

Staffan Holmnäs

DESIGN AND DEVELOPMENT OF AN INTERACTIVE DENTAL
CHART

Thesis
CENTRIA UNIVERSITY OF APPLIED SCIENCES
Information Technology
May 2023

ABSTRACT

Centria University
of Applied Sciences

Date
4.5.2023

Author
Staffan Holmnäs

Degree programme
Information Technology

Name of thesis
DESIGN AND DEVELOPMENT OF AN INTERACTIVE DENTAL CHART

Centria supervisor
Jari Isohanni

Pages
45 + 10

Instructor representing commissioning institution or company
Gunilla Sjöholm

The purpose of this thesis was to develop an interactive dental chart in the Delphi program-

ming language. A company called Abilita commissioned the software development task de-

scribed in this thesis. The task consisted of graphic design and programming of functionality

with the goal to create a complete dental chart. Dental charts are used by dentists and den-

tal assistants to monitor the status of the patient’s oral health. Therefore, it is important that

a computerized dental chart includes the ability to show a variety of treatments and diagno-

ses including tooth decay and periodontal disease.

The topic of this thesis is to demonstrate how to design and develop the interactive elements

in a dental charting application. Charts must visualize the components and be comprehensi-

ble to the user. Furthermore, the balance between graphical fidelity and comprehensibility

must be considered. Consequently, the objective is to demonstrate how to implement intui-

tive and distinctive graphics visually representative of human teeth. In the finished software,

users enter dental notations as inputs which then automatically generate a graphical visuali-

zation of the dental issues. The tools used for development consisted mainly of image ma-

nipulation software and the Delphi integrated development environment.

Designing a graphical dental chart requires knowledge of concepts from the fields of both

dental healthcare and information technology. The goal of this thesis was to connect these

two fields and demonstrate how to develop a lucid dental chart.

Key words
Delphi, dental charting, graphics, image manipulation, programming

CONCEPT DEFINITIONS

ADA

The American Dental Association, an organization comprised of professionals in the field of

dentistry.

Anti-aliasing

A tool that smooths out the jagged edges of an image by averaging the colours of adjacent

pixels.

Delphi

Delphi is a programming language and an IDE developed by Embarcadero. Based on the Ob-

ject Pascal programming language, Delphi can generate code to a variety of operating systems

and platforms. The Delphi IDE is available on the Windows Operating system.

Dental Charting

A dental chart is a graphical view of the teeth representing the record of a patient’s treatments.

During examination, the dentist uses dental notation to record treatments and diagnoses on

each tooth. Different tooth surfaces can be marked a certain colour representing for instance

tooth decay (caries) or fillings.

FDI notation

FDI notation is an international system for encoding teeth. It is standardized by the International

Organization for Standardization as ISO 3950. The system divides the mouth into quadrants

and assigns each tooth a unique number based on the quadrant and position.

GIMP

GIMP stands for GNU Image Manipulation Program; it is an open-source graphics editor de-

signed to be used for modifying images.

GNU

GNU is an open-source operating system inspired by Unix. GNU is a recursive acronym that

stands for GNU’s Not Unix.

GUI

Graphical User Interfaces are interactive visual components in computer software. Examples

of such components are icons, menus, lists and buttons. They are typically controlled with mice

or touch screens.

ICT

Information and Communications Technology involves all the technologies that enable modern

computing and networking.

IDE

An Integrated Development Environment is a piece of software used to build and develop ap-

plications. IDEs have graphical user interfaces and provide tools such as code editors, debug-

gers, and compilers.

OOP

Object-Oriented Programming is a programming methodology using classes and objects to

represent data and methods.

Periodontal Charting

The dentist probes the depth of pockets between a tooth and the gum and notes the distance

graphically on a chart. The amount of gingival recession is also noted, meaning how much

the gums have receded. Six measurements around each tooth are typically taken.

RAD

Rapid Application Development is both a type of programming methodology and the name of

an IDE used for development in the Delphi/Object Pascal language.

VCL

The Visual Component Library is a Delphi framework for developing graphical user interfaces

for Windows.

ABSTRACT
CONCEPT DEFINITIONS
CONTENTS

1 INTRODUCTION ... 1

2 TASK OVERVIEW .. 3

3 THEORETICAL BACKGROUND ... 6
3.1 Dental notation and charting .. 6
3.2 Software and tools .. 9
3.3 Delphi ... 10

3.4 Graphics ... 12

4 DEVELOPING A DENTAL CHART .. 16

4.1 Design .. 16
4.1.1 Dental status chart .. 16
4.1.2 Periodontal chart .. 19

4.2 Development .. 21

4.2.1 Parsing inputs ... 21
4.2.2 Filling functionality ... 23

4.2.3 Drawing procedures ... 26
4.2.4 Chart functions ... 29

4.3 Testing.. 34

4.4 Layout and program flow .. 34

4.5 Results ... 37

5 DISCUSSION .. 40

5.1 Assessment ... 41
5.2 Improvement suggestions .. 41

6 CONCLUSION .. 43

REFERENCES .. 44
APPENDICES

TABLES
TABLE 1. Requirements for the development task .. 4

FIGURES
FIGURE 1. The commissioner’s logotype .. 3
FIGURE 2. The FDI tooth numbering system .. 7
FIGURE 3. The names of tooth surfaces ... 8
FIGURE 4. GIMP tools ... 9
FIGURE 5. RAD Studio 10.2 .. 11
FIGURE 6. Aliasing and anti-aliasing ... 13
FIGURE 7. Bitmap and vector image comparison ... 14
FIGURE 8. The dental status ... 17
FIGURE 9. Permanent and primary teeth .. 18

FIGURE 10. Tooth surface areas .. 19
FIGURE 11. Four types of roots .. 20
FIGURE 12. Periodontal chart design .. 21
FIGURE 13. A coloured tooth surface ... 22
FIGURE 14. Pocket depth lines ... 22
FIGURE 15. Filling procedure call flow .. 24
FIGURE 16. Flood fill functionality ... 25
FIGURE 17. Lines on the periodontal chart ... 29
FIGURE 18. Clickable symbols .. 31
FIGURE 19. A colour box component .. 32
FIGURE 20. An artifact found during testing .. 34
FIGURE 21. The layout of components in the form designer ... 35
FIGURE 22. The program flow .. 37
FIGURE 23. The dental chart .. 38

CODES
CODE 1. A parsing procedure ... 23
CODE 2. A procedure that fills a tooth ... 25
CODE 3. A procedure for updating paths .. 27
CODE 4. A procedure for drawing lines ... 28
CODE 5. A procedure for clicking on images ... 30
CODE 6. A procedure for displaying information ... 30
CODE 7. A procedure for updating legend entries ... 32
CODE 8. A procedure that clears the status .. 33

1

1 INTRODUCTION

Dentists and dental assistants use dental charts to store the records of each patient’s dental

health. These charts are used for examination, diagnosis, and treatment. Computerized den-

tal charts resemble their paper counterparts; however, they provide many advantages com-

pared with paper charts. For instance, graphics and symbols can more easily be drawn or

erased to illustrate dental treatments. Graphical interactive dental charts are clearer and re-

duce the risk of errors and mistakes. However, there are challenges in designing and devel-

oping dental charts. If the graphics are too detailed, the information that is meant to be con-

veyed might be lost in the clutter. Keeping this in mind, I developed a dental chart commis-

sioned by a company. In this thesis report, I will demonstrate how I designed and developed

a visually distinctive interactive dental chart.

The commissioner, a company in Information and Communications Technology (ICT) called

Abilita, provided me with the task to design the interactive dental chart for a dental patient in-

formation solution used by the healthcare sector. The commissioner required original

graphics for an existing dental patient system to be designed without relying heavily on prior

work. My work is limited to the design and implementation of the dental charting module for

the patient application.

The objective of my task was to develop a dental chart that integrates with existing software

to allow for a user-friendly experience. The result should mirror the requirements and take

into consideration the inputs from dental professionals. Users must easily be able to deter-

mine the patient’s dental health by briefly looking at the screen. To create a clear dental

chart, it is important to find a good balance between high graphic fidelity and high contrast,

intuitive and distinctive graphics. The problem can be defined as the following: “How can a

visually distinctive and interactive dental charting program be implemented given a set of re-

quirements?”.

To comprehend the concepts in this thesis, it is important to have a basic understanding

about common dental issues and dental notation. Therefore, the theoretical part of the thesis

provides references to existing dental charts. From a technical standpoint, the tools and pro-

gramming language used are important. Thus, the Delphi Integrated Development Environ-

2

ment (IDE) and its capabilities are presented. A presentation of the 2D libraries used for de-

velopment also needs to be included. Additionally, the image manipulation software used for

creating the graphics is also explained in the theoretical part.

My goal is to perform research on existing dental charts and to develop an improved dental

charting program. The commissioner should be able to integrate the finished dental chart into

their application and offer a visually appealing solution with distinctive graphics. The purpose

of this thesis is to clearly explain my task, goals, and the development process. I will also de-

scribe dental theory and concepts related to my task. Finally, I will show the results and dis-

cuss the importance of my work and suggest improvements. I hope that the commissioner

will find the thesis report interesting. Ultimately, the aim is to allow the company to offer a

competitive dental charting solution.

3

2 TASK OVERVIEW

In this chapter, I will present the company who I worked for developing the dental charting

program. I will also explain in more detail the development task, which is the topic of this the-

sis. The requirements for the task are summarized at the end of this chapter.

The commissioner of the development task is an ICT company called Abilita (FIGURE 1). Lo-

cated on the west coast of Finland in a town called Jakobstad, Abilita was founded in 1990

and the company offers consulting, IT services, and system solutions for both the public and

private sectors. The company currently employs 67 people and is thus one of the largest ICT

companies in the region. I have previously done my internship at Abilita, so the company was

familiar to me. For the development project presented in this thesis, I had roughly three and a

half months to plan my work and complete the task described below. (Abilita 2023.)

FIGURE 1. The logotype of the company that commissioned my task (Abilita 2023)

The public health sector is among the clients who are offered solutions by Abilita (Abilita

2023). One such solution is a patient information system for dental applications, for which the

dental charting part needed to be updated from the beginning. My task consisted of designing

and developing the graphics and functionality of the dental chart as a separate module. The

end-users of this application are typically dentists, dental hygienists, and dental assistants

active in Finland. A typical use case is that the dental assistant enters the dental treatments

into the program as the dentist dictate them using dental notations during an examination.

The graphics on the chart are automatically updated based on the assistant’s inputs.

My task was to design the dental chart and create the functions that update the graphics. I

was given a set of requirements such as the programming language, screen resolution, input

data type, a list of functionalities and the layout of the dental chart. Both a tooth chart and a

4

periodontal chart had to be included. These were either customer requirements or sugges-

tions and instructions from co-workers at Abilita. Although I received a lot of assistance and

guidance, most of the development work was done independently.

Before beginning with implementing the task, I had to learn the basics of dental jargon, dental

notation, and the basic requirements for dental charting. These concepts will be part of the

theoretical framework, as they are quite important for understanding the task. By studying

previous work and dental charts, I was able to understand the requirements and project defi-

nitions. The possibility to display for instance cavities and fillings on a tooth chart, and at the

same time visualize pocket depth on a periodontal chart are a common feature of most dental

charts (NEBDN 2020, 9-11). Consequently, my priority was to implement these two features

first.

The requirements specify that the program must be written in the Delphi programming lan-

guage for the Microsoft Windows operating system. Users input string data types using a

keyboard and the result is displayed on a window on the screen measuring 800 by 900 pix-

els. The requirements include a dental chart that provides the function for colouring tooth sur-

faces up to three different colours per surface. The colours represent for instance cavities,

fillings, and erosion. Another requirement is a periodontal chart that should include graphs

that show measurements of pocket depth and gingival recession in millimetres based on the

user’s measurements. Additionally, the chart must also display any mobility, furcation, im-

plants, crowns, root canals, and missing teeth. Additional functionalities include a legend,

periodontal history, a print function, and localization in the Swedish and Finnish languages.

(TABLE 1.)

TABLE 1. Descriptions of the requirements for the development task

Requirement Description

Target platform Windows

Programming language Delphi

Input method Keyboard

Input datatype String

5

Window size 820 x 900 pixels

Layout Dental chart and periodontal chart

Localization Swedish and Finnish

For the implementation, image manipulation software was used to design the graphics for the

teeth. The inputs needed to be parsed programmatically and the drawing functions devel-

oped. For programming the functionality, I used the Delphi IDE, which I had no prior

knowledge of and had to learn. A specific 2D library was recommended, so I had to learn

how to implement the most common draw functions from the imported 2D library. These con-

cepts will be described in greater detail in the next chapter. In summary, the task included

concepts such as design, development, debugging, testing, localization, integration, and doc-

umentation. The goal of this task was to develop a dental charting program that could be inte-

grated with an existing patient information application.

6

3 THEORETICAL BACKGROUND

When developing a dental charting application, it is important to have a basic knowledge of

dental notation and the examinations, diagnoses, and treatments performed by dentists.

These concepts are explained in this chapter. Furthermore, it is important to show an exam-

ple of a dental chart and describe its functionality. Additionally, the Delphi development envi-

ronment and programming language used for this development task are also described. Fi-

nally, the basics of concepts related to graphics and image manipulation software are also

explained.

3.1 Dental notation and charting

The focus in this chapter is on common terminology and concepts from dentistry. Particularly

important for the topic are the concepts of dental notation and dental charting. While unre-

lated to the field of ICT, these concepts are relevant to understanding the development task.

When developing a computerized dental chart, however, concepts from both fields are con-

nected and explained later in this thesis.

The dentist uses dental notation when communicating with the dental assistant during an ex-

amination. The American Dentist Association (ADA) previously suggested the use of the

Palmer notation system; however, since 1968, the universal numbering system was instead

recommended. Another notation system was proposed by the Fédération Dentaire Internatio-

nale (FDI) and has since been adopted by several organizations. FDI notation is a two-digit

system where the first digit signifies the quadrant, and the second number is the sequential

number of the tooth. (Nelson & Ash 2010, 4; NEBDN 2020, 8.) The numbers corresponding

to each tooth according to the FDI dental notation system are presented in figure 2 (Honkala

2022).

7

FIGURE 2. The FDI tooth numbering system (Honkala 2022)

When performing an oral examination, it is common to divide each tooth into five surfaces

(FIGURE 3). The names for these surfaces originate from the Latin language. The first is the

occlusal surface, or the surface most used for chewing. Surface number two is called the me-

sial surface and it points towards the midline which separates the incisors. The third surface

is called the buccal surface and it points towards the closest cheek or towards the lip. The

fourth is the distal surface and points away from the midline or towards the back of the

mouth. Surface number five is called the lingual surface and it points towards the tongue. In

figure 3 below, the tooth surfaces are pictured from the perspective of one of the molars in

the first quadrant. (Honkala 2022; NEBDN 2020, 4; Nelson & Ash 2010, 7.)

8

FIGURE 3. The names and positions of the surfaces of each tooth (adapted from Honkala

2022)

Dental charts are essential tools used by dentist assistants and dental nurses to monitor the

status of a patient’s mouth. A dental chart resembles a map of teeth and is often displayed

from a top-down perspective. Every tooth on the chart is divided into five surfaces, and each

one is given names in Latin indicating their direction. These surfaces are used during an ex-

amination to show completed work and diagnoses and treatments to be carried out. Exam-

ples of treatments include cavities, fillings, crowns, and implants. (NEBDN 2020; Hollins

2013, chapter 12.)

Computerized dental charts allow the dentist to record the patient’s condition and determine

how they respond to treatment. The purpose of the dental chart is not to overload the user

with information. On the contrary, the goal is to clarify the patient’s dental issues by drawing

graphics that allow for the easy retrieval and comparison of the dental status. A periodontal

chart includes the measurement of periodontal pockets (Hollins 2013, 327). A pocket be-

tween the gingiva and the tooth is probed by the dentist and the depth of the pocket is rec-

orded and visualized on the chart. Furcation is another periodontal issue at the fork of a mul-

tirooted tooth. Furcation is also detected by probing and visualized by the index of severity on

the dental chart. If the tooth has become unstable, the degree of mobility can also be rec-

orded on the chart. (Newman, Takei, Klokkevold & Carranza 2019, 82.)

The registered dental hygienist and former director at the Utah College of Dental Hygiene,

Brent Molen (2010), has made available a scanned version of a paper periodontal evaluation

chart (APPENDIX 1). The chart shows images of teeth viewed from the side and from the

top. Dentist’s assistants note on the paper chart the measurements of pocket depth and gum

recession taken during the examination (Hollins 2013, 327). Traditional paper charts are use-

9

ful as templates when designing a computerized dental chart. Other useful tools include im-

age editing software used for drawing and modifying the images of teeth, and a programming

environment for coding the functionality. These pieces of software are described in greater

detail in the next subchapter.

3.2 Software and tools

One of the most popular free and open-source image manipulation software is GIMP, which

stands for GNU Image Manipulation Program (GIMP). GIMP is available for Microsoft Win-

dows, macOS, GNU/Linux, and Unix operating systems. The program features functionality

for drawing, transforming, filtering and much more (FIGURE 4). It is also possible to custom-

ize GIMP by using scripts and plug-ins. (Lecarme & Delvare 2013.)

FIGURE 4. The tools available in GIMP (David 2023)

Gimp can be used for e.g., photo manipulation, artwork creation, and graphic design. The

programming languages supported for programming scripting algorithms include Python, C,

C++, and Perl. It is also possible to create macros to automate commands and the workflow.

Images in Gimp consist of layers with adjustable opacity, which provides flexibility and possi-

bilities for different effects. Gimp started development in 1995 and was first released publicly

10

in 1996. Gimp is released under the GNU General Public Licence (GPL) version 3. (Gimp

2023.)

Another useful open-source tool for designing graphics is Inkscape. Unlike programs that ma-

nipulate rasterized images, Inkscape is a vector graphics editor. Inkscape is available for

GNU/Linux, Windows, and macOS operating systems and it is distributed under the GNU

GPL. The program is free, and it is typically used to design vector-based graphics in for in-

stance webpages, illustrations, interfaces, and diagrams. Inkscape enables users to create

and modify shapes by connecting paths and transforming objects. The program can be used

for example to create buttons, icons, and logotypes. Layers add flexibility and filters allow us-

ers to add effects to the final image. Inkscape uses a file format called Scalable Vector

Graphics (SVG), which is based on the Extensible Markup Language (XML). (Hiitola 2012, 1-

26.)

Visual Studio Code (VS Code) is a free source code editor developed by Microsoft using

open-source technology. Many of the most common programming languages are supported.

VS Code includes a feature called IntelliSense that handles syntax highlighting and automatic

code completion. The editor has built-in version control and debugging features. Additional

functionality can be downloaded as extensions and allow users to customize the editor. Com-

mon extensions include support for varying programming languages, formatting tools, A.I. as-

sistants, linting tools, themes, and debuggers. One example is an extension that highlights

keywords in the code in different colours. VS code also supports cloud computing in the Mi-

crosoft Azure platform. VS Code is designed to be a streamlined editor by default, with a min-

imalistic approach to the Graphical User Interface (GUI). (Microsoft 2023.)

3.3 Delphi

Contrary to more basic code editors, the Delphi IDE features a full GUI and a visual designer

for creating native applications (Embarcadero 2023). Several programming languages and

IDEs are used in development at Abilita. The Delphi IDE was used at Abilita for the dental pa-

tient information system that the dental chart integrates with. For this reason, the dental chart

was programmed using Delphi 10 Seattle, which is a version of Delphi released in 2015. Del-

11

phi is developed and maintained by a company called Embarcadero. The latest Delphi ver-

sion is 11.3 Alexandria, and it now also supports development for macOS with the ARM 64-

bit architecture and iOS through simulation. (Embarcadero 2023.)

The Delphi programming language is based on Object Pascal, and thus supports object-ori-

ented programming. Delphi is a high-level, static, and strongly typed programming language

that compiles to different platforms and operating systems. The Delphi IDE is part of RAD

Studio which supports Rapid Application Development (RAD) whose strengths include the

easy development of GUIs (FIGURE 5). The source file produced by Delphi has the exten-

sion .pas, and the code is divided into modules called units. Additional functionality can be

installed from a set of packages called components. The main framework for developing

graphical user interfaces for Microsoft Windows using Delphi is called the Visual Component

Library (VCL). Another popular framework is called Firemonkey and it enables cross-platform

app building. (Głowacki 2017, 1-18.)

FIGURE 5. Visual design in the Delphi IDE called RAD Studio 10.2 (McKeeth 2017)

Visual Component Library (VCL) is a set of components provided by the Delphi RAD IDE that

allows for quick development of Windows applications. VCL can be used for developing e.g.,

GUIs, web applications, and database applications. The benefit of using visual components is

12

that the components and their properties can be manipulated at design time, which reduces

the amount of coding. Another benefit of VCL is the rapid prototyping of software that it ena-

bles. (Embarcadero 2015.)

VCL is an object-oriented framework, and all components descend from the component

class. The components offered by VCL can be divided in groups of visual and non-visual

classes. Visual components include forms (windows), buttons, labels, and images. These are

also called controls, and they inherit from the control class. Control components are typically

used for GUI development. Non-visual VCL components are invisible during run time, how-

ever, their properties can still be modified during design time. An example of a non-visual

component is the data source class used for database application development. Other VCL

classes that do not fall into the category of components are also available. Collections of

components are called packages and there are many both commercial and free packages

available that extend the visual component library. (Embarcadero 2015.)

Like many other IDEs, Delphi allows developers to import code libraries. Both libraries pro-

vided by Embarcadero and third-party libraries can be imported. One such library is called

Image32, which is a comprehensive 2D graphics library written by Angus Johnson in the Del-

phi programming language. Image32 offers many functions for image manipulation, for exam-

ple drawing, filling, rotating, and scaling functions. The filling procedure is called Flood fill and

it takes in as arguments an image object, x and y coordinates, a colour, a tolerance value,

and a compare function. The Flood fill procedure then starts at the pixel at the given coordi-

nates, checks all adjacent pixels if they match the starting pixel, and colours all matching pix-

els. If the compared pixels are not matching according to the specified tolerance, the proce-

dure has reached an edge that creates a boundary that prevents further filling. The Draw Line

procedure works instead by colouring pixels in a predetermined line of a path object type,

which is an array of points. (Johnson 2023a, 2023b.)

3.4 Graphics

This chapter explains concepts that are common in computer graphics. Aliasing is a blocky

artifact visible at the edges of objects in low resolutions due to the pixelated structure of ras-

ter images. Anti-aliasing is a technique to smooth out these edges by colouring pixels at the

13

edge with a colour that is an average of the object and the background. (Heying & Long

2023; Niederst Robbins 2006, 527.) Tools that use anti-aliasing to smoothen objects in digital

images can often be found in image manipulation software. An example of an image with ali-

asing and anti-aliasing applied can be found below in figure 6.

FIGURE 6. Aliased edges on the left and anti-aliasing applied on the right (adapted from

Adobe 2023; Niederst Robbins 2006, 527)

Vector graphics are based on mathematical equations comprised of points, lines, and curves.

The paths created from these elements do not depend on a specific resolution, so they can

be scaled freely with persistent image quality. By contrast, raster-based graphics consist of

pixels and magnifying a bitmapped image shows pixelated details in a grid-like pattern. Vec-

tor graphics on the other hand result in clean lines and curves when magnified. (FIGURE 7.)

Vector graphics thus provide flexibility when switching between varying resolutions. (Hiitola

2012, 8-11.)

14

FIGURE 7. A comparison of a bitmap image on the left and a vector image on the right
(adapted from Niederst Robbins 2006, 517)

Colours in computer graphics can be specified by their combination of red, green, and blue

values (RGB). Mixing various amounts of RGB components results in a wide range of col-

ours. The RGB colour model is commonly used in for instance in computer monitors, image

manipulation software, and web design. For computer graphics, the most common RGB

model is the 24-bit true colour. The total number of bits is called the colour depth (or bit

depth) and it is defined as bits per pixel (bpp). True colour has an 8-bit hexadecimal value

per channel for each pixel, for a total of 24-bits, which equals a total of 224, or 16,777,216 dif-

ferent colours. Each channel has a decimal value between 0 and 255, or 00 to FF in hexa-

decimal. For example, the RGB value D4E877 is a hexadecimal representation of a colour

with the syntax RRGGBB. In decimal, the values would be 212, 232, and 119 for red, green,

and blue. Combining these RGB values creates a light green colour. When used in webpage

design, the hash symbol is prepended to the numbers: #D4E877. (Niederst Robbins 2006,

733-741.)

The data recorded at dental examinations are typically presented graphically in a dental

chart. When presenting any data graphically, for instance as graphs or plots, the principles of

data visualization apply. The main idea is to visualize data effectively by choosing the correct

type of visual representation for the dataset. It is also important to keep the chart simple,

clean, and informative. Data visualization techniques also help identify trends and patterns

through visual discovery. Examples of different types of charts include plots, maps, tables,

15

pie charts, line charts, and histograms. Line charts, for instance, are well suited for showing

change in data. This helps when comparing values, identifying outliers, and spotting relation-

ships. (IBM 2023.)

Abilita uses the Delphi IDE for the development of the systems defined for this development

task. The Microsoft Windows operating system was the target platform defined in the require-

ments, so the VCL framework for visual development was chosen. The Image32 library was

chosen for its 2D drawing capabilities and the library was imported into the project. While

many image manipulation programs exist, GIMP provides extensive features and is open

source. GIMP was thus an easy choice. By combining the knowledge of dental notation, ex-

aminations, and charting, with image manipulation, Delphi programming, and graphics, the

theoretical foundation for the development task has been laid. With this knowledge presented

the description of the development process can begin.

16

4 DEVELOPING A DENTAL CHART

In this part of the thesis, I will describe how I implemented the concepts described in the pre-

vious chapters with the goal to design and develop a dental chart. I started with very basic

knowledge of dental notation and the names of tooth surfaces. As the project progressed, I

learned more about dental charting and the working methods of dental professionals. Alt-

hough I was given detailed instructions, I still had plenty of opportunity to make my own de-

sign decisions. I had adequate guidance and never felt lack of freedom during development.

During the later stages of development, we contacted a registered dentist to get feedback for

the dental chart. Based on this feedback, in combination with the concepts of dental charting

and previous work done by others, I developed an interactive dental charting program that I

believe is both simple and informative.

4.1 Design

The programming language and the IDE had already been decided to be Delphi, whereas I

was free to choose the image manipulating software. I decided to design images in GIMP

due to its popularity and because it is open source. The first two weeks of development I fo-

cused on learning how to program in Delphi, since I had no prior experience of the program-

ming language. I then quickly moved over to designing the images of the teeth for the dental

chart.

4.1.1 Dental status chart

I first concentrated on designing the teeth for the dental chart, or the dental status as it is also

sometimes called. The basic layout had already been decided, the teeth should be laid out in

an oval shaped pattern viewed from the top, as is common in dental charts. The design of the

individual teeth, however, was up to me. Since I wanted the teeth to look as correct as possi-

ble, I searched online for anatomically correct images of teeth that I could use as a template.

Then, I used one of these models to draw an outline of the individual teeth in GIMP. The

teeth were drawn with only one to two pixels in width and without anti-aliasing, so that each

17

surface can be evenly filled right up to the edges. Because I deliberately did not apply any

anti-aliasing, the teeth have a slightly pixelated appearance. I also divided each tooth into the

five surfaces commonly referenced by dentists. (FIGURE 8.)

FIGURE 8. The dental status with five surfaces on each tooth.

Once half of the teeth were drawn, I then simply mirrored the other half because, naturally,

the left and right halves are symmetric. Children’s temporary teeth are called primary teeth or

sometimes also deciduous or milk teeth. The requirements specify that both the permanent

and primary teeth should be visible on the same screen, and since the primary teeth are

much smaller, they fit inside of the primary teeth as can be seen in figure 9. Typically, only

one set of teeth is displayed at a time.

18

FIGURE 9. Permanent and primary teeth

According to the requirements, the program must have the possibility to fill in each of the five

tooth surfaces in up to three different colours. Since each surface must be evenly divisible by

both two and three, I divided each surface into six areas and coloured every other area slightly

darker. This way, the function that fills in surfaces can either colour the whole surface or several

of its parts according to an algorithm I developed. The fill function will be explained in greater

detail in a later chapter. The colours of two neighbouring areas are just slightly different shades,

their HTML colour codes are #FFFFFF and #FDFDFD. On most monitors the difference is

hardly noticeable. To demonstrate the slight difference in colour of the areas, I applied a display

filter in GIMP. By adjusting the gamma to the lowest value, the difference is exaggerated. To

avoid the possibility that the teeth have slightly noticeable colour differences in each surface,

every surface not meant to be coloured can simply be filled white by an algorithm. (FIGURE

10.)

19

FIGURE 10. Each tooth surface is divided into six areas

The design of the dental status was graphically limited by the requirements of the fill function.

More detailed graphics would have meant that the edges of the teeth would have looked

worse after areas had been filled a certain colour. This compromise in graphical quality for

objects that need to dynamically change colour seem to be common when looking at solu-

tions by other developers. Either the graphics for the teeth look sharp when not filled with col-

our, or the tooth is filled evenly. Achieving both, however, seems to be complicated. This ob-

servation appears to be true also when looking at previous work on digital dental charting.

Judging by the feedback that I received, the graphical quality for the teeth in the dental status

chart was adequate, and I could move on to designing the teeth for the periodontal chart.

4.1.2 Periodontal chart

After I had designed the dental status, I started with the periodontal chart. The images for the

periodontal chart will also need to be separate for each tooth, so that missing teeth simply

can be hidden. Unlike the status view, the images of teeth for the periodontal chart are

viewed from the side. This makes sense considering the pocket depth and gingival regres-

sion will be shown as a graph over the teeth images. I again used a purchased template and

modified the images in GIMP to design the individual teeth both for the upper jaw and the

20

lower jaw. The two jaws have subtle differences for instance in size and number of roots.

Both jaws are then displayed both from the inside, lingual, and from the outside, buccal. Very

little differ between images in these two views. Primary teeth are not taken into consideration

in this chart.

I divided each tooth into two separate parts, the root, and the crown. The crown has to be a

surface with one continuous edge, similar to the teeth in the status, since it also needs the

option to be filled any colour. One colour for each crown was enough here, however, so no

division of the surfaces was necessary. I designed the teeth to have four different root op-

tions: normal root, implant, root canal, and pin (FIGURE 11). This means that tooth images

have four different versions, and each version consists of 64 different teeth images (APPEN-

DIX 2). Many of these are very similar and in practice duplicates. I have applied anti-aliasing

to some edges of the tooth images, which gives them a smoother appearance. The insides of

the edges of crowns cannot have anti-aliasing, though. The reason is the same as with the

teeth that I designed for the dental status chart, which I explained in the previous chapter.

When the crown is filled with a colour, the colour will always fill evenly out to the edges of the

whole surface, but only if there are no gradients from smoothed edges.

FIGURE 11. Magnified images of a tooth with four different types of roots

The measurements taken by dentists are given in millimetres, so the graphs in the periodon-

tal chart also need to scale accordingly. Therefore, I created a horizontal grid with a spacing

of seven pixels that functions as a background for the images. The gaps between each line

correspond to two millimetres. I designed all images so that their sizes match this scale.

(FIGURE 12.) In the final stages of design for the periodontal chart, I drew some symbols in

GIMP that visualize furcation and mobility. I will explain how I programmed the functionality

for the dental chart and periodontal chart in the next chapter.

21

FIGURE 12. A complete set of teeth in the periodontal chart

4.2 Development

With the design of the graphics completed, I could concentrate fully on programming the

functionality of the dental chart. A static dental chart is not very useful, the goal is interactive

graphics that visualize treatments according to user input. Since users enter inputs via key-

board, it makes sense to have the string data type as input. The contents of the input string

determine the behaviour of the program. In this chapter, I will explain what happens in the

program depending on the values parsed from the input string. I will also describe some of

the functions used and give examples of algorithms that I created.

4.2.1 Parsing inputs

I began development by writing code that parses the input data. The data input string sent to

my module will need to be parsed so that the program knows what to do. Typically, one string

corresponds to the treatments or measurements of one tooth meaning that many strings are

received by the program during an examination. The input string contains values separated

by semicolons, and I wrote parsing functions that then store these values in variables and ar-

rays. I was partially involved in developing the syntax for these values. The FDI notation is

used to determine the tooth number, and an S or T determines if the tooth is found on the

dental status chart or the periodontal chart. Suppose an input of “S;15;3;ff33aa” was given,

then the first letter signifies the type of tooth chart, the second value is the tooth number, the

22

third value is the surface, and the fourth string of letters and numbers correspond to the RGB

colour code. In the example below, a surface has been coloured according to the parsed in-

put “S;15;3;ff33aa” (FIGURE 13).

FIGURE 13. A coloured tooth surface

Suppose instead that an input of “T;1;17;1;d2;b4;m6;” was given. Then the first letter signifies

chart type, the second number is the panel number, third is the FDI tooth number, the fourth

value is the type of root, and the remaining strings determine the measured depths at each

surface. Again, to demonstrate how this works, I have included a figure below where the

pocket depth has been drawn according to the parsed input “T;1;17;1;d2;b4;m6;” (FIGURE

14).

FIGURE 14. Pocket depth lines on the periodontal chart

The code for the initial parsing procedure that I wrote is straightforward. Note that functions

without return values in Delphi are called procedures. I have hidden some code lines irrele-

vant to the explanation. The hidden lines are represented by three dots. In code 1 listed be-

low, if the string is empty then the code exits the procedure. If a string is found, then the built-

23

in split function is called on the string with the semicolon delimiter as argument. The resulting

parsed strings are stored in an array and any exceptions are handled. (CODE 1.)

procedure TTandvisningForm.ParseAtom(AtomStr: String);

var

 Atom, RetrievedString: String;

begin

 // Check whether a string exists or not

 ...

 Try

 Atom := RetrievedString;

 ...

 // Split the atom. Any existing atom is replaced.

 AtomArray := Atom.Split([';']);

 Except

 on E : Exception do

 ShowMessage(E.ClassName + ' error raised while splitting

atom with message : '+E.Message);

 End;

end;

CODE 1. A parsing procedure

4.2.2 Filling functionality

After the program knows properties such as tooth number and colour, I implemented the col-

our fill function from the imported 2D library called Image32. The instructions for how to use

this function is found in the documentation online. The fill function is also explained in the the-

oretical background chapter. FloodFill is the name of the procedure, and it is used to fill in the

specified colour on a chosen surface on the dental chart. The procedure is also used to fill

the crown on a tooth in the periodontal chart. FloodFill works by starting at a pixel, then

checking adjacent pixels if they match the starting pixel by comparing colours. Implementing

the FloodFill function was a process of trial and error, even though the function itself is sim-

ple. The procedure flow goes like this: first the FillTooth procedure is called, which in turn

calls the Fill procedure, which then calls the FloodFill procedure (FIGURE 15).

24

FIGURE 15. The call flow of procedures for colour filling

Before calling the Fill function, however, an image object must be created, and an image

loaded onto it. After the fill function has been called, the image object must be destroyed to

avoid memory leaks in a procedure called Free. The fill function can be called multiple times

depending on how many surfaces are specified in the input string and the number of colours

per surface. The fill procedure takes three arguments: the image object, the tooth number,

and the surface. (CODE 2.)

procedure TTandvisningForm.FillTooth;

var

 ImgFill: TImage32;

 BitmapHandle: HDC;

 Image: TImage;

 I, ToothNumber: integer;

begin

 ...

 // Get the specified canvas Timage

 Image := ImageArray[ToothNumber];

 // Retrieve the bitmap from the ImageList

 GetBitmapFromList(Image, ToothNumber, ImageListStatus);

 BitmapHandle := Image.Picture.Bitmap.Canvas.Handle;

 try

 ImgFill := TImage32.Create;

 // The TImage32 object is copied from the HDC

 ImgFill.CopyFromDC(BitmapHandle, Img32.Vector.Rect(0, 0,

Image.Width, Image.Height));

 // Fills all entered surfaces for a specific tooth

 for I := 1 to Length(AtomSurfaceArray) do

 begin

 if AtomSurfaceArray[I] <> 0 then

 begin

 Fill(ImgFill, ToothNumber, AtomSurfaceArray[I]);

 end;

 end;

25

 // The filled image is copied back to the canvas

 ImgFill.CopyToDc(Image.Picture.Bitmap.Canvas.Handle);

 finally

 ImgFill.Free;

 end;

 ...

 end;

end;

CODE 2. The fill tooth procedure

The FloodFill procedure takes five arguments: the image to draw on, the integer coordinates

where to begin filling, the RGB colour to fill, and the tolerance. The tolerance determines the

sensitivity of the algorithm, or when to detect a boundary that prevents further filling. One ex-

ample of the procedure call is FloodFill (image, 120, 45, #ffee33, 10). The logic for which sur-

faces should be filled is shown in the provided procedure (APPENDIX 3). Basically, the pro-

cedure is called with different values for the tolerance depending on the number of colours

per surface. The fact that I divided each surface into six areas with alternating colour shades

allows the algorithm to fill up to three colours per surface (FIGURE 16).

FIGURE 16. The Flood Fill functionality

The solution to filling surfaces of a tooth is simple and sufficiently effective, in my opinion.

The result also satisfies the condition to have informative graphics in the dental chart. I did

not have access to any source code from competing solutions, but I suspect a very similar

approach has been taken by other developers. I received positive feedback from my develop-

ment supervisor for the functionality of filling teeth with colour on the dental status chart. Con-

sequently, I could move on to develop the functionality for drawing the graphs on the perio-

dontal chart.

26

4.2.3 Drawing procedures

After I had developed the colour filling functionality for the dental status chart, I began devel-

oping the drawing functions for the periodontal chart. This process was also a matter of trial

and error. The desired functionality was a result of discussions with a co-worker who had

knowledge of periodontal charting. The principle of the final version is simple enough. A ma-

trix of positions is updated according to the inputs and then a line is drawn between each of

the updated positions. This is analogous to a graph with vertices connected by edges. Again,

I used a procedure from the imported 2D library Image32. The procedure is called DrawLine

and it takes five arguments. The first is the image object to draw on, the second is a path ob-

ject, the third is the pixel thickness of the line, the fourth is the colour, and the final argument

is an end style object. An example of this procedure call from the code: DrawLine(Img, Path-

BUpperFD, 2, clBlue32, esRound). Paths are simply Point arrays. Points are struct data

types with x and y variables representing coordinates. However, in Delphi structs are called

records.

I hardcoded the x-coordinates for the path positions since they never change. I named the

left, the middle, and the right positions of a tooth after their surface names. Only the y-coordi-

nates are modified by the program based on the user inputs. As with the dental status chart,

the input strings are on a per tooth basis, meaning that one input determines the pocket

depth only for one tooth at a time. In code 3 listed below, I have again hidden the irrelevant

code and chosen to only show the most important lines. First, the code checks for valid in-

puts and then checks if any inputs exceed the allowed limit, since I did not want any lines to

drawn outside of the allowed area. Then the values parsed from input are stored in variables

that correspond to each surface. Only three out of six surfaces are shown in this example. If

both pocket depth and gum recession are measured, then both will be added to their respec-

tive paths. Before storing the y-coordinates in the path, the values in millimetres are mapped

to values in pixels instead. (CODE 3.)

procedure TTandvisningForm.UpdatePaths;

var

...

 procedure CheckLimits;

 ...

begin

 ...

27

 // Check limits

 CheckLimits;

 // Points from the outside (buckal)

 dFD := AtomFDmmArray[0];

 bFD := AtomFDmmArray[1];

 mFD := AtomFDmmArray[2];

 dR := AtomRmmArray[0];

 bR := AtomRmmArray[1];

 mR := AtomRmmArray[2];

 ...

 if (ValidNumber = True) and (IsLower = False) and (Glob-

alIsP2Active = False) then

 begin

 // P1 Update upper

 PathBUpperFD[Left].Y := MapMmToPx(dFD + dR, False, False);

 PathBUpperFD[Middle].Y := MapMmToPx(bFD + bR, False, False);

 PathBUpperFD[Right].Y := MapMmToPx(mFD + mR, False, False);

 ...

 end;

end;

CODE 3. The procedure for updating paths

I developed the drawing procedure next. The DrawFD procedure in code 4 below shows what

happens after the paths have been updated. First, the tooth number is mapped so it corre-

sponds to the sequential order of the line path. Then an image object is created with the cor-

rect size parameters. A line drawing function is called, and it draws lines on the image ac-

cording to the provided arguments. The parameters are image, path, line thickness, colour,

and end style. The line drawing procedure is called several times in the code, each time with

different paths. Since the graph image needs to be transparent to show the tooth images in

the background, a bitmap canvas is modified, and the image is copied onto the handle of that

canvas. Finally, the image object that was created is destroyed to free up its allocated

memory. (CODE 4.)

procedure TTandvisningForm.DrawFD;

var

 Img: TImage32;

 MappedGlobalTooth, FillToothNumberFD : Integer;

 procedure DrawUpperLines;

 begin

 DrawLine(Img, PathBUpperFD, 2, clBlue32, esRound);

 DrawLine(Img, PathBUpperR, 2, clRed32, esRound);

28

 DrawLine(Img, PathLUpperFD, 2, clBlue32, esRound);

 DrawLine(Img, PathLUpperR, 2, clRed32, esRound);

 end;

...

begin

 MappedGlobalTooth := MapToothNumberFD(GlobalToothNumber);

 if MappedGlobalTooth in [1 .. 16] then

 begin

 if GlobalIsP2Active = False then

 begin

 try

 // Draw lines on upper jaw

 Img := TImage32.Create(ImageFDU.Width, ImageFDU.Height);

 DrawUpperLines;

 ImageFDU.Picture.Bitmap.SetSize(ImageFDU.Width, Im-

ageFDU.Height);

 ImageFDU.Picture.Bitmap.Canvas.FillRect(ImageFDU.Clien-

tRect);

 Img.CopyToDc(ImageFDU.Picture.Bitmap.Canvas.Handle);

 finally

 Img.free;

 end;

 ...

CODE 4. The procedure for drawing lines on the periodontal chart

The ability to show pocket depth and gum recession as line graphs on a periodontal chart

seems to be a typical solution. Line charts are well suited for comparing values and spotting

trends. The points are updated and drawn by the algorithm after each input specifying the

measurement on a tooth. After many measurements and inputs, the connected lines drawn

by the code now resemble a line chart. In the example below, the blue lines correspond to

pocket depth and the red lines are gingival recession after a completed examination (FIG-

URE 17). In the figure, one can easily distinguish both the receding gums to the left and the

rather deep pockets on several teeth. Tooth number 43 also has an implant with a gold crown

in this example. By examining the chart, I think that the development decision to also allow

for crowns to be filled with colours is justified. The discussions I had with my supervisor dur-

ing development also confirm this.

29

FIGURE 17. The periodontal chart with pocket depth and gingival recession shown as blue
and red lines

4.2.4 Chart functions

After having explained the main functionality for drawing the dental status and periodontal

chart, I would like to focus on some of the other functions that I developed for the dental

charting program. Obviously, explaining every single function in detail is not within the scope

of this thesis. Nevertheless, I will include some functionalities that are easily explained and

contain only a small amount of code. Some examples include information symbols, a legend

of used colours, and a reset function that clears the chart to a default state.

It is not a tall order to implement functionality to have certain things happen after clicking on a

tooth with the mouse. Only a few lines of code are required to implement an OnClick event,

and in this example the corresponding tooth number is shown in a message after clicking on

a tooth image. The message containing the tooth number is also sent to another module. In

code 5 shown below, an image object and a tooth number of integer type are declared. The

tooth number becomes the value of the tag property defined in the clicked image object. I had

set the tag property of every tooth image to the corresponding FDI tooth number during im-

age initialization. Finally, the message containing the tooth number is shown and delivered.

(CODE 5.)

procedure TTandvisningForm.ImagesClick(Sender: TObject);

var

 ImageClicked: TImage;

 ToothNumber: Integer;

begin

 ImageClicked := Sender as TImage;

 ToothNumber := ImageClicked.Tag;

 //ShowMessage(IntToStr(ToothNumber));

 ...

end;

CODE 5. The procedure for clicking on images

30

Another useful function I developed is called ShowInfo, and it displays a small symbol next to

any tooth indicating that there is more information to be found by clicking on it. Any dental

treatment or diagnosis not displayed by the dental chart can be explained in words on a sep-

arate module by clicking on the information symbol. The inputs can indicate whether they

need additional information or not. When the input is parsed and the ShowInfo procedure is

called with the tooth number as argument, the correct tooth image object is chosen from an

array of images that have already been instantiated (APPENDIX 4). First, the information im-

age objects are created, and they are assigned a parent from the panel component that they

belong to. Then the images are made invisible by default, and they are assigned an OnClick

event, which is the same one explained previously. Different sizes for the images are as-

signed depending on tooth placement. Finally, pictures of the information symbols are as-

signed to the image objects.

// Show info box images for the corresponding tooth

procedure TTandvisningForm.ShowInfo(MappedToothNumber, Tooth-

Number : Integer);

var

 Img : TImage;

begin

 if (MappedToothNumber in [1 .. 52]) then

 begin

 Img := GlobalInfoBoxImageArray[MappedToothNumber];

 // Define positions

 Img.Top := InfoBoxPosArray[MappedToothNumber].Y;

 Img.Left := InfoBoxPosArray[MappedToothNumber].X;

 Img.Tag := ToothNumber;

 Img.Visible := True;

 end;

end;

CODE 6. The procedure for displaying information

In code 6 shown above, the correct image is chosen from the array of initialized images.

Then the image is moved to the correct position according to the positions defined in an array

of positions. The image is assigned a tooth number and finally made visible. (CODE 6.) In fig-

ure 18 below, two information symbols indicate that more information is available by clicking

on the circles. The functionality is accessed by including the letter “I” in the input, for example

31

by defining the input as “s;15;i;5;ff44ee” for tooth 15. (FIGURE 18.) Note that I have not de-

veloped any functionality for user defined inputs used for text explanations. That responsibil-

ity falls instead on the developers of other modules that are not directly related to graphical

dental charting. My code simply sends the tooth number so the correct module can be refer-

enced. Regardless, the possibility for a visual representation of additional information on the

dental chart opens for custom explanations.

FIGURE 18. Clickable information symbols

Towards the end of the project, I developed another feature which is a type of legend or ex-

planatory list of colours for the dental status chart. As usual, the functionality was part of the

requirements, and I discussed the feature with my task supervisor before implementing it. I

created a legend that can display all previously shown colours along with their description.

However, the function does not automatically enter new colours to the legend. This function-

ality must be added later from another module. I used a VCL component called ColorListBox

and the procedure is quite simple. First, the input string is parsed, and the colour and text

string is stored in variables. Then, the code calls a procedure called UpdateLegend that

simply adds the text and a new colour box object as new entries to the list. (CODE 7.)

// Update the Legend

procedure TTandvisningForm.UpdateLegend;

var

 Text : String;

 BoxColor : Integer;

begin

 Text := GlobalLegendMark + ' ' + GlobalLegendExplanation;

32

 BoxColor := GlobalLegendColor;

 ColorListBox.Items.AddObject(text, TObject(BoxColor));

end;

CODE 7. The procedure for updating legend entries

In the example shown below, a series of input strings have been received. The first string is

“LEGEND;ff2233;(C);Caries”. After parsing the input, the code adds the colour and descrip-

tion together with the abbreviation to the list. In the example below, eight strings with different

colour codes and explanations have been added to the list. (FIGURE 19.)

FIGURE 19. A colour box component

The feature to translate between Swedish and Finnish was basic and easy to implement. I

basically just modified the strings in the textbox properties of the panel components. Another

requirement for the dental chart was a separate panel that displays the periodontal history.

The code for this second panel is not particularly interesting, since I only copied the panel

components and moved them around to display two periodontal charts simultaneously. I did,

however, spend considerable amount of time testing this feature. When switching to the peri-

odontal history panel, a string of text can be attached to the input. This text is meant for dis-

playing information regarding for instance the date, place, patient, and dentist. The result is a

separate periodontal history panel with the same width dimension as the main panel, which

allows for smooth transitions between panels. (APPENDIX 10.)

33

Suppose a new patient arrives, and the dentist wants to start from an empty dental chart. In-

stead of simply restarting the program, it would be useful to implement a function that erases

everything that have been drawn on the chart. It is also useful to have this feature during de-

velopment and testing, so that the chart can simply be reset to a default state. I started by

adding a VCL button component to the development panel. When the button is pressed, pro-

cedures are called that empty the dental chart. These procedures are called ClearStatus and

ClearFD, and they can be accessed via normal string input as well.

// Clear images on the canvas

procedure TTandvisningForm.ClearStatus;

var

 I: Integer;

begin

 for I := Low(ImageArray) to High(ImageArray) do

 begin

 ImageListStatus.GetBitmap(I - 1, ImageArray[I].Picture.Bit-

map);

 end;

 // Clear the legend as well

 EmptyLegend;

end;

CODE 8. The procedure that clears the status

The clear status procedure begins with a for loop, and inside the loop all tooth pictures are

reloaded from the image list (CODE 8). The legend is also emptied; the dental status chart

has now been reset to its default state. On the periodontal chart, the clear FD procedure be-

gins with assigning all images to nil (APPENDIX 5). This effectively clears the drawn pixels

so that the images become transparent. Then, another procedure is called that resets all

paths to zero. After that, all tooth pictures are reloaded from the image lists. The code then

does the same for the furcation and mobility symbols. All symbols are hidden by setting the

properties that determine visibility to false. Finally, the text boxes are emptied. Now the whole

dental chart has been reset to its initial state (APPENDIX 8).

34

4.3 Testing

I performed testing on the code during development to make sure the code worked as in-

tended. I did not use any unit testing framework for Delphi, instead I wrote temporary code as

needed. The most important test was to fill all tooth surfaces with colour (APPENDIX 6). Be-

cause the teeth were manually drawn, any disconnected or non-black edges could result in

colour leakage when surfaces are filled. Since most images and symbols have hardcoded

positions, these also needed to be tested so that no symbol or image had incorrect positions

(APPENDIX 7). I simply wrote code containing for loops that filled all teeth surfaces or dis-

played all symbols. I also manually entered inputs to check for bugs. In the periodontal chart,

for instance, I filled all crowns for all the different root options. In the example below, a tiny

artifact about three pixels wide can be spotted below the screw of tooth number 44 (FIGURE

20). Mistakes like these are easy to fix, and with thorough testing, the chances of finding

them increases dramatically.

FIGURE 20. An artifact found during testing

4.4 Layout and program flow

In this chapter, I will describe the program flow of the dental chart and explain the layout of

the dental chart project. Since the Delphi IDE uses a RAD approach suitable for prototyping

user interfaces by placing VCL components in a form, it is a convenient way of designing

dental charts. Components can easily be moved around and resized during design time in

the Delphi form designer, and the result is immediately visible. It is important again to empha-

35

size that the layout was decided as part of the requirement. I did not create a proper user in-

terface for the dental chart either. The dental chart program I created will integrate with other

modules containing for instance a proper UI. Instead, I designed a developer interface with a

few buttons on a test panel. The test panel can easily be hidden before the dental chart is de-

ployed, as it is only intended to be used for testing and development. The layout for the den-

tal chart form can be seen in figure 21, with the dental status chart in the centre, the legend

on the right, and the periodontal chart in the bottom. Some of these components are visual,

such as the tooth images and text boxes. Other components, such as the image lists on the

left, are non-visual components, meaning they will not be visible at run time. (FIGURE 21.)

FIGURE 21. The layout of the VCL components on the Delphi form designer

The flow of the program that I developed is somewhat complex, but it can be simplified and

explained easily with a flowchart. I think the program flow was quite clear to me during the

36

early development phase, but as I added more functions the complexity increased. Still, I

never encountered situations where I needed to take drastic measures to alter the flow of the

program. I want to emphasize that the dental charting program executes code based on the

string input, and each input correspond to only one tooth. Accordingly, only one input is en-

tered at a time. If the desired behaviour is to draw a complete dental chart at once, then

many string inputs must be executed in series for instance in a for loop.

I will explain the program flow for the main functionality with the help of a flow chart that I

made (FIGURE 22). Initially, one input string is received and parsed. The tooth number is

then determined. If the desired action is to hide a tooth, then the specified tooth is made in-

visible in both charts. If the tooth is to remain visible, then the code checks whether to con-

tinue execution on the dental status chart or the periodontal chart. The code for the dental

status will check for surfaces and colours from the input. These are stored in variables and

passed as arguments when the code calls the colour filling procedure. Finally, the graphics

are updated. At this final stage, a tooth has been filled with colour and the program returns to

the first state and waits for the next input. If the input contains information regarding the peri-

odontal chart, then the first step is to determine the type of root. If the crown needs to be

filled with colour, then the code does so on the correct tooth picture. The values for both

pocket depth and gum recession are stored in variables for each surface depending on the

input. Then the positions for the graph are updated and finally, the graphics are updated. The

program is now ready for the next input. (FIGURE 22.)

37

FIGURE 22. The program flow of the dental charting program

4.5 Results

The development task for this thesis resulted in an interactive dental charting program. I de-

signed roughly 300 individual tooth images and during development I wrote over 3500 lines

of code. I implemented a majority of the desired functionality that was realistically achievable.

Furthermore, I did so within the time limit. The result of this project is a dental charting pro-

gram that works independently, although it is designed to be integrated with other modules

creating a larger patient information system. The result of the dental charting program is dis-

played below (FIGURE 23).

38

FIGURE 23. The result of the development task: a finished dental chart

In figure 23 above, I have made notes in the chart that correspond to what I believe is a ra-

ther typical dental examination. The test panel to the right in figure 23 can be ignored, as it is

only used during development, and it is not visible after the module have been integrated.

The example shows the dental status chart filled with different colours and their meaning. Be-

low that is the periodontal chart that display measurements in blue and red lines, as well as

different types of roots. I have also provided an example of an empty chart that has yet to re-

ceive any inputs (APPENDIX 8). Another example of inputs given to the dental charting pro-

gram shows a more detailed examination (APPENDIX 9). In this example, more colours are

used, and some tooth surfaces have multiple colours filled in. The periodontal chart at the

39

bottom has more extreme pocket depths and gingival recession that have resulted in perio-

dontitis. This example and the example in figure 19 above show many of the possible use

cases for the dental chart. The dental charting program is a tool with many possibilities since

any colour can be used and their meaning can be freely modified. This gives developers the

opportunity to customize the dental chart according to the customer’s practice.

In addition to the functionality listed above, I developed many other features in accordance

with the requirements and instructions. The chart can have text displayed in either Swedish

or Finnish for example. The dental chart can also be printed together with a freely written text

that describes, for instance, the date and place. I also implemented a secondary view of the

periodontal chart that opens in another tab and shows two periodontal charts simultaneously

(APPENDIX 10). The lower chart can display the dental treatments from a previous visit. A

couple of features were de-prioritized during development due to lack of time. Examples in-

clude dental bridges and the ability to adjust tooth positions. These features will be discussed

in more detail in the next chapter.

During development, I was free to divide my time between designing teeth, writing code, test-

ing, researching, and learning. I estimate that I spent an equal amount of time with each

phase. It was fascinating to learn about the practices in the dental profession and implement

this knowledge in the software development phase. I also learned the Delphi programming

language, which was previously unfamiliar to me. During development, I also had to consider

memory management, testing, and debugging. Based on the feedback, I believe that the

commissioner is satisfied with my work and the result. The objective for the development task

has been met and I will discuss the implications and the assessment of my work as well as

the thesis writing process in the next chapter.

40

5 DISCUSSION

In this chapter I will discuss my approach to the development process, what I learned, key in-

sights, the results, and implications. I will also evaluate my work and then shortly describe the

thesis writing process. Finally, I will list a couple of improvements to the dental chart. I have a

rather pragmatic approach to software development, and the development process and the-

sis also reflect this. Many concepts were unfamiliar to me, so I learned plenty during the de-

velopment process. Things I learned include practices in dentistry, dental charting, the Delphi

programming language, image manipulation, to name a few.

The most time-consuming aspects of development involved how to implement the dental

charting ideas in Delphi. For instance, I had to plan the data structures and take memory

management into consideration. I also thought about the user experience and accessibility. In

hindsight, I should have focused on building more structured code. This is important as the

project develops and the code increases. I should also have avoided using global variables

as much as possible to make the code easier to maintain. For example, writing fewer proce-

dures and more functions would have accomplished this. In addition to the maintainability of

the code, I also gave some thought to the program flow and performance. These are all im-

portant concepts in the field of information technology. The knowledge I gained from re-

searching, learning, and implementing these concepts will be beneficial to me in the future.

The key insights I obtained from developing the dental chart involves data structures and fun-

damental properties of data science. For instance, the way I implemented colour filling is not

necessarily the most elegant solution. However, since the pixels are the limiting factor, in

general, the result of the tooth models tends to look similar regardless of implementation. I

can think of other viable solutions, but when a surface must dynamically change colour, a fill-

ing function is a good choice. Then the interesting problem of the balance between having

smooth edges and an evenly filled surface becomes evident. I believe I avoided this problem

by making the design choices that I did. Regarding periodontal charting, it is clear to me that

any type of data structure that can represent a line chart is preferable. I chose to implement

2-dimensional arrays for its simplicity. The rest of the features and functionality for the dental

chart were by large rudimentary to develop. In summary, I often found the process of combin-

ing knowledge from dentistry and software development to be fascinating.

41

5.1 Assessment

I believe I have successfully completed the task given to me and solved the problem defined

in the beginning to a satisfactory degree. My employer was very satisfied with the result.

They successfully implemented my dental charting module into their application, and they

now can offer a more modern and informative dental charting solution. I believe I have docu-

mented the development process and reported my thoughts, insights, and choices sufficiently

well in this thesis report. Considering I worked mostly independently, I am also personally

satisfied with the result. Especially given the number of unfamiliar concepts that I had to first

learn. I was able to perform research and connect the results to develop a complete product.

I understand that my solutions are not necessarily the most elegant, but they meet the re-

quirements satisfactorily. Considering I had a limited amount time to develop a working pro-

gram, I believe my approaches are justified.

The significance of my work is for the commissioner to decide, but I believe that the company

can now offer a more competitive product. This thesis was divided into two separate phases:

the development phase and the writing phase. The development phase took roughly three

months. I successfully completed the development task in time, so my objectives for this the-

sis have been met. I will be working for Abilita as well in the future, which in a way is also an

acknowledgement of my work. By documenting the development process in this thesis, I be-

lieve I have successfully demonstrated how to implement a visually distinctive and interactive

dental charting program. The problem I defined in the introduction has thus been solved.

5.2 Improvement suggestions

Although I managed to implement most features suggested to me, a couple were still left out

due to lack of time. For instance, I did not develop graphics for dental bridges on the status

chart or the ability to slightly alter the position of teeth. Although time-consuming, these fea-

tures are not particularly difficult to develop. I focused instead on the more important features

and the quality of already implemented code. If I had more time, I would have also improved

the software documentation. I still want to list a few suggestions for improvement, in addition

to those already mentioned. These are improvements that I have realized may benefit the fi-

nal product.

42

In addition to the keyboard, I think it would be an advantage to allow the mouse to be used as

an input device as well. Users could select and click on teeth to fill colours and click on small

input boxes to enter pocket depth on the periodontal chart. This would be especially benefi-

cial for trainees who have not yet fully learned the program. An English option for the locali-

zation would be trivial to add but was never part of the requirement. Another improvement I

propose is to show missing teeth as an outline of the edges of the tooth. This would clear up

any confusion whether the tooth is missing or simply not shown. Finally, the biggest improve-

ment to the graphics would be to design vector-based images instead of bitmap images. This

would allow the teeth to be scaled without losing detail and make the edges straighter. I re-

searched the possibility to have vector graphics, but I decided it was too unfamiliar and diffi-

cult to implement within the time limit. These are just a few suggestions for further research

and development that could improve the dental chart and make it even more user-friendly

and informative.

43

6 CONCLUSION

The advantages of digital charting during dental examinations are evident. The purpose of

this thesis was to develop a dental chart for Abilita and to document the process and the re-

sult. Additionally, I aimed to demonstrate how the chart could be made as clear and informa-

tive as possible, without losing graphical fidelity. The development task was limited to graphic

design and programming of the chart’s functionality, so I did not work on the connection to

the database or the end-user interface. I carefully followed the instructions and requirements

set by the commissioner. However, my work is based on my own research and trials, includ-

ing discussions with the company and customers. I worked independently and divided the

task into separate phases for development and for writing this thesis.

The chart that I developed has been integrated with the rest of the dental program. The re-

sults show that the dental chart is descriptive, informative, visually pleasing, and works as in-

tended. In this thesis I have motivated my decisions and explained what I learned during the

design and development phase. Therefore, the objectives defined for this thesis have been

met. I have suggested improvements to the commissioner including how the user could inter-

act with the dental chart more easily. For further research, I recommend vector-based

graphics, as it would provide a noticeable impact on graphics by improving sharpness while

also adding flexibility. The combination of the concepts found in information technology and

dental healthcare has resulted in a development task that was both interesting and reward-

ing.

44

REFERENCES

Abilita. 2023. Om oss. Available at: https://www.abilita.fi/se/om_oss/. Accessed 14 February
2023.

Adobe. 2023. Aliasing & Anti-aliasing. Available at: https://helpx.adobe.com/in/photoshop-ele-
ments/key-concepts/aliasing-anti-aliasing.html. Accessed 23 March 2023.

David, P. 2023. Layer Masks. Available at: https://www.gimp.org/tutorials/Layer_Masks/. Ac-
cessed 30 March 2023.

Embarcadero. 2015. VCL Overview. Available at: https://docwiki.embarcadero.com/RADStu-
dio/Alexandria/en/VCL_Overview. Accessed 3.3.2023.

Embarcadero. 2023. Delphi IDE. Available at: https://www.embarcadero.com/products/delphi.
Accessed 14 February 2023.

Gimp. 2023. GNU Image Manipulation Program. Available at: https://www.gimp.org/. Ac-
cessed 16 March 2023.

Głowacki, P. 2017. Expert Delphi: Robust and fast cross-platform application development.
1st edition. Birmingham, Mumbai: Packt Publishing.

Heying, P., Long, A. 2023. Understanding aliasing and anti-aliasing techniques in photog-
raphy. Available at: https://www.adobe.com/creativecloud/photography/discover/anti-alias-
ing.html. Accessed 30 March 2023.

Hiitola, B. 2012. Inkscape Beginner’s Guide. 1st edition. Birmingham, Mumbai: Packt Pub-
lishing.

Hollins, C. 2013. Levison's Textbook for Dental Nurses. 11th edition. Chichester: John Wiley
& Sons.

Honkala, S. 2022. Hampaiden numerointi. Lääkärikirja Duodecim. Kustannus Oy Duo-

decim. Available at: https://www.terveyskirjasto.fi/trv00006/hampaiden-numerointi. Accessed

14 February 2023.

IBM, 2023. What is data visualization? Available at: https://www.ibm.com/topics/data-visuali-
zation. Accessed 30 March 2023.

Johnson, A. 2023a. Image32 GitHub repository. Available at: https://github.com/AngusJohn-
son/Image32 Accessed 7 April 2023.

Johnson, A. 2023b. FloodFill. Available at: http://www.angusj.com/delphi/im-
age32/Docs/Units/Img32.Extra/Routines/FloodFill.htm. Accessed 7 April 2023.

Lecarme, O., Delvare, K. 2013. The book of GIMP: A complete guide to nearly everything.
San Francisco: No Starch Press.

https://www.abilita.fi/se/om_oss/
https://helpx.adobe.com/in/photoshop-elements/key-concepts/aliasing-anti-aliasing.html
https://helpx.adobe.com/in/photoshop-elements/key-concepts/aliasing-anti-aliasing.html
https://www.gimp.org/tutorials/Layer_Masks/
https://docwiki.embarcadero.com/RADStudio/Alexandria/en/VCL_Overview
https://docwiki.embarcadero.com/RADStudio/Alexandria/en/VCL_Overview
https://www.embarcadero.com/products/delphi
https://www.gimp.org/
https://www.adobe.com/creativecloud/photography/discover/anti-aliasing.html
https://www.adobe.com/creativecloud/photography/discover/anti-aliasing.html
https://www.terveyskirjasto.fi/trv00006/hampaiden-numerointi
https://www.ibm.com/topics/data-visualization
https://www.ibm.com/topics/data-visualization
https://github.com/AngusJohnson/Image32
https://github.com/AngusJohnson/Image32
http://www.angusj.com/delphi/image32/Docs/Units/Img32.Extra/Routines/FloodFill.htm
http://www.angusj.com/delphi/image32/Docs/Units/Img32.Extra/Routines/FloodFill.htm

45

McKeeth, J. 2017. RAD Studio FMX IDE Screenshot. Available at: https://en.wikipe-
dia.org/wiki/File:RAD_Studio_FMX_IDE_Screenshot.png. Accessed 30 March 2023.

Microsoft. 2023. Visual Studio Code. Available at: https://code.visualstudio.com/. Accessed
23 March 2023.

Molen, B. 2010. Periodontal Evaluation Chart. Available at: https://en.wikipe-
dia.org/wiki/File:Periodontal_Chart_Illustrated.jpg. Accessed 14 February 2023.

NEBDN. 2020. National Examining Board for Dental Nurses. Dental Charting. Preston:
NEBDN. Available at: https://www.nebdn.org/app/uploads/2020/07/Dental-Charting-V0.5-
July-2020.pdf. Accessed 14 February 2023.

Nelson, S., Ash, M. 2010. Wheeler's Dental Anatomy, Physiology and Occlusion. 9th edition.
St. Louis: Saunders.

Newman, M.G., Takei, H., Klokkevold, P.R. and Carranza, F.A., 2019. Newman and Car-
ranza's Clinical periodontology. 13th edition. Philadelphia: Elsevier.

Niederst Robbins, J. 2006. Web design in a nutshell: A desktop quick reference. 3rd edition.
Sebastopol (California): O'Reilly.

https://en.wikipedia.org/wiki/File:RAD_Studio_FMX_IDE_Screenshot.png
https://en.wikipedia.org/wiki/File:RAD_Studio_FMX_IDE_Screenshot.png
https://code.visualstudio.com/
https://en.wikipedia.org/wiki/File:Periodontal_Chart_Illustrated.jpg
https://en.wikipedia.org/wiki/File:Periodontal_Chart_Illustrated.jpg
https://www.nebdn.org/app/uploads/2020/07/Dental-Charting-V0.5-July-2020.pdf
https://www.nebdn.org/app/uploads/2020/07/Dental-Charting-V0.5-July-2020.pdf

APPENDIX 1

APPENDIX 2/1

APPENDIX 2/2

APPENDIX 3/1

APPENDIX 3/2

APPENDIX 4

APPENDIX 5

APPENDIX 6

APPENDIX 7

APPENDIX 8

APPENDIX 9

APPENDIX 10

	1 INTRODUCTION
	2 task Overview
	3 Theoretical background
	3.1 Dental notation and charting
	3.2 Software and tools
	3.3 Delphi
	3.4 Graphics

	4 developing a dental chart
	4.1 Design
	4.1.1 Dental status chart
	4.1.2 Periodontal chart

	4.2 Development
	4.2.1 Parsing inputs
	4.2.2 Filling functionality
	4.2.3 Drawing procedures
	4.2.4 Chart functions

	4.3 Testing
	4.4 Layout and program flow
	4.5 Results

	5 discussion
	5.1 Assessment
	5.2 Improvement suggestions

	6 Conclusion

