

Developing a Chatting Applica-
tion Using Apache Kafka
Minh Duc Pham

BACHELOR’S THESIS
March 2023

Degree Programme in Software Engineering

ABSTRACT
Tampereen ammattikorkeakoulu Tampere University of Applied Sciences Degree Programme in Software Engineering PHAM, MINH DUC Developing a Chatting Application Using Apache Kafka Bachelor's thesis 28 pages March 2023
Apache Kafka is a popular distributed streaming platform that has gained im-mense popularity in recent years due to its high performance and scalability. This thesis presents the use of Apache Kafka in developing a chatting application. The primary objective of this thesis was to design and implement a real-time messag-ing system using Apache Kafka, focusing on its scalability and fault-tolerance ca-pabilities. The objective was to make the system able to handle large volumes of messages while maintaining an acceptable response time. The development process involved designing the system architecture, configur-ing Kafka and ZooKeeper, and conducting tests. The tools and technologies that were used in the practical work for the thesis are Apache Kafka, ZooKeeper, Spring Boot, ReactJS and JMeter. The proposed chat application utilized the publish-subscribe messaging pattern provided by Kafka. This thesis also discusses the architecture and design of the chat application and how the features of Kafka, such as message replication, can help in ensuring data consistency and fault tolerance. Along the development phase, JMeter was adopted for load testing and perfor-mance measurement. After evaluating the proposed chat application, Apache Kafka has proven to be an effective solution for building a durable and scalable messaging system.

Key words: distributed systems, Kafka, Spring Boot, chat application

3

CONTENTS

1 INTRODUCTION .. 5

2 BACKGROUND AND OBJECTIVE ... 6

2.1 History of chatting application .. 6

2.2 Project background and purpose ... 7

2.3 Challenges and solutions ... 8

3 TECHNOLOGIES ... 10

3.1 JavaScript programming language... 10

3.2 ReactJS framework .. 10

3.3 Java programming language .. 11

3.4 Spring Boot .. 12

3.5 Apache Kafka ... 12

3.6 Theory of leader election .. 14

3.7 Apache ZooKeeper .. 14

4 TECHNICAL IMPLEMENTATION ... 16

4.1 Software architecture ... 16

4.2 Kafka configuration .. 18

4.3 Message model .. 19

4.4 Producer and consumer implementation 20

4.4.1 Producer implementation .. 20

4.4.2 Consumer implementation .. 21

4.5 Testing ... 23

4.5.1 JMeter configuration ... 23

4.5.2 Results ... 24

5 CONCLUSIONS AND DISCUSSION .. 26

REFERENCES .. 27

4

ABBREVIATIONS AND TERMS

HTTP Hypertext Transfer Protocol used for transmitting data

over the internet.
WebSocket A protocol used for real time, bidirectional communica-

tion between a web browser and a server.
POST A type of HTTP request method used to submit data to

a server.
API Application Programming Interface.
Cluster A logical grouping of processes in a distributed system

working together to achieve a common goal.

5

1 INTRODUCTION

Chat applications have been important means of communication throughout the
21st century. With a chatting application, people can communicate and interact
with each other in real time despite of geographical location. Therefore, real-time
messaging is a critical feature of any chat application, as users expect instant
delivery of their messages.

One method of developing chat applications is to implement restful API so clients
can send HTTP requests to the server to deliver or retrieve messages. However,
this solution has major disadvantage as clients will not be notified when new mes-
sages are available. Another alternative is using WebSocket protocol to create
connections between clients and servers. Nevertheless, if WebSocket sessions
fail, messages will be lost.

To address this problem, Apache Kafka can be used in developing chat systems.
Kafka is a suitable option for large-scale message processing applications be-
cause it provides superior throughput, built-in partitioning, replication, and fault-
tolerance than the majority of messaging systems (Apache Kafka n.d.). As a re-
sult, Apache Kafka performs effectively as an alternative to more conventional
message brokers such as ActiveMQ and RabbitMQ. A message broker acts as a
central hub for receiving, routing, and delivering messages from one system to
another. Twitter is an example of a popular message-processing application that
uses Apache Kafka. At Twitter, Kafka is used for real-time processing of tweets,
user interactions, and other data streams (Su 2018).

In this thesis, the use of Apache Kafka is proposed to develop a real-time chat
messaging. The availability and scalability features of Kafka are leveraged to en-
sure that messages are not lost even in the event of failure. The chat application
is implemented using WebSocket protocol to provide full-duplex and real-time
communication between users. The proposed solution ensures that messages
are delivered to users in real time and without the need of polling. This resolution
provides a solid foundation to develop a real-time chat application that distributes
messages in acceptable time and is highly reliable.

6

2 BACKGROUND AND OBJECTIVE

2.1 History of chatting application

CompuServe's CB Simulator, which was released in 1980, was largely regarded
as the first specialized online chat service (Barot & Oren 2015, 21). However, it
was not until the rise of the internet and personal computers during the 1990s
that new chat applications were more widely accessible to the public. According
to Barot and Oren (2015, 21), chat applications at this time, such as ICQ, AOL
Instant Messenger, and MSN Messenger, were rising in popularity among public
consumers and helped to popularize instant messaging as a form of communica-
tion.

In the early 2000s, due to the rise of social media platforms, companies started
to develop new chat applications that could be integrated into these platforms.
For instance, Facebook launched its chat feature in 2008, allowing users to com-
municate with each other in real time while logged into the social network’s ac-

count.

In the late 2000s and early 2010s, chatting applications were gaining more pop-
ularity among the public due to the advancement of mobile technology and
smartphones (Innoinstant 2022). WhatsApp, for example, was launched in 2009
and quickly became one of the most popular chat applications in the world. As of
2021, WhatsApp had 2.2 billion active users (Iqbal 2023).

Today, chat applications are an essential part of modern communication. Not only
can they send messages but also location information and pictures. Moreover,
with chatting applications, users can now make audio or video call. The chat ap-
plications continue to evolve, with new features and technologies being intro-
duced to enhance the user experience and improve the security and reliability of
these applications.

7

2.2 Project background and purpose

Chat applications have grown in popularity in recent years as they provide an
easy and convenient way for people to communicate instantaneously with each
other. Initially, an online chat application was a software application that enabled
users to send and receive text over the internet (Tarud 2021). As the internet has
improved, chat applications have evolved over time from basic text-based mes-
saging systems to more sophisticated applications that support multimedia con-
tent and advanced features such as group messaging, file sharing, and
voice/video calls.

The rise of smartphones and mobile computing has contributed to the popularity
of chat applications, as users can now get access to their chat applications from
anywhere with their mobile devices. As a result, Chat applications are widely used
for variety of purposes including personal communication between friends and
family, professional communication between colleagues, and customer service
between customers and businesses.

Chat applications have also become crucial in the digital workplace since they
allow remote teams to communicate and collaborate effectively. Due to the
COVID-19 pandemic - forcing many organizations to adopt remote work, the use
of chat applications has become even more widespread.

However, building a chat application that can handle high traffic and large vol-
umes of data in real time presents significant challenges. Developers need to
consider factors such as reliability, scalability, and performance when designing
and implementing a chat application. There are various messaging technologies
available to address these challenges, including RabbitMQ and Apache Kafka.
Both of these technologies are open-source messaging systems that can be used
for chat applications, but they have some differences in their design and capabil-
ities that may make them more suitable for certain specific use cases.

RabbitMQ supports different messaging patterns, including direct exchange,
topic exchange, and fanout exchange, while Kafka uses a publish-subscribe mes-

8

saging pattern. In a chat application, where users need to subscribe to chat chan-
nels and receive messages in real time, the publish-subscribe pattern of Kafka
may be more suitable. Compared to Kafka, RabbitMQ, while still fast and reliable,
may have slightly higher latency due to its more complex architecture. Moreover,
Kafka can handle high volumes of data and has excellent scalability, making it a
natural fit for chat applications requiring high throughput and real-time processing
of large volumes of messages.

While RabbitMQ and Apache Kafka are compatible with chat applications, Kafka
may be more appropriate if low-latency messaging, high throughput, and real-
time processing of messages are required. On the other hand, RabbitMQ may be
more suitable if a more complex messaging pattern is needed. Therefore, after
careful analysis and evaluation, Apache Kafka was chosen as the messaging
platform for the proposed real-time chat application.

For the development of the proposed chat application, Spring Boot and ReactJS
were selected. The event-driven architecture of Spring Boot facilitated the han-
dling of real-time messaging, while ReactJS simplified the development of the
implemented application’s front end. However, there are different frameworks or
technologies that could be used with Apache Kafka to build the chat application.
Examples of the programming languages that Kafka supports are Go, Python,
C/C++, and many more.

2.3 Challenges and solutions

The proposed chat application faces several challenges that need to be ad-
dressed to ensure its success. One of the primary challenges is real-time mes-
saging. Messages should be delivered instantly and without delay. This requires
a robust messaging system that can handle real-time communication between
users. If using HTTP protocol, there will be delays in delivering data as HTTP
needs to finish a complete process including a request from the client and a re-
sponse from the server to the corresponding request (Figure 1). Moreover, as
shown in Figure 1, the client needs to send a request to the server to receive

9

messages with an HTTP connection. In order to overcome this problem, Web-
Socket protocol can be used to enable real-time communication between users.
With WebSocket, a connection between the client and the server is established
after the client makes a request to the server and receives a response from the
server (Figure 1). By using WebSocket protocol, the need for polling can be elim-
inated and the chat application can deliver messages instantly to users.

FIGURE 1. WebSocket protocol versus HTTP protocol (Wallarm n.d.).

Another critical challenge is availability. In the event of failure, the application
must guarantee that messages are not lost as well as users can continue com-
municating without interruption. One of the features of Kafka is the replication
factor which enables replicating data through different nodes - one node is the
leader, and it can replicate data to multiple nodes. This feature enables the ap-
plication to be fault tolerant.

The next challenge is scalability. The application must handle high traffic and
large volumes of data. As the number of users escalates, it may be difficult to
route data from clients to servers and vice versa. To address this challenge,
Kafka topics and partitions can be used to store and distribute data among users,
allowing the application to scale horizontally as the traffic increases. Kafka serves
as a cluster of message brokers to distribute data accordingly and avoid a single
point of failure.

10

3 TECHNOLOGIES

3.1 JavaScript programming language

JavaScript is a high-level, interpreted programming language used for creating
dynamic, interactive web pages and web applications (Tomar & Dangi 2021, 1).
It was originally invented by Brendan Eich at Netscape, in collaboration with Sun
Microsystems, in 1995 and has since become one of the most widely used pro-
gramming languages on the web (McFarland 2008, 2).

According to Keith (2006, 1), web browsers were basic programs that could dis-
play hypertext pages until the birth of JavaScript. The features of JavaScript allow
developers to add interactivity to web pages, such as displaying pop-up windows,
validating user input, and responding to user actions such as mouse clicks and
keyboard input. In addition, JavaScript is used for creating complex web applica-
tions, browser games, and mobile applications.

JavaScript is a versatile language that can be used in conjunction with HTML and
CSS to create rich, interactive web experiences. Today, JavaScript is maintained
and developed by ECMA, and it is constantly evolving with new features being
added regularly.

3.2 ReactJS framework

ReactJS is a popular open-source and free JavaScript framework for building dy-
namic user interfaces (Fedosejev 2015, 2). It was developed by Facebook (cur-
rently Meta) and is now maintained by a community of developers. ReactJS al-
lows developers to create reusable UI (user interface) components and efficiently
controls how the UI is updated in response to user input or changing data.

One of the main advantages of ReactJS is its use of virtual DOM (Document
Object Model), which allows web browsers to update and render UI components

11

faster. The framework also offers declarative programming model, helping devel-
opers easily manage complex UI components as well as saving time.

ReactJS has gained widespread adoption in the web development community
and is used by many tech giants including Facebook, Netflix, and Airbnb. The
framework’s success is partly because of its adaptability, simplicity, and compat-
ibility with other popular front-end libraries and framework. According to a survey
among more than 70,000 developers conducted by Stack Overflow (2022), Re-
actJS is the second most popular technologies, only behind NodeJS.

3.3 Java programming language

Java is a class-based object-oriented programming language which was first re-
leased by Sun Microsystems in 1995 (Savitch 2018, 49). Since then, it has be-
come one of the most widely used programming languages in the world, with
applications ranging from desktop and web applications to mobile and embedded
systems.

Java’s popularity can be attributed to its scalability, security features, and support
for distributed computing. Java is designed to be platform-independent, and its
philosophy is “Write once, run anywhere” (WORA) (Sufyan 2022, 2). This feature
is possible because Java code is compiled into an intermediate form called
bytecode, which is executed by the Java Virtual Machine (JVM) on different plat-
forms. Furthermore, Java’s object-oriented features make it an ideal language for
building complex applications. By encapsulating data and behavior objects, Java
allows developers to manage and maintain large codebases with ease.

In present day, Java has a large and active community of developers due to it
being an open-source language. After acquiring Sun Microsystem in 2009, Oracle
Corporation has since continued to develop and support Java.

12

3.4 Spring Boot

Spring Boot is an open-source Java framework which helps to ease and acceler-
ate the process of developing a web application (Spring n.d.). It was developed
by Pivotal Software, the same company behind the well-known Spring Frame-
work.

One of the key benefits of Spring Boot is that it simplifies the setup and configu-
ration that needed in a Java application. By using Spring Boot, programmers can
focus on writing code rather than having to configure the application. This is pos-
sible because Spring Boot uses a convention-over-configuration approach. It also
provides a set of starter dependencies that developers can use to quickly add
functionalities to their applications.

With Spring Boot, web application development is intended to be efficient and
flexible. It offers developers a collection of pre-configured modules that they can
quickly incorporate into their projects. These modules, among others, cover top-
ics including security, web access, and web services.

Overall, Spring Boot is a strong and adaptable framework that can assist devel-
opers building highly scalable web applications since Spring Boot is compatible
with microservices architecture. Developers can use Spring Boot’s auto-configu-
ration feature to automatically configure their services based on the dependen-
cies they use. This reduces the amount of boilerplate code that needs to be writ-
ten, making it more convenient to develop and maintain microservices.

3.5 Apache Kafka

Apache Kafka is an open-source distributed streaming platform that was origi-
nally developed by LinkedIn in 2011 (Garg 2013, 22). LinkedIn’s initial purpose

was to design a system that could handle large volumes of data in real-time and
provide a scalable, fault-tolerant platform to store and process data.

13

Kafka is built around the concept of a distributed commit log, which allows data
to be processed and stored in real time across a cluster of machines (Thein 2014,
9478). Consequently, Kafka can process millions of events per second. Kafka is
used by many big companies worldwide, including Box, Goldman Sachs, Cisco,
and many more (Apache Kafka n.d.). At LinkedIn, 7 trillion messages are being
processed every day by Kafka (LinkedIn Engineering n.d.).

Apache Kafka is also highly flexible and can be suitable for various use cases. In
addition to serving as messaging system to send data between servers, Kafka
can be used as a storage system for storing massive amount of data, or as a
streaming platform for processing real-time data (Wu, Shang, Peng & Wolter
2020, 207).

Figure 2 illustrates the overall architecture of Apache Kafka. Moreover, as can be
seen in Figure 2, producers publish messages to a topic, which may be handled
by multiple brokers, and consumers listen for messages from that topic. By im-
plementing the theory of leader election, Kafka decides which brokers will handle
the read-and-write operation for each topic partition. Additionally, Kafka uses
ZooKeeper as a service registry for Kafka’s message brokers. Leader election
theory and Apache ZooKeeper will be explained further in the next part.

FIGURE 2. Kafka architectures with ZooKeeper (Splunk 2021).

14

3.6 Theory of leader election

Leader election is a fundamental problem in distributed computing, where a group
of nodes must agree on a single leader node that will coordinate the actions of
the group (Dolev, Israeli & Moran 1997, 424). The purpose of leader election is
to ensure that there is a single point of control within the system, allowing for
efficient decision-making and coordination (EffatParvar et al. 2010, V2-6).

Leader election can have a challenging problem because nodes may fail or go
offline at anytime, leading to network partitions and inconsistencies in the state
of the system. Therefore, the leader election theory must be designed to be fault-
tolerant and scalable.

Kafka’s leader election algorithm is a core component of its distributed
architecture (Manish & Singh 2017, 29). It is based on the principles of distributed
consensus, which ensures that an agreement is reached among a group of nodes
over a decision and that the cluster can continue to operate in the presence of
failures (Wang et al. 2015, 1654). In Kafka, a node is typically referred to a
message broker, which is an instance of the Kafka server that runs on a physical
or virtual machine.

Kafka uses ZooKeeper coordination service to maintain a consistent overview of
the cluster membership and determine which broker is the leader for each
partition. When a leader broker goes offline, ZooKeeper will detect the failure and
trigger a leader election process. Because of the ZooKeeper coordination
service, the remaining brokers in the cluster are able to exchange information
and settle to an agreement on which broker should be the new leader.

3.7 Apache ZooKeeper

Apache ZooKeeper is a distributed coordination service that provides a
centralized infrastructure for managing configuration, synchronization, and
naming services in a distributed system (Apache ZooKeeper, n.d.). It is an open-

15

source project maintained by the Apache Software Foundation. Additonally,
ZooKeeper is designed to be fault-tolerant and scalable.

ZooKeeper coordination service is one of the most significant features of
ZooKeeper as it allows to manage state of the system even in the presence of
failure, which is achived through a consensus protocol. Kafka uses ZooKeeper
as a registry for brokers as well as for monitoring and dectecting failure. Each
time a broker goes down, Kafka is informed by ZooKeeper and redistributes data
accordingly to the remaining brokers in the cluster. By using ZooKeeper to
manage metadata and coordinate cluster operations, Kafka is able to provide
fault tolerance and high reliability, ensuring that messages are always available.

16

4 TECHNICAL IMPLEMENTATION

4.1 Software architecture

The chat application's client-side allows users to create an HTTP request con-
taining their messages, usernames, and timestamp to the API endpoint. In Kafka,
the pub/sub (publish/subscribe) model is a messaging pattern where publishers
(also known as producers) send messages to a Kafka topic, and subscribers (also
known as consumers) receive messages from that topic. Figure 3 illustrates the
overall architecture of the implemented application. Upon receiving users’ mes-
sages, the server passes these messages to the Kafka producer, which publishes
them to the Kafka topic (Figure 3). Kafka topic is a category or feed name to which
messages are published by Kafka producers and from which Kafka consumers
can consume these messages. As can be seen in Figure 3, Kafka consumers
listen to the messages and broadcast them to the WebSocket topic.

17

FIGURE 3. Chat application architecture.

Kafka topics are managed by Kafka brokers, which register themselves with the
ZooKeeper coordination service (Figure 3). Each partition has only one leader
broker responsible for read and write operations, while the other brokers act as
followers and replicate data in case of failure. Moreover, Spring Boot's event-
driven architecture simplifies application’s logic by handling all HTTP requests
sent to API endpoints with preconfigured annotations (Picture 1).

18

PICTURE 1. Handling POST requests with Spring Boot.

4.2 Kafka configuration

In the implemented application, only one topic was created – chat topic. A Kafka
topic is a category or feed name representing a stream of data in Kafka. It is a
logical container that Kafka producers use to publish messages and Kafka con-
sumers use to consume these messages. A topic is identified by a unique name,
and it can be divided into multiple partitions to enable parallelism and provide
fault tolerance.

A Kafka partition is a subset of a topic that contains an ordered and immutable
sequence of messages. However, there is no global ordering between Kafka par-
titions in a topic. Each partition is replicated across multiple brokers in a Kafka
cluster to provide fault tolerance and high availability. The number of partitions in
a topic determines the maximum parallelism of message consumption by Kafka
consumers. Kafka uses a partitioning scheme to distribute messages across par-
titions based on the provided message key or a hash of the message key if not
provided. In the chat topic of the implemented application, the number of parti-
tions was configured to one as the application has one group chat only. In order
to have multiple groups chat, the number of partitions in the chat topic can be
increased and each group chat can have a message key so that the producer
can produce the messages to the desired partition.

19

4.3 Message model

A message model is the structure of a message that can be exchanged between
services. It defines how data is organized and communicated between different
components. Moreover, a message model specifies the structure and content of
the messages being exchanged, including the data element, data types, and any
additional metadata.

Picture 2 presents the message model of the implemented application, which in-
cludes the sender, content, and timestamp of the message. In addition, the mes-
sage model defines the payload that will be exchanged between the client and
server.

PICTURE 2. Message model.

20

4.4 Producer and consumer implementation

In Kafka, producers publish messages to a Kafka topic without knowing which
consumers, if any, will receive them. Consumers who subscribe to one or more
topics will receive all messages published on those topics. This decoupling of
producers and consumers allows for flexible and scalable communication be-
tween different parts of the distributed system. This feature also allows the appli-
cation to hide system logic from the client side.

In the publish-subscribe model, Kafka brokers act as intermediaries between pro-
ducers and consumers. Producers send messages to brokers, which then distrib-
ute the messages to all subscribed consumers. To achieve fault tolerance in the
chat application, three Kafka brokers have been initialized and the replication fac-
tor set to three, meaning data will be copied to two other brokers and one broker
acts as a leader in control of read and write operations. This ensures that if the
leader broker goes down, messages are still available and not lost.

4.4.1 Producer implementation

Picture 3 demonstrates how to configure Kafka producer with Spring Boot. To
configure a Kafka producer, as can be seen in Picture 3, a variable called “con-

figs” was created. This variable is a key-value pairs container that can be passed
to the Kafka producer. The first key-value pair that was added is the bootstrap
server addresses. This pair contains a list of Kafka addresses that the producer
will use to establish initial connection to the entire Kafka cluster.

Kafka allows users to use basically any Java object as a key and any Java object
of any type as a value. However, for each type of key and value, users need to
tell the Kafka library how to serialize that object to a binary format so it can be
sent over the network. Therefore, in Picture 3, key serializer class and value se-
rializer class were set to String serializer and Json serializer respectively.

In addition, kafkaTemplate bean, a type of Java Bean, was created to perform
operations such as sending messages to Kafka topic (Picture 3). A Java Bean is

21

a reusable software component corresponding to a set of conventions for prop-
erties, events, and methods.

PICTURE 3. Producer configuration.

Next, an endpoint was needed for handling messages and publishing them to the
Kafka topic (Picture 1). When a user creates a Post request to api/send, kaf-
kaTemplate bean configured earlier (Picture 3) is then injected and sends mes-
sages to the Kafka topic (Picture 1).

4.4.2 Consumer implementation

Likewise when implementing producers, we need to create consumers configu-
ration which has Kafka addresses, consumer groups and deserializer to deserial-
ize data from Kafka topic. Two beans that were configured are consumerFactory
and kafkaListenerContainerFactory (Picture 4).

22

PICTURE 4. Consumer configuration.

Consequently, @KafkaListener annotation can now be used to consume mes-
sages from a topic. In Picture 5, after consuming messages, simpMessaging-
Template.convertAndSend() will convert and broadcast messages to the Web-
Socket topic.

PICTURE 5. Consuming messages.

23

4.5 Testing

In order to test the chat application, JMeter was used. JMeter is a popular open-
source tool for load testing and performance testing of applications (Halili 2008,
16). Load testing is the process of simulating user traffic to an application to de-
termine how well it performs under different loads. JMeter allows users to create
test plans that simulate many users sending requests to an application and meas-
ure the response time as well as throughput.

4.5.1 JMeter configuration

To simulate high traffic, 10,000 users were added to make HTTP requests to
api/send endpoint, where the messages would be handled and sent to the Kafka
topic (Picture 6). The HTTP requests contained a username and message con-
tent. The ramp-up period was configured to 100 seconds, meaning 10,000 re-
quests would be completed in 100 seconds.

PICTURE 6. Thread set up in JMeter for testing.

24

4.5.2 Results

Picture 7 presents the report that was created by JMeter, including the number
of samples being processed, min/max elapsed time, error percentage and
throughput rate. The throughput rate of the chat application is 100 requests per
second which is 6,000 requests per minute meaning the application can handle
a large number of users concurrently. In addition, no requests failed during the
test which indicates that the system is highly reliable even with high traffic. A log
message was also added to the Kafka listener to print out the number of mes-
sages being consumed which was 10,000 (Picture 8).

PICTURE 7. Summary report of the test created by JMeter.

PICTURE 8. Log messages showing number of consumed messages.

Finally, the reliability of the system was experimented. To simulate system’s fail-

ure, the port that the leader broker ran on was shut down during the load testing.
Before the event of failure, there were three Kafka brokers online and Broker 2

25

was the leader (Picture 9). Moreover, all three brokers were “in sync replica” (in
Picture 9 denoted as “ISR”) meaning the data was available to all brokers.

PICTURE 9. Description for chat topic configuration before failure.

After shutting down port 9094 (the port that Broker 2 was running on), the system
automatically elected a new leader, which was Broker 0, and updated the status
of the data availability by showing that only Broker 0 and Broker 1 were in sync
replicas (Picture 10). Overall, the test results indicate that the chat application, by
using Kafka, is fault-tolerant and can handle a large number of concurrent users.
These tests were designed in order to make an assessment of the functionalities
of the chat application under real-world scenarios.

PICTURE 10. Description for chat topic configuration after failure.

26

5 CONCLUSIONS AND DISCUSSION

In this thesis, the use of Apache Kafka as a messaging platform for developing a
real-time chat application was explored. The proposed chat application was de-
signed and implemented using Kafka. Additionally, the performance and scala-
bility of the implemented application were evaluated through load testing with
JMeter.

The load testing and performance analysis indicated that the system could handle
a large number of users and messages with high throughput. In the test, 10,000
concurrent users were simulated to send and receive messages simultaneously.
It is observed that the chat application was able to process 1,000 messages per
second with a throughput rate of 100 requests per second. However, it is note-
worthy that the tests could not cover all of the real-world scenarios such as the
size of the messages and the number of group chats. These factors would neg-
atively impact the performance of the proposed application since it would in-
crease the time to process each message.

Overall, the results prove that Apache Kafka is a reliable and high-performing
messaging platform for developing real-time chat applications. The architecture
and features of Kafka are suitable for this use case, and the load testing result
showed that Kafka could handle large volumes of messages with high through-
put.

In conclusion, the development of a chat application using Kafka has demon-
strated its effectiveness in building a scalable and reliable messaging system.
The chat application provided a solution that could handle high levels of users
traffic even in the event of catastrophes – by using Kafka topics and ZooKeeper
coordination service, the system can quickly recover from failures. The perfor-
mance of the proposed application can be improved through proper configuration
and optimization. Further research can focus on developing more features such
as file sharing, multiple chat channels, and message encryption. Apache Kafka
has created a profound foundation for future enhancements of the chat applica-
tion.

27

REFERENCES
Apache Kafka. N.d. Powered By. [website]. Read on 15.03.2023. https://kafka.apache.org/powered-by Apache Kafka. N.d. Use Cases. [website]. Read on 15.03.2023. https://kafka.apache.org/uses#uses_messaging Apache Zookeeper. N.d. Welcome to Apache ZooKeeper. Read on 18.03.2023. https://zookeeper.apache.org Barot, T. & Oren, E. 2015. Guide to Chat Apps. Tow Center for Digital Journa-lism. Columbia University. Reports. Dolev, S., Israeli, I. & Moran, S. 1997. Uniform dynamic self-stabilizing leader election. IEEE Transactions on Parallel and Distributed Systems. 8 (4), 424-440. EffatParvar, M.R., Yazdani, N., EffatParvar, M., Dadlani, A. & Khonsari, A. 2010. Improved algorithms for leader election in distributed systems. 2010 2nd International Conference on Computer Engineering and Technology. 2, V2-6–V2-10. Fedosejev, A. 2015. React. js essentials. Packt Publishing Limited. Garg, N. 2013. Apache Kafka. 1st edition. Birmingham: Packt Publishing. Halili, E. H. 2008. Apache JMeter. Birmingham: Packt Publishing. Innoinstant. 2022. The Past, Present and Future of Chat Applications. [blog]. Released on 20.02.2022. Read on 22.03.2023. https://blog.innoins-tant.com/evolution-of-instant-messaging-apps/ Iqbal. M. 2023. WhatsApp Revenue and Usage Statistics. Released on 08.02.2023. Read on 10.03.2023. https://www.businesso-fapps.com/data/whatsapp-statistics/ Keith, J. 2006. Dom Scripting: Web Design with JavaScript and the Document Object Model. Berkely, CA: Apress. LinkedIn Engineering. N.d. Kafka Ecosystem at LinkedIn. Read on 15.03.2023. https://engineering.linkedin.com/teams/data/data-infrastructure/streams/kafka Manish, K. & Singh, C. 2017. Building data streaming applications with Apache Kafka : designing and deploying enterprise messaging queues. 1st edition. Bir-mingham: Packt.
McFarland, D. S. 2008. JavaScript. 1st edition. Beijing: Pogue Press/O’Reilly. Savitch, W. 2018. Java. 8th edition. Harlow, United Kingdom: Pearson Educa-tion Limit.

28

Splunk. 2021. Monitoring Kafka Performance with Splunk. [blog]. Released on 08.06.2021. Read on 17.03.2023. https://www.splunk.com/en_us/blog/de-vops/monitoring-kafka-performance-with-splunk.html Spring. N.d. Why Spring?. Read on 15.03.2023. https://spring.io/why-spring Stack Overflow. 2022. Developer Survey. Read on 15.03.2023. https://sur-vey.stackoverflow.co/2022/#overview
Su. P. 2018. Twitter’s Kafka adoption story. [blog]. Released on 28.11.2018. Read on 22.03.2023. https://blog.twitter.com/engineering/en_us/topics/in-sights/2018/twitters-kafka-adoption-story
Sufyan, B. U. 2022. Mastering Java: a Beginner’s Guide. 1st edition. Boca Ra-ton: CRC Press. Tarud. J. 2021. How Chat Apps Are Evolving. [website]. Updated on 12.03.2021. Read on 17.03.2023. https://www.koombea.com/blog/chat-apps-evolving/ Thein, K. M. M. 2014. Apache Kafka: Next generation distributed messaging system. International Journal of Scientific Engineering and Technology Re-search. 3 (47), 9478–9483. Tomar, R. & Dangi, S. 2021. JavaScript: Syntax and Practices. Milton: CRC Press LLC. Wallarm. N.d. WebSocket vs HTTP: How are these 2 Different?. [website]. Read on 16.03.2023. https://www.wallarm.com/what/websocket-vs-http-how-are-these-2-different Wang, G. 2015. Building a Replicated Logging System with Apache Kafka. Pro-ceedings of the VLDB Endowment. 8 (12), 1654–1655. Wu, H., Shang, Z., Peng, G., & Wolter, K. 2020. A reactive batching strategy of apache kafka for reliable stream processing in real-time. Proceedings - Interna-tional Symposium on Software Reliability Engineering. ISSRE. 2020, 207–217.

