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The objective of this thesis was to develop and evaluate a forensic system for 
detecting malicious network traffic, focusing on its practical implementation and 
effectiveness as a low-cost security solution. To support this goal, only open and 
freely available tools were used. 

The main solution used in the thesis project was the creation of machine learning 
models to detect malicious network traffic. These models were created from 
K-nearest Neighbors, Logistic Regression, Random Forest, and Multi-Layer 
Perceptron algorithms. The dataset used in the training of the models was the 
CICIDS2017 dataset. As a final evaluation step, traffic captured in a virtual LAN was 
used the assess the models. 

The performance and predictions of the models indicated that they could be used 
effectively in a network forensic system for identifying cyberattacks. The thesis 
showed that such an implemented system was profoundly reliant on the availability of 
open datasets, hence the cost in terms of effort seems to be justified if quality and 
open datasets are available and used. 

Keywords: network forensics, packets, intrusion detection, 
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Insinöörityön päätavoitteena oli koneoppimismallien luominen pahantahtoisen 
verkkoliikenteen havaitsemiseksi. Nämä mallit luotiin käyttäen ‘K-nearest 
Neighbors’-, ‘Logistic Regression’-, ‘Random Forest’-, ja ‘Multi-Layer Perceptron’ 
-algoritmeja. Mallien koulutuksessa käytetty datasetti oli CICIDS2017-datasetti. 
Lopullisessa arviointivaiheessa virtuaalisessa lähiverkossa kaapattua liikennettä 
käytettiin mallien arvioimiseen. 

Mallien suorituskyky ja ennusteet viittasivat siihen, että niitä voitaisiin käyttää 
tehokkaasti verkkorikostekniikassa kyberhyökkäysten tunnistamiseksi. Insinöörityö 
osoitti, että tällainen toteutettu järjestelmä oli erittäin riippuvainen avoimien 
datasettien saatavuudesta, joten vaiva näyttää olevan perusteltua, jos laadukkaita 
avoimia datasetteja on saatavilla ja käytössä. 
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List of Abbreviations 

AIDS: Anomaly-based Intrusion Detection System. 

ANN: Artificial Neural Network. 

DDoS: Distributed Denial-of-Service. 

DNS: Domain Name System. 

DOM: Document Object Model. 

DoS: Denial-of-Service. 

DVWA: Damn Vulnerable Web Application. 

FTP: File Transfer Protocol. 

GUI: Graphical User Interface. 

HTTP: Hypertext Transfer Protocol. 

ICMP: Internet Control Message Protocol. 

IDS: Intrusion Detection System. 

IPS: Intrusion Prevention System. 

KNN: K-nearest Neighbors. 

LAN: Local Area Network. 

MLP: Multi-Layer Perceptron. 

PCAP: Packet Capture. 

SIDS: Signature-based Intrusion Detection System. 

SIEM: Security Information and Event Management. 

SQL: Structured Query Language. 

SSH: Secure Shell. 

XSS: Cross-Site Scripting. 

Glossary 

cross-validation: a method to test the accuracy of a machine learning model by 

splitting the dataset into smaller subsets, training the model on 



some subsets and testing it on the others. This process is 

repeated multiple times to ensure the model’s performance is not 

overfitting and to estimate its generalization performance on new 

data. 

decision threshold: a probability value that is used to classify observations into 

one of two (or more) classes. If the predicted probability of an 

observation belonging to one class is above the decision 

threshold, it is classified as belonging to that class; otherwise, it 

is classified as belonging to the other class. 

ensemble method: a technique that combines the predictions of multiple 

learning algorithms to improve prediction. 

false-negative: a missed positive prediction. 

false-positive: an incorrect classification of a negative prediction as positive, 

that is to say, noise. 

feature extraction: a process of selecting and transforming raw data into a set of 

meaningful features that can be used for model training and 

prediction. 

hyperparameters: parameters set before training in a machine learning model 

and are not learned from the data. They control the behavior of 

the learning algorithm and can significantly impact the 

performance of the trained model. 

Linear Regression: a statistical method used to model the relationship between 

two variables by fitting a straight line through the data points to 

minimize the sum of squared residuals, with the goal of 

predicting the value of one variable (dependent variable) based 

on the value of another variable (independent variable). 

overfitting: a situation where a trained model performs very well on the 

training data but fails to generalize to new, unseen data. 



promiscuous mode: a feature in packet capture where a network interface card 

captures all packets on a network, including those not addressed 

to it. 

test data: a separate and independent dataset that is used to evaluate the 

performance and generalization capability of a trained machine 

learning model. 

train data: a labeled dataset used to train a machine learning model. 

zero-day: a type of vulnerability or flaw in software, hardware, or firmware 

known only to the attacker and not to the developers of the 

affected system, making it difficult to defend against. 
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1 Introduction 

In the world of Information Technology, cyberattacks are quite ubiquitous. A 

cursory look at the news might even suggest that we should expect a service or a 

device we use to come under a successful attack if it has not already been so. It 

therefore becomes quite important to determine with a certain confidence that a 

cyberattack took place. 

The main goal of this thesis is to investigate how a forensic system for detecting 

malicious network traffic could be implemented in practice. In this research, the 

aim is to evaluate such a system’s effectiveness and whether it could be useful as 

a low-cost forensic security solution. To achieve this goal, the thesis will first briefly 

analyze the current state of tools available for detecting malicious traffic. 

Furthermore, some background concerning malicious network traffic and 

supervised machine learning methods will be explored and discussed. The thesis 

will then finally examine the system implemented, and draw conclusions from the 

implementation result. 

The thesis contains a limited scope—it does not compare the implemented system 

with existing paid and free solutions for which there are many. Moreover, it does 

not take into account usage of the forensic system in an active real-world network. 

Therefore, the effectiveness of the system is speculated since the generation of 

malicious network traffic is in a controlled setting. 
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2 Current State Analysis 

The field of IT is very important to the modern economic infrastructure since it 

helps facilitate nearly all modern commerce, logistics, business, research, 

healthcare, and more. Its crucial role has made it a highly valuable target for 

cybercriminals hoping to gain money and influence. As stated previously, having a 

way to analyze and demonstrate with a degree of certainty that a cyberattack took 

place is one of the goals in forensic analysis of network traffic. 

In the current technology tools offering, there are some tools that can determine 

whether a cyberattack took place. These tools are usually classed as Security 

Information and Event Management (SIEM), Intrusion Prevention System (IPS), 

and Intrusion Detection System (IDS). 

SIEM tools are usually mostly employed as a ‘Software as a service’ (SaaS) 

solution in a Cloud platform to solve security and compliance requirements as 

required by specific industries. Examples of such compliance standards include 

the Sarbanes-Oxley Act (SOX), General Data Protection Regulation (GDPR), and 

others. SIEMs are good at determining and alerting the presence of cyberattacks; 

however, they are a fairly expensive investment for small organizations or 

individuals with smaller needs in terms of data traffic volume and functionality. 

On the other hand, IPSes and IDSes are less expensive in comparison to SIEM 

solutions. They are employed as either an on-premise or a Cloud solution in the 

form of hardware or software to detect cyberattacks, and in the case of IPS also 

prevent detected cyberattacks. Hardware-based IPSes and IDSes are generally 

faster and more expensive compared to software-based counterparts. 

The aforementioned tools have something in common—they require a non-trivial 

investment in money and resources. Therefore, this thesis will examine whether 

building a similar system is practical and achievable in terms of effort and cost. It 

will do this by evaluating a software-based forensic system that was built by 
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making use of available open datasets to train machine learning models to identify 

whether a particular piece of network traffic is malicious or benign. The 

implemented system is not a drop-in replacement for the mentioned tools, rather it 

is a proof of concept of building an ‘IDS-like’ functionality with only open data and 

freely available tools. 
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3 Theoretical background 

The following sections will detail relevant background concerning malicious 

network traffic, IDS workings, and supervised machine learning methods. The 

chosen types of malicious network traffic and their descriptions will be detailed. 

Furthermore, a brief explanation of IDS, its classes and methods of detection will 

be described. In the same manner, a few selected machine learning algorithms 

that are useful in classification problems will be briefly explained. 

3.1 Malicious Network Traffic 

Malicious network traffic is any network traffic that is intended to harm or breach 

information systems without the consent of their owners. As an example, The 

United States of America’s Computer Fraud and Abuse Act (CFAA) bill includes 

this in a more expansive definition to include cause of damage in monetary form, 

loss of data, modification of data, extortion, physical, death or otherwise [1]. 

General examples of malicious network traffic include Denial-of-Service (DoS) 

attacks, phishing, malware delivery, and ransomware among others. In the 

context of this thesis, the following cyberattacks are considered in the 

implemented solution: code injection specifically Structured Query Language 

(SQL) injection, command injection, Cross-Site Scripting (XSS), DoS attacks, and 

brute force attacks. 

3.1.1 SQL Injection 

Code injection is a method to input code in an application that was not meant to be 

executed by that application [2]. As a form of attack it means inputting code that is 

malicious to be executed by an application. In a non-attack form, this means 

adding code that is benign, for instance, adding some extra functionality that is not 

present in an application. SQL injection is a type of code injection where SQL 

statements are passed and executed by an application that builds and executes 

SQL queries from input passed by a user. A trivial example of an SQL injection 
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can be an e-commerce application that contains a form where a user can search 

for products; expected input from the application’s point of view is input such as 

“SD card” or “M.2 SSD”. 

1 SELECT * FROM items where items.name = 'SD card'; --normal 
query 

2 SELECT * FROM items WHERE items.name = 'SD card'; DROP table 
items--' --query with injected code 

Listing 1: SQL statements showing an SQL injection 

Assuming in this example that the data is fetched from an SQL database, the 

application will build an SQL query from the user input as shown in listing 1 line 

number one. Without proper input validation in the application, one could pass 

input such as “SD card’; DROP table items--” resulting in the built query shown in 

listing 1 line number two. The executed query will cause the particular database 

table to be deleted. 

3.1.2 Command Injection 

Another type of code injection is command injection. This differs from SQL 

injection in that the extra parsed code is executed by the underlying OS. Both 

types of injection are caused by improper validation of user input. 

An example of command injection can be an online note application that prior to 

initializing a writing environment asks for the file name to use; assuming no 

validation of user input is done, an attacker could pass extra commands to the 

underlying OS to be executed, as in touch filename ; cat /etc/passwd. The 

extra statement is parsed after the semicolon which indicates that what follows is 

a sequential command to run. This could potentially expose sensitive information 

or grant unauthorized access to the attacker when other commands are passed. 

3.1.3 Cross-Site Scripting Attack 

Similarly, XSS is a type of code injection that allows an attacker to inject malicious 

code into a vulnerable web application. It is able to bypass the same origin policy 
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which controls the access of data by and from different domains. This attack can 

compromise user data and allow an attacker to perform actions as the 

compromised-user. [3] 

There are three main types of XSS attacks, namely: reflected, stored, and 

Document Object Model (DOM)-based XSS. Reflected XSS occurs when an 

attacker injects malicious code into a web request URL, which is then “reflected” 

back to the user when they access the URL. Stored XSS, on the other hand, is 

when the malicious code is stored on the server by an attacker, waiting for 

unsuspecting users to visit the compromised page. Finally, DOM-based XSS is a 

type of XSS that targets the DOM of a web page. This type of attack is possible 

when a web application relies on processing client-side JavaScript to manipulate 

the DOM. If the DOM can be manipulated by an attacker in this way, they can 

include malicious code to be run as part of the processing. [3] 

3.1.4 Denial-of-Service Attack 

A DoS attack is an attack that aims to disrupt the normal functioning of a device or 

an application service. The most common case of a DoS attack is the disruption of 

a web service by sending it a flood of requests such that it is unable to contend 

with the number of requests, resulting in the service being unavailable or unable to 

respond to further requests. It is important to note that a DoS attack is launched 

from a single machine while a Distributed Denial-of-Service (DDoS), a more 

advanced form of the same attack, is launched from multiple machines which 

makes it more difficult to mitigate against. [4] 

According to Cloudflare, a DoS attack is categorized as either a buffer overflow 

attack or a flood attack [4]. In this thesis, an Internet Control Message Protocol 

(ICMP) ping flood DoS attack is used in the implementation of the attack system. 

An ICMP ping flood attack works by sending multiple ICMP echo requests packets 

to a target server—if a server is not configured to mitigate against this type of 

attack, it will reply to each ICMP echo request packet with a ICMP echo reply 

packet thereby consuming resources proportional to the number of requests it 
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received [5]. When the number of requests overwhelms the server’s resources, it 

will result in a DoS. 

3.1.5 Brute Force Attack 

Brute force attack in cybersecurity is a type of attack where an attacker’s method 

of gaining access to a system is to guess and try different combination of 

passwords through trial-and-error. In this method the attacker is limited by time, 

method of guessing, processing power (in case the attack is offline), and possibly 

any mitigations in the target system. 

Due to the advent of powerful GPU hardware technology, the ease of cracking 

weak passwords has increased dramatically. If an attacker has access to a 

hashed password list through any means, they can crack passwords in just a few 

days with a mid-range GPU. The suggested mitigation against brute force attacks 

is to use longer passwords, stronger hashing functions such as bCrypt (a popular 

hashing function) and perhaps usage of different password schemes such as 

biometric and graphical passwords. [6] 

3.2 Intrusion Detection System 

An IDS is a software or hardware system designed to identify and alert on any 

unauthorized activities that could cause harm to an information system [7]. They 

can be broadly categorized into two groups: Signature-based Intrusion Detection 

System (SIDS) and Anomaly-based Intrusion Detection System (AIDS). They can 

also be classified by division into host-based IDS, network-based IDS, and 

hybrid-based IDS [8]; this latter classification is based on the where the source of 

data used for analysis is collected from, more specifically, either from individual 

devices, a network segment such as a Local Area Network (LAN), or a 

combination of these. 

A SIDS works by having a database of known malicious signatures and it uses 

those to detect intrusion from collected network traffic or host logs [9; 8; 7]. Due to 
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its method of detection, it can only detect previous flagged signatures and 

therefore faces significant difficulties in detecting unknown intrusion signatures 

especially zero-day attacks [7]. 

On the other hand, AIDS works by defining ‘normal’ behavior of a network and/or 

computer system by the use of knowledge-based, statistical-based, or machine 

learning methods; any meaningful deviation from the defined normal behavior is 

assumed to be an intrusion. [7]. One advantage of AIDS compared to SIDS is that 

it can detect previously unseen attacks [8][9]—however, this ability can lead do 

higher rate of false positive detections due to the threshold of separating malicious 

and benign behavior [7]. 

3.3 Supervised Machine Learning Methods 

Supervised machine learning is a type of machine learning that involves training a 

model on labeled data to predict the output for new, unseen data. In supervised 

learning, the model is trained using a dataset that contains inputs and their 

corresponding correct outputs, also known as labels or targets. The goal of the 

model is then to learn a mapping function between the input and the output, which 

can then be used for later predictions. [10] 

As mentioned previously, the supporting goal of the thesis is to detect whether a 

particular set of captured traffic is malicious or not; to achieve this goal, a set of 

supervised machine learning methods that can be used in classification problems 

were chosen, namely—Logistic Regression, K-nearest Neighbors (KNN), Random 

Forest and Multi-Layer Perceptron (MLP). Note that the selected machine learning 

methods do not constitute all possible methods that can be used to solve 

classification problems. 

3.3.1 K-nearest Neighbors 

KNN is a non-parametric and lazy learning algorithm that classifies a data point 

based on its proximity to other data points in a training set. In this context ‘lazy 
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learning’ means it does not try to learn a general mapping function between inputs 

and outputs during the training phase, but instead stores the entire training 

dataset in memory and waits until a new data point is presented to predict it. 

Various distance metrics exist to calculate this proximity such as Euclidean 

distance, Manhattan distance, Hamming distance, and others. The most popular 

distance metric is the Euclidean distance which is given by the formula qP n 2(xi − yi) where x and y are respective variables (Eucledian vectors) ofi=1 

data points. [11] 

An example of how KNN works visually can be seen in figure 1. The green 

datapoint is the datapoint that is going to be classified as either belonging to red or 

blue. 

Figure 1: KNN algorithm with a random dataset where the K value is three 

The figure 1 shows a scatter plot with red and blue labels. The KNN algorithm 

works by calculating the distance metric (Euclidean distance in this case) between 
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the new data point and rest of the data points stored in memory. From the nearest 

distance points chosen (three in this case), the label for the new data point is 

determined to be red if the points are considered to have the same weight 

(uniform). On the other hand, the label would be blue if we give closer data points 

a higher weight than those far away. 

Most of the work in KNN involves choosing the value of K with the help of 

cross-validation to determine the value of K that results in a good test score 

comparatively. The base performance of KNN is determined by the choice of K 

value, distance metric, and feature scaling. [11] 

3.3.2 Logistic Regression 

Another supervised machine learning method used in classification tasks is 

Logistic Regression. It predicts the probability of an input instance belonging to 

one of two possible classes by applying an activation function to the output of 

Linear Regression prediction. 

During a Logistic Regression’s model training process, Linear Regression is used 

to estimate the coefficients that provide the best fit for the input data with respect 

to the output data; a sigmoid function—the most common used activation function 

in Logistic Regression is then used to estimate the probability range between zero 

and one [12]. Additional activation functions include ReLU, tanh, softmax, and 

others. An example of a sigmoid function is shown in figure 2. 
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Figure 2: An example of logistic regression with a random dataset

The random dataset in figure 2 shows a prediction curve for a portion of the

dataset set aside as test data; the random data already contains labels zero and

one, hence they lie exactly at zero and one in the figure. For the test data, a

prediction is made after training a Logistic Regression model on the train data. In

a binary classification problem, the decision threshold can be chosen to be 0.5 as

in this case, therefore if the probability prediction is greater than 0.5 the output is

classified as one and vice-versa.

3.3.3 Random Forest

Random Forest is an ensemble method that makes use of multiple uncorrelated

decision trees generated through bagging and feature randomness to make

predictions. In classification tasks, random forests output a prediction based on

the majority class encountered in the forest. [13]

An example of Random Forest used in a multi-class (more than two) classification

is shown in figure 3. In this example, there are four decision trees in the forest.
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Figure 3: A Random Forest classification example (Copied from [14]) 

In the figure 3, the prediction through majority voting is class C. The main benefit 

purported by Random Forest algorithms include reduced risk of overfitting [13] and 

resistance to redundant variables [14]; however, they tend to be complex in terms 

of interpretability [13]. 

3.3.4 Multi-layer Perceptron 

Finally, a MLP is a type of Artificial Neural Network (ANN) with a feedforward 

mechanism (outputs are forwarded to the next layer) characterized by an 

architecture that consists of an input layer, hidden layer(s), and an output layer; it 

additionally makes use of backpropagation to adjust the weights of neurons to 

minimize the cost function of the output(s). [15]. 

An example of a MLP ANN can be seen in figure 4 with three neurons in the input 

layer, two neurons in one hidden layer, and one neuron in the output layer. 
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Figure 4: A simple MLP ANN with one hidden layer

In the figure 4, the output of the two neurons in the hidden layer are a result of the

application of an activation function. Likewise the output of the neuron in the

output layer is also activated—the activation functions used need not be the same

in different layers. Factors such as the number of hidden layers, number of

iterations (steps to reduce the cost function), momentum and learning rate have

an effect on the performance of a MLP model [15].
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4 Implementation 

The following sections detail the implemented solution to flag network traffic as 

malicious or benign. The criteria for selecting tools used in the implementation 

was that they be freely available and open-source. The implemented solution was 

divided into two separate parts, namely the network environment setup and model 

training parts. 

The network environment setup dealt with generating malicious and benign traffic 

in a virtualized environment to be used later in testing the prediction of the models 

trained. This part was not strictly necessary as traffic can be generated and 

captured in any network environment; the rationale of creating such an 

environment was to capture only needed traffic in a safe environment, to keep the 

size of capture packets small, and to increase privacy as captured packets might 

contain other network data when capturing in promiscuous mode. 

The model training part was concerned with creating machine learning models to 

analyze and flag the captured traffic in the virtual network. Additionally, it also 

dealt with choosing the dataset used in training the models and other details 

involved in the whole process. 

4.1 Network Environment Setup 

The virtualized network environment was created with the help of Vagrant; Vagrant 

is a tool that can be used to quickly provision virtual machines. The environment 

created with Vagrant consisted of three machines all in the same network for 

simplicity since the aim was to generate and capture traffic. All machines were 

created using a base image of Kali Linux, which is a popular OS used commonly 

in security testing scenarios. The names and roles were assigned were as follows: 

• defender : to capture traffic in the network 

• attacker : to generate malicious traffic 

• target: to act as a vulnerable server that can be attacked. 
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The target machine had a version of Damn Vulnerable Web Application (DVWA) 

running on it. DVWA is an intentionally insecure web application which makes it a 

good candidate for testing malicious attacks. The vulnerabilities discussed in 

chapter 3.1 are all possible in DVWA. 

1 config.vm.define "vulnerable-target" do |target| 
2 target.vm.hostname = "target" 
3 target.vm.network "private_network", ip: "192.168.60.60" 
4 target.vm.provider :virtualbox do |vb| 
5 vb.gui = false 
6 vb.name = "target" 
7 vb.memory = 1024 
8 vb.cpus = 1 
9 end 

10 target.vm.provision "bootstrap", type: "shell", path: 
"./make_dvwa_accessible_to_lan.sh", run: "once" 

11 target.vm.provision "start-dvwa", type: "shell", inline: "sudo 
dvwa-start", run: "always" 

12 end 

Listing 2: Provisioning the target machine with Vagrant 

The listing 2 shows the code used in creating the target machine. While it is 

possible to use other providers, Virtualbox was chosen because it had support in 

Vagrant to modify network device settings which was needed to set promiscuous 

mode in the defender machine. 

With the virtual LAN created, the network traffic was generated in both malicious 

and benign stages. In the malicious stage, the attacker generated traffic for DoS, 

SQL injection, command injection, brute force, and XSS attacks. The attacker 

machine in figure 5 shows how malicious network traffic was generated in the 

case of SQL injection that was aimed at the target machine. 

https://make_dvwa_accessible_to_lan.sh
https://192.168.60.60
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Figure 5: Screenshot of attacker machine preparing an SQL injection test 

The figure 5 shows in view the web application to be attacked and the program 

sqlmap to automate discovery of SQL vulnerabilities. In contrast to the malicious 

stage which consisted only of traffic captured in the virtual LAN, the benign stage 

consisted of both virtual LAN and internet directed traffic. The benign traffic 

consisted of web browsing of the target machine’s web application via Hypertext 

Transfer Protocol (HTTP) without any attacks. The rest of the benign traffic 

consisted of Telnet, Domain Name System (DNS), Secure Shell (SSH), and File 

Transfer Protocol (FTP) protocol-related traffic. Each scenario of the malicious 

and benign stages was captured in Packet Capture (PCAP) file format by the 

defender machine using tcpdump. As a final step, the benign PCAP files were 

renamed to include the word ‘benign’ in the filename to distinguish them from the 

malicious captures. 

4.2 Model Training 

This section focuses on the model training process and how it was implemented 

with machine learning methods: KNN, Logistic Regression, MLP, and Random 

Forest. Training the models involved feeding them with labeled data to learn the 
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patterns and relationships within the data. The training was performed on a laptop 

with an ‘AMD® Ryzen 7 PRO 4750U’ processor and 30.6 GiB of SODIMM DDR4 

memory. 

4.2.1 Dataset 

The training process for classification tasks needs labeled data for supervised 

machine learning. The quality, quantity, and representativeness of the dataset 

used can greatly impact the performance of the trained models. It was deemed 

that the labeled data should contain at least some features that can be extracted 

(feature extraction) easily from PCAP files. 

The dataset eventually selected for use was the CICIDS2017 intrusion detection 

evaluation dataset [16]. A newer version did exist at the start of the 

implementation (CSE-CIC-IDS2018), nonetheless CICIDS2017 was used due to 

its relative small size (under 900 MB). The CICIDS2017 dataset with labeled data 

existed in CSV file format, those were downloaded and used in the model training. 

Figure 6 visually shows the composition of the CICIDS2017 dataset. 

Figure 6: Dataset label distribution 
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The dataset label distribution can be observed in figure 6 showing the proportion 

of malicious labels to benign labels. Due to the proportion of benign labels being 

higher in comparison to malicious labels (2,271,320 versus 556,556), one CSV file 

from the dataset (Monday-WorkingHours.pcap_ISCX.csv) was dropped from the 

training process since it contained only benign labels. The dataset was further 

preprocessed by removing identified redundant columns and one duplicate 

column; moreover rows with infinity numbers were removed the dataset. Finally, 

the columns with malicious labels were converted to the class number one while 

benign labels were converted to the class number zero to make the training 

process straight-forward. In the end the combined dataset after preprocessing 

had 2,298,395 rows with 71 columns where seventy columns were for features 

and one column for labels. 

4.2.2 Training Process 

The model training part as stated previously involves finding patterns within the 

dataset to make predictions for whether a particular piece of network traffic is 

malicious. In the implementation of this stage, the scikit-learn [17] library was 

chosen due to the availability of documentation and examples; another reason 

was that it did not have any dependencies to GPU libraries, making it easy to 

install on different OS platforms. The use of a machine learning library significantly 

reduced the implementation time since no time would be spent on algorithm 

coding. The steps involved in the training process consisted of: 

• Creating the model pipeline. 

• Training and tuning of hyperparameters. 

• Cross-validation of models. 

• Saving models in a persistent format. 

The model pipeline is a list of steps that are chained together and can be applied 

to a piece of data input. Listing 3 shows a KNN model pipeline as used in the 

training process implementation. 
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1 def knn_model() -> Pipeline: 
2 return make_pipeline( 
3 StandardScaler(), 
4 LinearDiscriminantAnalysis(), 
5 KNeighborsClassifier( 
6 n_neighbors=3, 
7 p=2, 
8 ), 
9 verbose=True, 

10 ) 

Listing 3: Setup of KNN pipeline 

The pipeline shown in listing 3 contains three steps: scaling, dimensionality 

reduction, and the K-neighbors classifier itself. The scaling of features step is an 

additional preprocessing step which depending on the learning algorithm itself 

might be needed or not; in addition, the dimensionality reduction step helps 

reduce computation time—here it reduces the data dimensions from 70 to 1. The 

last step in the pipeline is the KNN classifier with K = 3 and p = 2 to use the 

Euclidean distance metric (see chapter 3.3.1). Contrast the parameters in listing 3 

with listing 4. 

1 return make_pipeline( 
2 RandomForestClassifier( 
3 n_estimators=100, 
4 criterion="gini", 
5 max_depth=None, 
6 max_features=35, 
7 min_samples_split=2, 
8 min_samples_leaf=2, 
9 bootstrap=False, 

10 max_samples=None, 
11 random_state=SEED, 
12 verbose=1, 
13 class_weight="balanced", 
14 ), 
15 verbose=True, 
16 ) 

Listing 4: Setup of Random Forest pipeline 
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As can be noted in listing 4, some models can have more tunable 

hyperparameters. Another difference that can be observed is that Random Forest 

does not need feature scaling since the algorithm is not sensitive to unscaled 

features. Furthermore, the pipeline contains only one step so essentially the 

classifier can be used directly without including it in a pipeline; the reason it was 

included is to make it easily comparable to the other models and additionally for 

code type checking. 

The training part is straight-forward, the dataset is split into train data and test 

data, the portion of the test data was chosen to be a third of the dataset. Each 

time the model pipeline was ran, the test score (calculated on the test data) and 

time taken was noted. By tuning the hyperparameters, varying test scores could 

be observed; in this way, a specific model’s hyperparameters that perform best 

were eventually used. Note that, the hyperparameters that had good performance 

where not necessarily used in the final training, the time to train the model was 

also taken into account. Therefore a balance between the two was the deciding 

factor on which hyperparameters were used. For training the final models with the 

parameters chosen—the whole dataset is used, there was no need to set aside 

train data. 

Be aware that there exist software libraries to automate the tuning of 

hyperparameters to find the best performing parameters or even the best 

predictive model itself. This path was abandoned after a few rounds due to 

unreliability problems where the process would crash after a few days of training. 

Additionally, cross-validation of the models was performed. This was done to 

ensure that the models were not overfitting on the train data. The cross-validation 

strategy chosen was a stratified k-fold wherein the train data was split into five 

folds and the test score accuracy was compared. A stratified strategy in the 

cross-validation was crucial since the dataset labels were not in equal proportions 

(see figure 6). 
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The last step in the training process was saving the models trained. The 

importance of this step is that there is no need to train the model again in order to 

use it in network traffic prediction—this saves time and computation resources. 

The other rationale is if sharing of the model is needed later. There exist several 

formats for saving models, each with their advantage and disadvantages, for this 

implementation, the skops library was chosen. The main reason skops was 

chosen is that it was created to work with the scikit-learn library which made it 

easy to integrate within the project. One disadvantage however with skops is that 

the models trained cannot be imported in other programming languages, therefore 

the saved models can only work with the specific version of Python programming 

language and scikit-learn library used in the training process. 

4.2.3 Prediction Process 

Before the prediction based on the saved models was done, the PCAP files were 

first converted to CSV files; this was done with the help of a software project called 

cicflowmeter. The version available at the time the project started was forked and 

modified to fix some errors and consequently included in this project to do the 

conversion part. The importance of the conversion from PCAP to CSV is that 

feature extraction is performed on the network traffic data. The feature extraction 

process itself is out of scope of this thesis. However, it suffices to say that 

cicflowmeter (Python implementation) is based on CICFlowMeter which is a Java 

software associated with the CICIDS2017 dataset used for feature extraction, 

among its other uses. 

The prediction process in the implementation consisted of predicting the collected 

network traffic from the LAN. For quick predictions, a Graphical User Interface 

(GUI) was created to facilitate this process as show in figure 7. 
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Figure 7: Screenshot of the simple prediction GUI 

The GUI in figure 7 was created through Python’s interface to the Tcl/Tk GUI 

toolkit called tkinter. The choice for using tkinter instead of other more newer GUI 

toolkits, for instance, the Qt framework, was simply because the functionality 

desired was basic, namely, a few buttons, and a way to open files. 

Through testing prediction of different models over time, it became cumbersome 

to observe and record predictions in this way. As an alternative, a script to run 

predictions of different models on multiple PCAP files was implemented; the script 

was meant to create a simple report showing how correct the predictions were in 

reality. Figure 8 shows how the report looked in practice. 
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Figure 8: Screenshot of the simple report content 

The figure 8 also shows that the simple report created by the script details the 

count of true predictions, false-positives and false-negatives. Both the GUI and 

the script methods were used in different scenarios depending on what effort was 

required in regards to whether a single prediction was desired or multiple. 

The full source code for the solution implementation can be found at 

https://github.com/nicolaskyejo/ids-ml-exploration, it contains both the network 

environment setup and the model hyperparameters used for the results obtained 

in the following chapter. 

https://github.com/nicolaskyejo/ids-ml-exploration
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5 Results 

This chapter provides an evaluation of the models in terms of performance and 

the prediction results obtained. The first section, Model Performance, describes 

the accuracy of the models and their ability to generalize to unseen data. It 

compares and analyzes the respective performance on the CICIDS2017 dataset. 

The second section, Prediction Results, presents the results of applying the 

models to data that was gathered from the implemented LAN. It provides an 

analysis of the predictions made by the models, including the accuracy and 

reliability of the results. Overall, this chapter provides insights into the 

performance and effectiveness of the models trained. 

Recall, precision, and F1-score are evaluation metrics commonly used in binary 

classification tasks. Recall measures the proportion of actual positive samples 

that are correctly identified as positive by the model while precision measures the 

proportion of predicted positive samples that are actually positive. F1-score is the 

harmonic mean of recall and precision, which takes both metrics into account and 

provides an evaluation of a model’s performance. The F1-score ranges from zero 

to one, where one represents perfect precision and recall, and zero represents the 

worst performance. The formula 1 shows the calculation of the F1-score. 

precision · recall 
F1 = 2 · (1)

precision + recall 

where precision and recall are: 

TP 
precision = (2)

TP + FP 

TP 
recall = (3)

TP + FN 
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In the formulas 2 and 3, TP represents the number of true positives, FP 

represents the number of false-positives, and FN represents the number of 

false-negatives. True positive in the implemented system represents the case 

where the network traffic is malicious. In the scikit-learn library, scores are 

calculated by passing the score metric that is desired and it will be calculated 

automatically. These metrics are essential in evaluating the performance of a 

binary classification model and can help identify the strengths and weaknesses of 

the model in distinguishing between the two classes. 

5.1 Model Performance 

The evaluation of a model’s base performance was calculated on the basis of the 

dataset, whereas the collected network traffic was used in the final prediction. For 

each model, different evaluations were done and recorded. In this section, these 

evaluations are compared with each other. 

One of the most important predictors of a model’s performance is the learning 

curve. A learning curve is a graphical representation that illustrates the progress of 

a model’s learning by plotting its accuracy on the train data and test data against 

the number of training samples. The graph in figure 9 shows the learning curve of 

the chosen machine learning models which depicts this relationship. 
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Figure 9: Learning curve of the models on the dataset

As shown in figure 9, the models have different curves signifying that each model

improved at different rates when more training samples were added. The training

score evaluates how the models performed on the train data, in other words, how
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well it was able to generalize the relationship between the input and output when 

the answers were known. All models improved with the addition of more samples 

in the training set up to a point—this point was somewhere at about 36% of the 

whole dataset samples. Also of note is how Random Forest had a plateau while 

the other models except KNN slightly degraded in test score accuracy after this 

point. A slightly more numerical comparison can be seen in figure 10. 

Figure 10: Confusion matrix of the models 

The figure 10 shows the confusion matrix diagram. The number of TP , FP , FN , 

and TN can be gleamed from the matrix. It can be seen that the Random Forest 

model had the highest true predictions and the Logistic Regression model the 

highest missed predictions. A more intuitive comparison can be observed in 

figure 11 showing the mean F1-score of five cross-validated scores. 
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Figure 11: Mean F1-score of models 

The information learned from figure 11 is similar to figure 10. It can be seen clearly 

that Random Forest had the highest score and KNN the lowest. An explanation of 

why KNN score is the lowest is that the F1-score does not take into account the 

number of TN . 

Another useful comparison from the training process was how the models 

performed in terms of time taken to train; this information can affect resource 

planning optimization when considered together with model accuracy. This 

comparison can be seen in figure 12. 

Figure 12: Model training time on full dataset 

The training time shown in figure 12 reveals that Random Forest took the longest 

time to train while KNN the shortest. In regards to KNN, the result is not surprising 

since the model’s computation only takes place during prediction of new data. The 

training process results show that all the models used can be justified as good 

models when their training time and F1-scores are examined together. 
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5.2 Prediction Results 

In this section, the prediction results obtained from the trained models on the 

captured network data (PCAP) are discussed. The prediction results are analyzed 

to evaluate the performance of each model in terms of precision, recall, and 

F1-score. By comparing the results of different models, the most effective model 

for predicting network traffic can be identified. Additionally, the potential 

implications of the prediction results are briefly addressed. Table 1 shows the 

predictions of the captured network traffic in the LAN. 

Table 1: Prediction results for different models on captured network data 

PCAP type Label KNN MLP RF LR 
Web browsing on target Benign Benign Malicious Benign Benign 
Telnet connection Benign Benign Benign Benign Benign 
FTP connection Benign Benign Benign Benign Benign 
SSH connection Benign Benign Benign Benign Benign 
DNS query Benign Benign Benign Benign Benign 
Brute force login Malicious Malicious Malicious Benign Benign 
DoS by ICMP flood Malicious Malicious Benign Benign Malicious 
SQL injection Malicious Malicious Malicious Benign Malicious 
Command injection Malicious Malicious Malicious Benign Malicious 
XSS Malicious Benign Malicious Benign Benign 

From the data in table 1, the results suggest that KNN is the most accurate model. 

The F1-scores (see formula 1) of KNN, MLP, Random Forest, and Logistic 

Regression are 0.89, 0.80, 0.00, and 0.75 respectively. The expectation from the 

final model performance is somewhat different—especially in regards to Random 

Forest and KNN. One explanation could be that Random Forest was overfitting on 

the dataset and KNN model did not. KNN as the most accurate model in the final 

results predicted everything correctly except the XSS attack; MLP ANN as the 

second most accurate model incorrectly flagged HTTP web browsing traffic as 

malicious and missed the DoS attack. The Logistic Regression model as the third 

most accurate model missed the brute force and XSS attacks. 



30 

According to the dataset publication, command injection attack was not part of the 

dataset. Despite this, the models were able to correctly flag it as malicious (except 

Random Forest) which can be evidence of the power of AIDS to detect new or 

unseen attacks. 

However, it should be noted that to calculate a meaningful F1-score, more 

observation data is needed with varying attack and benign samples. Therefore, 

the final results are only a suggestive result rather than a conclusive result. In the 

end, a combination of AIDS to detect zero-day attacks and SIDS to detect known 

attacks may be the most effective method in forensics of malicious network traffic. 
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6 Conclusion 

The primary goals of this thesis were to detect malicious network traffic, 

investigate the practical implementation of a forensic system for this purpose, and 

evaluate its effectiveness as a low-cost security solution. Through the application 

of supervised machine learning methods, it was demonstrated that it is possible to 

detect malicious traffic in a reliable way. 

Regarding the practical implementation process, it was heavily reliant on the 

availability of open datasets. Without available open datasets, the process would 

have been arduous. The training process itself was fairly straight-forward with 

most time spent on tuning hyperparameters. Therefore, the goal of practical 

implementation is indeed realistic to achieve when quality datasets are obtainable. 

As to the effectiveness as a low-cost security solution, it depends on the 

resources available to an individual or an organization. For entities with 

considerable capital and resources, it can be feasible to allocate some of those 

resources to train such network forensic models and even create datasets that are 

used for that purpose. However, in a market economy it can be seen as a waste of 

resources to do so, therefore, it is more probable that a few organizations or 

companies sell their own solutions to others. Nevertheless, it can be assumed that 

organizations with high-security profiles, for example, government agencies and 

military facilities are creating and using their own network forensic solutions which 

are considered as a low-cost security solution to them. 

While this thesis has achieved its main goal, it is important to recognize some 

limitations as well. One weakness is the limited the number of attack type 

scenarios that were examined, both in the actual dataset and the ones generated 

for the final evaluation; more attack data would have raised the confidence of the 

final results. Another limitation is that the trained models were not tested in a 

real-world network which could have brought interesting observations. 
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In closing, one area of further research recommended is the development of open 

datasets that can be used to create network forensic solutions. Most of the current 

available datasets rely on creating malicious traffic in a virtualized environment 

and labelling them appropriately; this can be considered a cumbersome and 

time-consuming process. It could be feasible to crowdsource the creation of such 

datasets with multiple organizations contributing their traffic captures and logs. 

The inherent privacy issues of such an approach could be alleviated with some 

form of anonymization techniques, perhaps again with the help of machine 

learning methods. 
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