

Developing a full stack mobile application

Shan Liao-Mäkinen

Bachelor’s Thesis

Degree Programme in Business

Information Technology

 2023

Abstract

 18.04.2023

Author(s)
Shan Liao-Mäkinen

Degree programme
Degree Programmer in Business Information Technology

Report/thesis title
Developing a full stack mobile application

Number of pages
and appendix pages
51 + 2

This thesis explores software development from the perspective of developing a full stack
mobile application for the Google and Apple marketplaces and devices in the year 2023.

The work begins with an introduction to the topic and presentation of the objectives. There
is also an explanation to some premade choices such as JavaScript as the main program-
ming language and the objective to use one shared codebase for both marketplaces.

After this, a short overview of the history of mobile software development is presented, fol-
lowed by the theoretical framework for this thesis. The historical part goes over a short his-
tory of where touch screen enabled devices that we use today came from. It starts from the
SMS-text message based mobile phones of the past and also has a small look into the fu-
ture of mobile technology.

The theoretical framework part of the thesis will first explain the methodology chosen for
this thesis, which are literary review and comparative analysis. The first topic to be re-
viewed is the mobile frontend framework of the application and choices that are available.
Various comparisons are performed, and a choice as well based on the data available.

Next is the comparison and reasoning behind the choices of the backend. As JavaScript is
a locked in premade technology choice from narrowing the scope of the thesis, this means
JavaScript runtimes such as NodeJS are considered for the backend tool of choice. Vari-
ous frameworks to combine both are also compared like React-Native, Flutter, Xamarin
and Apache Cordova.

Following the backend is the database comparison, where a few options on the market are
compared from a popularity standpoint as well as suitability with JavaScript native formats
such as JSON. Alternatives such as MySQL, MariaDB and PostgreSQL are considered.

After this there is an introduction into what a web server is, how they were developed and
what are the different choices are available for making an application based on JavaScript
and web-technologies. There are performance considerations that are shown when choos-
ing the right web server for this application, the comparisons are mostly between Apache
and Nginx.

As the second last part comes the empirical part of how the programming work proceeded
and what happened during development of the application and what choices were made.

Finally, a discussion part goes through what was learned during the development work and
what could have been done differently, or what could be improved upon in the future, con-
cluding into a thank you note for the reader of this thesis.

Keywords
 applications, mobile apps, Android, iOS, web programming

Table of contents

1 Introduction ... 1

1.1 A brief history of the mobile app marketplaces. ... 2

1.2 Focus of the thesis and the full stack approach explained. 2

1.3 Further narrowing of the scope of this thesis ... 5

1.4 A brief history of mobile applications and mobile technology 7

2 Theoretical framework ... 8

2.1 The mobile frontend framework for this project.. 9

2.1.1 React and React Native ... 9

2.1.2 What about Flutter? .. 12

2.1.3 What about Apache Cordova and its history? ... 16

2.1.4 What about Xamarin? .. 18

2.1.5 The choice from all the above mobile frontend frameworks 20

2.2 The backend framework .. 20

2.2.1 Express .. 21

2.2.2 Next.js .. 22

2.2.3 Meteor .. 22

2.2.4 Koa .. 22

2.2.5 Nuxt.js .. 22

2.2.6 NestJS ... 23

2.2.7 Fastify .. 23

2.2.8 Loopback ... 23

2.2.9 Hapi ... 24

2.2.10 Restify .. 24

2.3 The database .. 25

2.4 Where will the finished product be running on and how 28

2.4.1 The frontend deployment environment ... 28

2.4.2 The backend deployment environment ... 28

2.4.3 The selected web server on the operating system.................................... 29

3 Empirical part .. 34

3.1 Building of the frontend ... 35

3.2 Building of the backend and the database... 38

3.3 Combining everything on an external Linux Nginx web server 41

3.4 Summary .. 42

4 Discussion codebase .. 43

References .. 44

Appendices .. 48

Appendix 1. Comparison of MySQL, Oracle and PostgreSQL database technologies . 48

1

1 Introduction

The purpose of this thesis is to document what parts are required to implement a full stack

mobile application and whether it is possible and a good or a bad idea to create this kind

of an application using a single shared code base or not. Modern web technologies of the

year 2023 will be used with the goal to publish the work on the Google & Apple platforms.

A code base is everything that is needed to deploy or use an application, along with the

help files to understand it and the complete body of source code. (Sheldon, 2023).

This code base for a project usually exists within one version control repository, but in the

case of multiple platforms there are sometimes two or more version control repositories

for code for each platform. This project aims to use one repository for two platforms.

A “repository” is a way to speak of all the copies of the same project, in a distributed ver-

sion control system, such as git. Version control (git) is a way for tracking changes in a

project that is especially helpful for sysadmins, programmers, and site reliability engineers

(SRE) etc. (Broberg, 2019).

This topic was selected as the author wants to challenge herself to achieve a real-world

result from her studies of the software industry to serve as a stepping-stone to further pro-

jects in the field of professional web development. This work will go through what consid-

erations and steps are necessary to develop a full stack mobile application that can be

published in the year 2023. With the completed work it is possible to see what were all the

parts that were required to develop a full stack mobile application.

The problem this work will try to solve is which could be good choices for technologies on

each technological stack level (frontend, backend, database) for the objective of this the-

sis, which is creating a successfully functioning mobile application with one shared code

base instead of multiple code bases per platform.

A technology stack is a grouping of programs, frameworks, and other tools that aid in the

creation, delivery, and upkeep of software. It frequently includes parts made for particular

purposes. For example, Microsoft's social software, collaboration tools, and document

management tools for convenient work and cooperation with colleagues are all part of the

Microsoft SharePoint technologies stack. Companies in tech use tech stacks to build more

modular solutions and reduce dependencies. (Bahrynovska, 2022).

2

This thesis will serve also as instructions considering the future career of the author for

creating applications for mobile devices using technologies that have been proven to work

in 2023. The results may also indicate that it might not be a good choice to create a mo-

bile application with one shared code base. It is also possible that making custom code for

each platform to create mobile applications without a shared code base is a better choice.

Results to this come after this thesis work is finished and they are available for discussion.

1.1 A brief history of the mobile app marketplaces.

Mobile applications have become increasingly popular as the software company Apple

Computer Inc. launched their mobile application marketplace called the App Store in July

2008, after which - in just one week - people downloaded approximately 10,000,000 mil-

lion mobile applications, also known as apps. This newsworthy commercial success led to

the word App winning the word of the year award for the year 2010 as awarded by the

American Dialect Society (JetRuby 2017). Another software company called Google fol-

lowed Apple in suite, after its amazingly successful business move and consolidated all of

the Android operating systems app marketplaces and stores into one platform, called the

Google Play Store. The Google Play store was previously known as the Android Market,

which existed between 2008 and 2012 alongside Apples App Store. The launch of the

store in 2012 from Google had 450 000 Android applications and it had grown to the sec-

ond biggest source of revenue for Google outside of its internet advertisement business,

now having 1,5 million applications where Apple only had 1,2 million apps in their store

(Callaham 2017).

These two big software companies succeeded in creating strong foundations for markets

where new mobile application software can be sold and used on. The applications and

how they can be made for these marketplaces are the heart of this work.

1.2 Focus of the thesis and the full stack approach explained.

This paper concerns itself mostly about developing a full stack mobile application for both

marketplaces, using a single code base or one set of source code. A key focus and objec-

tive are to keep code changes between platforms to a minimum, to reach a publishable

Minimum Viable Product-style mobile application for the Google and Apple marketplaces

with small available human resources that the author can provide for the work.

3

The work will focus on a specific mobile application called Mamabeibi™ which is a trade-

mark owned by the company Zodiac Fox Oy (Ltd.). The goal is to implement this applica-

tion for both the Apple and Google marketplaces. The author of this work is a founder of

Zodiac Fox Oy. This objective may change in the future of the application if sharing code

is found to be an impossible job to complete.

The main parts of this work will involve the implementation of single modern mobile appli-

cation and the development of all the technological layers also known as the stack of the

application. The work starts from the frontend, which is a word that refers to the user inter-

face and other parts that the user sees first. The work will continue next with at least the

theoretical parts of the backend and the database, which the user commonly does not

see, but uses through the frontend. The backend is where the applications business logic

usually exists and data processing. The database of the application is where all data is

stored that the application saves for use later when the user closes the application and re-

turns to it. This type of development work may be referred to as full stack application de-

velopment.

In order to understand what this work refers to as full stack development, it is helpful to

examine the definition of a full stack development. Currently the definition of full-stack re-

fers to an application that contains three layers, one being the frontend or the user-inter-

Figure 1. The full stack of an application, as illustrated by

the author.

4

face layer. Another being the backend, of the application layer, and the last being the da-

tabase-layer. These three together combined are the writers understanding of what full

stack means, as seen in Figure 1 below.

The more official text on full-stack development explains, that it is a new concept of sys-

tems development, for which a consensus definition has been suggested in an article by

Shropshire, Landry and Presley, 2018 called Towards a consensus definition of full-stack

development. It says the following:

Full stack development is a methodology which addresses all stack layers and in doing so

creates a complete, implementable solution to business requirements. Full stack develop-

ers have broad experience among all stack layers and expertise in a few layers. They

should be able to render a minimum viable product in any given stack (Shropshire et. Al.,

2018).

From this quote the development methodology concerning the concept of technology

stack layers, are better explained with Figure 2. From this figure it is clear that there is a

requirement for wider knowledge from various information technology industry techniques

required to complete a full-stack mobile application.

Figure 2. Core Server-Side and Distributed Stack Architectures (Shropshire et. Al., 2018).

5

1.3 Further narrowing of the scope of this thesis

To further manage the complexity of this thesis work and successfully handle completing

it, the scope of it is to be narrowed. The narrowing focuses mostly on providing the reader

with the frontend empirical part of the thesis, due to the big amount of work to document

all the details of the backend, database and other systems related to the completion of a

full stack mobile application. If the author has more time, there will also be backend and

database sections added to the work of this thesis.

Also, for this full stack mobile application development thesis, there have been made mul-

tiple premade choices to focus and narrow down the scope of the work which includes the

programming language known as JavaScript. On page 18 of the JavaScript Bible, the cre-

ator of JavaScript Brendan Eich describes JavaScript as a general language, useful apart

from HTML and XML. Embedded in servers, authoring tools, browser plug-ins and other

kinds of browsers (Goodman 2007, 18). JavaScript was also chosen due to its popularity,

as seen in Figure 3 below where languages such as Java and Python are not as popular.

JavaScript has been on top for 10 years in 2022 as the most popular programming lan-

guage according to Stack Overflows Developer Survey of 2022. (Stack Overflow, 2022).

Figure 3. Most popular programming languages 2022. (Stack Overflow, 2022)

The general benefits from using JavaScript on the backend and on the frontend are one of

the main reasons why this language has been pre-selected for this work. This is predicted

to make sharing code easier between the layers of the full stack application.

The front-end framework will be chosen by a comparison of different frameworks from at

least two different sources. The same will be done to backend and database layers with

the limitation that the programming language must be JavaScript.

6

Figure 4. Top Web Technologies (Stack Overflow, 2022)

The front-end client framework is going to be one of variety of mainstream choices availa-

ble in the year 2023, compared from recent and relevant sources on the Internet. First

source is the Stack Overflow Developer Survey of 2022 as seen in Figure 4. It confirms

that we can use JavaScript in the backend, as it is the most popular programming frame-

work for backend too, which uses the same language as the frontend. The same kind of

comparison process will be used for the backend and database selection of this work.

Figure 5. Mainstream and Emerging Stack Components (Shropshire, et al., 2018)

For comparison, Figure 5 shows mainstream technologies from a long time ago, in the

year 2018. Some of these technologies are no longer relevant in the year 2023, but for the

purpose of this thesis, they confirm that NodeJS and JavaScript are good popular choices

when developing a full stack mobile application as they have a long stable history.

7

The technology selection will probably be JavaScript based React Native or Flutter or the

Xamarin based on technology recommendations from various sources, as these save time

by allowing a single code base for both iOS and Android platforms. (Furman, 2023).

1.4 A brief history of mobile applications and mobile technology

The history of mobile applications may have a starting point after twenty years of the

events on 1973, on April the 3rd, when the very first mobile phone call was made by a cer-

tain Mr. Martin Cooper of Motorola to Doctor Joel S. Engler of Bell Labs. After approxi-

mately twenty years of research and development from this point in time, the first mobile

applications for smart phones appeared courtesy of the IBM Simon. (Rajput 2015).

This means it took twenty years to go from the first mobile telephone call towards the first

smart phone applications.

Technically the history of mobile phones on which mobile applications run on, dates all the

way back to 1908 to a patent in Kentucky for a ‘wireless telephone’. This though was more

of a two way-radio than the phones that we are used to seeing in the modern day. (Dud-

ley, 2018). It is interesting to note that the first ever text message that was sent, was sent

by Neil Papworth on the 3rd of December 1992. He worked for the Sema Group as a test

engineer, and the message simply said: “Merry Christmas”. (Dudley, 2018).

The next big leap in mobile applications was the smartphone called BlackBerry, that was

released in 2002. BlackBerry was formerly known as Research in Motion (RIM) and they

developed an Interactive Pager (Inter@ctive Pager) that could receive and send mes-

sages over the Internet, which was the predecessor of the first BlackBerry smartphone.

After these discoveries, these smart phones started supporting more and more advanced

software and much of the early development was driven by Nokia, with the SymbianOS.

(Rajput, 2015)

In 2003 the 3G network was beginning to become adopted worldwide, which encouraged

faster speeds of data for mobile technology, such as 0.2MB/s at least. This megabyte limit

is what was required to classify a network as 3G. (Dudley, 2018) This was a signal that

the Internet speeds were getting faster, so mobile applications could actually start trans-

mitting even more data than ever before.

The most significant moment in smartphone history that many experts note it to be, was

June in the year 2007 when the iPhone was first launched. It was not the first touch

8

screen phone on the market, but it arrived at market when most of the mobile phone in-

dustry was physical keyboards, tiny screens and unwieldy designs. This was one of the

main factors for Nokia’s demise. (Dudley, 2018)

The Apple iPhone 3G was among the first phones to have mobile applications as a prior-

ity, as Apple launched their App Store with 552 applications at launch in the year 2008.

Interestingly Android launched its ’Android Market’ – which is currently known as the

Google Play Store – in the same year. The ‘Android Market’ did not offer paid app support

until the next year. From 2008, the ‘Apple vs Android’ debate was marked to start in every

sense of the word. (Dudley, 2018).

2010 Was another meaningful year for mobile applications, as the word “app” was chosen

as the word of the year by the American Dialect Society, following Android and Apple

pushing apps on their marketplaces. (Dudley, 2018).

In 2018, the mobile phone industry has come a very long way. Giants no longer seem to

dominate the industry, as multiple new manufacturers launch products putting Samsung

and Apple to the test. There are never-before-seen concepts being published every other

month, and it seems smartphone innovation is at an all-time high. Perhaps we will see

transparent phones from movies such as Iron Man 2 in the future, you never know. (Dud-

ley, 2018).

The history of mobile applications stays interesting as we move into a new time of mobile

applications and the development of mobile applications.

2 Theoretical framework

This thesis uses literary review as its main research methodology, paired with compara-

tive analysis of various technologies and techniques to develop a full stack mobile applica-

tion. The literary reviews are used to investigate modern state-of-the-art topics, but there

lies the danger of the author building the research on flawed assumptions (Snyder, 2019).

By using a systematic literary review, these possible flawed assumptions at least are

brought bare. This is important so the reader understands that what the author has based

her assumptions on. (Tranfield, Denyer & Smart, 2003).

9

2.1 The mobile frontend framework for this project

According to one source, the most popular mobile application development frameworks

for the year 2023 were 1. Flutter, 2. React Native, 3. Xamarin and 4. Apache Cordova,

among others. (Herembourg, 2022).

Another source reported as the most popular choices for mobile cross platform mobile ap-

plication development frameworks of 2023 to be 1. Ionic Framework, 2. React Native, 3.

Flutter, and 4. Xamarin, and after this a few others. (Sachan, 2022).

It is worthwhile to note that the Ionic Framework based on Apache Cordova. (Jasnowska,

2019). Calculating Ionic as Apache Cordova, this makes the first comparison of sources

show that the most popular mobile frontend frameworks are: 1. React Native, 2. Flutter, 3.

Cordova and 4. Xamarin.

Next, I will briefly go over the technologies and their backgrounds so we can have a gen-

eral idea of each framework to better understand what is available to complete this work.

2.1.1 React and React Native

The possibilities for front-end developers to create user-friendly interfaces have signifi-

cantly increased since the release of React.js. Let’s first go through a quick history of Re-

acts beginnings to gain a better understanding of it.

The Facebook developers first encountered certain maintenance concerns in 2011. The

team needed extra personnel as the Facebook Advertising app gained more capabilities

in order to maintain faultless operation. They experienced a slowdown as a firm due to the

expansion of their personnel and app functionality. As they dealt with numerous cascade

updates over time, their software become more challenging to manage.

Facebook's programmers eventually ran out of time to handle these cascading upgrades.

Their code needed to be urgently updated to become more effective. They had the appro-

priate model, but the user experience required action. As a result, Jordan Walke created a

prototype that improved the procedure, and this is when React.js was born.

React is now a JavaScript library used to build web applications, mobile apps, and desk-

top applications using HTML, CSS and JavaScript. Jordan Walke created it in 2011 and it

10

was called FaxJS at that time, that was the early prototype of React which was shipped in

a search element on Facebook. (Hámori, 2022).

Reacts usage of Components, the Virtual DOM, Lifecycle Methods, JSX, and React hooks

are a few noteworthy elements that have contributed to the development community's ap-

preciation for the framework. Each of these aspects deserves a deep dive study that ex-

amines the benefits, drawbacks, and application scenarios but it is out of scope of this

work. Nevertheless, when taken as a whole, they provide React three key benefits that

have contributed to and continue to maintain its enormous success. Clean programming,

quick performance, and a healthy community are those three benefits.

Facebook released React in 2013 as open source. It wasn't until the year 2013 after Face-

book released it as open source, that developers and designers started to take notice of

this great new development.

The code basically allowed developers to create views in an interactive fashion and made

it very responsive. Mr. Walke designed React to help developers build complex UIs that

are both fast and easy to maintain. Although the library is still relatively new, it has already

become very popular among web developers because of its ability to help create web ap-

plications with little code. (Arancio, 2021).

React is now the most popular of JavaScript frameworks in 2023 and it has kept this pop-

ular position all the way since 2016 as according to Figure 6.

Figure 6. Usage data of JavaScript frontend frameworks in 2023 (The State of JS, 2023)

11

One of the main features of React is that it uses Functional Components, which means

that they can be reused across multiple pages or even servers. This makes it easier for

the user to create large applications with less effort than if you were writing all the code

from scratch each time, they want something done differently in their application (for ex-

ample: adding a new feature). (Sirgur, 2023).

One of the most popular technological movements today is the rise of JavaScript and its

derivatives. JavaScript has become an integral part of so many apps that it's hard to think

of a web app that doesn't rely on it in some way. React Native is mainly a framework that

integrates JavaScript and React. It is a framework for building native mobile applications

in JavaScript and has been an integral part of this movement as well by offering a solid al-

ternative on iOS and Android platforms.

React Native is a mobile app development framework that enables developers to develop

native apps on Android and iOS platforms allowing developers to create apps that look

and feel like native apps, but still use the same JavaScript code.

React Native as an open-source project is led by members of the JavaScript, Clojure and

React communities and its highly popular. A lot of developers also help keep React Native

free of bugs and give lots of testing with the help of the open source community, submit-

ting bugs and fixing them. It is maintained by Facebook. (Sachan, 2022).

Figure 7. Mobile and Desktop JavaScript libraries by usage. (State of JS, 2023).

Figure 7 measures usage with the formula: (would use again + would not use again) / total

votes. It shows us React Native has kept a highly popular position, as the 4th option Expo

is also a part of the React Native deployment approach, so we can consider the top three

libraries for mobile development to be: 1. Electron (35% people would use it again) 2. Re-

act Native (same 35% + 24% from Expo, totaling at 59%), 3. Cordova (25% + 23% from

Ionic which is based on Cordova) so we have our top three Electron, React, Cordova.

12

2.1.2 What about Flutter?

The name Flutter came from The Sky Engine that was created as a result of the Google

development team hearing the cry to "Open The Sky" in October 2014. It changed over

time to become Flutter, an open-source UI development kit that has revolutionized the

mobile app development industry.

Hot Reload for Android phones was the sole standout feature of Flutter in its early stages.

But, this one feature alone changed the game, cutting the time it took to create an Android

app from a long 7 minutes to a fast 400ms. But, the purpose of Flutter went well beyond

creating mobile applications.

The goal of the Google engineers was to improve everyone's online experience by making

it quicker, better, and more organized. This is why they started by getting rid of Chrome's

outdated web compatibility support, which made it 20 times quicker than before. This

straightforward experiment launched the development of a cutting-edge platform that is

today the go-to option for developers everywhere, Flutter.

Eric Seidel, one of the Flutter co-founders, made the formal announcement at the DART

dev summit in April 2015 about Flutter and the world of mobile app development was

transformed permanently. The Flutter team set out with one goal in mind: to build a plat-

form that enhanced the overall development experience while simultaneously being beau-

tiful & highly functional. This was not enough for them so they took care to keep the plat-

form open-source and adaptable so that developers could modify it to meet their needs.

Dart, the programming language used by Flutter, was at the center of everything. For pro-

grammers wishing to create cutting-edge mobile apps, this extremely portable and user-

friendly language is the ideal option because it supports compilation to efficient JavaScript

as well as Intel and ARM machine code. (Hardik, 2023).

Efficiency and reliability have been proven with Flutter because apps with millions of

downloads and daily users have been built with Flutter, such as Google Ads, Alibaba, etc.

Google Ads has over 10 million+ downloads so it’s very popular. (Sharma, 2020).

13

Figure 8. Features of Flutter. (Hardik, 2023).

Minimal code comes from the programming language of Flutter, Dart. It is strongly typed

and object-oriented. Programming is done declaratively and reactively in Flutters Dart.

Flutter speeds up app startup time because it does not require the JavaScript bridge. Be-

cause the Flutter framework was created in Dart and supports a variety of platforms, the

written code can be used to support channels including Mobile, Desktop, and PWA.

(Sharma, 2020).

Figure 9. Timeline of Flutter. (Hardik, 2023).

Legal conflicts and technological developments were part of Flutter's timeline in Figure 9.

to become the top platform for developing mobile apps. The platform's name changed

from Sky Engine to Flutter in the space of a few short years (thanks to a few lawyers).

(Hardik, 2023).

14

The first commit to Flutter was made in May 2017, and in February 2018, after much wait-

ing, the beta version was eventually made available. Google waited until December 4th of

2018 to make the major announcement that Flutter 1.0 was now available and ready for

use by everyone. This stable release changed the game by giving developers the re-

sources they needed to create apps that were ready for production. In addition, Google

had even higher intentions for their flexible platform than the early releases of Flutter,

which were primarily focused on providing a mobile SDK to build native Android and iOS

apps from a single codebase. (Hardik, 2023).

Sharing a single codebase is one of the objectives of this thesis as well. From this point of

view, Flutter does seem like a good option to go for when making a mobile application.

With the addition of The Hummingbird, which was first presented as a preview in version

1.5, Flutter's growth impressed users even more. With the help of this exciting update,

Flutter was able to expand its functionality to the web, increasing its adaptability and ac-

cessibility on other platforms.

More features including UI tools, widgets, and app bundles were included in later ver-

sions. With the addition of multi-device debugging, Layout Explorer, Flutter Web in beta,

and support for iOS 13, Flutter version 1.12 stood out. These upgrades gave developers

aiming to make attractive and responsive apps a lot of new opportunities. (Hardik, 2023).

Google introduced Flutter 2.0 on March 3, 2021, in a grand Flutter Engage Event, igniting

the excitement of the developer community. The Null Safety feature, a new Canvas Kit

renderer, more enhancements for iOS, a reliable Flutter Web, and other incredible fea-

tures were all included in this version. (Hardik, 2023)

It's fascinating to note that some of the major people who helped Flutter get to where it is

today have also moved on to explore new realms as Flutter continues to make ground-

breaking advancements in the tech sector of application development.

The creative co-founder of Flutter, Eric Seidel, is currently enjoying a well-earned retire-

ment. Tim Sneath, a founding member of the Flutter team, is now the Director of Product

and UX for both Flutter and Dart, whereas Martin Aguinis, the Product Marketing Manager

at Flutter, left to become the CEO and co-founder of Clipjoy. (Hardik, 2023)

15

Figure 10. Anatomy of a Flutter App. (Flutter.dev, 2023).

On Figure 10. you can see how the architecture of a Flutter application looks like on the

mobile platforms. This shows that the top layer requires the use of the Dart programming

language. Because Flutter requires the use of the Dart programming language, it is un-

likely that this work will be using Flutter. This is because learning a new language would

cause delay for the writer of this thesis to complete the work with the small amount of time

and resources available. It is good to learn about the background of why Flutter chose

Dart as the programming language for Flutter.

Why did Flutter choose to use the dart programming language? The Flutter team consid-

ered a variety of languages and runtimes during the early stages of development before

settling on Dart for the framework and widgets. Flutter took into account the requirements

of the creators, developers, and end users of the framework when using four main evalua-

tion dimensions. The team discovered other languages that complied with parts of the cri-

teria, but only Dart received top marks across all of the evaluation criteria and dimensions.

The four dimensions were: Developer productivity, object-orientation, predictable with high

performance, and fast allocation. Dart had all of these.

The combination of two critical Flutter features is supported by Dart runtimes and compil-

ers: a JIT(Just In Time)-based fast development cycle that enables shape changing and

stateful hot reloads in a language with types, as well as an Ahead-of-Time compiler that

generates effective ARM code for quick startup and predictable performance of production

deployments. (Flutter.dev FAQ, 2023).

16

2.1.3 What about Apache Cordova and its history?

A native application for a variety of mobile platforms can be made using HTML, CSS, and

JavaScript content thanks to Apache Cordova, a hybrid open source framework. The

name Cordova is also the real name of the street where Nitobi's office is located in Van-

couver, Canada. Nitobi is the company that originally built the predecessor of Cordova,

Adobe PhoneGap later renamed to Apache Cordova.

Your web application is rendered within a native WebView by Cordova. An application

component called a WebView is used to display web material inside of a native program

(such a button or a tab bar). A WebView can be compared to a web browser without any

of the common user interface components, like a URL field or status bar.

The web application operating inside of this container can open additional HTML pages,

perform JavaScript code, play media files, and communicate with external servers exactly

like any other web program that would operate within a mobile browser. A hybrid applica-

tion is a common name for this kind of mobile application.

Web-based applications are typically run in a sandbox, which prevents them from having

direct access to the device's different hardware and software characteristics. Your cell de-

vice's contact list is a nice illustration of this. A web program cannot access this database

of names, phone numbers, emails, and other pieces of information. Cordova offers JavaS-

cript APIs to enable access to a range of device functions, such as the contacts database,

in addition to a basic framework for running a web app inside a native application.

Many plugins are used to make these features available. The native functionality of the

device and our web application are connected using plugins. For teams who want the

benefit of having Ionic manage ongoing updates, security patches, compatibility, and other

aspects of native device access, the Ionic team has gone a step further and created Ionic

Native, which has TypeScript interfaces for over 200 of the most popular plugins. Ionic

Native also offers enterprise supported versions.

The distinction between PhoneGap and Apache Cordova is unclear to developers quite

often. We must try to understand the project's beginnings to remove this unclarity. Many

engineers from the Canadian web development firm Nitobi participated in an iPhone de-

velopment camp at the Adobe offices in San Francisco in late 2008. (Griffith, 2023).

17

Nitobi as a company participating in the iPhone development camp in San Francisco,

looked at the possibility of running their web applications in a native environment utilizing

the native WebView as a shell. The test was a success and it worked. They increased

their efforts over the following few months and were successful in using this solution to

build a framework. The technology was given the name PhoneGap because it gave web

developers the opportunity to connect the gap between their online applications to the de-

vice's native capabilities. As the project developed, more plugins were made so that the

phone could access more functions. The effort gained additional contributors, increasing

the variety of mobile systems it could support.

Nitobi was purchased by Adobe in 2011, and the PhoneGap technology was given to the

Apache Foundation. Eventually, the project was given the new name Cordova, which also

happens to be the street name of Nitobi's office in Vancouver, Canada.

It is simple to mix up the two projects as there is both Apache Cordova and Adobe Phon-

eGap. Due to the interdependence of the two projects, this name issue can be a source of

annoyance when researching a problem during development and needing to use both

Cordova and PhoneGap as keywords to discover the solutions, or even reading the ap-

propriate documentation.

If you consider how Apple has its Safari browser, but it is based on the open source Web-

Kit engine, you can better grasp the differences between Apache Cordova and Phon-

eGap. The same is true in this case: PhoneGap is the version of the framework that is

branded by Adobe, whereas Cordova is the open-source version. There isn't much of a

difference between the two in the end. The functionality is the same even though the com-

mand-line interfaces have a few minor variations. Just mixing the two projects in the same

application is not recommended. There will be issues if Cordova and PhoneGap are used

in the same project.

The primary difference between the two projects is the existence of paid services offered

by Adobe under the PhoneGap name, most notably the PhoneGap Build service. By using

this hosted service, you may have your application remotely built into native binaries, do-

ing away with the requirement to locally install the SDKs for each mobile platform. This

service can be used with the PhoneGap command line interface tool (CLI), but not with

the Cordova CLI. Although it doesn't come with a UI SDK, Cordova offers ways to exploit

native mobile features to build entirely native applications. With the help of Cordova, you

can turn your project's HTML, CSS, and JavaScript into something that can be uploaded

to other app stores. (Griffith, 2023).

18

2.1.4 What about Xamarin?

Microsoft offers an open-source framework for creating mobile and desktop applications

called Xamarin. For iPhones, iPads, Android smartphones, Android tablets, etc., the user

may create 100% native apps.

Xamarin could be the tool of choice if the user wants to create apps for the Universal Win-

dows Platform (UWP) because Xamarin allows to utilize C# (C-sharp) and.NET for app

development purposes.

Because common logic can be created for several app versions for platforms like Android,

iOS, and UWP, the platform is even better for quicker app creation and little maintenance

because of the shared code base.

Using Xamarin, the user can easily perform anything that the user could do on a variety of

native mobile app development platforms including Java, Swift, Kotlin, Objective-C, etc.

All of this is done on the well-known IDE for software development, Visual Studio. (Nath,

2022).

What is an IDE? This is what programmers use to assemble the many components of cre-

ating a computer program. This all is done using an IDE, or integrated development envi-

ronment. IDEs boost programmer productivity by merging common software development

tasks such as editing source code, creating executable files, and debugging into a single

program. (Codeacademy Team, 2023).

Mono was the precursor to Xamarin. Mono was an open-source initiative to adapt.NET for

the Linux platform. Afterwards, several businesses bought Mono and the original develop-

ers were fired from their jobs. Later in 2011 the same group of original developers estab-

lished Xamarin. Novell gave Xamarin permission to utilize the Mono, MonoTouch, and

MonoAndroid development licenses in the middle of 2011.

Then finally Microsoft purchased Xamarin in 2016. The Xamarin SDK which is now an

open-source app development platform was introduced by Microsoft that same year. The

platform makes use of C# and the .NET framework. All versions of the Visual Studio IDE

support the SDK.

19

Xamarins features include Native Emulators, which are emulators for multiple mobile

platforms and OS releases. They are built within the Xamarin IDE. You don't need to pay

extra for emulators to run your program on devices like the Google Pixel, Samsung Gal-

axy, iPhone, iPad, Android TV, Apple TV, etc. that are emulators. (Nath, 2022).

Xamarin has SDK Bindings for every platform SDK like iOS, Android, etc. As a result of

this, the user can create native apps of superior quality faster than with other products.

The Xamarin IDE's primary coding language is C#. Many dynamic functional constructs,

including LINQ, lambdas, parallel programming, and others, are supported by C#.

With the Xamarin IDE, you can find for yourself important third-party scripts to construct

your apps. The code scripts could be written in any common language used to create mo-

bile apps, such as Java, C++, Objective-C, Swift, etc.

The.NET Basic Class Library is utilized by the programs you create (BCL). Database,

XML, Serialization, String, IO, Networking, and more technologies like these are all simpli-

fied and complete in BCL.

The well-known Microsoft Visual Studio program serves as the Xamarin coding environ-

ment. You won't have to learn any new coding languages or tools as a result if you know

how to use this tool already. Other advantages provided by VS IDE include solution man-

agement, project management for app development, code auto-completion, a project tem-

plate library, and more. (Nath, 2022).

The ability to create solutions with one codebase for iOS and Android is one of Xamarin's

key selling factors. With between 60% and 95% reusable code, native performance, and

C# code built within the.NET framework, Xamarin is a feasible solution.

Applications created using Xamarin have access to a wide range of features and can sup-

port platform-specific features like NFC, ARKit, CoreML, and Fingerprint. Third-party li-

braries can be incorporated, such as those from Facebook, Google Play Services, and

Google APIs for iOS.

The fact that Microsoft supports Xamarin is among its many wonderful features. One can

now anticipate constant developer support, a variety of educational options, stability, and

performance. A wide range of industries, including healthcare, energy, media, transporta-

tion, and more, use Xamarin to create apps and service users. (Georgiou, 2023).

20

2.1.5 The choice from all the above mobile frontend frameworks

Based on our descriptions of the top four options, React Native, Flutter, Cordova and

Xamarin the decision which one to use comes from the table below:

Table 1. Framework comparisons and decision of framework choice.

Framework Pro Con Barrier of entry

React-Native Popular Learn JS XML Learn the JSX/TSX language.

Flutter Efficient Learn DART Learn the DART language.

Cordova Lightweight Not as popular No need to learn new language.

Xamarin Big support Learn C# Learn the C# language.

From Table 1 we can determine that Cordova is a good choice because there is no need

to learn a new language such as JavaScript XML, DART or C# as JavaScript itself first the

constraints of this work. Cordova supports using simply HTML, CSS and JavaScript so

this will be the choice to go forwards with this work on the frontend framework side as it

will save time avoiding to learn a new language for this work to be completed. Cordova

does have it’s disadvantages due to not being as popular as React-Native or Flutter, but it

should save in development and publishing time by allowing a simple HTML CSS JavaS-

cript website to be made of the Mamabeibi ™ application and having that uploaded into

the Apple and Google marketplaces.

Some possible alternatives towards this goal could be the Ionic framework, NativeScript,

or some other framework like Electron – which are all technologies to enable a HTML5

web application to function on a mobile platform as a hybrid application, but there is not

enough time to go through these three alternatives at this point. Perhaps Electron could

save in development time similarly as Cordova does and in the costs of not needing a

custom language such as Reacts JSX but for now, we will proceed with Apache Cordova.

2.2 The backend framework

Considering the use of JavaScript on the frontend of the application, an effort is made to

save time and use the same programming language on the backend. This sets a unique

constraint to which programs can be used as the server software of the backend. NodeJS

is a technology that the author has used before, which sets alternatives such as RingoJS,

and others behind it for practical reasons. One of the key reasons being not having to

learn the quirks of a a new runtime environment, especially one that differs in that the Rin-

goJS environment runs on the Java Virtual Machine, which is an entirely different runtime

21

environment from a simple C application that NodeJS is (Ramón, 2019).

It could be a good asset to have access to the Java ecosystem, but as the Mamabeibi ™

software has a simple backend, it feels like it might not be necessary. It is true also, that in

2023 the NodeJS ecosystem is large as well because it has had time to develop.

As the filtering factor for the comparison of frameworks for the backend is set by JavaS-

cript and NodeJS, the comparison of which backend frameworks to use in order to per-

form our application logic and data persistence actions over the Internet will focus on the

following frameworks:

The comparison of backend frameworks starts from a point where JavaScript is the lan-

guage of choice. The frameworks compared will be from a 2020 review of top 10 frame-

works, which include Express, Next.js, Meteor, Koa, Nuxt.js, Nest.js, Fastify, LoopBack,

Hapi, Restify (Md, 2020).

The purpose of the comparison reviews and the target of the application is to be used to

build a simple backend to authenticate the user, save the users state as well as the users

data for the application to user later on, in order to target advertising later on for the cus-

tomers and to provide better user experiences as the application can remember which

part of the Mamabeibi™ application was the user browsing upon shutdown, etc.

2.2.1 Express

Express is the de facto standard JavaScript Server Side Framework. It is a complete ap-

plication framework with middleware, templates and routing. Content negotiation and the

MVC pattern are both supported (Md, 2020), although not necessarily useful due to the

simplicity of the Mamabeibi ™ applications backend needs.

This de facto standard choice seems like a rather good choice, although perhaps the con-

tent negotiation and MVC-pattern are not as useful as they could be in the use case of

Mamabeibi™.

22

2.2.2 Next.js

Built on the most popular frontend framework, React. Supports easy data fetching and

built-in CSS support. Next.js can run on mobile, web and the desktop following the men-

tality build once, run everywhere. It offers best in class server rendering and exceptional

SEO support with a fast start up time (Md, 2020).

Next.js seems very interesting, but looks to be mainly geared towards React usage, which

conflicts with the usage of Angular as the main web application language for the

Mamabeibi™ project.

2.2.3 Meteor

Can build the whole stack, front and backend. Is an isomorphic platform, sharing the same

API both on the client and server-side. Can develop cross-platform solutions for web, mo-

bile and desktop. Has an integrated JavaScript stack, meaning minimum effort usage of

technologies such as the MongoDB database or the React front-end. Has its own templat-

ing engine but can be used with either React or Angular (Md, 2020).

This option seems mostly aligned with React use, similarly as with Next.js so perhaps this

is not the best fit for this project.

2.2.4 Koa

Is modular, offers pluggable middleware modules. Uses modern JavaScript practices such

as the async/await callbacks, which produce cleaner and more expressive code with bet-

ter error handling. Is lightweight, offers a smaller core without middleware. Is a cascading

middleware, and offers slightly better performance than Node.js.

This framework seems like a possibly good choice, the code seems very lightweight and

straightforward – much more so than any of the other compared frameworks (Md, 2020).

2.2.5 Nuxt.js

Built upon Vue.js, offering server-side rendering and exceptional SEO support with fast

start up times. Support automatic splitting of code pages, or pre-rendered pages. Highly

23

modular with 50 standard modules supporting many needs for Web Application Develop-

ment (Md, 2020).

This framework seems like a good choice, if we would have chosen Vue.js instead of An-

gular for the frontend framework beforehand.

2.2.6 NestJS

Similar architecture as Angular, offers out-of-the-box Enterprise grade solution with little

configuration required. Very well suited for a Microservices architecture, thanks to its mod-

ular nature. Built on TypeScript and modern JavaScript (ES6+), combining functional pro-

gramming, object-oriented programming, and functional reactive programming elements.

Offers code generation and scaffolding tools similarly to Angular in the form of a Com-

mand Line Tool (CLI). Considered the best among Server Side Frameworks by the author

Md on medium.com (Md, 2020).

This could very well be a great choice for the Angular application being developed, as it

offers similar tooling and mentality as the Angular framework does. The TypeScript could

either be a hindrance or a benefit if the framework is taken into use.

2.2.7 Fastify

A framework that’s minimalistic, and one of the fastest Server Side Frameworks as per

their own benchmark at https://www.fastify.io/benchmarks/. Has a robust plugin architec-

ture for easy extension. Offers an excellent developer experience, as it is minimalistic and

expressive to develop with. Has CLI tools for scaffolding and code generation, as well as

easy startup. Currently not as popular as many of the other frameworks (Md, 2020).

This framework may be fast and minimalistic, but will it integrate with the way an Angular

application functions or fight against it.

2.2.8 Loopback

The Loopback framework is especially suited for Microservice Architecture. It’s a heavy-

weight framework offering OpenAPI Spec driven REST API request/response creation.

https://www.fastify.io/benchmarks/

24

The framework is built on TypeScript and offers advanced features like Components, De-

pendency Injection and Mixins. LoopBack as a framework offers excellent developer ex-

perience with modular, expressive and clean code. The framework can create GraphQL

for any REST API as it has excellent support for GraphQL (Md, 2020).

GraphQL is likely not going be used, as the project proceeds with Angular instead of other

frameworks that prefer the usages of GraphQL.

2.2.9 Hapi

The Hapi framework offers integrated Authorization and Authentication, which is the best

among Node.js frameworks. It is an end-to-end, enterprise-grade framework offering mini-

mal overhead out-of-the-box functionality. Hapi offers an over-the-top Developer Experi-

ence with a special focus on expressiveness and Code readability. It has a Modular Archi-

tecture with huge eco-system of official plugins. This leads into the conclusion, that it is

easily extensible in a secure way. Unfortunately, Hapi does not support any Middleware.

Instead of middleware, Hapi offers extensibility model via Plugins that puts predictability

and security first (Md, 2020).

The lack of middleware may be a question that is a deal breaker in order to even start de-

veloping with Hapi, as middleware may play important parts in getting the job done.

2.2.10 Restify

An older framework for Node.js focusing on highly scalable REST API services. Used by

Netflix and a few other large companies. It is a minimalistic framework with focus on Mi-

croservices and APIs. The framework has out-of-the-box Client support for String Client,

HTTP Client, and Json client. Restify also has first-class support for Dtrace as it automati-

cally creates Dtrace probes for every route/handler. There is support for Sinatra style han-

dle chaining as well as semantic API versioning based on semver (Md, 2020).

As Netflix uses this framework, it gives the outlook into the library that they may have the

right idea on how to build a scalable and multi-user friendly environment. As for Dtrace,

it’s not used by me in the current NodeJS work I’ve done, so perhaps that is something to

learn and see if it could be the main choice.

25

In the end it would seem, that the safe choice is to go with the Express framework, and

this is what the thesis will be built on. Reasons for this are many, but one key answer is

that the hassle of reinventing the wheel seems to not have produced better wheels than

the wheel we already have in use. The choice of framework for the backend is the Ex-

press framework.

2.3 The database

The choice of the database is based on the simple fact that users of the Mamabeibi™ ap-

plication should be able to save user data and retrieve it in an orderly fashion. The writer

of this thesis has experience with Relational Databases so any NoSQL databases will not

be considered in this case. There is a strong bias towards MySQL and PostgreSQL as

well, as the writer has previous experience from her education and professional life on

how to use these two systems for database management. This work will attempt to stay

neutral regardless of the above presented two biased details before the comparison.

Figure 11. Database management solutions based on their popularity (db-engines.com)

Rankings globally seem to indicate a top 3 of Oracle, MySQL and PostgreSQL. MongoDB

is a NoSQL database and as it is not a relational database, it will be disregarded as a pop-

ular choice for this work in particular. It would seem like those two years after the initial

sample, in the year 2022 the results are very similar, as can be seen in Figure 12 below.

26

Figure 12. Same comparison in 2022 as above (db-engines.com)

When Figure 11 and Figure 12 are combined, the most popular choice for databases is

Oracle, followed by MySQL and PostgreSQL. This points to the logical choice to be

MySQL or PostgreSQL because the author has experience previously with these two

technologies. Another consideration is the technology choice of the backend, which is

constrained by NodeJS. This is a JavaScript runtime technology for the backend, which

needs to send messages to the database that arrive to it from the frontend. Appendix 1 of

this work provides a more detailed a view of the differences of these three technologies,

and confirms yet another positive point towards choosing MySQL or PostgreSQL, that Ja-

vaScript (NodeJS) is supported for both MySQL and PostgreSQL database systems.

There is another comparative analysis that the writer feels smart to perform on the choice

of database technology for this project. As the full stack mobile application being created,

uses JavaScript, this means that with it also comes the natural usage of the JSON data

type. It is worth it to examine how the support of JSON as a datatype is working with both

MySQL and PostgreSQL to make the final choice between the two.

27

Figure 13. PostgreSQL vs MySQL feature comparison, JSON (2ndquadrant.com, 2022)

According to Figure 13 above, MySQL is lacking with JSON data type indexing and as the

application will be using JSON, this in combination with other details seen in Appendix 1

point to making the decision of going forwards with PostgreSQL. In combination with the

author already knowing how to use the technology, these two reasons are why Post-

greSQL is chosen as the database technology for this project. PostgreSQL has been an

open-source system that has been on the market for a long time, making it a safe choice

to go forwards with, without any commercial ties or vendor lock in. Also, MySQL has a

proprietary language to program user functions, PostgreSQL follows the standard there.

28

2.4 Where will the finished product be running on and how

The choice of the frontend application deployment is dictated based on the target environ-

ment of this thesis, which are the two dominant mobile application platforms as of 2021.

The iOS operating system is a UNIX variant, and the Android system is based on a modi-

fied Linux kernel, which are both the operating systems of the Apple and Google mobile

marketplace devices. The backend allows for more choices for this work, as it is external

to the mobile device, just like the database is. The development work is running on a sep-

arate web server on the local development computer that the author uses to develop the

full stack mobile application on, which will be discussed later in this work.

2.4.1 The frontend deployment environment

The frontend of the application will be running in its own context on a higher level away

from the operating systems low level Linux systems, so this work will leave that to be ab-

stracted away to the chosen frontend framework. Rather what will be used is use modern

web application development techniques to create the user interface of the application for

the target environment.

2.4.2 The backend deployment environment

The target environment for the backend will be a Linux server, due to the cost effective-

ness of not having to buy an operating system license, as well as the reliability and having

the source code available for changes if these were to ever come to the mind of the devel-

oper.

Some of the best assets, when comparing to a commercially available system, of a Linux

system are its price, the freedom it gives you, the reliability of the system. There is an ar-

gument to be made for scalability being one of its greatest assets. The initial price of Linux

is free, which most people know, but mostly what people talk about in terms of Linux’s af-

fordability, they usually think of its total cost, which includes the ability to reuse all of the

code as you choose, includes no (or low) cost of licensing fees, capability to use inexpen-

sive hardware and free add-on applications that are compatible.

Reliability in terms of Linux is usually seen as it being more reliable than desktop systems

and that there exists a general consensus that Linux is comparable in reliability to many

commercial UNIX systems. For a web server this is especially true, as you do not have to

reboot your system every time you change something, unless you’ve replaced the kernel

itself.

29

The realm of safety is by extension touched by the reliability of Linux, as opposed to Win-

dows users who are often plagued by malware and viruses. Deployments of larger scale

to Linux do not need anti-virus software installations – a situation which you would never

allow in a corporate setting with Windows. Anti-virus software on Linux is usually installed

to scan e-mail messages or files for Windows viruses, to help the users of Windows.

Linux is a culture encouraging interoperability, because we can get the source code, we

can change any part of the Linux systems along with any open-source software that

comes with it unlike many self-contained commercial products which are not built in

pieces that are meant to interact with other pieces, like open-source software is. We are

left with the choice to choose the pieces we want by mixing and matching components to

suit our needs. (Negus, page 10, 2008).

2.4.3 The selected web server on the operating system

First, there will be a small look into the history of web servers and a short overview of

what a web server is and where it places itself in the operating system, as seen in Figure

14 below. After this look into the history, there will be a comparison of modern web serv-

ers and a choice will be made on which to use to accomplish this works objectives.

Figure 14. Basic functionality of a web server

Mr. Tim Berners-Lee at the European Center for Particle Physics (CERN), began the pro-

ject that is known as the World Wide Web. The goal originally was to provide a single con-

sistent interface for geographically spread scientists and researchers who needed access

to a variety of formats of information. This idea to access data such as text, images, video,

sounds and binary files was where the concept of using one client to access data came

from, the Web Browser. The Web server on the other hand usually has a simpler job. That

is to accept HyperText Transfer Protocol (HTTP) requests and sending responses to the

client. The job may however become much more complex (just as the server can also),

running functions such as:

• Logging any successful accesses, errors and failures.

30

• Document parsing (changing values for conditional fields in documents) before
sending back to the client.

• Creating a Common Gateway Interface (CGI) script or a custom API (Application
Programming Interface) to evaluate the contents of a submitted form or accessing
a database or presenting a dynamically created document.

• Managing access control such as host name/IP address restrictions, or file permis-
sion-based access control, or username/password pairs.

The Apache Web server is based on a free server from the National Cener of Supercom-

puting Applications (NCSA), which was originally called HTTPd. During it’s time, HTTPd

was the only, and the first Web server on the Internet. The development lagged behind

unfortunately with the needs of the Webmasters and many security problems had been

discovered. Multiple Webmasters independently applied their own features and fixes to

the source code originally from the NCSA.

A group of these developers later in 1995 created a new project based on this source

code base called Apache – and that has since then now become the Apache Software

Foundation (www.apache.org) where the code has largely been rewritten to create a sta-

ble multiplatform web server daemon. Apache is not the only web server available, but it is

one of the most commonly used with Linux. (Negus, pages 834 – 835, 2008).

Today’s web servers are quite more sophisticated than the early 1990s static file system

content servers. It was the initial vision of Mr. Tim Berners-Lee is where all this media

richness grew from, where today’s web servers support multiple capabilities from user au-

thentication, virtual hosting, server-side scripting to generate dynamic content, etc. We

can now balance our check book, make appointments, share documents, all in real time

using “web apps”, and as a result the concept of what a “web server” is has become

fuzzy. Handling requests to a web server is no longer a matter of “send back the content

of this file” but it now can involve routing the request to the web application, which can

then determine where the data comes from, be it a database, a stock ticker, or a file. (Clif-

ton, page 9-11, 2015)

The question which web server was selected comes down to these two reviews you can

see in Table 2 and Figure 15 further in this chapter. The observations of which technology

is the better overall choice are interesting and not that apparent when choosing some web

server to host or develop a full stack web application on – or at least the frontend of it. It

comes down to questions of scaling and dynamic content, where the future of the applica-

tion should be considered as well instead of just the ease of use at the start of develop-

ment.

http://www.apache.org/

31

Table 2. Apache and NGINX webserver comparison (Javatpoint, 2021)

Apache NGINX

Apache runs on all Unix like systems such as
Linux, BSD, etc. as well as completely supports
Windows.

Nginx runs on modern Unix like systems; how-
ever, it has limited support for Windows.

Apache uses a multi-threaded approach to
process client requests.

Nginx follows an event-driven approach to
serve client requests.

Apache cannot handle multiple requests con-
currently with heavy web traffic.

Nginx can handle multiple client requests con-
currently and efficiently with limited hardware
resources.

Apache processes dynamic content within the
web server itself.

Nginx can't process dynamic content natively.

Apache is designed to be a web server. Nginx is both a web server and a proxy server.

Modules are dynamically loaded or unloaded,
making it more flexible.

Since modules cannot be loaded dynamically,
they must be compiled within the core soft-
ware itself.

A single thread can only process one connec-
tion.

A single thread can handle multiple connec-
tions.

The performance of Apache for static content
is lower than Nginx.

Nginx can simultaneously run thousands of
connections of static content two times faster
than Apache and uses little less memory.

The comparison in Table 2 we can see that Apache seems to have perhaps more flexibil-

ity in what modules (or plugins) to choose from, but the Nginx-side needs to be recom-

piled in order to do any meaningful changes into the core server itself.

Overall, it seems at least based on table 2, that Nginx can handle more connections and

do handle more clients efficiently with lower resources. It seems to also function as a

proxy server, although Apache also has reverse proxy functionality through modules, so

this is a somewhat confusing point. When focusing on the handling of more connections,

further proof for the argument is desirable so we can verify whether Nginx really outper-

forms Apache with concurrent connection handling or not. For this, the website Dream-

host.com ran a benchmark study on the performance of these two websites and the re-

sults that were found can be seen in Figure 12 below.

32

Figure 15. Nginx handling requests per second better than Apache

The winner of the requests per second test made by Dreamhost in the year 2016 was

commented on (Kunda, Chihana et. Al., 2017, page 45) in a web server performance liter-

ary review, that in raw number of requests, Nginx clearly dominates Apache as a web

server. This is the result of our review that indicates that Nginx should be a good choice if

the application developed and hosted would become popular and need to handle multiple

concurrent connections and still be able to function properly.

To further investigate our choice, a review of the memory usage of Apache and Nginx was

investigated in figure 16, seen below. This tells of interesting details in performance.

Figure 16. Apache seems to use significantly more memory than Nginx.

33

The memory usage of Apache tells us that when testing with a 5k PNG file locally from a

VPS (Virtal Private Serve) to take into consideration potential variation in network condi-

tions, making 25 000 requests to measure different levels of usage, Dreamhost test re-

sults show yet again that Nginx comes out as the clear leader in the test. The more con-

nections come in, the more processes Apache spawns to handle them, which leads to

growing memory usage quick. (Kunda, Chihana et. Al., page 44. 2017)

For good source criticism, a third source was added in order to investigate the seemingly

obvious choice of Nginx, which had the interesting notion that both the web servers

Apache and Nginx are flexible, capable and powerful. Both being competitive in all areas,

with their latest versions. (Hari, 2021).

Another interesting notion was that the third source from Hackr.io revealed a use case,

where Nginx was used to complement Apache by functioning as Apache’s proxy server,

offloading slow HTTP connections, serving static files and caching content, in order for the

Apache server to run in a secure and safe environment, the application code. (Hari, 2021).

This further makes our choice sound reasonable, that the work can proceed with the

choice of Nginx as the web server, as it is fully capable of delivering with its latest version

most if not all the same services as an Apache server, but still using less memory than

Apache making more room for development tools and other tools needed on the develop-

ment machine that will be used to complete this full stack application.

Now that all parts have been chosen, the following chapters will detail the empirical results

of the work and provide conclusions and discussion about the objectives of this work and

how they were reached or not reached using the selections mentioned in this chapter.

34

3 Empirical part

The target of this thesis was to create a full stack mobile application, using a single shared

codebase with the objective of publishing the finished product on the Google and Apple

marketplaces. Another target was to describe all the parts that were required to implement

a full stack application, for which in this thesis a decision was made to implement the

frontend with JavaScript, HTML5 and CSS.

There were multiple problems in setting up the database and the backend on the local

system so this is one of the reasons in the frontend a decision was made to put the data-

base and backend of the application into the same frontend code. This also saved costs in

setting up a server in the cloud or on a virtual machine somewhere on the Internet just for

the backend and the database. This was achieved using JSON and making JavaScript

calls to the JSON object to get the necessary data from the frontend using AJAX.

Asynchronous JavaScript with XML is referred to as AJAX. Web pages can change their

content using AJAX without requiring users to reload the page. (Domantas, 2022).

The programming started with setup of the development environment. I used my Windows

10 computer system and Visual Studio Code to do most of the work and this is where I

started. In the beginning I made a git repository by using the git init command to make a

new repository to version control my work. This was to make sure that all my work would

not get lost while I am making the app.

Another choice that needed to be made during development was the place where to save

the code of the work if the local system would crash or fail, so there would be backups of

the code and work. GitHub.com was selected as the hosting platform for the code during

development and it turned out to be a good choice along the years as the platform only

grew in popularity and was a very good tool in supporting the journey of finishing the app.

The company Zodiac Fox Oy provided for a private GitHub repository to hold the code in

for commercial development.

Overall the setup was rather easy and straightforward. I just had to go online to download

everything that was needed. After this user interface of the application started to be

worked on first. The user interface at the beginning was built to be mobile responsive so it

works on mobile devices first, but also for desktop computers. The JavaScript/CSS library

to help with this was Bootstrap.

35

3.1 Building of the frontend

The frontend building was rather fun to build as I already had experience with HTML5,

CSS and JavaScript from previous projects. I started the project with Microsoft Visual Stu-

dio Code and built a system I had locally installed previously when installing the backend.

The UI was built then from the ground up using basic HTML5, Bootstrap and jQuery. Hot-

loading was used with a plugin from Visual Studio Code called Live Server made by Mr.

Dey Ritwick as a free accessory to “hotload” HTML files and serve them on the local com-

puter for a fast way to see your HTML, CSS and JS changes immediately on the browser.

Figure 17. The Health and Diary parts of the app

The application worked great in responsive mode after programming for few days, but

there was a lot of work to be done in order to get all the data into the application and to

form the structure of the application. Figure 18 below shows how the structure of the appli-

cation was created after publishing to the Google and Apple stores.

36

Figure 18. The structure of the Mamabeibi™ mobile application.

A folder structure under a folder of www/ was made, where the css/ folder had all the Cas-

cading Style Sheets. The database/ folder had the data of the application as JSON ob-

jects for getting later with HTTP AJAX GET calls from the frontend. The templates/ folder

had HTML files that were loaded dynamically with the index.js utility functions as seen be-

low in Figure 19. There was also the libs/ folder for external libraries such as jquery and

bootstrap, or the hammer library for mobile phone swiping gesture support. The img/

folder was for all images in png, jpg and svg file formats for use within the application

menu buttons, background images, etc.

37

Figure 19. Dynamic loading of page parts from html files.

The dynamic loading worked with the document ready functionality of jQuery as seen be-

low in Figure 20. After everything was loaded into memory of the browser, the application

initialized itself using the browsers Local Storage to check if there was a saved date that

the user was last checking as seen in Figure 21.

Figure 20. The application startup used jQuery document ready.

Figure 21. The first application code after startup.

38

The whole application was made of a very simple index.html file as seen on Figure 22.

Figure 22. The heart of the Mamabeibi™ mobile application, the index.html file.

Each of the sections of the app as seen in Figure 17 had their own JavaScript logic files

loaded called weekday.js, info.js, health.js and diary.js. This way the concept of Separa-

tion of Concerns could be used for good software design instead of making a too big in-

dex.js file that cannot be maintained later after the application business logic grows.

Separation of concerns is a design principle used in computer science to divide a com-

puter program into sections, each of which addresses a different concern. (Tamerlan,

2021).

With all this combined, the application was working great and I was able to proceed to

publish and test it on Google and Apple marketplaces and their devices.

3.2 Building of the backend and the database

The backend was built first built using Express and NodeJS on my local computer, I had

to first install NodeJS but it was not a complicated process to finish. After completing the

installation, I started with npm install express and installed required packages more from

there. Then I started to build the first backend endpoints to communicate with the frontend

of the application. As seen in Figure 23. below.

39

Figure 23. The point where NodeJS coding stopped.

As seen in I started with an HTTP GET /helloworld as my first test RESTful API endpoint.

In the end due to the difficulties of setting up PostgreSQL locally and its special users re-

quired for it to work with the backend, the backend was simplified into a local storage im-

plementation of all the data during development work. This saved time and allowed for

prototyping to proceed faster.

A big need to update the main data of the application did not seem to be as necessary in

real time as for other applications, this is why the database could be embedded into the

application. The NodeJS integration was left in the code that can use a PostgreSQL data-

base, but it was not finally integrated in favour of the HTML5 Local Storage options speed

of making the application in the end.

The data model was built first on paper, before it was built into application code and SQL

table DDL format. After this, PostgreSQL was installed, and the data was input using

DBeaver software into a local running instance of PostgreSQL for testing the basic SE-

LECT-statements to see if the data model worked correctly.

First, I was running some tests with the NodeJS backend to try to get the data from the lo-

cal database, but the NodeJS application seemed to lack the rights to use the database

locally due to some setup error. I tried fighting with installing a proper user into the data-

base and changing the NodeJS application with some user rights, but for some reason the

connection between the NodeJS application and the database on the Linux server did not

work out.

40

Then already came time to input all the data into the database regarding the Mamabeibi

™ apps details but it was decided that the applications data would fit into a local storage

database to favour for fast implementation and loading speeds without the need for a full

external database at this point of prototyping and making the first MVP version of the

Mamabeibi ™ application so I decided to go forwards with this direction.

Here is a sample of the datamodel creation script for PostgreSQL from the early proto-

type:

Figure 24. Creating the Mamabeibi™ database table foundations.

As seen on the Figure 24 above, the actual SQL structure of the backend was made for

the maternity application Mamabeibi™ to determine when the babys dob (Date of Birth)

was and what was its sex (male or female) in order to show the right days info. But as

seen on Figure 25. below, the database was greatly simplified into a simple JSON file for

each day as seen below:

41

Figure 25. The days from pregnancy to delivering a baby, data structure.

The audience this application is intended for is the largest country in the world, China, and

all English-speaking countries as can be seen from the FI, CHI, ENG, description fields

under each day. This means the market reach potential for this application could have

been very big, if there was enough marketing budget or funding for it.

3.3 Combining everything on an external Linux Nginx web server

After completing all the above parts required for a full stack application, the parts were

tried to be ran on a server online at OVH hosting where everything was combined

(backend and database).

Fortunately, it was quickly realized that this might not be needed for the application to be

launched into the AppStore and Play store as accessing an external server requires extra

permissions to be enabled for the application at least on the AppStore side.

The operating system on OVH was chosen to be a Debian Linux and only had some mi-

nor configurations done to it get nginx running on the server. After this the process of up-

loading the app to the serve an installation of NodeJS on the server started. This went

quite smoothly with sudo apt-get install nodejs but after this, the installation of the Post-

greSQL database did not go so smoothly.

42

There were problems with the user access to the PostgreSQL database from the NodeJS

app code, so I again decided that the better way to proceed would be to put the database

into the main application as a JSON structured JavaScript object in LocalStorage.

There was some testing done with the Chrome Internet Browser after everything was half

setup but in the end the setup of all the pieces was unnecessary because a simple JSON

structure of all the data the application needs was able to be put into the application itself

for the first version to be published.

3.4 Summary

In summary, all of the steps taken before going on this adventure of developing a full

stack mobile application led me to find an efficient way to implement this project and I feel

like the ending result is a success. There may have been better ways to do this but doing

things this way completed the job that was to publish the application both on the Google

and Apple marketplaces with one single shared codebase. I was able to learn a lot while

testing NodeJS and PostgreSQL with the full stack approach. This was also a happy sur-

prise that I could publish the application just with the frontend built using Apache Cordova.

43

4 Discussion

The application implementation was successfully published into the Google and Apple

marketplaces. The conclusion is that a shared codebase does save time in development

and publishing with shared data types such as JSON defined types which JavaScript can

use natively. The results of this thesis can be questioned for not implementing fully the

NodeJS and PostgreSQL backend and database work for being complete.

I would argue that the Mamabeibi™ application that was made with this thesis is a full

stack application. It just all works on top of the Apache Cordova platform as a localhost

HTML JavaScript and CSS server instead of an external Internet based NodeJS server of

some kind. It still has a database (JSON format files loaded with HTTP GET), backend

calls (The HTTP GET calls) and a frontend (The pure HTML, JavaScript and CSS files).

Overall, I am very happy with the results of this thesis work and the many comparisons

that were made between multiple technologies on what could be the best approach to

make an application given the low amount of resources that were available for me.

Further research could be done on more frameworks (Electron, Capacitor, and a few oth-

ers) that could have been explored in the year 2023 but I think given the time limitations

for this work comparing the top 4 frameworks was enough for finding a good enough solu-

tion to complete the job with.

In my own learning, I have already started to learn more of the React JavaScript XML lan-

guage and use it in my daily work now. Maybe in the future I could also learn the C# lan-

guage or the DART language to have better options available for making mobile applica-

tions with other tools. It could be better to learn one tool like React-Native first and focus

more on the successful business cases the mobile full stack applications I make instead of

just the technology parts of the work.

Thank you for reading my thesis on developing a full stack mobile application for the

Google and Apple marketplaces.

44

References

Arancio, S. 2021. ReactJS: A brief history. URL: https://medium.com/@sjarancio/reactjs-

a-brief-history-3c1e969a477f Accessed: 7.1.2023.

Bahrynovska, T. 2022. What Is a Tech Stack: A Package of Means for Achieving Your

Goals URL: https://forbytes.com/blog/what-is-a-tech-stack/ Accessed: 18.3.2023

Broberg, M. 2019. Getting started with Git: Terminology 101 URL: https://open-

source.com/article/19/2/git-terminology Accessed: 18.3.2023

Callaham 2017. From Android Market to Google Play: a brief history of the Play Store.

URL: https://www.androidauthority.com/android-market-google-play-history-754989/ Ac-

cessed: 20.12.2019

Chandra, A. 2020. What Are Full Form of APK And IPA [Updated 2021]. URL:

https://thebigbrains.com/full-form-of-apk-and-ipa/ Accessed: 26.1.2023

Clifton 2015. Web Servers Succinctly. URL: https://www.syncfusion.com/succinctly-free-

ebooks/confirmation/webservers Accessed: 19.9.2021

Codeacademy Team. 2023. What Is an IDE? URL: https://www.codecademy.com/arti-

cle/what-is-an-ide Accessed: 10.4.2023

Domantas, G. 2022. What Is AJAX and How Does It Work? URL:

https://www.hostinger.com/tutorials/what-is-ajax Accessed: 11.4.2023

Dudley, D. 2018 Helsinki. The evolution of mobile phones: 1973 to 2019. URL:

https://flauntdigital.com/blog/evolution-mobile-phones/ Accessed: 30.3.2020.

Flutter.dev. 2023. Flutter Architectural Overview. URL: https://docs.flutter.dev/re-

sources/architectural-overview Accessed: 9.4.2023

Flutter.dev FAQ. 2023. Why did Flutter choose to use Dart? URL: https://docs.flut-

ter.dev/resources/faq Accessed: 9.4.2023

https://medium.com/@sjarancio/reactjs-a-brief-history-3c1e969a477f
https://medium.com/@sjarancio/reactjs-a-brief-history-3c1e969a477f
https://forbytes.com/blog/what-is-a-tech-stack/
https://opensource.com/article/19/2/git-terminology
https://opensource.com/article/19/2/git-terminology
https://www.androidauthority.com/android-market-google-play-history-754989/
https://thebigbrains.com/full-form-of-apk-and-ipa/
https://www.syncfusion.com/succinctly-free-ebooks/confirmation/webservers
https://www.syncfusion.com/succinctly-free-ebooks/confirmation/webservers
https://www.codecademy.com/article/what-is-an-ide
https://www.codecademy.com/article/what-is-an-ide
https://www.hostinger.com/tutorials/what-is-ajax
https://flauntdigital.com/blog/evolution-mobile-phones/
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/faq
https://docs.flutter.dev/resources/faq

45

Furman, R. 2023. A Definite Overview on Mobile App Technology Stack. URL:

https://www.uptech.team/blog/mobile-app-technology-stack Accessed: 8.1.2023

Georgiou, M. 2023. Xamarin vs. React Native: Which One Should You Choose for Mobile

App Development in 2023? URL: https://imaginovation.net/blog/xamarin-vs-react-native-

mobile-app-development-2021/ Accessed: 8.1.2023

Goodman, D. 2007. The JavaScript Bible. Wiley Publishing, Inc. Indianapolis, Indiana.

Ghauri, P. & Grønhaug, K. 2010. Research methods in business studies. 4th

ed. Pearson Education. Harlow.

Griffith, C. 2023. What is Apache Cordova Framework and What is the Difference from

PhoneGap? URL: https://ionic.io/resources/articles/what-is-apache-cordova Accessed:

10.4.2023

Hámori, F. 2022. The History of React.js on a Timeline. URL: https://blog.ris-

ingstack.com/the-history-of-react-js-on-a-timeline/ Accessed: 8.1.2023

Hardik, B. 2023. A Brief History of Flutter. URL: https://blup.in/blog/a-brief-history-of-flutter

Accessed: 9.4.2023

Hari, S. 2021. NGINX vs Apache: Head to Head Comparison. URL:

https://hackr.io/blog/nginx-vs-apache Accessed: 15.10.2021

Herembourg, K. 2022. 8 Most Popular Mobile App Development Frameworks in 2023.

URL: https://www.purchasely.com/blog/mobile-app-frameworks Accessed: 1.4.2023

Jasnowska, J. 2019. Why you should migrate from Ionic, Cordova, or PhoneGap to React

Native (Updated). URL: https://www.netguru.com/blog/react-native-comparison Accessed:

1.4.2023

JetRuby 2017. Brief History of Mobile Apps. URL: https://expertise.jetruby.com/brief-his-

tory-of-mobile-apps Accessed: 20.12.2019

https://www.uptech.team/blog/mobile-app-technology-stack
https://imaginovation.net/blog/xamarin-vs-react-native-mobile-app-development-2021/
https://imaginovation.net/blog/xamarin-vs-react-native-mobile-app-development-2021/
https://ionic.io/resources/articles/what-is-apache-cordova
https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/
https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/
https://blup.in/blog/a-brief-history-of-flutter
https://hackr.io/blog/nginx-vs-apache
https://www.purchasely.com/blog/mobile-app-frameworks
https://www.netguru.com/blog/react-native-comparison
https://expertise.jetruby.com/brief-history-of-mobile-apps
https://expertise.jetruby.com/brief-history-of-mobile-apps

46

Kunda, D., Chihana S., Sinyinda M. Web Serve Performance of Apache and Nginx: A

Systematic Literature Review. URL: https://www.researchgate.net/publica-

tion/329118749_Web_Server_Performance_of_Apache_and_Nginx_A_Systematic_Liter-

ature_Review Accessed 15.10.2021

Nath, B. 2022. Introduction to Xamarin: Complete Guide and Learning Resources URL:

https://geekflare.com/xamarin-introduction/ Accessed: 8.1.2023

Negus, C. 2008. Fedora 8® and Red Hat Enterprise Linux® Bible. Wiley Publishing, Inc.

Indianapolis, Indiana.

Md, K. 2020. Top 10 JavaScript Frameworks for Server-Side Development in 2020. URL:

https://medium.com/javascript-in-plain-english/top-10-javascript-frameworks-for-server-

side-development-in-2020-6d265016c02 Accessed: 25.5.2020

Rajput Mehul 2015. Tech.co. Tracing the History and Evolution of Mobile Apps. URL:

https://tech.co/news/mobile-app-history-evolution-2015-11 Accessed: 15.3.2020

Ramón, J. 2019. Everything you need to know about Node.js URL:

https://dev.to/jorge_rockr/everything-you-need-to-know-about-node-js-lnc Accessed:

15.3.2020

Sachan, A. 2022. Top 6 Cross-Platform App Development Frameworks in 2023. URL:

https://www.mobulous.com/blog/top-6-cross-platform-app-development-frameworks-in-

2023/ Accessed: 7.1.2023

Schae, J. 2020. A RealWorld Comparison of Front-End Frameworks 2020. URL:

https://medium.com/dailyjs/a-realworld-comparison-of-front-end-frameworks-2020-

4e50655fe4c1 Accessed 16.6.2020

Sharma, S. 2020. The Growth of Flutter Development— 3 Years After The Birth of Alpha

URL: https://medium.flutterdevs.com/the-growth-of-flutter-development-3years-after-the-

birth-of-alpha-78baee809dff Accessed: 8.1.2023

Sheldon, R. 2023. What is a codebase (code base)? URL: https://www.tech-

target.com/whatis/definition/codebase-code-base Accessed: 17.3.2023.

Shropshire, J. & Landry, J. & Presley, S. 2018. TOWARDS A CONSENSUS DEFINITION

OF FULL-STACK DEVELOPMENT. URL:

https://www.researchgate.net/publication/329118749_Web_Server_Performance_of_Apache_and_Nginx_A_Systematic_Literature_Review%20Accessed%2015.10.2021
https://www.researchgate.net/publication/329118749_Web_Server_Performance_of_Apache_and_Nginx_A_Systematic_Literature_Review%20Accessed%2015.10.2021
https://www.researchgate.net/publication/329118749_Web_Server_Performance_of_Apache_and_Nginx_A_Systematic_Literature_Review%20Accessed%2015.10.2021
https://geekflare.com/xamarin-introduction/
https://medium.com/javascript-in-plain-english/top-10-javascript-frameworks-for-server-side-development-in-2020-6d265016c02
https://medium.com/javascript-in-plain-english/top-10-javascript-frameworks-for-server-side-development-in-2020-6d265016c02
https://tech.co/news/mobile-app-history-evolution-2015-11
https://dev.to/jorge_rockr/everything-you-need-to-know-about-node-js-lnc
https://www.mobulous.com/blog/top-6-cross-platform-app-development-frameworks-in-2023/
https://www.mobulous.com/blog/top-6-cross-platform-app-development-frameworks-in-2023/
https://medium.com/dailyjs/a-realworld-comparison-of-front-end-frameworks-2020-4e50655fe4c1
https://medium.com/dailyjs/a-realworld-comparison-of-front-end-frameworks-2020-4e50655fe4c1
https://medium.flutterdevs.com/the-growth-of-flutter-development-3years-after-the-birth-of-alpha-78baee809dff
https://medium.flutterdevs.com/the-growth-of-flutter-development-3years-after-the-birth-of-alpha-78baee809dff
https://www.techtarget.com/whatis/definition/codebase-code-base
https://www.techtarget.com/whatis/definition/codebase-code-base

47

https://aisel.aisnet.org/sais2018/17?utm_source=aisel.aisnet.org%2Fsais2018%2F17&ut

m_medium=PDF&utm_campaign=PDFCoverPages Accessed: 30.3.2020

Sirgur, B. 2023. React Functional Components: In-Depth Guide URL:

https://www.knowledgehut.com/blog/web-development/react-functional-components#con-

clusion Accessed: 2.4.2023

Smith, Albert. 2023. Top Six Frontend Frameworks for Web Development in 2023. URL:

https://medium.com/front-end-weekly/top-six-frontend-frameworks-for-web-development-

caeaa6b1dcc4 Accessed: 25.3.2023

Snyder Hannah 2019. Literature review as a research methodology: An overview and

guidelines. URL: https://www.sciencedirect.com/science/article/pii/S0148296319304564

Accessed: 24.12.2019

Stack Overflow. 2022. Developer Survey 2022. URL: https://survey.stackover-

flow.co/2022/#most-popular-technologies-language Accessed: 25.3.2023

State of JS. 2023. Front-End Framworks: Ratios Over Time. Usage. URL:

https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/ Accessed: 9.4.2023

Sviatoslav, A. 2020. The Best JS Frameworks for Front End. URL: https://rubygar-

age.org/blog/best-javascript-frameworks-for-front-end Accessed: 15.3.2020

Tamerlan, G. 2021. Separation of Concerns The Simple Way. URL: https://dev.to/tamer-

lang/separation-of-concerns-the-simple-way-4jp2 Accessed: 12.4.2023

Tanenbaum, A. 2001. Modern Operating Systems. Prentice Hall, Upper Saddle River,

New Jersey.

Tranfield, D. & Denyer, D. & Smart, P. 2003. Towards a Methodology for Developing Evi-

dence-Informed Management Knowledge by Means of Systematic Review*

URL: https://www.cebma.org/wp-content/uploads/Tranfield-et-al-Towards-a-Methodology-

for-Developing-Evidence-Informed-Management.pdf Accessed: 24.12.2019

PostgreSQL vs MySQL. 2ndQuadrant. 2022. URL: https://www.2ndquadrant.com/en/post-

gresql/postgresql-vs-mysql/ Accessed: 12.4.2022

https://aisel.aisnet.org/sais2018/17?utm_source=aisel.aisnet.org%2Fsais2018%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/sais2018/17?utm_source=aisel.aisnet.org%2Fsais2018%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.knowledgehut.com/blog/web-development/react-functional-components#con-clusion
https://www.knowledgehut.com/blog/web-development/react-functional-components#con-clusion
https://medium.com/front-end-weekly/top-six-frontend-frameworks-for-web-development-caeaa6b1dcc4
https://medium.com/front-end-weekly/top-six-frontend-frameworks-for-web-development-caeaa6b1dcc4
https://www.sciencedirect.com/science/article/pii/S0148296319304564
https://survey.stackoverflow.co/2022/#most-popular-technologies-language
https://survey.stackoverflow.co/2022/#most-popular-technologies-language
https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/
https://rubygarage.org/blog/best-javascript-frameworks-for-front-end
https://rubygarage.org/blog/best-javascript-frameworks-for-front-end
https://dev.to/tamerlang/separation-of-concerns-the-simple-way-4jp2
https://dev.to/tamerlang/separation-of-concerns-the-simple-way-4jp2
https://www.cebma.org/wp-content/uploads/Tranfield-et-al-Towards-a-Methodology-for-Developing-Evidence-Informed-Management.pdf
https://www.cebma.org/wp-content/uploads/Tranfield-et-al-Towards-a-Methodology-for-Developing-Evidence-Informed-Management.pdf
https://www.2ndquadrant.com/en/postgresql/postgresql-vs-mysql/
https://www.2ndquadrant.com/en/postgresql/postgresql-vs-mysql/

48

Appendices

Appendix 1. Comparison of MySQL, Oracle and PostgreSQL database technologies

Source: https://db-engines.com/en/system/MySQL%3BOracle%3BPostgreSQL Accessed: 12.4.2022

https://db-engines.com/en/system/MySQL%3BOracle%3BPostgreSQL

