the relationship between

two variables by fitting a straight line through the data points to

minimize the sum of squared residuals, with the goal of

predicting the value of one variable (dependent variable) based

on the value of another variable (independent variable).

overfitting: a situation where a trained model performs very well on the

training data but fails to generalize to new, unseen data.

promiscuous mode: a feature in packet capture where a network interface card

captures all packets on a network, including those not addressed

to it.

test data: a separate and independent dataset that is used to evaluate the

performance and generalization capability of a trained machine

learning model.

train data: a labeled dataset used to train a machine learning model.

zero-day: a type of vulnerability or flaw in software, hardware, or firmware

known only to the attacker and not to the developers of the

affected system, making it difficult to defend against.

1

1 Introduction

In the world of Information Technology, cyberattacks are quite ubiquitous. A

cursory look at the news might even suggest that we should expect a service or a

device we use to come under a successful attack if it has not already been so. It

therefore becomes quite important to determine with a certain confidence that a

cyberattack took place.

The main goal of this thesis is to investigate how a forensic system for detecting

malicious network traffic could be implemented in practice. In this research, the

aim is to evaluate such a system’s effectiveness and whether it could be useful as

a low-cost forensic security solution. To achieve this goal, the thesis will first briefly

analyze the current state of tools available for detecting malicious traffic.

Furthermore, some background concerning malicious network traffic and

supervised machine learning methods will be explored and discussed. The thesis

will then finally examine the system implemented, and draw conclusions from the

implementation result.

The thesis contains a limited scope—it does not compare the implemented system

with existing paid and free solutions for which there are many. Moreover, it does

not take into account usage of the forensic system in an active real-world network.

Therefore, the effectiveness of the system is speculated since the generation of

malicious network traffic is in a controlled setting.

2

2 Current State Analysis

The field of IT is very important to the modern economic infrastructure since it

helps facilitate nearly all modern commerce, logistics, business, research,

healthcare, and more. Its crucial role has made it a highly valuable target for

cybercriminals hoping to gain money and influence. As stated previously, having a

way to analyze and demonstrate with a degree of certainty that a cyberattack took

place is one of the goals in forensic analysis of network traffic.

In the current technology tools offering, there are some tools that can determine

whether a cyberattack took place. These tools are usually classed as Security

Information and Event Management (SIEM), Intrusion Prevention System (IPS),

and Intrusion Detection System (IDS).

SIEM tools are usually mostly employed as a ‘Software as a service’ (SaaS)

solution in a Cloud platform to solve security and compliance requirements as

required by specific industries. Examples of such compliance standards include

the Sarbanes-Oxley Act (SOX), General Data Protection Regulation (GDPR), and

others. SIEMs are good at determining and alerting the presence of cyberattacks;

however, they are a fairly expensive investment for small organizations or

individuals with smaller needs in terms of data traffic volume and functionality.

On the other hand, IPSes and IDSes are less expensive in comparison to SIEM

solutions. They are employed as either an on-premise or a Cloud solution in the

form of hardware or software to detect cyberattacks, and in the case of IPS also

prevent detected cyberattacks. Hardware-based IPSes and IDSes are generally

faster and more expensive compared to software-based counterparts.

The aforementioned tools have something in common—they require a non-trivial

investment in money and resources. Therefore, this thesis will examine whether

building a similar system is practical and achievable in terms of effort and cost. It

will do this by evaluating a software-based forensic system that was built by

3

making use of available open datasets to train machine learning models to identify

whether a particular piece of network traffic is malicious or benign. The

implemented system is not a drop-in replacement for the mentioned tools, rather it

is a proof of concept of building an ‘IDS-like’ functionality with only open data and

freely available tools.

4

3 Theoretical background

The following sections will detail relevant background concerning malicious

network traffic, IDS workings, and supervised machine learning methods. The

chosen types of malicious network traffic and their descriptions will be detailed.

Furthermore, a brief explanation of IDS, its classes and methods of detection will

be described. In the same manner, a few selected machine learning algorithms

that are useful in classification problems will be briefly explained.

3.1 Malicious Network Traffic

Malicious network traffic is any network traffic that is intended to harm or breach

information systems without the consent of their owners. As an example, The

United States of America’s Computer Fraud and Abuse Act (CFAA) bill includes

this in a more expansive definition to include cause of damage in monetary form,

loss of data, modification of data, extortion, physical, death or otherwise [1].

General examples of malicious network traffic include Denial-of-Service (DoS)

attacks, phishing, malware delivery, and ransomware among others. In the

context of this thesis, the following cyberattacks are considered in the

implemented solution: code injection specifically Structured Query Language

(SQL) injection, command injection, Cross-Site Scripting (XSS), DoS attacks, and

brute force attacks.

3.1.1 SQL Injection

Code injection is a method to input code in an application that was not meant to be

executed by that application [2]. As a form of attack it means inputting code that is

malicious to be executed by an application. In a non-attack form, this means

adding code that is benign, for instance, adding some extra functionality that is not

present in an application. SQL injection is a type of code injection where SQL

statements are passed and executed by an application that builds and executes

SQL queries from input passed by a user. A trivial example of an SQL injection

5

can be an e-commerce application that contains a form where a user can search

for products; expected input from the application’s point of view is input such as

“SD card” or “M.2 SSD”.

1 SELECT * FROM items where items.name = 'SD card'; --normal
query

2 SELECT * FROM items WHERE items.name = 'SD card'; DROP table
items--' --query with injected code

Listing 1: SQL statements showing an SQL injection

Assuming in this example that the data is fetched from an SQL database, the

application will build an SQL query from the user input as shown in listing 1 line

number one. Without proper input validation in the application, one could pass

input such as “SD card’; DROP table items--” resulting in the built query shown in

listing 1 line number two. The executed query will cause the particular database

table to be deleted.

3.1.2 Command Injection

Another type of code injection is command injection. This differs from SQL

injection in that the extra parsed code is executed by the underlying OS. Both

types of injection are caused by improper validation of user input.

An example of command injection can be an online note application that prior to

initializing a writing environment asks for the file name to use; assuming no

validation of user input is done, an attacker could pass extra commands to the

underlying OS to be executed, as in touch filename ; cat /etc/passwd. The

extra statement is parsed after the semicolon which indicates that what follows is

a sequential command to run. This could potentially expose sensitive information

or grant unauthorized access to the attacker when other commands are passed.

3.1.3 Cross-Site Scripting Attack

Similarly, XSS is a type of code injection that allows an attacker to inject malicious

code into a vulnerable web application. It is able to bypass the same origin policy

6

which controls the access of data by and from different domains. This attack can

compromise user data and allow an attacker to perform actions as the

compromised-user. [3]

There are three main types of XSS attacks, namely: reflected, stored, and

Document Object Model (DOM)-based XSS. Reflected XSS occurs when an

attacker injects malicious code into a web request URL, which is then “reflected”

back to the user when they access the URL. Stored XSS, on the other hand, is

when the malicious code is stored on the server by an attacker, waiting for

unsuspecting users to visit the compromised page. Finally, DOM-based XSS is a

type of XSS that targets the DOM of a web page. This type of attack is possible

when a web application relies on processing client-side JavaScript to manipulate

the DOM. If the DOM can be manipulated by an attacker in this way, they can

include malicious code to be run as part of the processing. [3]

3.1.4 Denial-of-Service Attack

A DoS attack is an attack that aims to disrupt the normal functioning of a device or

an application service. The most common case of a DoS attack is the disruption of

a web service by sending it a flood of requests such that it is unable to contend

with the number of requests, resulting in the service being unavailable or unable to

respond to further requests. It is important to note that a DoS attack is launched

from a single machine while a Distributed Denial-of-Service (DDoS), a more

advanced form of the same attack, is launched from multiple machines which

makes it more difficult to mitigate against. [4]

According to Cloudflare, a DoS attack is categorized as either a buffer overflow

attack or a flood attack [4]. In this thesis, an Internet Control Message Protocol

(ICMP) ping flood DoS attack is used in the implementation of the attack system.

An ICMP ping flood attack works by sending multiple ICMP echo requests packets

to a target server—if a server is not configured to mitigate against this type of

attack, it will reply to each ICMP echo request packet with a ICMP echo reply

packet thereby consuming resources proportional to the number of requests it

7

received [5]. When the number of requests overwhelms the server’s resources, it

will result in a DoS.

3.1.5 Brute Force Attack

Brute force attack in cybersecurity is a type of attack where an attacker’s method

of gaining access to a system is to guess and try different combination of

passwords through trial-and-error. In this method the attacker is limited by time,

method of guessing, processing power (in case the attack is offline), and possibly

any mitigations in the target system.

Due to the advent of powerful GPU hardware technology, the ease of cracking

weak passwords has increased dramatically. If an attacker has access to a

hashed password list through any means, they can crack passwords in just a few

days with a mid-range GPU. The suggested mitigation against brute force attacks

is to use longer passwords, stronger hashing functions such as bCrypt (a popular

hashing function) and perhaps usage of different password schemes such as

biometric and graphical passwords. [6]

3.2 Intrusion Detection System

An IDS is a software or hardware system designed to identify and alert on any

unauthorized activities that could cause harm to an information system [7]. They

can be broadly categorized into two groups: Signature-based Intrusion Detection

System (SIDS) and Anomaly-based Intrusion Detection System (AIDS). They can

also be classified by division into host-based IDS, network-based IDS, and

hybrid-based IDS [8]; this latter classification is based on the where the source of

data used for analysis is collected from, more specifically, either from individual

devices, a network segment such as a Local Area Network (LAN), or a

combination of these.

A SIDS works by having a database of known malicious signatures and it uses

those to detect intrusion from collected network traffic or host logs [9; 8; 7]. Due to

8

its method of detection, it can only detect previous flagged signatures and

therefore faces significant difficulties in detecting unknown intrusion signatures

especially zero-day attacks [7].

On the other hand, AIDS works by defining ‘normal’ behavior of a network and/or

computer system by the use of knowledge-based, statistical-based, or machine

learning methods; any meaningful deviation from the defined normal behavior is

assumed to be an intrusion. [7]. One advantage of AIDS compared to SIDS is that

it can detect previously unseen attacks [8][9]—however, this ability can lead do

higher rate of false positive detections due to the threshold of separating malicious

and benign behavior [7].

3.3 Supervised Machine Learning Methods

Supervised machine learning is a type of machine learning that involves training a

model on labeled data to predict the output for new, unseen data. In supervised

learning, the model is trained using a dataset that contains inputs and their

corresponding correct outputs, also known as labels or targets. The goal of the

model is then to learn a mapping function between the input and the output, which

can then be used for later predictions. [10]

As mentioned previously, the supporting goal of the thesis is to detect whether a

particular set of captured traffic is malicious or not; to achieve this goal, a set of

supervised machine learning methods that can be used in classification problems

were chosen, namely—Logistic Regression, K-nearest Neighbors (KNN), Random

Forest and Multi-Layer Perceptron (MLP). Note that the selected machine learning

methods do not constitute all possible methods that can be used to solve

classification problems.

3.3.1 K-nearest Neighbors

KNN is a non-parametric and lazy learning algorithm that classifies a data point

based on its proximity to other data points in a training set. In this context ‘lazy

9

learning’ means it does not try to learn a general mapping function between inputs

and outputs during the training phase, but instead stores the entire training

dataset in memory and waits until a new data point is presented to predict it.

Various distance metrics exist to calculate this proximity such as Euclidean

distance, Manhattan distance, Hamming distance, and others. The most popular

distance metric is the Euclidean distance which is given by the formula qP n 2(xi − yi) where x and y are respective variables (Eucledian vectors) ofi=1

data points. [11]

An example of how KNN works visually can be seen in figure 1. The green

datapoint is the datapoint that is going to be classified as either belonging to red or

blue.

Figure 1: KNN algorithm with a random dataset where the K value is three

The figure 1 shows a scatter plot with red and blue labels. The KNN algorithm

works by calculating the distance metric (Euclidean distance in this case) between

10

the new data point and rest of the data points stored in memory. From the nearest

distance points chosen (three in this case), the label for the new data point is

determined to be red if the points are considered to have the same weight

(uniform). On the other hand, the label would be blue if we give closer data points

a higher weight than those far away.

Most of the work in KNN involves choosing the value of K with the help of

cross-validation to determine the value of K that results in a good test score

comparatively. The base performance of KNN is determined by the choice of K

value, distance metric, and feature scaling. [11]

3.3.2 Logistic Regression

Another supervised machine learning method used in classification tasks is

Logistic Regression. It predicts the probability of an input instance belonging to

one of two possible classes by applying an activation function to the output of

Linear Regression prediction.

During a Logistic Regression’s model training process, Linear Regression is used

to estimate the coefficients that provide the best fit for the input data with respect

to the output data; a sigmoid function—the most common used activation function

in Logistic Regression is then used to estimate the probability range between zero

and one [12]. Additional activation functions include ReLU, tanh, softmax, and

others. An example of a sigmoid function is shown in figure 2.

11

Figure 2: An example of logistic regression with a random dataset

The random dataset in figure 2 shows a prediction curve for a portion of the

dataset set aside as test data; the random data already contains labels zero and

one, hence they lie exactly at zero and one in the figure. For the test data, a

prediction is made after training a Logistic Regression model on the train data. In

a binary classification problem, the decision threshold can be chosen to be 0.5 as

in this case, therefore if the probability prediction is greater than 0.5 the output is

classified as one and vice-versa.

3.3.3 Random Forest

Random Forest is an ensemble method that makes use of multiple uncorrelated

decision trees generated through bagging and feature randomness to make

predictions. In classification tasks, random forests output a prediction based on

the majority class encountered in the forest. [13]

An example of Random Forest used in a multi-class (more than two) classification

is shown in figure 3. In this example, there are four decision trees in the forest.

12

Figure 3: A Random Forest classification example (Copied from [14])

In the figure 3, the prediction through majority voting is class C. The main benefit

purported by Random Forest algorithms include reduced risk of overfitting [13] and

resistance to redundant variables [14]; however, they tend to be complex in terms

of interpretability [13].

3.3.4 Multi-layer Perceptron

Finally, a MLP is a type of Artificial Neural Network (ANN) with a feedforward

mechanism (outputs are forwarded to the next layer) characterized by an

architecture that consists of an input layer, hidden layer(s), and an output layer; it

additionally makes use of backpropagation to adjust the weights of neurons to

minimize the cost function of the output(s). [15].

An example of a MLP ANN can be seen in figure 4 with three neurons in the input

layer, two neurons in one hidden layer, and one neuron in the output layer.

13

Figure 4: A simple MLP ANN with one hidden layer

In the figure 4, the output of the two neurons in the hidden layer are a result of the

application of an activation function. Likewise the output of the neuron in the

output layer is also activated—the activation functions used need not be the same

in different layers. Factors such as the number of hidden layers, number of

iterations (steps to reduce the cost function), momentum and learning rate have

an effect on the performance of a MLP model [15].

14

4 Implementation

The following sections detail the implemented solution to flag network traffic as

malicious or benign. The criteria for selecting tools used in the implementation

was that they be freely available and open-source. The implemented solution was

divided into two separate parts, namely the network environment setup and model

training parts.

The network environment setup dealt with generating malicious and benign traffic

in a virtualized environment to be used later in testing the prediction of the models

trained. This part was not strictly necessary as traffic can be generated and

captured in any network environment; the rationale of creating such an

environment was to capture only needed traffic in a safe environment, to keep the

size of capture packets small, and to increase privacy as captured packets might

contain other network data when capturing in promiscuous mode.

The model training part was concerned with creating machine learning models to

analyze and flag the captured traffic in the virtual network. Additionally, it also

dealt with choosing the dataset used in training the models and other details

involved in the whole process.

4.1 Network Environment Setup

The virtualized network environment was created with the help of Vagrant; Vagrant

is a tool that can be used to quickly provision virtual machines. The environment

created with Vagrant consisted of three machines all in the same network for

simplicity since the aim was to generate and capture traffic. All machines were

created using a base image of Kali Linux, which is a popular OS used commonly

in security testing scenarios. The names and roles were assigned were as follows:

• defender : to capture traffic in the network

• attacker : to generate malicious traffic

• target: to act as a vulnerable server that can be attacked.

15

The target machine had a version of Damn Vulnerable Web Application (DVWA)

running on it. DVWA is an intentionally insecure web application which makes it a

good candidate for testing malicious attacks. The vulnerabilities discussed in

chapter 3.1 are all possible in DVWA.

1 config.vm.define "vulnerable-target" do |target|
2 target.vm.hostname = "target"
3 target.vm.network "private_network", ip: "192.168.60.60"
4 target.vm.provider :virtualbox do |vb|
5 vb.gui = false
6 vb.name = "target"
7 vb.memory = 1024
8 vb.cpus = 1
9 end

10 target.vm.provision "bootstrap", type: "shell", path:
"./make_dvwa_accessible_to_lan.sh", run: "once"

11 target.vm.provision "start-dvwa", type: "shell", inline: "sudo
dvwa-start", run: "always"

12 end

Listing 2: Provisioning the target machine with Vagrant

The listing 2 shows the code used in creating the target machine. While it is

possible to use other providers, Virtualbox was chosen because it had support in

Vagrant to modify network device settings which was needed to set promiscuous

mode in the defender machine.

With the virtual LAN created, the network traffic was generated in both malicious

and benign stages. In the malicious stage, the attacker generated traffic for DoS,

SQL injection, command injection, brute force, and XSS attacks. The attacker

machine in figure 5 shows how malicious network traffic was generated in the

case of SQL injection that was aimed at the target machine.

https://make_dvwa_accessible_to_lan.sh
https://192.168.60.60

16

Figure 5: Screenshot of attacker machine preparing an SQL injection test

The figure 5 shows in view the web application to be attacked and the program

sqlmap to automate discovery of SQL vulnerabilities. In contrast to the malicious

stage which consisted only of traffic captured in the virtual LAN, the benign stage

consisted of both virtual LAN and internet directed traffic. The benign traffic

consisted of web browsing of the target machine’s web application via Hypertext

Transfer Protocol (HTTP) without any attacks. The rest of the benign traffic

consisted of Telnet, Domain Name System (DNS), Secure Shell (SSH), and File

Transfer Protocol (FTP) protocol-related traffic. Each scenario of the malicious

and benign stages was captured in Packet Capture (PCAP) file format by the

defender machine using tcpdump. As a final step, the benign PCAP files were

renamed to include the word ‘benign’ in the filename to distinguish them from the

malicious captures.

4.2 Model Training

This section focuses on the model training process and how it was implemented

with machine learning methods: KNN, Logistic Regression, MLP, and Random

Forest. Training the models involved feeding them with labeled data to learn the

17

patterns and relationships within the data. The training was performed on a laptop

with an ‘AMD® Ryzen 7 PRO 4750U’ processor and 30.6 GiB of SODIMM DDR4

memory.

4.2.1 Dataset

The training process for classification tasks needs labeled data for supervised

machine learning. The quality, quantity, and representativeness of the dataset

used can greatly impact the performance of the trained models. It was deemed

that the labeled data should contain at least some features that can be extracted

(feature extraction) easily from PCAP files.

The dataset eventually selected for use was the CICIDS2017 intrusion detection

evaluation dataset [16]. A newer version did exist at the start of the

implementation (CSE-CIC-IDS2018), nonetheless CICIDS2017 was used due to

its relative small size (under 900 MB). The CICIDS2017 dataset with labeled data

existed in CSV file format, those were downloaded and used in the model training.

Figure 6 visually shows the composition of the CICIDS2017 dataset.

Figure 6: Dataset label distribution

18

The dataset label distribution can be observed in figure 6 showing the proportion

of malicious labels to benign labels. Due to the proportion of benign labels being

higher in comparison to malicious labels (2,271,320 versus 556,556), one CSV file

from the dataset (Monday-WorkingHours.pcap_ISCX.csv) was dropped from the

training process since it contained only benign labels. The dataset was further

preprocessed by removing identified redundant columns and one duplicate

column; moreover rows with infinity numbers were removed the dataset. Finally,

the columns with malicious labels were converted to the class number one while

benign labels were converted to the class number zero to make the training

process straight-forward. In the end the combined dataset after preprocessing

had 2,298,395 rows with 71 columns where seventy columns were for features

and one column for labels.

4.2.2 Training Process

The model training part as stated previously involves finding patterns within the

dataset to make predictions for whether a particular piece of network traffic is

malicious. In the implementation of this stage, the scikit-learn [17] library was

chosen due to the availability of documentation and examples; another reason

was that it did not have any dependencies to GPU libraries, making it easy to

install on different OS platforms. The use of a machine learning library significantly

reduced the implementation time since no time would be spent on algorithm

coding. The steps involved in the training process consisted of:

• Creating the model pipeline.

• Training and tuning of hyperparameters.

• Cross-validation of models.

• Saving models in a persistent format.

The model pipeline is a list of steps that are chained together and can be applied

to a piece of data input. Listing 3 shows a KNN model pipeline as used in the

training process implementation.

19

1 def knn_model() -> Pipeline:
2 return make_pipeline(
3 StandardScaler(),
4 LinearDiscriminantAnalysis(),
5 KNeighborsClassifier(
6 n_neighbors=3,
7 p=2,
8),
9 verbose=True,

10)

Listing 3: Setup of KNN pipeline

The pipeline shown in listing 3 contains three steps: scaling, dimensionality

reduction, and the K-neighbors classifier itself. The scaling of features step is an

additional preprocessing step which depending on the learning algorithm itself

might be needed or not; in addition, the dimensionality reduction step helps

reduce computation time—here it reduces the data dimensions from 70 to 1. The

last step in the pipeline is the KNN classifier with K = 3 and p = 2 to use the

Euclidean distance metric (see chapter 3.3.1). Contrast the parameters in listing 3

with listing 4.

1 return make_pipeline(
2 RandomForestClassifier(
3 n_estimators=100,
4 criterion="gini",
5 max_depth=None,
6 max_features=35,
7 min_samples_split=2,
8 min_samples_leaf=2,
9 bootstrap=False,

10 max_samples=None,
11 random_state=SEED,
12 verbose=1,
13 class_weight="balanced",
14),
15 verbose=True,
16)

Listing 4: Setup of Random Forest pipeline

20

As can be noted in listing 4, some models can have more tunable

hyperparameters. Another difference that can be observed is that Random Forest

does not need feature scaling since the algorithm is not sensitive to unscaled

features. Furthermore, the pipeline contains only one step so essentially the

classifier can be used directly without including it in a pipeline; the reason it was

included is to make it easily comparable to the other models and additionally for

code type checking.

The training part is straight-forward, the dataset is split into train data and test

data, the portion of the test data was chosen to be a third of the dataset. Each

time the model pipeline was ran, the test score (calculated on the test data) and

time taken was noted. By tuning the hyperparameters, varying test scores could

be observed; in this way, a specific model’s hyperparameters that perform best

were eventually used. Note that, the hyperparameters that had good performance

where not necessarily used in the final training, the time to train the model was

also taken into account. Therefore a balance between the two was the deciding

factor on which hyperparameters were used. For training the final models with the

parameters chosen—the whole dataset is used, there was no need to set aside

train data.

Be aware that there exist software libraries to automate the tuning of

hyperparameters to find the best performing parameters or even the best

predictive model itself. This path was abandoned after a few rounds due to

unreliability problems where the process would crash after a few days of training.

Additionally, cross-validation of the models was performed. This was done to

ensure that the models were not overfitting on the train data. The cross-validation

strategy chosen was a stratified k-fold wherein the train data was split into five

folds and the test score accuracy was compared. A stratified strategy in the

cross-validation was crucial since the dataset labels were not in equal proportions

(see figure 6).

21

The last step in the training process was saving the models trained. The

importance of this step is that there is no need to train the model again in order to

use it in network traffic prediction—this saves time and computation resources.

The other rationale is if sharing of the model is needed later. There exist several

formats for saving models, each with their advantage and disadvantages, for this

implementation, the skops library was chosen. The main reason skops was

chosen is that it was created to work with the scikit-learn library which made it

easy to integrate within the project. One disadvantage however with skops is that

the models trained cannot be imported in other programming languages, therefore

the saved models can only work with the specific version of Python programming

language and scikit-learn library used in the training process.

4.2.3 Prediction Process

Before the prediction based on the saved models was done, the PCAP files were

first converted to CSV files; this was done with the help of a software project called

cicflowmeter. The version available at the time the project started was forked and

modified to fix some errors and consequently included in this project to do the

conversion part. The importance of the conversion from PCAP to CSV is that

feature extraction is performed on the network traffic data. The feature extraction

process itself is out of scope of this thesis. However, it suffices to say that

cicflowmeter (Python implementation) is based on CICFlowMeter which is a Java

software associated with the CICIDS2017 dataset used for feature extraction,

among its other uses.

The prediction process in the implementation consisted of predicting the collected

network traffic from the LAN. For quick predictions, a Graphical User Interface

(GUI) was created to facilitate this process as show in figure 7.

22

Figure 7: Screenshot of the simple prediction GUI

The GUI in figure 7 was created through Python’s interface to the Tcl/Tk GUI

toolkit called tkinter. The choice for using tkinter instead of other more newer GUI

toolkits, for instance, the Qt framework, was simply because the functionality

desired was basic, namely, a few buttons, and a way to open files.

Through testing prediction of different models over time, it became cumbersome

to observe and record predictions in this way. As an alternative, a script to run

predictions of different models on multiple PCAP files was implemented; the script

was meant to create a simple report showing how correct the predictions were in

reality. Figure 8 shows how the report looked in practice.

23

Figure 8: Screenshot of the simple report content

The figure 8 also shows that the simple report created by the script details the

count of true predictions, false-positives and false-negatives. Both the GUI and

the script methods were used in different scenarios depending on what effort was

required in regards to whether a single prediction was desired or multiple.

The full source code for the solution implementation can be found at

https://github.com/nicolaskyejo/ids-ml-exploration, it contains both the network

environment setup and the model hyperparameters used for the results obtained

in the following chapter.

https://github.com/nicolaskyejo/ids-ml-exploration

24

5 Results

This chapter provides an evaluation of the models in terms of performance and

the prediction results obtained. The first section, Model Performance, describes

the accuracy of the models and their ability to generalize to unseen data. It

compares and analyzes the respective performance on the CICIDS2017 dataset.

The second section, Prediction Results, presents the results of applying the

models to data that was gathered from the implemented LAN. It provides an

analysis of the predictions made by the models, including the accuracy and

reliability of the results. Overall, this chapter provides insights into the

performance and effectiveness of the models trained.

Recall, precision, and F1-score are evaluation metrics commonly used in binary

classification tasks. Recall measures the proportion of actual positive samples

that are correctly identified as positive by the model while precision measures the

proportion of predicted positive samples that are actually positive. F1-score is the

harmonic mean of recall and precision, which takes both metrics into account and

provides an evaluation of a model’s performance. The F1-score ranges from zero

to one, where one represents perfect precision and recall, and zero represents the

worst performance. The formula 1 shows the calculation of the F1-score.

precision · recall
F1 = 2 · (1)

precision + recall

where precision and recall are:

TP
precision = (2)

TP + FP

TP
recall = (3)

TP + FN

25

In the formulas 2 and 3, TP represents the number of true positives, FP

represents the number of false-positives, and FN represents the number of

false-negatives. True positive in the implemented system represents the case

where the network traffic is malicious. In the scikit-learn library, scores are

calculated by passing the score metric that is desired and it will be calculated

automatically. These metrics are essential in evaluating the performance of a

binary classification model and can help identify the strengths and weaknesses of

the model in distinguishing between the two classes.

5.1 Model Performance

The evaluation of a model’s base performance was calculated on the basis of the

dataset, whereas the collected network traffic was used in the final prediction. For

each model, different evaluations were done and recorded. In this section, these

evaluations are compared with each other.

One of the most important predictors of a model’s performance is the learning

curve. A learning curve is a graphical representation that illustrates the progress of

a model’s learning by plotting its accuracy on the train data and test data against

the number of training samples. The graph in figure 9 shows the learning curve of

the chosen machine learning models which depicts this relationship.

26

Figure 9: Learning curve of the models on the dataset

As shown in figure 9, the models have different curves signifying that each model

improved at different rates when more training samples were added. The training

score evaluates how the models performed on the train data, in other words, how

27

well it was able to generalize the relationship between the input and output when

the answers were known. All models improved with the addition of more samples

in the training set up to a point—this point was somewhere at about 36% of the

whole dataset samples. Also of note is how Random Forest had a plateau while

the other models except KNN slightly degraded in test score accuracy after this

point. A slightly more numerical comparison can be seen in figure 10.

Figure 10: Confusion matrix of the models

The figure 10 shows the confusion matrix diagram. The number of TP , FP , FN ,

and TN can be gleamed from the matrix. It can be seen that the Random Forest

model had the highest true predictions and the Logistic Regression model the

highest missed predictions. A more intuitive comparison can be observed in

figure 11 showing the mean F1-score of five cross-validated scores.

28

Figure 11: Mean F1-score of models

The information learned from figure 11 is similar to figure 10. It can be seen clearly

that Random Forest had the highest score and KNN the lowest. An explanation of

why KNN score is the lowest is that the F1-score does not take into account the

number of TN .

Another useful comparison from the training process was how the models

performed in terms of time taken to train; this information can affect resource

planning optimization when considered together with model accuracy. This

comparison can be seen in figure 12.

Figure 12: Model training time on full dataset

The training time shown in figure 12 reveals that Random Forest took the longest

time to train while KNN the shortest. In regards to KNN, the result is not surprising

since the model’s computation only takes place during prediction of new data. The

training process results show that all the models used can be justified as good

models when their training time and F1-scores are examined together.

29

5.2 Prediction Results

In this section, the prediction results obtained from the trained models on the

captured network data (PCAP) are discussed. The prediction results are analyzed

to evaluate the performance of each model in terms of precision, recall, and

F1-score. By comparing the results of different models, the most effective model

for predicting network traffic can be identified. Additionally, the potential

implications of the prediction results are briefly addressed. Table 1 shows the

predictions of the captured network traffic in the LAN.

Table 1: Prediction results for different models on captured network data

PCAP type Label KNN MLP RF LR
Web browsing on target Benign Benign Malicious Benign Benign
Telnet connection Benign Benign Benign Benign Benign
FTP connection Benign Benign Benign Benign Benign
SSH connection Benign Benign Benign Benign Benign
DNS query Benign Benign Benign Benign Benign
Brute force login Malicious Malicious Malicious Benign Benign
DoS by ICMP flood Malicious Malicious Benign Benign Malicious
SQL injection Malicious Malicious Malicious Benign Malicious
Command injection Malicious Malicious Malicious Benign Malicious
XSS Malicious Benign Malicious Benign Benign

From the data in table 1, the results suggest that KNN is the most accurate model.

The F1-scores (see formula 1) of KNN, MLP, Random Forest, and Logistic

Regression are 0.89, 0.80, 0.00, and 0.75 respectively. The expectation from the

final model performance is somewhat different—especially in regards to Random

Forest and KNN. One explanation could be that Random Forest was overfitting on

the dataset and KNN model did not. KNN as the most accurate model in the final

results predicted everything correctly except the XSS attack; MLP ANN as the

second most accurate model incorrectly flagged HTTP web browsing traffic as

malicious and missed the DoS attack. The Logistic Regression model as the third

most accurate model missed the brute force and XSS attacks.

30

According to the dataset publication, command injection attack was not part of the

dataset. Despite this, the models were able to correctly flag it as malicious (except

Random Forest) which can be evidence of the power of AIDS to detect new or

unseen attacks.

However, it should be noted that to calculate a meaningful F1-score, more

observation data is needed with varying attack and benign samples. Therefore,

the final results are only a suggestive result rather than a conclusive result. In the

end, a combination of AIDS to detect zero-day attacks and SIDS to detect known

attacks may be the most effective method in forensics of malicious network traffic.

31

6 Conclusion

The primary goals of this thesis were to detect malicious network traffic,

investigate the practical implementation of a forensic system for this purpose, and

evaluate its effectiveness as a low-cost security solution. Through the application

of supervised machine learning methods, it was demonstrated that it is possible to

detect malicious traffic in a reliable way.

Regarding the practical implementation process, it was heavily reliant on the

availability of open datasets. Without available open datasets, the process would

have been arduous. The training process itself was fairly straight-forward with

most time spent on tuning hyperparameters. Therefore, the goal of practical

implementation is indeed realistic to achieve when quality datasets are obtainable.

As to the effectiveness as a low-cost security solution, it depends on the

resources available to an individual or an organization. For entities with

considerable capital and resources, it can be feasible to allocate some of those

resources to train such network forensic models and even create datasets that are

used for that purpose. However, in a market economy it can be seen as a waste of

resources to do so, therefore, it is more probable that a few organizations or

companies sell their own solutions to others. Nevertheless, it can be assumed that

organizations with high-security profiles, for example, government agencies and

military facilities are creating and using their own network forensic solutions which

are considered as a low-cost security solution to them.

While this thesis has achieved its main goal, it is important to recognize some

limitations as well. One weakness is the limited the number of attack type

scenarios that were examined, both in the actual dataset and the ones generated

for the final evaluation; more attack data would have raised the confidence of the

final results. Another limitation is that the trained models were not tested in a

real-world network which could have brought interesting observations.

32

In closing, one area of further research recommended is the development of open

datasets that can be used to create network forensic solutions. Most of the current

available datasets rely on creating malicious traffic in a virtualized environment

and labelling them appropriately; this can be considered a cumbersome and

time-consuming process. It could be feasible to crowdsource the creation of such

datasets with multiple organizations contributing their traffic captures and logs.

The inherent privacy issues of such an approach could be alleviated with some

form of anonymization techniques, perhaps again with the help of machine

learning methods.

33

References

1 18 § 1030 - ”Fraud and Related Activity in Connection with Computers”
2020. Cornell Law School.
<https://www.law.cornell.edu/uscode/text/18/1030>. Accessed on
18 February 2023.

2 Mitropoulos, Dimitris; Karakoidas, Vassilios; Louridas, Panagiotis &
Spinellis, Diomidis. Jan. 2011. “Countering code injection attacks: a
unified approach”. In: Information Management & Computer Security 19.3,
pp. 177–194. <https://doi.org/10.1108/09685221111153555>.

3 Cross-site scripting (XSS) 2023. PortSwigger Ltd. Online.
<https://portswigger.net/web-security/cross-site-scripting>. Accessed on
6 April 2023.

4 What is a denial-of-service (DoS) attack? 2023. Cloudflare, Inc. Online.
<https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/>.
Accessed on 16 February 2023.

5 Ping (ICMP) flood DDoS attack 2023. Cloudflare, Inc. Online.
<https://www.cloudflare.com/learning/ddos/ping-icmp-flood-ddos-attack/>.
Accessed on 16 February 2023.

6 Bošnjak, L.; Sreš, J. & Brumen, B. 2018. “Brute-force and dictionary attack
on hashed real-world passwords”. In: 2018 41st International Convention
on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pp. 1161–1166.

7 Khraisat, Ansam; Gondal, Iqbal; Vamplew, Peter &
Kamruzzaman, Joarder. 2019. “Survey of intrusion detection systems:
techniques, datasets and challenges”. In: Cybersecurity 2.1, pp. 1–22.

8 Rajasekaran, K & Nirmala, K. 2012. “Classification and importance of
intrusion detection system”. In: International Journal of Computer Science
and Information Security 10.8, p. 44.

9 Soniya, S. Sobin & Vigila, S. Maria Celestin. 2016. “Intrusion detection
system: Classification and techniques”. In: 2016 International Conference
on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–7.

10 Jiang, Tammy; Gradus, Jaimie L. & Rosellini, Anthony J. 2020.
“Supervised Machine Learning: A Brief Primer”. In: Behavior Therapy 51.5,
pp. 675–687.
<https://www.sciencedirect.com/science/article/pii/S0005789420300678>.

11 Taunk, Kashvi; De, Sanjukta; Verma, Srishti & Swetapadma, Aleena.
2019. “A Brief Review of Nearest Neighbor Algorithm for Learning and

https://www.law.cornell.edu/uscode/text/18/1030
https://doi.org/10.1108/09685221111153555
https://portswigger.net/web-security/cross-site-scripting
https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/
https://www.cloudflare.com/learning/ddos/ping-icmp-flood-ddos-attack/
https://www.sciencedirect.com/science/article/pii/S0005789420300678

34

Classification”. In: 2019 International Conference on Intelligent Computing
and Control Systems (ICCS), pp. 1255–1260.

12 Zou, Xiaonan; Hu, Yong; Tian, Zhewen & Shen, Kaiyuan. 2019. “Logistic
Regression Model Optimization and Case Analysis”. In: 2019 IEEE 7th
International Conference on Computer Science and Network Technology
(ICCSNT), pp. 135–139.

13 What is random forest? 2023. IBM, Corp. Online.
<https://www.ibm.com/topics/random-forest>. Accessed on 18 April 2023.

14 Kirasich, Kaitlin; Smith, Trace & Sadler, Bivin. 2018. “Random forest vs
logistic regression: binary classification for heterogeneous datasets”. In:
SMU Data Science Review 1.3, p. 9.

15 Mas, JF. 2018. “Multilayer perceptron (MLP)”. In: Geomatic approaches
for modeling land change scenarios, pp. 451–455.

16 Sharafaldin, Iman; Lashkari, Arash Habibi & Ghorbani, Ali A. 2018.
“Toward generating a new intrusion detection dataset and intrusion traffic
characterization.” In: ICISSp 1, pp. 108–116.

17 Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.;
Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M. &
Duchesnay, E. 2011. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12, pp. 2825–2830.

https://www.ibm.com/topics/random-forest

	List of Abbreviations
	Glossary
	Introduction
	Current State Analysis
	Theoretical background
	Malicious Network Traffic
	SQL Injection
	Command Injection
	Cross-Site Scripting Attack
	Denial-of-Service Attack
	Brute Force Attack

	Intrusion Detection System
	Supervised Machine Learning Methods
	K-nearest Neighbors
	Logistic Regression
	Random Forest
	Multi-layer Perceptron

	Implementation
	Network Environment Setup
	Model Training
	Dataset
	Training Process
	Prediction Process

	Results
	Model Performance
	Prediction Results

	Conclusion
	References

