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Abstract: 

The efficiency of modern manufacturing relies on industrial robots which are programmed to 

perform a number of different tasks that were previously done by humans. This thesis explores 

the possibilities of control of robots, focusing on the applications of six-axis robots in 

particular, as well as the safe implementation of an entry-level articulated robot to an 

educational institution. Niryo Ned2 robot was programmed to perform a pick-and-place task 

to grasp objects with both manual and computer vision-based control. By analyzing the 

programs, it was concluded that a lot of industrial applications demand the robot to be able to 

continuously adjust to the changes in environment, and conventional programming without the 

use of computer vision is often insufficient. ROS-based applications of commercially available 

Ned2 were then demonstrated and their capabilities and limitations discussed. The kinematics 

of the robot was then studied with both the Denavit-Hartenberg convention as well as by 

constructing a Jacobian matrix which was used to determine the relation between the end-

effector velocities and joint velocities of the robot. The rules of the Denavit-Hartenberg 

convention were implemented successfully, and the actual position of the end-effector with the 

chosen joint angles were compared to the values of Ned2, which were very similar. The result 

was believed to be affected by the manual measurement of joint links and the oversimplified 

diagram. 
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1 Introduction 

This bachelor’s thesis is focused on the Ned2 collaborative articulated robot and its practical 

applications. In this chapter, the problem of the thesis is defined, objectives are presented, and 

its relevancy to the bachelor’s degree is discussed. The disposition section of this chapter 

introduces the main sections of the thesis. 

1.1 Problem Definition 

A wide variety of industrial tasks have been automated with the help of industrial robots for 

maximum precision, efficiency, and speed. However, it is often not a simple process to 

automate a task that was previously done by humans. To automate a complex task for a robot, 

one needs to go through a lot of trial and error to perfect the actions of the robot, as well as to 

be able to program the robot appropriately. Often, there are limitations, such as the accuracy of 

the robot, or problems with other capabilities of the robot’s hardware and software, and the fact 

that the robot may not possess sapient-level thinking capabilities when it comes to judgement. 

1.2 Objectives 

The aim of this bachelor’s thesis was to investigate the practical applications and capabilities 

of the Ned2 articulated robot, and the comparison of it to other entry-level articulated robots 

that are currently available. The thesis task was divided into four parts: 

- Setting up the Ned2 robot arm with add-on components 

- Controlling the robot arm and programming it to perform tasks 

- Using matrix manipulations and the theory of kinematics to determine the positions and 

velocities of the end-effector of the robot 

1.3 Compliance with Degree 

The degree “Mechanical and Sustainable Engineering” is a bachelor’s degree offered at Arcada 

University of Applied Sciences which focuses on mechanical engineering, sustainability, 

manufacturing processes, product design, digitalization, and functional materials; the degree is 

quite broad in scope and gives students knowledge of many different aspects of modern-day 

topics in engineering, which is relevant since engineers are expected to have a wide variety of 

skills in the contemporary labor market. 
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Robotics is a big part of modern manufacturing and is therefore very relevant and important 

for today’s society. The degree does not include courses that are directly related to robotics, 

but many skills that are obtained with the tuition can be applied to robotics, such as mechanical 

design and programming. With the Fourth Industrial Revolution (Industry 4.0) being a recent 

topic in manufacturing, it is expected that the demand for engineers who have cross-

disciplinary knowledge is going to increase. 

1.4 Disposition 

This subsection introduces the main six sections of the thesis, which are the following: 

1. Introduction. This chapter introduces the thesis, its problem definition, objectives, and 

justifies its relevance to the themes of the academic degree. 

2. Literature Review. This chapter discusses all the theory behind the motivations of the 

thesis and is used as supporting material for the method. 

3. Method. This chapter aims to fulfill the objectives of the thesis by showing the reader 

what kind of methods were implemented. 

4. Results. This chapter concentrates on the results that were obtained by the methods used 

for achieving the objectives of the thesis. 

5. Discussion. This chapter discusses the results and their legibility. 

6. Conclusion. This chapter concludes the thesis. It also reflects on the success of the 

thesis when it comes to obtaining the desired results defined by the objectives of the 

thesis. 
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2 Literature Review 

2.1 History of Robotics and Computing 

Nowadays, robots are part of everyday life and a functioning society for most people who live 

in the developed world. They, for example, manufacture goods and do dangerous jobs that are 

not suited for the well-being of humans, but also perform tasks that require extreme precision. 

In the early 20th century, the concept of robotics was still widely unknown. For example, the 

world of manufacturing looked completely different, and humans performed all tasks in a 

factory, no matter how risky the tasks were; there was no other way to get them done, after all. 

 

The history of computing may sound very recent to many unaware of its extensive history 

beyond recent digital computers. There is archeological evidence of a mechanical computer 

dating back to the ancient Rome, to approximately 60 BCE. According to a Yale professor, 

Derek J. de Solla Price (1922-1983), this computer was used for calculating time, and it is 

approximated that it contained around forty gears to calculate lunar, solar, and stellar calendars. 

In the 19th century, Charles Babbage (1791-1871) invented the Analytical Engine, which could 

be considered the base of modern digital computers due to the similarity; it has a central 

processing unit, arithmetic processing unit, and memory storage. It was also possible to input 

programs and output results into the Analytical Engine. (Swedin and Ferro, 2022, pp.1, 14–18) 

 

The word “robot” was first mentioned in a 1920s play “R.U.R.”, written by Karel Čapek (1890-

1938). The word stems from the Czech language and means “forced labor” or “serf”. The play 

exhibited a pessimistic and literal image of robots; they worked in factories and were exploited 

by humanity to a degree so severe that they ended up destroying the world, essentially 

disobeying the destiny they were created for, rebelling against forced factory labor. (Hans Peter 

Moravec, 2018) 

 

The behavior of the R.U.R. robots would imply that they possessed some sort of human-like 

sentience, expressing anger towards their human creators. Today, this is not too far-fetched of 

an idea since artificial intelligence is used in a very broad range of applications, even to exhibit 

and sense sapient-like emotions. The need for true artificial intelligence became predominant 

in the mid-1900s, specifically due to its usefulness in wartime applications, when technological 

advancement enabled the development of, for example, military radars, digital computers, and 
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automated control systems for bombs (Appin Knowledge Solutions, 2007, pp.3-4). Even to this 

day, militaries tend to be interested in the most recent state-of-the-art technology. 

 

After the two world wars of the 1900s, the transistor was first developed in the Bell Telephone 

Laboratories in 1947 by the physicists John Bardeen (1908-1991) and Walter H. Brattain 

(1902-1987) (Fig. 1). Transistors work by turning the flow of power on or off, and they are 

also used as current amplifiers. The transistor was further developed by the project member 

William B. Shockley (1910-1989), who invented the junction transistor, which in turn became 

the standard for commercial transistors. Eventually, transistors ended up replacing vacuum 

tubes in a lot of applications due to their size and reliability, both of which are properties that 

vacuum tubes are not known for. The invention of the transistor enabled the development of 

modern digital electronics which humanity relies on today. (Swedin and Ferro, 2022, pp.54-

56) 

 

 

Figure 1. The elements of the first transistor (Computer History Museum, no date) 

 

Around a decade after the invention of the transistor, the first commercial robot arm Unimate 

was invented by Joseph F. Engelberger (1925-2015), whose name carries the honorary title of 

“the Father of Robotics”. Unimate was based on a mechanical arm that was patented in 1954 

by inventor George Devol (1912-2011) (Fig. 2). Engelberger’s focus was to make a robot 

which could perform tasks that can be considered dangerous for humans, inspired by the Three 

Laws of Robotics by Isaac Asimov. In 1959, the first Unimate #001 prototype was installed at 

a diecasting plant. Afterwards, approximately 450 other Unimate robot arms would work in 
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diecasting processes, replacing human beings in this harmful and often dangerous process of 

manufacturing. (A Tribute to Joseph Engelberger - Father of Robotics, no date) 

 

 

Figure 2. Unimate in action (Malone, no date) 

 

After the invention of Unimate, the number of robots used in factories had increased rapidly 

with the help of advancing technology. In just one year, from 2018 to 2019, there was an 

increase of +12% in the number of industrial robots used in factories globally, resulting in total 

2.7 million industrial robots in 2019 (IFR, 2020). This is no surprise as there exist factories 

which rely on robots nearly entirely and require minimal human labor in production. 

 

Despite all the development within the field of robotics within the past 100 years, the 

development has mostly focused on industrial automation. For example, humanoid robots are 

not nearly as common as industrial robots due to the complexity of their design; it is, still, very 

difficult to emulate sapient tasks that are simple to us humans, such as walking over obstacles 

and jumping, and making it all look natural, effortless, and smooth. 

2.2 Industry 4.0 

According to Klaus Schwab (2018), the founder of the World Economic Forum, The Fourth 

Industrial Revolution, also known as Industry 4.0, consists of four different aspects that are 

predicted to unfold during the 21st century. These four aspects include different social, political, 

cultural, and economical changes. He believes that Industry 4.0 is powered by technological 
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innovation and will result in global societal transformation with the goal of improving the lives 

of all human beings. 

 

In the heart of Industry 4.0 is the Industrial Internet. The Industrial Internet could help a 

company to be more aware of their assets and operations by utilizing technologies such as 

software, machine sensors, and cloud computing. This would enhance the company’s 

efficiency. Essentially, sensors could become self-aware and provide the company with 

predictions or comparisons. Raw data could be harvested from sensors and other devices, and 

then analyzed. With the installation of such systems, a company could, for example, anticipate 

equipment failures well in advance. (Gilchrist, 2016, pp.1, 3–5) 

2.3 Different Types and Classification of Robots 

Since different types of robots have different purposes, there are general ways of classifying 

robots according to their design. In some cases, a robot could also be a hybrid; combining 

various aspects of different robot types. Four distinctive and common robot types are 

introduced with the help of examples: autonomous robots, articulated robots, cobots, and 

humanoid robots. 

2.3.1 Autonomous Robots 

An example of an autonomous robot is the Autonomous Spot robot (Fig. 3). The Autonomous 

Spot robot is based on Boston Dynamics’ Spot mobility platform and runs on the NeBula 

(Networked Belief-aware Perpetual Autonomy) autonomy software architecture developed by 

NASA’s Jet Propulsion Laboratory, which focuses on solving tasks in uncertain settings 

through computationally tractable methods, probabilities, and risk-assessments. It utilizes the 

factory sensors of the Boston Dynamics’ Spot robot as well as its own sensors. 

 

This robot was put through a DARPA challenge, which measures a robot’s ability to 

autonomously go through extreme underground environments with difficult terrains, exploring 

and mapping them, as well as searching for artifacts within the environment. Two Autonomous 

Spot robots were deployed to the DARPA challenge environment, and they were able to find 

16 artifacts, such as human survivors, gas-leaks, and cell phones, using their sensors and the 

NeBula architecture. 
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(Bouman et al., 2020) 

 

 

Figure 3. The Autonomous Spot robot (NASA and JPL-Caltech, no date) 

2.3.2 Articulated Robots 

Articulated robots are useful in applications where human arm mobility and capabilities are 

needed, such as factory work. One example of an articulated robot would be ABB’s IRB 8700 

six-axis heavy-duty industrial robot. 

 

The IRB 8700 robot arm is intended for heavy-payload applications such as the automotive, 

foundry, mining, and metal fabrication industry (Fig. 4). It comes in two variants, IRB 8700-

550/4.20 and IRB 8700-800/3.50, and the latter variant can handle payloads up to 800 

kilograms with a reach of 3.50 meters. This variant of the robot weighs 4525 kilograms. The 

IRB 8700-550 variant has a longer reach, 4.20 meters, and is slightly heavier, 4575 kilograms. 

(ABB, 2022) 
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Figure 4. ABB IRB 8700 industrial robot (ABB, no date) 

2.3.3 Cobots 

Cobots, or collaborative robots, are unique robots needed in applications where humans and 

robots must work side by side without any safety fencing. For example, cobots are very useful 

in assembly lines where human dexterity and understanding is needed, but robots are also 

desired as close-proximity coworkers to perform tasks that are, for example, repetitive and 

straining for humans. Due to their working environment, cobots are equipped with specialized 

hardware and software to prevent injuring their human coworkers. 

 

LBR iiwa is a lightweight collaborative robot developed by the German company KUKA (Fig. 

5). It comes in two variants which have different load capacities and arm lengths. The LBR 

iiwa robot can collaborate with humans using its joint torque sensors, which sense human 

proximity and reduce the level of speed and force of the robot in case a human is nearby. This 

robot is also able to learn coordinate positions with human guidance. Mentioned applications 

for the LBR iiwa robot are, for example, assembly, handling, packaging, and measuring. 

(KUKA AG, 2022a) 
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Figure 5. KUKA LBR iiwa collaborative industrial robot (KUKA AG, 2022b) 

2.3.4 Humanoid Robots 

Humanoid robots are robots that closely resemble humans in terms of anatomy, intelligence, 

and movement. 

 

One of the most well-known and advanced humanoid robots is Honda’s ASIMO robot, first 

introduced in 2000, with the latest version having been released in 2011 (Fig. 6). ASIMO has 

a body with 57 servo motors, therefore having 57 degrees of freedom. ASIMO weighs only 48 

kilograms due to its lightweight 130 centimeters tall body. It can run at 9 km/h, and it is also 

able to adapt to uneven surfaces while moving. ASIMO is also able to work in an environment 

with humans; it is able to avoid them by predicting where they’re walking, using sensors. This 

means that the robot can plan its path again in case its path intersects with something 

unpredictable. ASIMO is equipped with tactile and force sensors in its hands, which enable it 

to perform tasks such as opening bottles and pouring the liquid inside the bottle into a glass 

and handling fragile objects without squishing them. It is also able to recognize faces and 

voices, even if there are multiple people speaking at the same time. Consequently, the robot is 

also capable of autonomous, continuous behavior without any human intervention. (Honda 

Motor Co., Ltd., no date) 
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Figure 6. Two ASIMO robots interacting with a human (Honda Motor Co., Ltd., no date) 

2.4 Control of Robots 

2.4.1 Control Systems 

Control systems are needed in various machines such as robots for several different purposes. 

 

One type of a control system is the open loop control system. An input signal is inserted into a 

control system, which transforms the input signal into a specific output signal (Fig. 7). The 

control system could, for example, amplify the input signal and emit the amplified signal. An 

open-loop control system works in a linear manner with no feedback; the flow of information 

goes only one way, and there is no communication coming back to the control system after it 

emits an output signal. Due to many reasons an error can occur which is known as a steady 

state error, which occurs in all control systems. (Bergren, 2003, pp.22–24) 

 

 

Figure 7. The open loop control system (Circuit Globe, 2022b) 

 

Contrary to an open loop control system, a closed loop control system has feedback control 

(Fig. 8). Essentially, feedback control is established by comparing the output signal to the input 

signal, and if they do not match, the actuator will receive a nonzero signal which will indicate 
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the control system to correct the output of the actuator to match it with the desired output. In 

many cases, the output signal must be transformed for the comparison to be done; the signal 

may have to be scaled or converted into another signal type. (Bergren, 2003, pp.26–27) 

 

 

Figure 8. The closed loop control system (Circuit Globe, 2022a) 

2.4.2 Programming Languages 

Programming languages are essential when it comes to controlling a robot to determine its 

behavior and actions. According to Pierre Carbonnelle (2022), the Python programming 

language is the most popular programming language in the year 2022, with Java being the 

second most popular one. 

 

It is important to understand the definition of machine language before understanding modern 

programming languages any further. Modern digital computers cannot directly understand 

programming languages such as Python, and therefore interpreters must be used to translate 

the raw code into machine language that the computer can read. How machine language looks 

to humans is very abstract compared to modern intuitive programming languages that are 

mostly comprehensible and logical. Machine language consists of different lengths and 

placements of numbers 0 and 1, essentially binary digits, and varies depending on the computer 

it is executed on (Hemmendinger, 2022a). To write a simple prompt in machine language, such 

as “Good morning!”, takes a lot of effort and knowledge compared to doing the same task in 

Python which typically takes a few seconds. 

 

Python was developed in the late 1980’s and is free for everyone to use (Fig. 9). It is user-

friendly and more intuitive to learn compared to other programming languages, and available 

for all common operating systems, such as Windows and Linux. Python is also an interpreted 
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language, meaning that Python programs are not compiled to machine code directly, but run 

through an interpreter, leading to the ease of testing, and debugging of Python programs. Using 

an interpreted programming language comes with a negative side effect, which is the fact that 

the written programs are not stand-alone and can be only run through an interpreter. (Kiusalaas, 

2005, pp.1–2) 

 

 

Figure 9. A Python program utilizing the Numpy and Matplotlib libraries to plot an equation 

 

Java, just like Python, is a very popular programming language. Contrary to Python, it can be 

used on any computer if the computer has an interpreter for Java bytecode, which is the 

machine language for the virtual computer called Java Virtual Machine (JVM) to compile the 

written program into machine language (Fig. 10). For a computer to understand and run a Java 

program, it needs a Java Virtual Machine so that the Java bytecode can interpret the program 

and compile it into machine language that the computer can read. (Eck, 2022) 
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Figure 10. A JVM processes the raw Java code (Infosec Institute, 2014) 

 

Both Python and Java are so-called object-oriented programming languages. Object-oriented 

programming languages have predefined modular units to ease the process of programming, 

making larger programs faster to execute and easier to maintain (Hemmendinger, 2022b). All 

object-oriented programming languages share the following basic components: 

- Object: an instance of the class 

- Class: creates a new type where objects are instances of a class 

- Method: a function used by an object in a class 

- Polymorphism: an object can be substituted as another object 

- Inheritance: reusing the characteristics of a class and implementing a sub-type of it 

(H., no date)  
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2.5 Hardware 

2.5.1 Links and Joints 

Just like humans, robots need links and joints to manipulate parts of their body. Consequently, 

there exist different types of joints in robots, connected by links, a lot like the ones found in 

the human body. Joints also have different degrees of freedom (of movement). The degree of 

freedom is expressed with the three-axis coordinate system is known as the 3D Cartesian 

coordinate system (Fig. 11), and the degree of freedom determines in which axes a joint can 

translate or rotate in. In a 3D Cartesian coordinate system, it is possible to form three linear 

axes and three rotational axes. 

 

 

Figure 11. The 3D Cartesian coordinate system 

 

The six types of joints for the mechanisms are the following: 

1. Spherical: 3 degrees of freedom 

2. Plane: 3 degrees of freedom 

3. Cylindrical: 2 degrees of freedom 

4. Screw: 1 degree of freedom 

5. Revolute: 1 degree of freedom 

6. Prismatic: 1 degree of freedom 

(Denavit and Hartenberg, 1955) 
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Focusing on the joint design of 6-axis robot arms; 6-axis robot arms are very similar to human 

arms in terms of function and joint design, so much that one can easily relate a human arm to 

a six-axis robot arm by comparing them next to each other (Fig. 12). Essentially, the 1st and 3rd 

axes of the robot arm are equivalent to the human waist and the arm. The 4th to the 6th axes is 

equivalent to the human wrist all the way to the human fingertip. (Kawasaki Heavy Industries, 

Ltd., 2018) 

 

 

Figure 12. Comparison of human waist and arm mobility to an industrial 6-axis robot arm (Kawasaki Heavy Industries, 
Ltd., 2018) 

2.5.2 Motors and Gears 

Actuators such as motors are very common and a fundamental part of robots. Motors work to 

power the joints of the robot, producing movements such as rotation. It is important that high-

precision motors are used for accuracy, for example servo motors. However, motors alone 

cannot produce the best power output from itself; reduction gears are used to increase the power 

output of a motor. Essentially, by choosing two gear wheels with a different number of 

gearteeth, and then reducing the rotational speed of the motor by a factor of 10, one can achieve 

a power output that is 10 times larger than the original. (Kawasaki Heavy Industries, Ltd., 

2018) 

 

The output torque 𝑀𝑜  of a gear when connected to a motor can be calculated as: 

 

𝑀𝑜 = 𝑀𝑖 ∗ 𝑟 ∗ 𝜇     (1) 

Equation 1. Output torque (Engineering ToolBox, 2010) 
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Where 

𝑀𝑖 = the input torque that comes from the motor (Nm) 

𝑟 = the gear transmission ratio 

𝜇 = the gear efficiency (%) 

 

There are two common types of conventional motors: alternating (AC) and direct current (DC) 

motors. Both have their advantages and disadvantages, and different applications depending 

on the task assigned for the motor. 

 

AC motors are motors that utilize alternating current. An AC motor has two major components: 

the stator and the rotor. The coils of the motor are built outside the stator and rotor (Fig. 13). 

Since an AC motor utilizes alternating current, the motor responds to the alternating frequency 

of current that is fed to it. At one specific frequency, the speed of a AC motor is constant, 

however, the speed can be varied using frequency control. The speed also depends on the 

number of windings of the motor. (Bergren, 2003, pp.275-276) 

 

 

Figure 13. AC Motor (Electrical Technology, no date) 

 

Since AC motors work at a fixed speed and cannot be controlled easily, they may not be the 

best for controlling a robot since robots often require rapid change of direction and speed in 

operation. 
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DC motors are, in a way, the opposite when it comes to their design; a DC motor relies on 

generated magnetic fields within its motor, and its permanent magnets reside within its stator, 

while its rotor has the coils (Fig. 14). Although a DC motor operates on a constant voltage, it 

still necessitates a change in the current direction for rotation. Essentially, the polarity of the 

DC voltage alternates in the coil due to a commutator, which remains stationary on the rotor 

bearing. Brushes make contact with the commutator, supplying power to the coils within the 

rotor and enabling the change in current direction. The problem with conventional DC motors 

is that the brushes wear out and therefore a DC motor needs constant maintenance, which is 

often not desirable. Therefore, brushless DC motors were invented to tackle this problem. The 

design of brushless DC motors is very similar to AC motors. The speed and torque of a DC 

motor can be controlled with changing the source voltage and current. (Bergren, 2003, pp.276-

278) 

 

 

Figure 14. DC Motor (Electrical Technology, no date) 

 

The third type of motors commonly found in robotics is servo motors. Servos are good for 

applications where rapid acceleration and deceleration is needed, and high levels of torque are 

also required. In servos, the inertia of the rotor has been minimized to get the highest value of 

torque possible for the design, and this is achieved by enabling only the conductors over the 

rotor to move, while the magnet remains stationary. Compared to conventional motors, such 

as AC or DC motors, servos are a lot better for precision and feedback control. A servo motor 

has a potentiometer which monitors the shaft’s angular position, comparing it to the input 

signal; if these differ, a position error signal is amplified, and the motor will be rotated to its 

desired position where the position error equals zero. Conventional servos typically have a 

power output of 2-3 kW. (Hughes, 2006, pp.159–162) 
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2.5.3 Sensors 

Sensors are very much a necessity for engineering systems such as robots; they provide the 

system with information about the surrounding world. Sensors can provide information to the 

system about the shape of the room it is in, or the room temperature. One could say that sensors 

for robots could be compared to the parts of the human sensory system. 

 

One common type of sensors are proximity sensors which help robots sense their environment 

in terms of the proximity of an object. Proximity sensors are especially useful in collision-

detection and prevention. Hall-effect sensors are commonly used in this application, and they 

work with a very fundamental principle of physics. This type of sensor can detect changes in 

magnetic fields, which in turn can be used to detect objects. The closer an object comes to a 

sensor, the stronger the detected magnetic field is (Fig. 15). In addition to this, the Hall-effect 

sensor is also able to detect the direction of change of a magnetic field. A hall-effect sensor 

utilizes a constant base voltage which changes according to the proximity of a magnetic field. 

(Appin Knowledge Solutions, 2007, p.100) 

 

 

Figure 15. A Hall-effect sensor (AspenCore, no date) 

 

Another type of sensor is an encoder, commonly found in actuators and motors in general. 

Incremental optical encoders are used as feedback sensors. They work in a way that as the 

motor rotates a single shaft revolution, a certain number of pulses (square or sine waves) are 

produced by a light generator (Fig. 16). Between the light generator and a photodetector is a 

disk with transparent slits that are placed periodically. As the disk rotates, the photodetector 

reads the pulse as the light passes through one of the slits. In this manner, an incremental optical 
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encoder can measure the rotational velocity of the motor and its relative position. (Appin 

Knowledge Solutions, 2007, pp.244-245) 

 

 

Figure 16. An incremental optical encoder (Anaheim Automation, 2021) 

2.6 Mechanics, Kinematics, and Dynamics of Articulated Robots 

Robotics revolves around the interpretation of objects in three-dimensional space. These 

objects include the links of the manipulator (robot arm), and its parts and tools, as well as the 

objects in its surrounding environment, for example a box. The manipulator is a set of rigid 

bodies connected by a continuous chain with the use of joints. The joints are connected by 

links. To be able to interpret the movement of the manipulator, it is needed to attach coordinate 

systems to these objects. As the manipulator moves, the coordinate systems go through 

transformations or rotations, which can be represented mathematically. (Craig, 2018, pp.1, 4, 

67) 

 

For the robot to be able locate objects in the 3D-world, the 3-axis cartesian coordinate system 

(Fig. 11) can be presented as a vector in its matrix form as follows, with {𝐵} being the 

coordinate system: 
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𝑃𝐵 = [

px

py

pz

]    (2) 

Equation 2. The position vector (Craig, 2018, p.22) 

 

Additionally, it is also relevant to be able to describe how the object is oriented in the 3D-

world, which is possible by attaching a coordinate system that keeps track of rotation of the 

object. This rotation-focused coordinate system will be given a description that is relative to 

the reference system. We can denote this attached coordinate system as {𝐵}, and the reference 

system as {𝐴}. The attached coordinate system can be described by three unit vectors written 

in terms of the reference system {𝐴}: X̂A
B , ŶA

B , ẐA
B . (Craig, 2018, p.23) 

 

One can use the three unit vectors to construct a rotation matrix which describes the relation 

between {𝐵} and {𝐴}: 

 

𝑅𝐵
𝐴 = [ X̂A

B  ŶA
B  ẐA

B ] = [

r11 r12 r13

r21 r22 r23

r31 r32 r33

]     (3) 

Equation 3. The rotation matrix (Craig, 2018, p.23) 

 

The rotations about the x, y, and z axes in the form of planar rotations are written as follows: 

 

𝑅𝑥(𝜃) = [
1 0 0
0 cosθ −sinθ
0 sinθ cosθ

] 𝑅𝑦(𝜃) = [
cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

] 𝑅𝑧(𝜃) = [
cosθ −sinθ 0
sinθ cosθ 0
0 0 1

]     

(4) 

Equation 4. Rotations about all three axes in the form of planar rotations (Craig, 2018, p.49) 

 

To find 𝑃𝐴 , one can simply multiply 𝑃𝐵  and 𝑅𝐵
𝐴  as follows: 

 

𝑃𝐴 = 𝑃𝐵 ∙ 𝑅𝐵
𝐴      (5) 

Equation 5. Vector 𝑃𝐵  expressed as vector 𝑃𝐴  in the {𝐴} reference system (Craig, 2018, p.28) 
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2.6.1 Kinematics 

To study motion further in detail, robotics makes use of kinematics, which is essentially the 

science of motion that does not regard forces which cause the motion. Position, velocity, 

acceleration, and the other higher order derivatives of the position variables are studied by the 

science of kinematics. The joints of a robot are equipped with sensors that detect motion, and 

since all joints should have a motion sensor, it is possible to determine the relative position of 

a certain joint and its link. Rotary or revolute joints, in turn can have displacements that can be 

interpreted in joint angles. (Craig, 2018, p.5) 

 

It is important to know the joint angles when it comes to picking up a box, for example. The 

end-effector (fingers of the robot arm) and its success to pick up the box depend on the correct 

values of joint angles in the robot. This is when the problem of inverse kinematics comes to 

play. With inverse kinematics, it is possible to move a robot arm much like a human arm, but 

it’s not “automated” in the way it is in the human brain and nervous system, and an algorithm 

is needed to accomplish the movement. Most modern robots use inverse kinematics and 

algorithms based on it. To do this, one needs to utilize a Jacobian matrix specific for a robot 

arm; it can be used to specify the mapping from velocities in joint space to velocities that reside 

within Cartesian space. (Craig, 2018, pp.5, 7) 

 

The Jacobian matrix for n-number of variables (x) and equations (y) takes the form: 

 

𝐉(𝑥1, … , 𝑥𝑛) =

[
 
 
 
∂y1

∂x1
⋯

∂y1

∂xn

⋮ ⋱ ⋮
∂yn

∂x1
⋯

∂yn

∂xn]
 
 
 

    (6) 

Equation 6. Jacobian matrix (Weisstein, 2022) 

 

Where the J is the Jacobian determinant which is defined by: 

 

𝐽 = |
∂(y1,…,yn)

∂(x1,…,xn)
|    (7) 

Equation 7. Jacobian determinant (Weisstein, 2022) 
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In robotics, the Jacobian is used to determine the relation between joint velocities and end-

effector velocities with the following equation (Krishna, no date): 

 

𝑋̇ = 𝐉𝜃̇    (8) 

Equation 8. Equation that connects the Jacobian to joint velocities and end-effector velocities (Krishna, no date) 

 

Where 

𝑋̇ = a matrix representing end-effector velocities of the manipulator 

𝐉 = the Jacobian matrix which is a function of the position of the end-effector 

𝜃̇ = a matrix representing joint velocities of the manipulator 

 

The equation (8) is then represented in its matrix form as follows: 

 

[
 
 
 
 
 
ẋ
ẏ
ż

ωx

ωy

ωz]
 
 
 
 
 

=

[
 
 
 
 
 
J11 J12 J13 J14 J15 J16

J21 J22 J23 J24 J25 J26

J31 J32 J33 J34 J35 J36

J41 J42 J43 J44 J45 J46

J51 J52 J53 J54 J54 J55

J61 J62 J63 J64 J65 J66]
 
 
 
 
 

[

q̇1

q̇2

⋮
q̇n

]    (9) 

Equation 9. Equation that connects the Jacobian to joint velocities and end-effector velocities in matrix form (Krishna, no 
date) 

 

One may take a closer look at the equation (9). The columns of the Jacobian matrix (𝐽11, … , 𝐽1𝑛) 

represent the joints of the robot. For example, if a robot is a six-axis manipulator, the Jacobian 

matrix will have 6 columns in total. The first three values of the 𝑋̇ matrix are linear velocities 

(𝑥̇, 𝑦̇, 𝑧̇), while the three last values are angular velocities in x, y, and z directions (𝜔𝑥, 𝜔𝑦 , 𝜔𝑧). 

(Krishna, no date) 

2.6.2 Denavit-Hartenberg Convention 

In forward kinematics, the Denavit-Hartenberg convention can be used to represent a robot as 

a series of connected joints and links. Using this notation, all joints of a robot are considered 

to have just one degree of freedom, and all of these joints are either prismatic or revolute joints. 

The base of the robot is referred to as link 0, and the joint that connects the link 0 and link 1 is 
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called joint 1. This notation uses four parameters: link length 𝑎, link twist 𝛼, link offset 𝑑, and 

joint angle 𝜃 (Fig. 17). (Appin Knowledge Solutions, 2007b, p.222) 

 

Frames are attached to the joints of the robot in order to determine the robot’s forward 

kinematics. The frames are 3-dimensional Cartesian frames and the direction of each 

component of the frame depend on the properties of the joint, but the direction of the z-axis for 

revolute joints is along the axis of the joint, as seen on Figure 17. (Appin Knowledge Solutions, 

2007b, pp.226-227) 

 

 

Figure 17. Representation of a link (Appin Knowledge Solutions, 2007a) 

 

For revolute joints, the joint angles are controlled variables while the link offset is fixed. The 

opposite is true for prismatic joints. For both types, link length and link twist are always 

controlled parameters. The link length and link twist at the first joint and the last joint are 

always zero (Appin Knowledge Solutions, 2007b, p.225). 

 

Based on the Denavit-Hartenberg parameters, one can find the homogeneous transformation 

matrix which includes the rotation 3x3 and the translation 3x1 submatrix: 
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𝑇𝑛 = [

cosθn −sinθn cosαn sinθn sinαn rn cosθn

sinθn cosθn cosαn −cosθn sinαn rn sinθn

0 sinαn cosαn dn

0 0 0 1

]𝑛−1 = [ R T

0 0 0 1

]    (10) 

Equation 10. The Denavit-Hartenberg homogeneous transformation matrix (Wikipedia Contributors, 2022) 

2.6.3 Dynamics 

In contrary to kinematics, dynamics is interested in the forces that drive the motion of the robot. 

The actuators in the robot must generate torques to cause motion, and this is all possible by 

using dynamic equations of motions. Considering dynamics is important especially in 

articulated robots which often serve the purpose of lifting and manipulating heavy objects for 

humans; the robot must use dynamic equations of motion to react to the mass of the object to 

act in the desired manner defined by the operator. 

 

One may now consider how a rigid object accelerates due to the forces that are subjected onto 

it. The velocity of an object is essentially the first integral of either angular or linear 

acceleration over a specific time, Ω̇𝐴
𝐵  and V̇𝐴

𝑄 . The angular and linear accelerations can be 

calculated as follows: 

 

Ω̇𝐴
𝐵 = lim

∆𝑡→0

Ω𝐴
𝐵 (𝑡+∆𝑡)− Ω𝐴

𝐵 (𝑡)

∆𝑡
    (11) 

Equation 11. The angular acceleration relative to the frame {𝐴} (Craig, 2018, p.178) 

 

V̇𝐵
𝑄 = lim

∆𝑡→0

V𝐴
𝐵 (𝑡+∆𝑡)− 𝑉𝐴

𝐵 (𝑡)

∆𝑡
    (12) 

Equation 12. The linear acceleration relative to the frame {𝐴} (Craig, 2018, p.178) 

 

Where 

𝑡 = the instantaneous time 

∆𝑡 = the difference between two moments of time 

 

Since velocities and accelerations are now discussed, it is crucial to highlight the importance 

of the object’s mass when it comes to dynamics. In a system with just one degree of freedom, 

the weight distribution of the object may become negligible for simplification, and can instead 
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be expressed with just one single value of mass. However, if an object is free to move in all 

three dimensions, it is useful to consider the inertia tensor, which can considered to be the 

scalar moment of inertia of the object. In this case, the inertia tensor is relative to the frame {𝐴} 

that is attached to our object, and can be expressed as follows in a matrix from: 

 

𝐼 = [

Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

]𝐴     (13) 

Equation 13. The inertia tensor relative to the frame {𝐴} expressed in its 3x3 matrix form (Craig, 2018, p.180) 

 

With the scalar elements containing the volume elements 𝑑𝑣 and density 𝑝: 

 

𝐼𝑥𝑥 = ∭ (𝑦2 + 𝑥2)𝑝𝑑𝑣
𝑣

 

𝐼𝑦𝑦 = ∭ (𝑥2 + 𝑧2)𝑝𝑑𝑣
𝑣

 

𝐼𝑧𝑧 = ∭ (𝑥2 + 𝑦2)𝑝𝑑𝑣
𝑣

 

𝐼𝑥𝑦 = ∭ 𝑥𝑦𝑝𝑑𝑣
𝑣

 

𝐼𝑥𝑧 = ∭ 𝑥𝑧𝑝𝑑𝑣
𝑣

 

𝐼𝑦𝑧 = ∭ 𝑦𝑧𝑝𝑑𝑣
𝑣

 

 

The 𝐼𝑥𝑥, 𝐼𝑦𝑦 , 𝐼𝑧𝑧 elements are mass moments of inertia, while the other elements are mass 

products of inertia. Each one of the volume elements 𝑑𝑣 can be located with a vector 

𝑃 = [𝑥𝑦𝑧]𝑇𝐴 . 

 

Now, one shall consider two fundamental equations that drive dynamics, namely Euler’s and 

Newton’s Equations. Euler’s Equation concerns the situation where a rigid object rotates with 

an angular velocity 𝜔, and with an angular acceleration 𝜔̇, which means that a moment Nm 

must act on the object to cause this rotational movement. Euler’s Equation denotes the inertia 
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tensor of the object written in the frame {𝐶} with its origin located in the center of the mass as 

𝐼𝐶  , and is written as follows: 

 

𝑁 = 𝐼𝐶 𝜔̇ + 𝜔 × 𝐼𝐶 𝜔    (14) 

Equation 14. Euler’s Equation, moment N (Craig, 2018, p.184) 

 

The Newton’s Equation denotes how a force 𝐹 causes an acceleration 𝑣̇𝐶  at the center of the 

mass of the object. The object has a total mass 𝑚: 

 

𝐹 = 𝑚𝑣̇𝐶    (15) 

Equation 15. Newton’s Equation, force F (Craig, 2018, p.184) 

 

(Craig, 2018, pp.9-10,178-180,184)  
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3 Method 

This section outlines the practical work of this thesis, including the setup, operation, 

programming, and kinematic analysis of the Ned2 articulated cobot. 

3.1 Setting Up the Robot 

For this thesis, a Ned2 robot arm manufactured by Niryo will be used to investigate the problem 

definition. The robot is located in the production laboratory of Arcada University of Applied 

Sciences and is owned by the same institution. 

 

The Ned2 six-axis articulated robot arm is an entry-level collaborative robot designed for 

mainly robotics education but also research, especially the education of industrial robotics and 

their possible applications. It is compatible for many different levels of expertise depending on 

the user’s skill level and knowledge of robotics and programming. In addition to this, the robot 

can be controlled in several different ways; for those who do not know any programming 

languages, the robot comes with the intuitive Niryo Studio software. The software is based on 

Blockly, Google’s JavaScript library that represents programming in the form of visual blocks 

(Google Developers, no date). The more advanced means of controlling the Ned2 robot include 

PyNiryo and ROS (Robot Operating System). 

 

Ned2 supports two add-ons, the Vision Set as well as the Conveyor Belt Set. The Vision Set 

includes a camera, workspace, calibration tip, and six objects. This set can be used for image 

processing and machine learning applications. The Conveyor Belt set includes the same six 

objects and a mountable conveyor belt workspace intended to simulate production lines with 

possible Industry 4.0 applications (Fig. 18). (Niryo, 2022) 
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Figure 18. The Ned2 cobot with the Conveyor Belt Set 

3.1.1 Overview of the Software and Hardware of Ned2 

The Ned2 robot is based on the Raspberry Pi 4 mini-computer and has 4 GB of RAM (Random 

Access Memory). It employs the ARM V8 as its processor which has a typical clock speed of 

1.5 GHz. Ned2 supports WIFI 5 connectivity and can be connected to a computer via USB 3.0. 

The software of Ned2 is based on the Ubuntu 18.04 Linux operating system as well as ROS 

Melodic. The robot weighs 7 kilograms, and its material composition is mostly aluminum and 

injection-molded plastic. The robot has a set of speakers and a microphone, which means that 

voice commands and sound output are also possible during its operation. (Niryo, 2023) 

 

Since Ned2 is a collaborative robot, it also supports free motion and teaching by the operator. 

While pressing the “FreeMotion” button along its arm, one can activate a mode that enables 

the operator of the robot to manipulate its joints and move it in any possible joint configuration. 

This position can then be recorded on the software of choice and saved for later use. (Niryo, 

2022) 

3.1.2 Safe Operation and Programming of Ned2 

The operation of all mechatronic machines typically poses various risks for the operator. In 

addition to this, the operator may also make mistakes that can lead to the machine getting 
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damaged unless certain precautions are carefully observed and implemented. In this section, 

the focus will be on the safe operation of the Ned2 articulated robot, particularly in educational 

facilities such as the production laboratory of Arcada University of Applied Sciences. When 

assembling the robot, one must refer to Niryo’s official assembly guide with no exceptions. 

 

Firstly, it is important that a flat, dedicated clear surface is allocated for the robot. The area 

should be cleaned thoroughly to make sure that the surface is free from liquids, and everything 

unrelated and unneeded for the operation of the robot should be removed from vicinity. If 

possible, the robot should be kept in a closed-off area or room that is accessible only for 

institutional staff and students who have been trained to operate the robot to reduce the risks 

such as theft or unauthorized and dangerous operation of the robot. 

 

Safety zones must be defined before attempting to operate the robot through an external 

terminal, e.g., a computer. By using the FreeMotion function of Ned2, it is easy to define the 

reach of the robot in 3D space. The objects in 3D space can then be moved according to the 

reach of the robot, so the danger of getting struck by it can be reduced significantly. 

Consequently, when the robot is being operated, the operator must make sure that the safety 

zone is clear of people and objects that do not belong within it. 

 

While running a program with Ned2, it is important to keep an eye on the robot’s movements. 

This also applies for the case when the operator has simulated the robot’s movement in a 3D 

environment. The actual surroundings of the robot may be subjected to changes that can 

drastically alter the real outcome of the program; one can never be sure how simulations turn 

out to be in real-life environments. The placement of the STOP button is very relevant, and it 

should be kept next to the operator’s terminal in case something unexpected occurs. It is highly 

recommended that the operator does not intervene with the robot’s movements by entering the 

safety zone while the program runs, but stops the robot from the terminal instead, or by pressing 

the STOP button. 

 

While writing programs for Ned2, one must keep in mind the dimensions and contents of the 

working surface. For example, when different add-ons are used, such as the conveyor belt or 

objects, the robot can damage itself or the add-ons in case of collision. Therefore, it is prudent 

to add offset steps for the code. An offset is essentially a step where the gripper part of the 

robot arm is retracted from the working surface to prevent undesirable collisions with nearly 
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objects residing over the working surface (Fig. 19). When verifying and testing a program, the 

motor speeds must be decreased significantly from the desired values for the operator to be 

able to react quickly if an unexpected event occurs. 

 

 

Figure 19. An example of an offset from the gripper to the working surface 

3.1.3 Integration of the Vision and Conveyor Belt Sets 

The operation of the Ned2 robot can be complemented with a camera that comes with the 

Vision Set that can be used to enable computer vision; with the camera, the robot is able to 

detect and classify objects by their color and shape. This feature is especially useful for 

industrial applications. In addition to this, Ned2 also supports a conveyor belt that can be used 

with the camera. The conveyor belt also has an infrared (IR) sensor which detects objects when 

they come close to it, such as objects moving over the conveyor belt. 

 

The camera, IR sensor, and the conveyor belt are all controllable via the computer. The 

conveyor belt can move either forward or backward. The camera has a specific and fixed 

location where it is attached to the Ned2 robot, namely right above the tool. The camera was 

screwed onto the robot and then connected via a USB port that is located behind the base of 

the robot. Referring to Figure 20., the camera can be connected to one of the four USB ports at 

numbers one and two. The conveyor belt can be connected to the ports at 10, while the IR 

sensor can be connected right next to it at port number 12. 
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Figure 20. The back panel interface of Ned2 (Niryo, 2022b) 

3.1.4 PyNiryo 

PyNiryo is a Python module that can be used to control Ned2. With PyNiryo, one can create 

programs to be used with Ned2 and control the robot remotely without the need to connect the 

robot through a terminal. Before the PyNiryo package can be installed, one needs to make sure 

that Python is installed. PyNiryo can then be installed through Windows’ Command Prompt 

interpreter. PyNiryo also requires the NumPy package, and to work with the Vision function 

of Ned2, one must also install the OpenCV package. The “pip install” command can be utilized 

for the installations. The installation of the needed packages through the Command Prompt can 

be seen on Figure 21. 

 

 

Figure 21. The installation and verification of needed packages with the Command Prompt on Windows 
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It is highly important that the computer is running the Python version that is 3.5 or higher. The 

right version of Python can be checked with “python –version” command in the Command 

Prompt interpreter (Fig. 21). If the version is outdated on Windows-based systems, one needs 

to update Python to the latest version by downloading it. On Ubuntu 18.04, one can simply 

open the Terminal and input “sudo apt install python-pip”, which downloads the latest version 

of Python. The sudo part of the command means that the command is executed with elevated 

rights. Apt, on the other hand, stands for advanced package tool, which is used to install 

packages. The other needed packages can be installed in the same way when it comes to Ubuntu 

18.04, replacing “python” with the name of the desired package. 

 

To program in Python, an editor is needed. For this thesis, Visual Studio Code is utilized to 

write, debug, and run programs for Ned2. Visual Studio Code is an open-source code editor 

developed by Microsoft which is free to download and use without any limitations. It offers its 

users an intuitive and simple user interface, and it supports a wide range of programming 

languages. After downloading and installing Visual Studio Code, Ned2 needs to be connected 

to the computer either wirelessly or via Ethernet. For this thesis, the Ethernet option is used in 

order to connect the robot. An Ethernet cable was connected from the robot to the computer, 

and a static IP was set, which is 169.254.200.200 by default. 

 

When creating a new file in Visual Studio Code, one needs to make sure that the chosen 

interpreter is for Python 3.5 or a more recent version. This is due to the fact that the most recent 

PyNiryo module supports only Python 3.5 or higher (Niryo, 2023b). In Visual Studio code, one 

can establish connection between the robot and the editor by first importing the PyNiryo 

package. The importing is done by using the from-argument, then defining the module where 

the import is taken from, followed by the import-argument and whatever one wants to import 

from the module, in this case all the features of the module, which is denoted by the asterisk 

(*). 

 

To define the IP of the robot, one creates a string object called robot, and then make it equal to 

NiryoRobot with the IP as its parameter: 

 

from pyniryo import * 

 

robot = NiryoRobot(“169.254.200.200”) 
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To close the connection between the computer and the robot, one needs to utilize the “robot” 

object with a function that is imported from the PyNiryo module called “close_connection()”. 

This can be implemented in the end of every Python file: 

 

robot.close_connection() 

3.1.5 Robot Operating System 

The Robot Operating System (ROS) can be installed on Unix-based operating systems. In this 

subsection, the focus is put on the installation of the ROS Melodic distribution and how it can 

be implemented with the Ubuntu version 18.04. ROS can be used to control the real robot, or 

alternatively for simulation purposes. ROS can be installed either on a computer with the actual 

Ubuntu 18.04 OS, or as a Windows subsystem. For this thesis, both alternatives were 

investigated. The computer that is attached to the actual robot uses Ubuntu 18.04 as its 

operating system, while the possibilities of simulating the robot as a virtual twin are 

investigated with another computer that runs the operating system as a subsystem on Windows 

11. 

 

For this thesis, the ROS Melodic distribution is installed that is compatible with both Ned2 and 

Ubuntu 18.04. After the installation of ROS, one can install the needed Niryo ROS stack which 

is necessary to simulate Ned2 in a virtual environment. The installation of ROS and the Niryo 

ROS stack can be both done via the Terminal application on Ubuntu 18.04. ROS will be first 

installed, which must be started by installing the “curl” package. The curl package is used to 

transfer data between servers, and it supports multiple different data transfer protocols (curl.se, 

no date). This can be done by simply inputting “sudo apt install curl”. 

 

The Ubuntu system must be able to accept packages from the ROS server in order to install the 

Melodic distribution. To accept packages and software from the server, the following command 

must be run: “sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" 

> /etc/apt/sources.list.d/ros-latest.list'”. This adds ROS to the accepted sources list. The -c 

command signifies a flag which can be used to run something. The deb command is simply 

used to signify Debian packages. The echo command can used to display a string that is 

inputted by the user. 



40 

 

 

Next, one must define the source where the data is transferred from. To be able to import the 

ROS package, the following line of code must be inputted into the Terminal: “curl -s 

https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo apt-key add –“. This 

command adds the key to the registry and enables the transfer to take place without restrictions. 

If the system is up to date, the ROS Melodic installation can be started with running “sudo apt 

install ros-melodic-desktop-full”, which is the full installation that includes all necessary 

functions to simulate Ned2. 

 

After the installation is complete, one must set up the ROS environment. Assuming that only 

one ROS distribution is assumed, one can input the following line to the Terminal: “echo 

"source /opt/ros/melodic/setup.bash" >> ~/.bashrc”, and then “source ~/.bashrc”. In order to 

install dependencies and packages for various ROS workspaces, one must run the following 

command: “sudo apt install python-rosdep python-rosinstall python-rosinstall-generator 

python-wstool build-essential”. Next, the installed package rosdep must be initialized by 

simply imputing “sudo rosdep init” and then “rosdep update”. 

 

Finally, one can install the needed packages to simulate and control Ned2 via ROS. First, the 

needed Ubuntu packages need to be installed: sqlite3, and ffmpeg. They can both be installed 

using the “sudo apt install” command. The required Python environment is then installed with 

the following command: “pip2 install -r src/requirements_ned2.txt”. A new folder has to be 

created in order to store all the Niryo files with the command: “mkdir -p 

catkin_ws_niryo_ned/src”. The mkdir command is short for “make directory”, while -p means 

“parent”. 

 

Lastly, the ROS dependencies for Ned2 must be installed, and the Ned2 repository must be 

cloned to the freshly created “catkin_ws_niryo_ned” folder. The latter can be simply done by 

writing the command “cd catkin_ws_niryo_ned” to move to the folder, and the cloning can be 

done by inputting “git clone https://github.com/NiryoRobotics/ned_ros src”. ROS 

dependencies can be then easily installed by the following two lines: “rosdep update” and 

“rosdep install --from-paths src --ignore-src --default-yes --rosdistro melodic --skip-keys 

"python-rpi.gpio"” in the same folder. 
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Remaining in the “catkin_ws_niryo_ned” folder, the final step of the ROS Ned2 installation 

must be completed by setting up the Ned ROS environment. Creating a new directory by 

inputting “catkin_make”, and then by using the source command, all Ned packages are added 

to the ROS environment: “source devel/setup.bash”. The latter command is important to 

remember as it must run each time a new terminal is launched. However, it is easy to add it to 

the bashrc file so that it is appended to every new launched terminal with the following 

commands: “echo "source $(pwd)/devel/setup.bash" >> ~/.bashrc” and “source ~/.bashrc”. 

 

The integrity of the ROS installation and the Ned2 packages can be tested by opening a simple 

ROS simulation environment with the following command: “roslaunch niryo_robot_bringup 

niryo_ned2_simulation.launch”. This environment has no visualization nor the physics. To 

open a simulation environment with visualization and trackbar control for Ned2, one can utilize 

the RViz tool by inputting the command “roslaunch niryo_robot_description display.launch”. 

RViz enables for visualization and a user interface (Fig. 22). 

 

 

Figure 22. RViz with Ned2 

3.2 Case Studies 

3.2.1 Manual Pick-and-Place with PyNiryo 

The goal of this subsection is to write a simple demonstration with PyNiryo and analyze the 

movements and actions of the robot with forward kinematics. The program utilizes the most 

fundamental functions of the PyNiryo Python module, such as joints and positions, but also 
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introduces the IR sensor and the conveyor belt and how they can be controlled and implemented 

to work together with the Ned2 cobot. 

 

The idea of the case study is to move the conveyor belt forwards towards the direction of the 

robot with an object on it. As the object moves forward, it will be detected by the IR sensor. 

The IR sensor gives Ned2 a high signal, to which the robot responds by moving the 

tooltip/gripper towards the object with a slight delay so that the object will be under the tooltip. 

The robot will open its tool, approach the object, and then grasp the object. After this, the robot 

arm moves to the start of the conveyor belt and places the object back onto it. This action will 

be repeated by the robot until the program is manually stopped by the user. 

 

Since this program does not utilize vision pick or adapt to the changes such as moving the robot 

further away from the conveyor belt, its success depends on the precise, pre-defined locations 

of the robot, objects, and the conveyor belt. 

 

The program starts by importing everything from the PyNiryo package with “from pyniryo 

import *”. Next, an object is created called “tool_used” and assign it to a parameter 

“ToolID.GRIPPER_1”, which defines the tool that is used during the program, in this case the 

custom gripper which is denoted by the number one. After this, one can create the “robot” 

object and assign it to the robot’s IP address, the same way it was done while setting up 

PyNiryo. In order to connect the conveyor belt, one needs to create an object called 

“conveyor_id” and assign in to the parameter “robot.set_conveyor()”, while the parameter of 

the IR sensor depends on the digital input. In this case, the IR sensor is set to the digital input 

terminal number five, which is the designated port for the sensor (Fig. 20). 

 

The robot is then calibrated with the “robot.calibrate_auto()” function and the tool is updated 

with “robot.update_tool()”. The first part of the program appears as follows: 

 

from pyniryo import * 

 

tool_used = ToolID.GRIPPER_1 

 

robot = NiryoRobot("169.254.200.200") 
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conveyor_id = robot.set_conveyor() 

 

sensor_pin_id = PinID.DI5 

 

robot.calibrate_auto() 

robot.update_tool() 

 

The backbone of the program is the try-except structure. Under try resides the functions that 

define the actions of the robot. Under except there is a short, simple program that stops the 

actions of the robot if the user presses the keyboard letters CTRL and C simultaneously while 

being in the terminal. This is written as follows: 

 

except KeyboardInterrupt: 

    #CTRL+C to trigger keyboard interrupt 

    robot.stop_conveyor(conveyor_id) 

    pass 

 

Being able to manually stop the program from running is very useful due to the fact that the 

program under try is an endless loop that will not stop automatically at any moment. If the 

program is stopped, the “robot.close_connection()” function is executed, and the connection 

between the computer and robot is closed. 

 

Inside try, a set of functions are defined that are all part of the loop execution cycle. The first 

function that is defined is called “previous_position()” which prints a string “Returning back 

to the previous position” and manipulates the joints of the robot to the joint position “-0.039, 

0.599, -1.102, 0.0139, -0.985, -0.0536” with a PyNiryo function using the “robot” as its 

variable. This joint position can be considered as the observation position (pose) where the 

camera is overlooking the conveyor belt, in which the gripper is ready to move towards the 

conveyor belt to grasp objects. The “previous_position()” function is written as follows: 

 

def previous_position(): 

            print("Returning back to the previous position.") 

            robot.move_joints(-0.039, 0.599, -1.102, 0.0139, -0.985, -0.0536) 
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The next function is called “checking_objects()” which includes a while-else structure for the 

IR sensor and conveyor belt. This part of the program starts with defining the function itself, 

and then calls the “previous_position()” function where the robot arm moves back to its 

observation pose. The while-else structure comes after this, where the condition for while is 

that the digital signal from the IR sensor is high. This means that the IR sensor does not detect 

anything on the conveyor belt. A print statement “No objects.” is shown in the terminal and the 

conveyor belt is run at speed 50% with the forwards direction. However, if the digital signal 

from the IR sensor is low, the else-condition gets triggered, which calls for a function called 

“ready_pick()”. This part of the program looks like this: 

 

def checking_objects(): 

            previous_position() 

            while robot.digital_read(sensor_pin_id) == PinState.HIGH: 

                print("No objects.") 

                robot.run_conveyor(conveyor_id, speed=50, 

direction=ConveyorDirection.FORWARD) 

            else: 

                ready_pick() 

 

Now, it is logical to consider the contents of the “ready_pick()” function, which is the next step 

of the program where the conveyor belt stops and the robot moves on top of the object for the 

grasping. As before, first it is needed to define the function with “def ready_pick():”, and then 

the terminal prints the string “Objects found!”. The robot object is used with the “wait” 

argument, and the robot stops for four seconds before the conveyor belt is stopped. It was found 

that four seconds is the time when the object is approximately in front of the robot. During 

these four seconds, the object that is detected on the conveyor belt will move directly under the 

robot. Then the “move_joints” function is used again with the variable “robot”. The position is 

in the joint position format. After the robot has moved to the grasping location, it is set to wait 

for two and half seconds before the “grasp_tool()” function is called. This piece of code is 

written as follows: 

 

def ready_pick(): 

            print("Objects found!") 

            robot.wait(4.0) 

            robot.stop_conveyor(conveyor_id) 
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            robot.move_joints(-0.055, -0.2914, -0.414, -0.0674, -0.902, -0.064) 

            robot.wait(2.5) 

            grasp_tool() 

 

The next function is the “grasp_tool()” function which includes the part where the robot opens 

the tool in order to grasp the object from the conveyor belt, lowers itself further towards the 

object, and closes the tool/gripper around the object, retracting from the conveyor belt while 

holding onto the object. The terminal first prints the string “Grasping!”, and then the tool opens 

by calling the “robot.release_with_tool()” function. There is a little wait time of 2.5 seconds 

before the robot arm lowers itself to the object with the function, after which the object is 

grabbed using the “robot.grasp_with_tool()” function, and then the robot retracts the tool from 

the conveyor belt with the object after another wait period of 2.5 seconds, moving to a different 

position. After this, the “placing_back()” function is called.  This function is defined as follows: 

 

def grasp_tool(): 

            print("Grasping!") 

            robot.release_with_tool() 

            robot.wait(2.5) 

            robot.move_joints(-0.0546, -0.3065, -0.4462, -0.064334, -0.84838, 

-0.064334539) 

            print("Releasing!") 

            robot.grasp_with_tool() 

            robot.wait(2.5) 

            robot.move_pose(0.2746, -0.0075, 0.2269, -1.790, 1.500, -1.800) 

            robot.wait(2.5) 

            placing_back() 

 

The last function of this program is the “placing_back()” function, in which the robot arm 

moves the object to the end of the conveyor belt, and the try-except structure will be repeated 

unless the conditions under except are met. This function starts by printing “Placing the object 

back on the conveyor belt” in the terminal, and then the arm begins to move towards the end 

of the conveyor belt with the grasped object. There is a waiting time of 2.5 seconds before the 

arm would begin to lower itself towards the face of the conveyor belt, close enough so that the 

object would not bounce as it’s eventually released. The robot waits another 2.5 seconds before 

releasing the object onto the conveyor belt. It then retracts itself away from the object, and the 
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tool is closed again. The “checking_objects()” function is called, and the program repeats again 

unless stopped. This function is written as follows: 

 

def placing_back(): 

            print("Placing the object back on the conveyor belt.") 

            robot.move_pose(0.2746, -0.2468, 0.2269, -1.790, 1.500, -1.800) 

            robot.wait(2.5) 

            robot.move_pose(0.2746, -0.2468, 0.1969, -1.793, 1.500, -1.805) 

            robot.wait(2.5) 

            robot.release_with_tool() 

            robot.wait(2.5) 

            robot.move_joints(-0.7136, -0.49288, 0.111318, -0.0101645, -

1.1981216, -0.650315) 

            robot.grasp_with_tool() 

            checking_objects() 

 

The full program goes as follows: 

 

from pyniryo import * 

 

tool_used = ToolID.GRIPPER_1 

 

robot = NiryoRobot("169.254.200.200") 

 

conveyor_id = robot.set_conveyor() 

 

sensor_pin_id = PinID.DI5 

 

robot.calibrate_auto() 

robot.update_tool() 

 

try: 

    while True: 

        def previous_position(): 

            print("Returning back to the previous position.") 

            robot.move_joints(-0.039, 0.599, -1.102, 0.0139, -0.985, -0.0536) 
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        def checking_objects(): 

            previous_position() 

            while robot.digital_read(sensor_pin_id) == PinState.HIGH: 

                print("No objects.") 

                robot.run_conveyor(conveyor_id, speed=50, 

direction=ConveyorDirection.FORWARD) 

            else: 

                ready_pick() 

 

        def ready_pick(): 

            print("Objects found!") 

            robot.wait(4.0) 

            robot.stop_conveyor(conveyor_id) 

            robot.move_joints(-0.055, -0.2914, -0.414, -0.0674, -0.902, -0.064) 

            robot.wait(2.5) 

            grasp_tool() 

 

        def grasp_tool(): 

            print("Grasping!") 

            robot.release_with_tool() 

            robot.wait(2.5) 

            robot.move_joints(-0.0546, -0.3065, -0.4462, -0.064334, -0.84838, 

-0.064334539) 

            print("Releasing!") 

            robot.grasp_with_tool() 

            robot.wait(2.5) 

            robot.move_pose(0.2746, -0.0075, 0.2269, -1.790, 1.500, -1.800) 

            robot.wait(2.5) 

            placing_back() 

         

        def placing_back(): 

            print("Placing the object back on the conveyor belt.") 

            robot.move_pose(0.2746, -0.2468, 0.2269, -1.790, 1.500, -1.800) 

            robot.wait(2.5) 

            robot.move_pose(0.2746, -0.2468, 0.1969, -1.793, 1.500, -1.805) 

            robot.wait(2.5) 

            robot.release_with_tool() 

            robot.wait(2.5) 
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            robot.move_joints(-0.7136, -0.49288, 0.111318, -0.0101645, -

1.1981216, -0.650315) 

            robot.grasp_with_tool() 

            checking_objects() 

 

        checking_objects() 

 

except KeyboardInterrupt: 

    #CTRL+C to trigger keyboard interrupt 

    robot.stop_conveyor(conveyor_id) 

    pass 

 

robot.close_connection() 

3.2.2 Vision Pick-and-Place with PyNiryo 

This case study includes the usage of the vision module of Ned2. Instead of manually 

programming the robot to pick up objects, a camera and computer vision is used instead. The 

paper workspace, as seen on Figure 23., is going to be used to define the landmarks, the four 

circular shapes in the four corners of the paper workspace, followed by the initialization of the 

workspace with Blockly by manually defining the locations of each landmark of the workspace 

with the robot’s tooltip. 

 

The program uses a loop which includes a continuous search for blue objects. With the use of 

vision, the robot can judge the objects placed over the workspace. In this case, there are two 

different shapes of objects and three different colors of objects available. In the program, it is 

chosen that the robot tries to pick up all blue objects and place them back on the workspace 

after grasping and retracting from the pick location. Since the robot will rely on vision to judge 

the object’s color, there are uncertainties which depend on the object recognition algorithm or 

the environment surrounding the robot.  

 

For the best results, one can adjust the camera settings such as brightness and contrast, so that 

the colors look as vibrant as possible, and the contours that the objects create are as sharp as 

possible. One can change these parameters either on PyNiryo or via Niryo Studio. In this case 

study, the settings of the camera are adjusted on Niryo Studio. 
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Contrast can be used in order to make the colors of the objects stand out more. As seen on 

Figure 23., “contrast” brings more color to objects which aids the vision module to better judge 

the objects’ color and consequently pick the right one. 

 

 

Figure 23. Camera view with maximum contrast 

 

If the environment of the robot is dim and light intensity cannot be increased, the camera 

settings can be modified to compensate for the lack of brightness with the “brightness” slider 

(Fig. 24). 

 

 

Figure 24. Camera view with maximum brightness 

 

The 2D camera calculates the positions of the objects within the workspace using the four 

markers, where the markers are the origin in the 3D space. Essentially, the camera 
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communicates with the robot and gives it a relative position in its own reference frame, which 

the robot translates to its own interpretation of position in its own reference frame. (Niryo, 

2021) 

 

It must be noted that the objects have to be already within the workspace before running the 

program with the robot. It is not possible to add more objects during vision pick-and-place. 

 

One starts writing the program by importing the PyNiryo package and defining the IP of the 

robot as previously: 

 

from pyniryo import * 

 

robot = NiryoRobot("169.254.200.200") 

 

Now, one needs to create a workspace on Niryo Studio. In our case, the physical workspace is 

the paper workspace that came with Ned2, and it is on the robot’s left-hand side over the table 

(Fig. 25). 

 

 

Figure 25. Ned2 with the paper workspace 

 

The workspace has to be defined by adding a new workspace in the vision tab by clicking the 

plus button, and then following the markers in the corner of the paper clockwise. By following 

the instructions given by the software, the workspace is then ready to be used with PyNiryo 

(Fig. 26). 
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Figure 26. A defined workspace in Niryo Studio 

 

This workspace is then imported to PyNiryo by creating an object called “workspace_name”, 

and by using the name of the workspace defined on Niryo Studio, which in this case is 

“paper_ws-1”: 

 

workspace_name = "paper_ws-1" 

 

Then one calibrates the robot and update the tool just like in the previous case study before 

writing the program itself: 

 

robot.calibrate_auto() 

robot.update_tool() 

 

To use the vision module, two new objects have to be defined that denote the pick-and-place 

locations. They are called “observation_pose” and “place_pose”. The observation pose defines 

the location where the robot is observing the workspace and detecting and analyzing objects 

by their shape and color. The user can input the x, y, and z coordinates and the roll, pitch, and 

yaw of the end-effector. The place pose defines where the robot places the picked-up object. 

The objects are written as follows: 

 

observation_pose = PoseObject( 
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    x=-0.010, y=0.185, z=0.311, 

    roll=3.032, pitch=1.352, yaw=-1.615) 

 

place_pose = PoseObject( 

    x=-0.012, y=0.252, z=0.086, 

    roll=2.772, pitch=1.559, yaw=-1.913) 

 

After defining the locations for observation and place, before the start of the try-except 

structure, the robot is moved to the observation pose: 

 

robot.move_pose(observation_pose) 

 

One uses the try-except structure again to make a looping program unless the user interrupts it 

with the key combination. After this, the function “robot.close_connection()” is used again to 

close to connection between the computer and the robot. The except structure is written as 

follows: 

 

except KeyboardInterrupt: 

    #CTRL+C to trigger keyboard interrupt 

    Pass 

 

Under “try”, a new indent is created and a code section called “while True” is included, which 

is the section where the observation, picking, and placing happens unless it becomes false with 

the keyboard interrupt. The first part that is needed to be defined by the user is to define an 

object called “obj_found, shape_ret, color_ret”: 

 

while True: 

        obj_found, shape_ret, color_ret = robot.vision_pick(workspace_name, 

                                                    height_offset=0.01, 

                                                    shape=ObjectShape.ANY, 

                                                    color=ObjectColor.BLUE) 

 

This object includes the “robot.vision_pick” function which is a preset function in PyNiryo 

which is used to define the workspace, the height offset from the workspace, the shape of the 

object, and the color of the object that is to be picked. A 0.01 𝑚 offset is chosen with 
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“height_offset” and the shape of the object can be anything with “shape=ObjectShape.ANY”, 

with the desirable color being blue by writing “color=ObjectColor.BLUE”. 

 

Then another indentation is made, and it is defined what happens if a suitable object is found 

with “if obj_found:”. What was defined previously plays an important role here to initiate this 

if-statement since this statement will only get triggered if the camera detects a suitable object. 

In case the prescribed conditions are met, the robot arm will approach the object according to 

the height of the offset, grasp it, and then place it to the location defined in the “place_pose” 

object. After this, the arm goes back to the “observation_pose” position and the program 

repeats unless stopped. 

 

        if obj_found: 

            robot.place_from_pose(place_pose) 

            robot.move_pose(observation_pose) 

 

All these parts combined; the program is written as follows: 

 

from pyniryo import * 

 

robot = NiryoRobot("169.254.200.200") 

workspace_name = "paper_ws-1" 

 

robot.calibrate_auto() 

robot.update_tool() 

 

observation_pose = PoseObject( 

    x=-0.010, y=0.185, z=0.311, 

    roll=3.032, pitch=1.352, yaw=-1.615) 

 

place_pose = PoseObject( 

    x=-0.012, y=0.252, z=0.086, 

    roll=2.772, pitch=1.559, yaw=-1.913) 

 

robot.move_pose(observation_pose) 

 

try: 
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    while True: 

        obj_found, shape_ret, color_ret = robot.vision_pick(workspace_name, 

                                                    height_offset=0.01, 

                                                    shape=ObjectShape.ANY, 

                                                    color=ObjectColor.BLUE) 

     

        if obj_found: 

            robot.place_from_pose(place_pose) 

            robot.move_pose(observation_pose) 

 

except KeyboardInterrupt: 

    #CTRL+C to trigger keyboard interrupt 

    pass 

 

robot.close_connection() 

3.2.3 RViz and Gazebo (ROS) 

This case study is a brief example of how Ned2 can be controlled in RViz and Gazebo 

simulation and also introduces the basic capabilities of both of the software and their 

possibilities in robotics research. The goal is to show how the robot’s motion can be planned 

in RViz and then executed, and how objects and virtual environments can be created in Gazebo. 

 

To open RViz with ROS control for Ned2, one needs to execute the following command in the 

Ubuntu Terminal: 

 

roslaunch niryo_robot_bringup desktop_rviz_simulation.launch 

 

To open Gazebo with the Ned2 robot, a new terminal has to be opened and the following has 

to be run: 

 

roslaunch niryo_robot_bringup desktop_gazebo_simulation.launch 

 

One can see that the position of the end-effector of Ned2 in RViz can be defined by the three 

Cartesian axes and the three different types of rotations: roll, pitch, and yaw (Fig. 27). 
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Figure 27. Ned2 in RViz 

 

Motion planning can be done easily by manipulating the end-effector of the robot with the 

given sliders. After the desired position is defined by the user by interacting with the end-

effector, one can go to the “Planning” tab under “MotionPlanning” and click “Plan”. It is useful 

to check the “Collision-aware IK” box under “Options”, which will show if the joints or links 

of the robot collide with one another. To add a start position manually, one can click 

“<current>” under “Start State” under “Query” and choose “Straight Forward”. After this, one 

clicks “Execute” in order to make the robot move to the desired position (Fig. 28). 

 

 

Figure 28. Executing the desired planned motion in RViz 

 

It is possible to add objects such as a cylinder into the simulation by going to the “Scene 

Objects” tab under “MotionPlanning”. Under “Add/Remove scene object(s)”, a cylinder can 
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be added by clicking on the “Box” dropdown menu and then choosing “Cylinder”, after which 

one can press the plus sign. It is also possible to change the size of the cylinder under 

“Add/Remove object(s)” by changing the three values, two of which are available for cylinders 

due to the object’s geometry (Fig. 29). The cylinder will appear to the 3D view, and it can be 

moved with the arrows. 

 

 

Figure 29. Ned2 with a cylinder in RViz 

 

RViz can also display the joint angles of the robot in degrees in the “Joints” tab under 

“MotionPlanning” (Fig. 30). 

 

 

Figure 30. Ned2 joint angles in RViz 
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Now, the individual capabilities of Gazebo are investigated. Gazebo offers more versatile tools 

compared to RViz when it comes to simulating a real environment. It is possible to add light, 

wind, change the temperature of the environment, and even edit the values of gravity, which 

can be useful for applications such as space robotics. It is also possible to add objects and build 

an environment with, for example, walls and even stairs and floors. The possibility to create a 

whole building in Gazebo is useful especially for mobile robotics research. 

 

First it is demonstrated how to create an object in Gazebo. By clicking “Edit” in the left-hand 

corner of the Gazebo window and then clicking “Model Editor”, the Model Editor window 

pops up where one can create and edit objects (Fig. 31). 

 

 

Figure 31. The Model Editor of Gazebo 

 

It is possible to either choose a simple shape or import a custom 3D mesh. Now, the cylinder 

is chosen under “Simple Shapes” for simplicity. After choosing the desired shape, one must 

drag it to the simulation window and then left click to place it in the 3D view of Gazebo. The 

objects can be easily scaled by entering the Scale Mode by pressing “S” on the keyboard. 

Consequently, after resizing the object if needed, one can go back to the Selection Mode, one 

can press “ESC”. To move the resized object, one presses “T” to enter the Translation Mode. 

Exiting the model editor can be done by clicking “Edit” and then “Exit Model Editor”, after 

which the model can be saved. 
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Gazebo enables the user to add different kinds of lights. On the top toolbar of the simulation 

window, three kinds of different lights can be added. In this demonstration, we add a “spot 

light” and drag it over the robot and the workspaces to highlight the area better (Fig. 32). 

 

 

Figure 32. The simulation environment with a cylinder and light 

 

To create an actual virtual environment around the robot, the “Building Editor” can be opened 

under “Edit”. In this demonstration, a simple rectangular room is added to the simulation with 

a window and door. Under “Create Walls”, “Wall” is chosen and then the walls are drawn onto 

the gridded area on the right. Adding windows and doors is similar and can be done by clicking 

under “Add Features”. Colors and textures can also be added to the various building objects 

under “Colors” and “Add Texture”. The completed room can be seen on Figure 33. 

 

 

Figure 33. Ned2 inside a virtual room created with Gazebo 
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3.3 Kinematic Studies 

3.3.1 Forward Kinematics of Ned2 

In this demonstration, the focus is shifted from a more hands-on example to the mathematics 

behind robot control. First, the movement during the “grasp_tool()” and “placing_back()” 

functions of the manual pick-and-place PyNiryo case study are inspected. During this 

movement, the robot moves from the grasping point to the end of the conveyor belt. Instead of 

using joints, positions are used when it comes to the “robot.move_pose()” function of the case 

study in order to analyze the translation matrix from point A to B. 

 

The origin of this Cartesian coordinate system is the surface under the robot. The first three 

values inside this function are the x, y, and z coordinates, and the latter three are roll, pitch, and 

yaw; roll is related to the x-axis, pitch is related to the y-axis, and yaw is related to the z-axis. 

One can first create a transformation translation matrix 𝑇𝐴,𝐵 with A being the position (0.2746, 

-0.0075, 0.2269, -1.790, 1.500, -1.800) and B being the position (0.2746, -0.2468, 0.2269, -

1.790, 1.500, -1.800) denoted by 𝑃𝐵.  

 

The translation matrix is found by implementing the equation (2): 

 

𝑃𝐵 = [
0.2746

−0.2468
0.2269

] = [
0.2746

−0.0075
0.2269

] + [
x
y
z
] 

→ [
x
y
z
] = 𝑇𝐴,𝐵 = [

0.2746
−0.2468
0.2269

] − [
0.2746

−0.0075
0.2269

] = [
0.0000

−0.2393
0.0000

] 

 

This means that the end-effector of the robot does not translate in the x or z axes, but only in 

the y-axis. The translation matrix can be expressed in its vector form as follows 𝑇𝐴,𝐵 =

[0.0000,−0.2393,0.0000]. 

 

In order to calculate the transformation matrix with the use of joints, one must consider all 

the six joints of the robot to find the final position of the end-effector. Let’s take the joint 

movement from the function “ready_pick()” from the manual pick-and-place case study. The 

joint values in radians are (-0.055, -0.2914, -0.414, -0.0674, -0.902, -0.064). These joint 
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values shall be denoted as 𝐽𝐴 =

[−0.0550,−0.2914,−0.1410,−0.0674,−0.9020,−0.0640]. 

 

In order to calculate transformation matrix for the joints, one must know the lengths of each 

link in the robot arm. Using the “Measure” function in RViz, the link lengths were measured: 

 

Table 1. Link lengths measured with RViz 

Link Length (m) 

1 0.079 

2 0.220 

3 0.060 

4 0.180 

5 0.030 

6 0.020 

 

The transformations are calculated for each joint separately using the Denavit-Hartenberg 

convention, and the total transformation at the end-effector of a six-axis robot can be calculated 

with the following equation: 

 

𝑇0
6 = 𝑇1

0 ∙ 𝑇2
1 ∙ 𝑇3

2 ∙ 𝑇4
3 ∙ 𝑇5

4 ∙ 𝑇6
5  

 

Before being able to determine the transformation matrix for each joint, the Denavit-

Hartenberg method must be used in order to determine the link and joint parameters. One can 

determine the default pose for Ned2 when all joint angles are zero with RViz (ROS) (Fig. 34), 

which will help with constructing the diagram. 

 



61 

 

 

Figure 34. Zero joint angles of Ned2 in RViz 

 

The Denavit-Hartenberg diagram for Ned2 is shown in Figure 35. with the rotational direction 

of the angles denoting the positive direction. In the diagram, it is to be noticed that the geometry 

of the robot has been simplified, and one geometric property of Ned2 have been omitted, 

namely the offset from joint 3 to joint 4; this may lead to an imperfect result that does not 

correspond to the position of the real robot. As can be seen in the diagram, the fifth frame had 

to be moved over to the fourth frame since the previous z-axis and the current x-axis must 

intersect each other according to the rules of the Denavit-Hartenberg convention. 
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Figure 35. The Denavit-Hartenberg notation for Ned2 

 

Based on Figure 35., one can create a Denavit-Hartenberg parameter table (Table 2.). 

 

Table 2. The Denavit-Hartenberg parameter table for Ned2 

Joint Joint angle 

𝜽 (rad) 

Link twist 

𝜶 (rad) 

Link length 

𝒂/𝒓 (m) 

Link offset 

𝒅 (m) 

1 𝜃1 1.571 0 𝑑1 

2 𝜃2 0 𝑎1 0 

3 𝜃3 -1.571 𝑎2 0 

4 𝜃4 1.571 0 −𝑑2 

5 𝜃5 -1.571 0 0 

6 𝜃6 3.141 0 −(𝑎3 + 𝑑3) 

 

Now, with values of 𝑎/𝑟 and 𝑑 measured with RViz: 
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Table 3. The Denavit-Hartenberg parameter table for Ned2 

Joint Joint angle 

𝜽 (rad) 

Link twist 

𝜶 (rad) 

Link length 

𝒂/𝒓 (m) 

Link offset 

𝒅 (m) 

1 𝜃1 1.571 0 0.079 

2 𝜃2 0 0.220 0 

3 𝜃3 -1.571 0.060 0 

4 𝜃4 1.571 0 -0.180 

5 𝜃5 -1.571 0 0 

6 𝜃6 3.141 0 -(0.030 + 0.020) 

 

Finally, inputting the joint angles 𝐽𝐴: 

 

Table 4. The Denavit-Hartenberg parameters for joint angles 𝐽𝐴 

Joint Joint angle 

𝜽 (rad) 

Link twist 

𝜶 (rad) 

Link length 

𝒂/𝒓 (m) 

Link offset 

𝒅 (m) 

1 −0.055 1.571 0 0.079 

2 −0.291 0 0.220 0 

3 −0.141 1.571 0.060 0 

4 −0.067 -1.571 0 -0.180 

5 −0.902 1.571 0 0 

6 −0.064 3.141 0 -0.050 

 

These values can then be inputted into the Denavit-Hartenberg homogeneous transformation 

matrix using the equation (10) for each joint, starting with the first joint: 

 

𝑇1 = [

cos(−0.055) − sin(−0.0550) cos(1.571) sin(−0.055) sin(1.571) 0 cos(−0.055)
sin(−0.055) cos(−0.055) cos(1.571) −cos(−0.055) sin(1.571) 0 sin(−0.055)

0 sin(1.571) cos(1.571) 0.079
0 0 0 1

]0  

 

For the second joint: 
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𝑇2 = [

cos(−0.291) − sin(−0.291) cos(0) sin(−0.291) sin(0) 0.220 cos(−0.291)
sin(−0.291) cos(−0.291) cos(0) −cos(−0.291) sin(0) 0.220 sin(−0.291)

0 sin(0) cos(0) 0
0 0 0 1

]1  

 

For the third joint: 

 

𝑇3 = [

cos(−0.141) − sin(−0.141) cos(1.571) sin(−0.141) sin(1.571) 0.060 cos(−0.141)
sin(−0.141) cos(−0.141) cos(1.571) −cos(−0.141) sin(1.571) 0.060 sin(−0.141)

0 sin(1.571) cos(1.571) 0
0 0 0 1

]2  

 

For the fourth joint: 

 

𝑇4 = [

cos(−0.067) − sin(−0.067) cos(−1.571) sin(−0.067) sin(−1.571) 0 cos(−0.067)
sin(−0.067) cos(−0.067) cos(−1.571) −cos(−0.067) sin(−1.571) 0 sin(−0.067)

0 sin(−1.571) cos(−1.571) −0.180
0 0 0 1

]3  

 

For the fifth joint: 

 

𝑇5 = [

cos(−0.902) − sin(−0.902) cos(1.571) sin(−0.902) sin(1.571) 0 cos(−0.902)
sin(−0.902) cos(−0.902) cos(1.571) −cos(−0.902) sin(1.571) 0 sin(−0.902)

0 sin(1.571) cos(1.571) 0
0 0 0 1

]4  

 

And for the last joint, the sixth: 

 

𝑇6 = [

cos(−0.064) − sin(−0.064) cos(−3.140) sin(−0.064) sin(−3.140) 0 cos(−0.064)

sin(−0.064) cos(−0.064) cos(−3.140) −cos(−0.064) sin(−3.140) 0 sin(−0.064)
0 sin(−3.140) cos(−3.140) −0.050
0 0 0 1

]5  

 

Now, using the equation (14): 

 

𝑇0
6 = [

0.889 −0.066 −0.453 0.317
0.059 0.998 −0.032 −0.019
0.455 0.002 0.891 0.200

0 0 0 1

] 

 

This yields a rotation matrix 𝑅𝐴: 
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𝑅𝐴 = [
0.889 −0.066 −0.453

0.059 0.998 −0.032

0.455 0.002 0.891

] 

 

And a position matrix 𝑃𝐴: 

 

𝑃𝐴 = [
0.317

−0.019

0.200

]    (16) 

3.3.2 Jacobian Matrix of Ned2 

A Jacobian matrix is used when the joint velocities of the robot must be related to the 

velocity of the end-effector. Using the equation (9) and inputting it into the equation (8), the 

latter for a six-axis robot arm is denoted as follows: 

 

[
 
 
 
 
 

ẋ
ẏ
ż

ωx

ωy

ωz]
 
 
 
 
 

=

[
 
 
 
 
 
J11 J12 J13 J14 J15 J16

J21 J22 J23 J24 J25 J26

J31 J32 J33 J34 J35 J36

J41 J42 J43 J44 J45 J46

J51 J52 J53 J54 J55 J56

J61 J62 J63 J64 J65 J66]
 
 
 
 
 

[
 
 
 
 
 
 
θ̇1

θ̇2

θ̇3

θ̇4

θ̇5

θ̇6]
 
 
 
 
 
 

 

 

To find the Jacobian matrix, one needs to first write down the transformation matrices for each 

link in the robot. In total, six transformation matrices are required, one for each of the six links. 

In this case, MATLAB can used when multiplying the matrices to find the transformation 

matrix from frame 0 to 6, 𝑇0
6 to aid the calculation, which is expected to be tedious since six 

variables (joint angles) have to be considered. The same transformation matrices as in the 

previous demonstration can be used with the same values of 𝛼, 𝑎, and 𝑑, but without defined 

joint angles: 

 

𝑇1 = [

cos(θ1) − sin(θ1) cos(1.571) sin(θ1) sin(1.571) 0 cos(θ1)
sin(θ1) cos(−0.055) cos(1.571) −cos(θ1) sin(1.571) 0 sin(θ1)

0 sin(1.571) cos(1.571) 0.079
0 0 0 1

]0  

 

For the second joint: 
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𝑇2 = [

cos(θ2) − sin(θ2) cos(0) sin(θ2) sin(0) 0.220 cos(θ2)
sin(θ2) cos(θ2) cos(0) −cos(θ2) sin(0) 0.220 sin(θ2)

0 sin(0) cos(0) 0
0 0 0 1

]1  

 

For the third joint: 

 

𝑇3 = [

cos(θ3) − sin(θ3) cos(−1.571) sin(θ3) sin(−1.571) 0.060 cos(θ3)
sin(θ3) cos(θ3) cos(−1.571) −cos(θ3) sin(−1.571) 0.060 sin(θ3)

0 sin(−1.571) cos(−1.571) 0
0 0 0 1

]2  

 

For the fourth joint: 

 

𝑇4 = [

cos(θ4) − sin(θ4) cos(1.571) sin(θ4) sin(1.571) 0 cos(θ4)
sin(θ4) cos(θ4) cos(1.571) −cos(θ4) sin(1.571) 0 sin(θ4)

0 sin(1.571) cos(1.571) −0.180
0 0 0 1

]3  

 

For the fifth joint: 

 

𝑇5 = [

cos(θ5) − sin(θ5) cos(1.571) sin(θ5) sin(1.571) 0 cos(θ5)
sin(θ5) cos(θ5) cos(1.571) −cos(θ5) sin(1.571) 0 sin(θ5)

0 sin(1.571) cos(1.571) 0
0 0 0 1

]4  

 

And for the last joint, the sixth: 

 

𝑇6 = [

cos(θ6) − sin(θ6) cos(−3.140) sin(θ6) sin(−3.140) 0 cos(θ6)

sin(θ6) cos(θ6) cos(−3.140) −cos(θ6) sin(−3.140) 0 sin(θ6)
0 sin(−3.140) cos(−3.140) −0.050
0 0 0 1

]5  

 

Now, using the equation (14) with MATLAB: 

 

𝑇0
6 = [

⋯ ⋯ ⋯ x
⋯ ⋯ ⋯ y
⋯ ⋯ ⋯ z
0 0 0 1

] 
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Where 

𝑥 = (676279337148533 ∗ 𝑠𝑖𝑛(𝑡1))/18446744073709551616 + (11 ∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2))/50 

− (1801439813583837 ∗ 𝑐𝑜𝑠(𝑡5) ∗ ((4503599440548691 ∗ 𝑐𝑜𝑠(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2) 

− (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡2) ∗ 𝑠𝑖𝑛(𝑡1))/36893488147419103232))/4503599627370496 

− (3757107307382221 ∗ 𝑠𝑖𝑛(𝑡1))/18446744073709551616 + (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡4)

∗ (𝑐𝑜𝑠(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2) + (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232) −  𝑠𝑖𝑛(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2) − (7514214926474921

∗ 𝑐𝑜𝑠(𝑡2) ∗ 𝑠𝑖𝑛(𝑡1))/36893488147419103232)))/36893488147419103232 

+ (4503599440548691 ∗ 𝑠𝑖𝑛(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2) + (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232))/4503599627370496 − (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡4)

∗ ((4503599440548691 ∗ 𝑠𝑖𝑛(𝑡1))/4503599627370496 +  (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡3)

∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2) −  (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡2)

∗ 𝑠𝑖𝑛(𝑡1))/36893488147419103232))/36893488147419103232 + (7514214926474921

∗ 𝑠𝑖𝑛(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2) + (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232))/36893488147419103232))/36893488147419103232))

/36028797018963968 + (1291505690487877 ∗ 𝑠𝑖𝑛(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2))/28823037615171174400 

+ (3 ∗ 𝑐𝑜𝑠(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2) +  (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232))/50 −  (8106479254538167 ∗ 𝑐𝑜𝑠(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2) − (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡2)

∗ 𝑠𝑖𝑛(𝑡1))/36893488147419103232))/45035996273704960 + (46963842316373 ∗ 𝑠𝑖𝑛(𝑡4)

∗ (𝑐𝑜𝑠(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2) + (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232) −  𝑠𝑖𝑛(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2) − (7514214926474921

∗ 𝑐𝑜𝑠(𝑡2) ∗ 𝑠𝑖𝑛(𝑡1))/36893488147419103232)))/4611686018427387904 

− (8106479254538167 ∗ 𝑠𝑖𝑛(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2) + (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232))/45035996273704960 − (3 ∗ 𝑠𝑖𝑛(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2) − (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡2) ∗ 𝑠𝑖𝑛(𝑡1))/36893488147419103232))/50 

− (46963842316373 ∗ 𝑐𝑜𝑠(𝑡4) ∗ ((4503599440548691 ∗ 𝑠𝑖𝑛(𝑡1))/4503599627370496 

+ (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2) − (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡2)

∗ 𝑠𝑖𝑛(𝑡1))/36893488147419103232))/36893488147419103232 + (7514214926474921

∗ 𝑠𝑖𝑛(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2) + (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232))/36893488147419103232))/4611686018427387904 

+ (1801439813583837 ∗ 𝑠𝑖𝑛(𝑡5) ∗ (𝑐𝑜𝑠(𝑡4) ∗ (𝑐𝑜𝑠(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2) 

+ (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232) −  𝑠𝑖𝑛(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2) − (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡2) ∗ 𝑠𝑖𝑛(𝑡1))/36893488147419103232)) +  𝑠𝑖𝑛(𝑡4)

∗ ((4503599440548691 ∗ 𝑠𝑖𝑛(𝑡1))/4503599627370496 +  (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡3)

∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2) −  (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡2)

∗ 𝑠𝑖𝑛(𝑡1))/36893488147419103232))/36893488147419103232 + (7514214926474921

∗ 𝑠𝑖𝑛(𝑡3) ∗ (𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2) + (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232))/36893488147419103232)))/36028797018963968 
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𝑦 = (11 ∗ 𝑐𝑜𝑠(𝑡2) ∗ 𝑠𝑖𝑛(𝑡1))/50 − (1291505690487877 ∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2))/28823037615171174400 

− (676279337148533 ∗ 𝑐𝑜𝑠(𝑡1))/18446744073709551616 − (8106479254538167 ∗ 𝑐𝑜𝑠(𝑡3)

∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2))/36893488147419103232 +  𝑠𝑖𝑛(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2)))/45035996273704960 − (3 ∗ 𝑐𝑜𝑠(𝑡3) ∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232 −  𝑐𝑜𝑠(𝑡2) ∗ 𝑠𝑖𝑛(𝑡1)))/50 −  (46963842316373 ∗ 𝑠𝑖𝑛(𝑡4)

∗ (𝑐𝑜𝑠(𝑡3) ∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232 −  𝑐𝑜𝑠(𝑡2)

∗ 𝑠𝑖𝑛(𝑡1)) +  𝑠𝑖𝑛(𝑡3) ∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2))/36893488147419103232 

+  𝑠𝑖𝑛(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2))))/4611686018427387904 − (3 ∗ 𝑠𝑖𝑛(𝑡3) ∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1)

∗ 𝑐𝑜𝑠(𝑡2))/36893488147419103232 +  𝑠𝑖𝑛(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2)))/50 +  (8106479254538167

∗ 𝑠𝑖𝑛(𝑡3) ∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232 −  𝑐𝑜𝑠(𝑡2)

∗ 𝑠𝑖𝑛(𝑡1)))/45035996273704960 + (46963842316373 ∗ 𝑐𝑜𝑠(𝑡4) ∗ ((4503599440548691

∗ 𝑐𝑜𝑠(𝑡1))/4503599627370496 − (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡3) ∗ ((7514214926474921

∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2))/36893488147419103232 +  𝑠𝑖𝑛(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2)))/36893488147419103232 

+ (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡3) ∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232 −  𝑐𝑜𝑠(𝑡2)

∗ 𝑠𝑖𝑛(𝑡1)))/36893488147419103232))/4611686018427387904 − (1801439813583837

∗ 𝑠𝑖𝑛(𝑡5) ∗ (𝑐𝑜𝑠(𝑡4) ∗ (𝑐𝑜𝑠(𝑡3) ∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232 −  𝑐𝑜𝑠(𝑡2) ∗ 𝑠𝑖𝑛(𝑡1)) +  𝑠𝑖𝑛(𝑡3) ∗ ((7514214926474921

∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2))/36893488147419103232 +  𝑠𝑖𝑛(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2))) +  𝑠𝑖𝑛(𝑡4)

∗ ((4503599440548691 ∗ 𝑐𝑜𝑠(𝑡1))/4503599627370496 −  (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡3)

∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2))/36893488147419103232 +  𝑠𝑖𝑛(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2)))/36893488147419103232 + (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡3) ∗ ((7514214926474921

∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232 −  𝑐𝑜𝑠(𝑡2)

∗ 𝑠𝑖𝑛(𝑡1)))/36893488147419103232)))/36028797018963968 − (1801439813583837

∗ 𝑐𝑜𝑠(𝑡5) ∗ ((3757107307382221 ∗ 𝑐𝑜𝑠(𝑡1))/18446744073709551616 + (4503599440548691

∗ 𝑐𝑜𝑠(𝑡3) ∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2))/36893488147419103232 +  𝑠𝑖𝑛(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2)))/4503599627370496 − (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡4) ∗ (𝑐𝑜𝑠(𝑡3)

∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232 −  𝑐𝑜𝑠(𝑡2) ∗ 𝑠𝑖𝑛(𝑡1)) 

+  𝑠𝑖𝑛(𝑡3) ∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2))/36893488147419103232 +  𝑠𝑖𝑛(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2))))/36893488147419103232 −  (4503599440548691 ∗ 𝑠𝑖𝑛(𝑡3)

∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232 −  𝑐𝑜𝑠(𝑡2)

∗ 𝑠𝑖𝑛(𝑡1)))/4503599627370496 + (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡4) ∗ ((4503599440548691

∗ 𝑐𝑜𝑠(𝑡1))/4503599627370496 − (7514214926474921 ∗ 𝑐𝑜𝑠(𝑡3) ∗ ((7514214926474921

∗ 𝑐𝑜𝑠(𝑡1) ∗ 𝑐𝑜𝑠(𝑡2))/36893488147419103232 +  𝑠𝑖𝑛(𝑡1) ∗ 𝑠𝑖𝑛(𝑡2)))/36893488147419103232 

+ (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡3) ∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡1)

∗ 𝑠𝑖𝑛(𝑡2))/36893488147419103232 −  𝑐𝑜𝑠(𝑡2)

∗ 𝑠𝑖𝑛(𝑡1)))/36893488147419103232))/36893488147419103232))/36028797018963968 
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𝑧 = (154811233979861 ∗ 𝑠𝑖𝑛(𝑡2))/703687441776640 +  (3242591634559417 ∗ 𝑐𝑜𝑠(𝑡2)

∗ 𝑐𝑜𝑠(𝑡3))/18014398509481984 + (5404319440751511 ∗ 𝑐𝑜𝑠(𝑡2)

∗ 𝑠𝑖𝑛(𝑡3))/90071992547409920 + (5404319440751511 ∗ 𝑐𝑜𝑠(𝑡3)

∗ 𝑠𝑖𝑛(𝑡2))/90071992547409920 + (46963842316373 ∗ 𝑐𝑜𝑠(𝑡4) ∗ ((234819211581865

∗ 𝑐𝑜𝑠(𝑡2) ∗ 𝑐𝑜𝑠(𝑡3))/1152921504606846976 − (234819211581865 ∗ 𝑠𝑖𝑛(𝑡2)

∗ 𝑠𝑖𝑛(𝑡3))/1152921504606846976 

+  234819211581865/1152921504606846976))/4611686018427387904 

− (3242591634559417 ∗ 𝑠𝑖𝑛(𝑡2) ∗ 𝑠𝑖𝑛(𝑡3))/18014398509481984 − (1801439813583837

∗ 𝑠𝑖𝑛(𝑡5) ∗ (𝑠𝑖𝑛(𝑡4) ∗ ((234819211581865 ∗ 𝑐𝑜𝑠(𝑡2) ∗ 𝑐𝑜𝑠(𝑡3))/1152921504606846976 

− (234819211581865 ∗ 𝑠𝑖𝑛(𝑡2) ∗ 𝑠𝑖𝑛(𝑡3))/1152921504606846976 

+  234819211581865/1152921504606846976) −  𝑐𝑜𝑠(𝑡4) ∗ ((9007199067919185 ∗ 𝑐𝑜𝑠(𝑡2)

∗ 𝑠𝑖𝑛(𝑡3))/9007199254740992 + (9007199067919185 ∗ 𝑐𝑜𝑠(𝑡3)

∗ 𝑠𝑖𝑛(𝑡2))/9007199254740992)))/36028797018963968 −  (1801439813583837 ∗ 𝑐𝑜𝑠(𝑡5)

∗ ((7514214926474921 ∗ 𝑐𝑜𝑠(𝑡4) ∗ ((234819211581865 ∗ 𝑐𝑜𝑠(𝑡2)

∗ 𝑐𝑜𝑠(𝑡3))/1152921504606846976 − (234819211581865 ∗ 𝑠𝑖𝑛(𝑡2)

∗ 𝑠𝑖𝑛(𝑡3))/1152921504606846976 

+  234819211581865/1152921504606846976))/36893488147419103232 

− (9007198694275583 ∗ 𝑐𝑜𝑠(𝑡2) ∗ 𝑐𝑜𝑠(𝑡3))/9007199254740992 + (9007198694275583

∗ 𝑠𝑖𝑛(𝑡2) ∗ 𝑠𝑖𝑛(𝑡3))/9007199254740992 + (7514214926474921 ∗ 𝑠𝑖𝑛(𝑡4)

∗ ((9007199067919185 ∗ 𝑐𝑜𝑠(𝑡2) ∗ 𝑠𝑖𝑛(𝑡3))/9007199254740992 + (9007199067919185

∗ 𝑐𝑜𝑠(𝑡3) ∗ 𝑠𝑖𝑛(𝑡2))/9007199254740992))/36893488147419103232 

+  783587428139897/18889465931478580854784))/36028797018963968 

+ (46963842316373 ∗ 𝑠𝑖𝑛(𝑡4) ∗ ((9007199067919185 ∗ 𝑐𝑜𝑠(𝑡2)

∗ 𝑠𝑖𝑛(𝑡3))/9007199254740992 + (9007199067919185 ∗ 𝑐𝑜𝑠(𝑡3)

∗ 𝑠𝑖𝑛(𝑡2))/9007199254740992))/4611686018427387904 

+  2846274695474751/36028797018963968 

 

The variables 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, and 𝑡6 denote joint angles 𝜃1, … , 𝜃6 respectively. 

 

Now, one must take partial derivatives of the right-hand side column of the resulting 

transformation matrix 𝑇6
0 , with each of the rows denoting x, y, and z positions with respect 

to each of the six joint angles. This operation results in the needed 𝐽𝑣 matrix which relates to 

the linear velocities of the end-effector. As per equation (6), the 𝐽𝑣 matrix is defined as: 

 

𝐽𝑣 =

[
 
 
 
 
 
 
∂x

∂𝜃1

∂x

∂𝜃2

∂x

∂𝜃3

∂x

∂𝜃4

∂x

∂𝜃5

∂x

∂𝜃6

∂y

∂𝜃1

∂y

∂𝜃2

∂y

∂𝜃3

∂y

∂𝜃4

∂y

∂𝜃5

∂y

∂𝜃6

∂z

∂𝜃1

∂z

∂𝜃2

∂z

∂𝜃3

∂z

∂𝜃4

∂z

∂𝜃5

∂z

∂𝜃6]
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To proceed with constructing the Jacobian, next one must find the 𝐽𝜔 matrix that relates the 

angular velocities to the end-effector. The values 𝜔̂1, … , 𝜔̂6 can be found easily from the 

transformation matrices defined earlier. The third column of these matrices is the 

corresponding value for 𝜔̂n since the axis of rotation for each joint is around the z-axis in our 

Denavit-Hartenberg diagram (Fig. 35), as per the rules of the Denavit-Hartenberg convention: 

 

𝜔̂1 = [

sin(θ1) sin(1.571)
−cos(θ1) sin(1.571)

cos(1.571)
] = [

sin(θ1)
−cos(θ1)

0

] 

𝜔̂2 = [

sin(θ2) sin(0)
−cos(θ2) sin(0)

cos(0)
] = [

0
0
1
] 

𝜔̂3 = [

sin(θ3) sin(−1.571)
−cos(θ3) sin(−1.571)

cos(−1.571)
] = [

−sin(θ3)
cos(θ3)

0

] 

𝜔̂4 = [

sin(θ4) sin(1.571)
−cos(θ4) sin(1.571)

cos(1.571)
] = [

sin(θ4)
−cos(θ4)

0

] 

𝜔̂5 = [

sin(θ5) sin(−1.571)
−cos(θ5) sin(−1.571)

cos(−1.571)
] = [

−sin(θ5)
cos(θ5)

0

] 

𝜔̂6 = [

sin(θ6) sin(3.140)

−cos(θ6) sin(3.140)
cos(3.140)

] = [
0
0

−1
] 

 

Therefore: 

 

𝐽𝜔 = [
sin(θ1)

−cos(θ1)
0

0
0
1

−sin(θ3)
cos(θ3)

0

sin(θ4)
−cos(θ4)

0

−sin(θ5)
cos(θ5)

0

0
0

−1
] 

 

Finally, one can write the Jacobian matrix by combining 𝐽𝑣 and 𝐽𝜔 into a single matrix: 

 

𝐽 = [
Jv
Jω

] 

 

Plugging in 𝐽𝑣 and 𝐽𝜔: 
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𝐽 =

[
 
 
 
 
 
 
 
 
 

∂x

∂θ1

∂x

∂θ2

∂x

∂θ3

∂x

∂θ4

∂x

∂θ5

∂x

∂θ6

∂y

∂θ1

∂y

∂θ2

∂y

∂θ3

∂y

∂θ4

∂y

∂θ5

∂y

∂θ6

∂z

∂θ1

∂z

∂θ2

∂z

∂θ3

∂z

∂θ4

∂z

∂θ5

∂z

∂θ6

sin(θ1)
−cos(θ1)

0

0
0
1

−sin(θ3)
cos(θ3)

0

sin(θ4)
−cos(θ4)

0

−sin(θ5)
cos(θ5)

0

0
0

−1]
 
 
 
 
 
 
 
 
 

 

 

Plugging in the Jacobian matrix to the equation (8): 

 

[
 
 
 
 
 

ẋ
ẏ
ż

ωx

ωy

ωz]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

∂x

∂θ1

∂x

∂θ2

∂x

∂θ3

∂x

∂θ4

∂x

∂θ5

∂x

∂θ6

∂y

∂θ1

∂y

∂θ2

∂y

∂θ3

∂y

∂θ4

∂y

∂θ5

∂y

∂θ6

∂z

∂θ1

∂z

∂θ2

∂z

∂θ3

∂z

∂θ4

∂z

∂θ5

∂z

∂θ6

sin(θ1)
−cos(θ1)

0

0
0
1

−sin(θ3)
cos(θ3)

0

sin(θ4)
−cos(θ4)

0

−sin(θ5)
cos(θ5)

0

0
0

−1]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
θ̇1

θ̇2

θ̇3

θ̇4

θ̇5

θ̇6]
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4 Results 

4.1 Implementation of Ned2 

The robot was successfully installed and implemented into the laboratory of Arcada University 

of Applied Sciences. A designated working area has been allocated for the robot at the 

laboratory, and the robot can only be used by authorized personnel due to the fact that the 

computer that is used as the terminal for controlling the robot is protected by a password. This 

ensures that only trained staff and students are able to operate the robot. In addition to this, an 

additional safety measure is the fact that the laboratory can be only accessed by academic staff 

and students with permission to enter. 

 

There is a sufficient safety zone around the robot so that it will not come in contact with 

unrelated objects or people while in operation. The desk on which the robot is placed on is 

located in the corner of the laboratory, away from other working areas and the main corridor. 

The Conveyor Belt Set has enough space within the working area despite its size, and there is 

enough overhead light for the camera of the Vision Set to work properly in order to detect 

objects, their colors, and to find the landmarks of the workspace. The maximum reach of the 

robot is demonstrated in Figure 36., which shows that there is enough space between the 

operator and Ned2. 

 

 

Figure 36. Ned2 and its maximum reach 
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4.2 Case Studies 

The manual pick-and-place program yielded differing results depending on the number of 

repeats and if the defined parameters were followed correctly by the operator. Since this 

program cannot adjust to unexpected changes while it is being run, such as the position of the 

object to be picked, or the distance of the robot from the conveyor belt, it is highly unreliable 

in a real-life setting if the location of the object is not strictly controlled and kept constant. The 

IR sensor worked as expected when detecting approaching objects on the conveyor belt, and 

the only problems were caused by objects or people moving or staying close to the sensor while 

in operation, which led to a number of false detections. 

 

The success of this program depended highly on the accuracy of the operator. Since the object 

had to be placed in a specific location on the conveyor belt, sometimes it would not be able to 

grasp the object, especially if it was rectangular. The tooltip is slightly wider than the 

rectangular object when it is opened for picking up objects, and therefore, sometimes the robot 

would collide with the edges of the object over the conveyor belt. A problem also arose if the 

conveyor belt was not completely parallel with the robot, which causes an offset every time the 

robot places the object back on the conveyor belt. This also led to the same scenario of the 

tooltip of the robot colliding with the object instead of successfully grasping it.  

 

Since the robot used object recognition to pick-and-place objects from the workspace for the 

vision pick-and-place, this program proved to be more dynamic and applicable for real-life 

processes with an uncertain and changing environment than the manual pick-and-place 

program. It was found that the parameters of the camera were a large factor in the success of 

the vision pick function, as well as the lighting in the surrounding environment. Having 

sufficient lighting around the workspace was needed for more accurate picks so that the colors 

and contours of the objects were well-shown for the camera. The lighting and camera 

parameters also affected how the landmarks of the workspace were perceived. 

 

The simulation with RViz and Gazebo showed great promise for the development of more 

advanced simulations without having to use the actual robot itself, which in turn can be an 

attractive alternative for the research of robots. Gazebo turned out to have a number of 

applications outside of the simulation of articulated robots, especially for mobile and even 
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space robots research, since it is possible to create a complex virtual environment, such as a 

building with multiple floors and objects scattered about. 

4.3 Kinematic Studies 

The Denavit-Hartenberg convention for selected joint angles 𝐽𝐴 was implemented for the Ned2 

six-axis robot. The real position of the end-effector according to the given joint angles 𝐽𝐴 can 

be found by using Niryo Studio, as seen on Figure 37. 

 

 

Figure 37. Using Niryo Studio to verify the values obtained from the Denavit-Hartenberg matrix 

 

Niryo Studio regards the flat surface the robot is placed on as the 𝑧 = 0 𝑚 position, which 

means that it is required to subtract the height from the base of the robot up to the first joint in 

order to get the 𝑧-value with the first joint as the origin. The height is measured to be around 

0.095 𝑚, so the 𝑧-position of the end-effector with the value from Niryo Studio is as follows: 
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𝑧𝑒𝑛𝑑−𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟 = 0.261 − 0.095 = 0.166 𝑚 

 

The values of Niryo Studio and the result obtained with Denavit-Hartenberg convention, 

namely the values of equation (16), are compared in Table 5. The error is a percent error where 

the values from Niryo Studio are regarded as true, while the Denavit-Hartenberg convention 

values are regarded as experimental, using the following formula: 

 

% 𝐸𝑟𝑟𝑜𝑟 =  
|𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 − 𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒|

|𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒|
∗ 100% 

 

Table 5. Comparison of position values between Niryo Studio and the values obtained with the Denavit-Hartenberg convention 

 𝒙𝒆𝒏𝒅−𝒆𝒇𝒇𝒆𝒄𝒕𝒐𝒓  (𝒎) 𝒚𝒆𝒏𝒅−𝒆𝒇𝒇𝒆𝒄𝒕𝒐𝒓  (𝒎) 𝒛𝒆𝒏𝒅−𝒆𝒇𝒇𝒆𝒄𝒕𝒐𝒓  (𝒎) 

Niryo Studio 0.322 -0.020 0.166 

Denavit-

Hartenberg 

method 

0.320 -0.019 0.200 

Error (%) 0.621 5.000 20.482 

 

The speculated cause for the slightly different results is the fact that the actual link lengths of 

Ned2 were not used, and the Denavit-Hartenberg diagram was largely simplified compared to 

the anatomy of the real robot. 

 

The values of the Jacobian matrix 𝐽𝑣 for the linear velocities of the end-effector could not be 

shown on this thesis due to the values being incredibly long after obtaining the partial derivates 

for the Jacobian; the six joint angles were variables. Using this method for 6-axis robots 

demands the use of a numeric computing environment such as MATLAB, which was the 

primary tool in order to determine the Jacobian. It is also possible to use software such as 

Microsoft Excel or other spreadsheet software. 
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5 Discussion 

Since the Ned2 robot is small in size and relatively light, it does not pose a particular risk to its 

environment or people while in operation. In addition to this, the robot is designed to be a 

cobot, which means that the sensors it is equipped with should provide adequate protection to 

itself and the surroundings. Despite this, it is still important to follow the safety measures at all 

times which were defined in the method of this thesis. Additional protection would include a 

physical barrier between the environment and the robot, but this is not relevant in the case of 

Ned2. 

 

Some of the features of Gazebo deemed to be more geared towards mobile robots compared to 

articulated robots such as Ned2. Most of the features of Gazebo can still be of great use for 

different types of robots in general, and it is possible to simulate and create a wide range of 

scenarios relevant for different purposes, which makes the tool very versatile and useful for 

robotics. 

 

The results of the Denavit-Hartenberg method for the determination of the end-effector location 

could be further improved and perfected by using the real values of the link lengths instead. 

However, the measured link lengths seem sufficient as the error is not very significant 

compared to the actual position of the end-effector displayed by Niryo Studio. Errors are 

probable with different joint angle values due to the simplified geometry of the Denavit-

Hartenberg diagram. The link lengths were determined using the RViz simulation by using the 

“Measure” function of the software to measure them manually and approximating the obtained 

values. In addition to this, it is good to note that the length of the tool was disregarded and not 

added to the transformation matrix 𝑇6
5  since Ned2 does not use it to determine the position 

of the end-effector. 
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6 Conclusion 

This thesis demonstrated how a small articulated robot can be implemented to a university 

laboratory environment, as well as a number of ways that can be utilized in order to control 

and analyze modern robots. The objectives of the thesis were successfully investigated through 

practical and computational methods. 

 

The implementation of Ned2 to an educational institution was easily accomplished since the 

needed resources were already available to be used. For example, the laboratory of Arcada 

University of Applied Sciences had already enough space for the workspace of the robot, as 

well as a suitable working surface with enough space for the robot, and the goals regarding 

safety were easily implemented. This process may not be so easy when resources and space are 

limited. 

 

Programming the Ned2 robot through PyNiryo was intuitive due to the nature of the Python 

programming language, as well as the useful functions provided by the PyNiryo package. The 

first pick-and-place demonstration which was manually programmed proved to need some 

improvement and its weakness was found to be the lack of adaptability to uncertainties and 

changes. The vision pick-and-place demonstration was effortless to program with the use of 

PyNiryo, and it worked very well as long as the parameters of the camera were adjusted to 

improve the object detection and the environment of the robot was well-lit. 

 

The Denavit-Hartenberg transformation matrices were obtained from forward kinematics for 

each six joints, and then they were used to calculate the position of the end-effector. It was 

noted that the utilization of the Denavit-Hartenberg convention could use some improvement 

and, in some cases with different joint angles, it may fail to represent the actual position of the 

end-effector. The reason for this was speculated to be the fact that the diagram was 

oversimplified and the measurements of the link lengths of Ned2 were inaccurate. The Jacobian 

matrix, using the Denavit-Hartenberg diagram and consequently the transformation matrices, 

was also determined successfully.  
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