

Graph-Based Circular and Exchange Arbitrage Detection
Eric Brown

BACHELOR’S THESIS April 2023 Degree Programme in Software Engineering

ABSTRACT
Tampereen ammattikorkeakoulu Tampere University of Applied Sciences Degree Programme in Software Engineering ERIC BROWN: Graph-Based Circular and Exchange Arbitrage Detection Bachelor's thesis 53 pages, appendices 7 pages April 2023
Although (circular) arbitrage is already a well-known concept in the trading of crypto-currency pairs on decentralized exchanges (DEXes) like Uniswap, this thesis explored the idea of combining circular arbitrage with exchange arbitrage. The strategy was to leverage graph-theoretic methods on multiple DEXes and centralized exchanges (CEXes) that are aggregated and sorted by their offered exchange rates for each crypto trade pair. By doing so, the aim is to find a circular trade where each trade occurs on the DEX/CEX with the best rate, allowing for more profitable opportunities than being confined to one DEX for all trades. This thesis not only explores the combination of circular arbitrage with exchange arbitrage but also focuses on the creation of a program that implements these strategies. Then the methodology used to develop the program and the arbitrage results obtained from its implementation are presented. In addition, this thesis explores other ways to optimize profitable arbitrage opportunities and improve the program implementing this strategy. Examples include improving the speed and performance of the program, as well as maintaining profitable arbitrage even after accounting for the high gas fees required for each trade in the circular trade by factoring the ideal trade volume. Furthermore, other programmatic improvements are considered, such as changing programming languages and developing smart contracts with Solidity specifically for atomic transactions.

Key words: circular arbitrage, exchange arbitrage, Ethereum, graph-theory, depth-first search

3

CONTENTS

1 INTRODUCTION .. 6

2 BACKGROUND .. 8

2.1 Arbitrage .. 8

2.2 Ethereum ... 10

2.2.1 Gas Fees ... 11

2.2.2 ERC20 Tokens .. 13

2.2.3 Smart Contracts ... 14

2.3 SwapSpace .. 16

2.3.1 Structure of Fees and Service ... 17

2.3.2 API Endpoints .. 17

2.3.3 API Call Limit ... 19

2.4 Slippage ... 20

2.5 Previous Implementation ... 21

2.6 Related Works ... 21

3 PROGRAM METHODS .. 23

3.1 Load and Pre-process Currencies .. 24

3.1.1 Configure Network and Tokens... 25

3.1.2 Filter Currencies .. 27

3.2 Searching for Profitable Arbitrage ... 30

3.2.1 Graph Theory ... 30

3.2.2 Getting Edge Values .. 32

3.2.3 Depth-First Search .. 34

3.2.4 Time Complexity Constraints .. 36

3.3 Executing Transactions ... 38

3.3.1 Creating the Exchanges .. 38

3.3.2 Sending the Transactions .. 40

3.3.3 Verify the Transactions Success ... 42

4 RESULTS ... 44

5 DISCUSSION ... 48

5.1 Funding .. 48

5.2 Expanded Graph ... 49

5.3 Expanded Networks .. 49

5.4 C++ PyBind .. 50

5.5 Solidity ... 51

5.5.1 Atomic Transactions .. 51

5.5.2 Flash Loans ... 53

4

6 CONCLUSIONS ... 54

REFERENCES .. 56

APPENDICES .. 59

Appendix 1. SwapSpace aggregating BTC-ETH exchange rates 59

Appendix 2. Activity Diagram of DFS implementation in the program 60

Appendix 3. SwapSpace response for creating a token exchange 61

Appendix 4. Responses for a detected 4-token abnormal arbitrage 62

5

ABBREVIATIONS AND TERMS

DEX decentralized exchange
CEX centralized exchange
DeFi decentralized finance
API application programming interface
AMM automated market maker
LOM limit order market
DFS depth-first search
BFS breadth-first search
ABI application binary interface
tx transaction
JSON JavaScript object notation
dApp decentralized applications

MetaMask A wallet to interact with Ethereum-based dApss and

send transactions on the Ethereum network.
mainnet The official Ethereum network where txs take place.
testnet A parallel Ethereum network used for testing without

spending real funds.

6

1 INTRODUCTION

Many software engineers and cryptocurrency traders create or implement a
trading bot as a means of generating passive income. These bots range in
levels of complexity and have different techniques and algorithms used to find
profitable trades within the exchange they are built for. With multiple
decentralized exchanges (DEXes) and centralized exchanges (CEXes) in
cryptocurrency markets, it is possible to perform both circular and exchange
arbitrage with a synchronous path of trades to make a profit. To accomplish this
programmatically, the two methods of arbitrage need to be combined in the
program to allow for finding a circular trade, where each crypto currency is
exchanged on the platform with the best exchange rate.

The goal for the circular arbitrage implementation is to find profit using a graph-
theoretic algorithm. Although graph-theoretic algorithms such as Bellman-Ford
are commonly used for finding most profitable circular paths in a graph, of
currencies as nodes and rates of exchange as weighted edges, the program
implements a Depth-first search (DFS) method due to limitations applied from
the method used for finding exchange arbitrage. Other works such as GitHub
user ccyanxyz’s repository “uniswap-arbitrage-analysis” validates profitable
circular arbitrage is possible with a Python implementation of DFS on only the
Uniswap DEX (ccyanxyz 2022); this related work will be explored later.

To fit exchange arbitrage into a program firstly focused on finding circular trades
to execute for a profit, the exchange arbitrage has to occur at every trade the
DFS algorithm is exploring, comparing all DEXes and CEXes for the best
exchange rate. Fortunately, this can be relatively easy to implement using an
exchange aggregation service such as SwapSpace. Integrating their API and
data into the program allows for a more convenient method of finding the
exchange platform offering the best exchange rate for each trade.

The purpose of this thesis is to develop a program able to find combined
circular and exchange arbitrage; then examine the possible new opportunities
for leveraging a two-dimensional price discrepancy. The program developed for

7

this thesis will attempt to find more profitable opportunities by not limiting the
circular arbitrage to just one DEX, but allow each leg of the circular trade to
occur on the exchange with the best rate. Therefore, producing an automated
crypto trading bot capable of making a profit.

8

2 BACKGROUND

2.1 Arbitrage

Wherever there are open markets, there are arbitrage opportunities; and this
holds true for the current growth in DEXes for trading crypto-currencies.
Decentralized exchanges like Uniswap use an automated market maker (AMM)
model to provide liquidity. In an AMM, agents supply and demand liquidity by
adding or removing assets in proportion to the existing pool, with the price
determined by a predetermined convex relationship. This model contrasts with
centralized exchanges (CEXes) that use a limit order book, where liquidity
suppliers compete with each other and can strategically post prices (Lehar, A. &
Parlour, C. 2021). Arbitrage, as defined by Merriam-Webster (2023), is the
practice of buying and selling assets in different markets to capitalize on price
disparities. In the context of the cryptocurrency market, this can be achieved
through the two methods of exchange arbitrage and circular arbitrage. While
both methods offer the potential for profit, they also present unique challenges
that will be explored in this thesis.

FIGURE 1. “An example [of circular] arbitrage on Uniswap V2: The trader

traded 285.71 USDC through four different exchange markets across USDC,
USDT, Seal, Kp3r, and finally received 303.68 USDC. The revenue of this cyclic
arbitrage is 17.97 USDC (18 USD)” (Wang, Ye, et al. 2022, 2).

9

Circular (cyclic) arbitrage is a trading strategy that involves profiting from price
discrepancies between multiple currencies in a circular path. In other terms, it is
a method of trading, in which a trader takes advantage of price disparities
between two or more currencies in a sequence of trades that returns to the
initial currency, producing a net profit. On both DEXes and CEXes, it is possible
to find profit with circular arbitrage, such as in Uniwap as shown in Figure 1.
This shows a trader, identified by a wallet address, transfers USD into USDC on
Uniswap, to then trade multiple cryptocurrencies, and then withdraw the USD
and ultimately make a profit. These trades all happen instantaneously or at least
immediately one after another when using a program. For programming this
type of arbitrage, this requires some graph-theoretical algorithm, this will be
expanded upon later.

FIGURE 2. Simple exchange arbitrage example between buying then selling
ETH on two different decentralized exchanges to profit off the price
discrepancy.

Exchange arbitrage is another trading strategy which involves buying and
selling the same asset, such as a cryptocurrency, on two or more different
exchanges to take advantage of price discrepancies between the exchanges
and generate profits. For example, in Figure 2, if the price of Ethereum (ETH) is
$1,650 on Exchange A and $1,720 on Exchange B, a trader can buy Ethereum
on Exchange A for $1,650 and sell it on Exchange B for $1,720, resulting in a
profit of $70, or a profit of 4.24%. This strategy works by exploiting the
inefficiencies, desynchronization, and time lags between different markets of
high liquidable assets, allowing traders to profit from price discrepancies.

Circular arbitrage is an already well-known concept in the field of crypto trading
bots, and is a crucial part of the current DEX ecosystem for balancing tokens
trading pair price (Lo, Y. & Medda, F. 2021, 20); competition is saturated with

10

trading bots finding these imbalanced trading pair prices. Wang, Y. et al. found
“traders have executed 292,606 cyclic arbitrages [on Uniswap] over eleven

months and exploited more than 138 million USD in revenue” (Wang, Y. et al.

2022, 1). Furthermore, DEXes can experience desynchronization in token
trading pair price across platforms, creating price disparities where “multiple

DEXes must synchronize through [exchange] arbitrage“ (Zhou, L., Qin, K. &

Gervais, A. 2021, 2). This thesis and implemented program demonstrate novel
profitable arbitrage opportunities emerge when combining circular arbitrage with
exchange arbitrage to find price disparities between tokens trading pair price
and disparities of a tokens value across exchange platforms.

2.2 Ethereum

Ethereum (ETH) is the native cryptocurrency of the Ethereum blockchain, a
decentralized public ledger for peer-to-peer transactions, which is used as a
means of payment for transactions, fees, and as a store of value. It has its own
blockchain network and is not reliant on any other tokens or smart contracts to
function. Minors assemble the transactions into blocks and chain them together
using a cryptographic hash (Wood, G. 2014). Each transaction is associated
with an operation that modifies the state of corresponding accounts. A
transaction can be verified as successful once it has been mined onto the
blockchain, and as a public ledger, anyone can view the history of all
transactions. There are many blockchains with their own crypto
currency/currencies, however this thesis work will only explore arbitrage
opportunities on the Ethereum blockchain.

11

2.2.1 Gas Fees

FIGURE 3. Illustration that any computational effort (blue) requires a
proportional amount of gas (red) to be paid to perform the task in the
transaction (Smith, C. 2023).

 𝑔𝑎𝑠 𝑓𝑒𝑒 = 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 ∗ 𝑔𝑎𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (1)

In Ethereum, gas fees are similar to trading fees in that every transaction
requires a fee to cover the cost of executing the transaction, however gas fees
are more dynamic given its the product of gas consumption and gas price (1).
The gas consumption of executing a transaction is proportional to the amount of
computing resources used to complete the transaction and any functions
associated with it, as illustrated in Figure 3. Therefore, the more complex the
transaction, the more gas that will need to be consumed for completion. The
gas price is chosen by transaction issuers who must factor the supply and
demand between the amount of issued transactions and the available
computing resources (such as miners) that are able to process those
transactions (Zarir, A. et al. 2021, 32). The gas fee paid by the user to the miner
for executing the transaction is determined by the product of the gas price and
gas consumption, and the miner will most likely choose the most profitable
transaction to mine. Gas prices have been inflating due to the imbalance of
supply and demand for the overwhelming amount of transactions thus “market

12

size of exploited cyclic arbitrage is significantly smaller than the exploitable
opportunities because of – – the high gas fees” (Wang, Y et al. 2022, 2).

However, there are rumors in articles, such as by journalist Marcel Deer at
Cointelegraph, stating Ethereum 2.0 (Eth2) will be released in a couple years,
and with the upgrade gas fees will drop dramatically (Deer, M. 2022). Until the
Ethereum blockchain updates its method miners have to use for approving
transactions, gas fees will continue to remain high; disrupting opportunities for
profitable arbitrage.

FIGURE 4. Timestamp of current gas fees on Ethereum network 12:42 UTC 14
March 2023 provided by Etherscan.io Gas Tracker.

Although gas prices are always fluctuating, they have been steadily rising as
more people are sending transactions than before, and have to increase the
gas price to get their transaction onto the blockchain first. For arbitrage in any
crypto markets, trading in higher volume is always better for profitability to
negate the cost of the gas fees. For example, Figure 4 is a snapshot of gas fees
on the Ethereum network at that moment in 14 March 2023, if a profitable
circular arbitrage opportunity was found given 4 crypto currencies, including the
starting currency, 4 trades would have to occur. Therefore, the gas fee would
have to be paid 4 times and at this moment, those 4 trades would result in a

13

minimum of 6 USD in estimated gas fees. If typical circular arbitrage
opportunities have a profit of 1-3%, the trade volume would have to be large
enough so the profit percentage can cover the gas fees, allowing the circular
trade to still be profitable.

2.2.2 ERC20 Tokens

FIGURE 5. Required functions of a token smart contract following the ERC20
standard (Ethereum 2022).

Ethereum Request for Comment 20 (ERC20) tokens are tokens created and
hosted on the Ethereum blockchain, which comply with the ERC20 token
standard. They are fungible tokens interchangeable with each other; this
exchange of Ethereum based tokens is where the circular arbitrage occurs.
ERC20 is a set of rules and guidelines that a token must follow to be considered
an ERC20 token; as shown in Figure 5, these are the required functions an
ERC20 token must have available for its smart contract, according to the
current documentation on GitHub. These tokens are programmable, meaning
that developers can create smart contracts on the Ethereum network to control
their distribution, use, and extended functionality. ERC20 tokens can be used
for a variety of purposes, such as utility tokens to access services, security
tokens to represent ownership in assets, or even as a means of payment
(Ansari, K. & Kulkarn, U. 2020, 1). They rely on the Ethereum blockchain
network to function and are typically traded on cryptocurrency exchanges.
There are other types of ERC tokens i.e., ERC721 used for other cases such as
NFTs.

14

The program resulted from this thesis work finds exchange and circular
arbitrage using an Ethereum network Metamask crypto wallet to hold Ethereum
blockchain funds used for the trades. Therefore, all trades must be made with
tokens that are Ethereum or that are on the Ethereum network, that being the
ERC20 tokens. For example, this Ethereum crypto (Metamask) wallet could not
accept or hold Bitcoin (BTC), due to a plethora of reasons: different underlying
technologies and protocols creating both blockchains, different cryptographic
algorithms, and so on. In summary, ETH is the native cryptocurrency of the
Ethereum blockchain, while ERC20 tokens are programmable tokens created
on the Ethereum blockchain network that follow the ERC20 token standard.

2.2.3 Smart Contracts

While Ethereum as a currency can be executed as a simple transaction on its
blockchain, any transaction involving ERC20 tokens or more complicated
transfers requires a smart contract. Smart contracts “are computer programmes

of arbitrary complexity which run persistently on the blockchain itself, where
they will execute in an entirely trustless, decentralised and propably correct
manner on a global network of independent validating computers“ (Cuffe, P.
2018, 1). Smart contracts typically just execute the “transfer” function required

in the ERC20 token standard (Figure 5), sending funds from one wallet to
another; however, they can be more complex. As noted in Ye Wang et al.,
traders commonly perform a “cyclic arbitrage within a single blockchain

transaction. Such atomic implementations mitigate the financial loss of users in
cyclic arbitrage” (Wang, Y et al. 2022, 2). Due to the volatile prices, executing

each transaction independently sequentially might result in unexpected gains or
loss from the estimated amount; or one of the trades might not have been
successful, thus a failure in obtaining profit from a circular trade. Therefore,
wrapping all transactions of a circular trade into one smart contract would mean
all trades have to be successful, or else the smart contract will cancel and no
trades will be completed.

15

FIGURE 6. Remix web IDE alert before confirming the deployment of a smart
contract on Ethereum mainnet.

Custom smart contracts can be made as well through creating contract code on
solidity and compiling it for deployment. Figure 6 is an example of a deployment
confirmation of a custom smart contract from Remix IDE, a web IDE platform for
creating and deploying smart contracts, onto the Ethereum mainnet. Once a
contract is deployed anyone can use that contract if they know the contract
address. Each deployment creates a new instance of the contract with its own
unique address on the blockchain. However, it is generally not recommended to
deploy the same contract multiple times unless there is a specific need for it. As
it can be more efficient and cost-effective to reuse an existing contract instance
rather than to deploy a new one each time (Panda, S. & Satapathy, S. 2021,
554). Additionally, each deployment of a contract incurs a deployment (gas) fee,

16

which can be very expensive if done multiple times unnecessarily. Therefore, it
is generally best to deploy the contract once and reuse the same instance for
subsequent transactions that follow the same strategy.

2.3 SwapSpace

FIGURE 7. SwapSpace website aggregating ETH-AKITA exchange options
through its API.

While the created program uses graph-theoretic methods for finding circular
arbitrage of the tokens on the Ethereum network, it is the exchange aggregator
service, SwapSpace, that is used for aggregating and sorting all available
exchanges (Figure 7) for finding the best token trading pair price. SwapSpace is
a non-custodial instant cryptocurrency exchange aggregator that offers over
2250 cryptocurrencies for exchange with fixed and floating rates, no registration
or additional fees, and doesn't require personal data, ensuring security and
transparency for users.

• Float rate: The quoted rate (“from amount” and “to amount”) between

currencies can change during the exchange, therefore receiving more or
less coins than expected.

• Fixed rate: The quoted rate (“from amount” and “to amount”) between

currencies offered by the exchange will freeze the rate for approximately

17

15 to 120 minutes to allow time to transfer the base currency with the
quoted rate guaranteed.

SwapSpace partners with “a large variety of reliable exchange services to

provide customers with an opportunity to choose the best swap option”

(SwapSpace 2023b), thereby capable of easily performing exchange arbitrage
just with their API. Using this API in tandem with the steps required to make a
functioning circular arbitrage program is simple relative to the power of
leveraging both arbitrage strategies.

2.3.1 Structure of Fees and Service

Although SwapSpace profits from all trades it initiates through its website and
API, it charges no additional fees to its customers. Rather, SwapSpace is
“sharing the commissions with the [partnered] exchange providers instead” and

claims paying through this service would never be more costly than paying
“directly to the [partners] integrated services” (SwapSpace 2023b).

Furthermore, using the API requires an API key obtained by joining as an
affiliate. The advantage of executing trades through the created affiliate API key
is that SwapSpace shares “50% of [the] revenue share.” Thus, any commission

SwapSpace receives from the partnered exchange, half is shared with the
affiliate, which for the thesis project is the author. Although the program does
not attempt to factor affiliate revenue in profitable arbitrage, it is a small benefit
that can be considered insurance for floating rates that can fluctuate.

2.3.2 API Endpoints

Functional details about the endpoints used and their implementation will be
provided in the methods chapter, however a brief overview of SwapSpace API
endpoint structure will be provided here. Overall, the integration flow from one
endpoint to another is straightforward; as outlined from the SwapSpace
documentation, the order and a brief description of each endpoint is given in
Table 1. The partners endpoint is not used in the program created for this thesis

18

because any partner and rate type is allowed, therefore there is no reason to
get the list of all available partners and filter them by what they provide.
Additionally, the endpoint providing the list of estimated “amounts” does not give

the implicit rate of exchange; instead as a parameter the base currency amount
is given and this endpoint returns the destination currency amount. The array of
available exchanges from all the partners and the fixed/float type is also
returned, ultimately this array can be sorted by the destination currency amount
to get the best returned amount. Once the exchange is created, the trade must
be completed by sending the exact base currency amount to the provided wallet
address given in the response from this API endpoint. Finally, the status can be
checked by the exchange status endpoint requiring the ID of the created
exchange.
 TABLE 1. A brief summary of the SwapSpace API endpoints necessary for the program (SwapSpace 2023a).
API Endpoint Response Details
GET /v2/currencies JSON object array of exchangeable currencies Returns important information needed for estimated exchange

“amounts" and create “exchange” endpoints
GET /v2/partners JSON object array of partnered exchanges Provides Booleans of whether each partner accepts fixed and/or float rates
GET /v2/amounts JSON object array of available exchanges and their quoted amount returned in exchange

Does not give implicit exchange
rate, rather the exact “to” and

“from” amount for the exchange

POST /v2/exchange Details about the created exchange Initiates the transaction by creating the exchange though the transaction must still be sent to the SwapSpace wallet
GET /v2/exchange/{id} Current status of created exchange (by id) After sending funds to the SwapSpace wallet, it can take up to an hour to receive the swapped token.

19

2.3.3 API Call Limit

The API call limit SwapSpace enforces is fairly straightforward and generous
when compared to the status quo; i.e., crypto CEXes such as Binance,
Coinbase, etc…. As shown in Table 2, given a credit limit of 2500 per 5
minutes, with each API call costing only 10 credits except for the exchange
creation call for swapping two currencies, it is unlikely that these limitations will
pose a significant constraint to the program's operations.

TABLE 2. Summarizes the SwapSpace API call limit rules, showing credits per
action and credits per every 5 minutes (SwapSpace 2023a).

Action Credits per Action Credits Limit (Every 5 minutes)
Creating an exchange (POST) 400

2500
Other requests 10

FIGURE 8. Example of an email from SwapSpace issuing a temporary API ban.

However, if the program surpasses the API call limit, a temporary ban will be
given to the affiliate account linked to the API key. As shown in Figure 8, upon

20

getting banned, an email is sent to the affiliate giving the length of the ban.
Based on the personal experience of exceeding the API call limit numerous
times in a single day from testing, each ban given as a consequence of this
violation consistently lasts 30 minutes, regardless of whether it occurs
consecutively in the same day. Working with the SwapSpace API after testing
Binance and other CEX endpoints showcased its permissiveness.

2.4 Slippage

FIGURE 9. Slippage visualization in an Automated Market Maker (AMM) DEX
by Zhou, L., Qin, K., Torres, C., Le, D. & Gervais, A. (2021, 4).

Price slippage is the change in an asset's price during a trade, including
expected and unexpected changes. Figure 9 graphically visualizes slippage as
the following happening: “[Expected price] of TA is based on the AMM state of
block N. TA does not suffer from unexpected slippage, because no concurrent
transactions exist. TB executes in block N + 3. [Expected price] of TC ’s is based

on block N, as we assume network delays. If TC and TD change the state of the
underlying market, those may induce unexpected slippage for TB” (Zhou, L.,

Qin, K., Torres, C., Le, D. & Gervais, A. 2021, 4) or vice versa for all
transactions in block N+3. Expected slippage is the anticipated price change
based on volume and liquidity at the start of the trade, while unexpected
slippage occurs during the period between trade commitment and execution.

21

Between getting an exchange rate while searching for profitable arbitrage and
actually sending the transaction to swap currencies is expected to have some
slippage. This is handled by only searching for circular arbitrage within a small
amount of currencies at a time, therefore the length of time between the
calculated price and sending any transaction will not be long.

2.5 Previous Implementation

Previous implementations of DFS on a graph of currencies as vertices and
exchange rates as edges led the program to the current state it is and the area
of crypto trading it is looking for arbitrage. The original project (evvic 2023b)
was purely C++11 and attempted at finding profitable circular arbitrage within
the Binance CEX convert API endpoints (Binance). This first implementation
was heavily focused on speed and efficiency of finding a circular path and
executing the trades as quickly as possible. While this original program was
fully functional, it never successfully found profitable circular arbitrage. This led
me to conclude that profitable arbitrage is not possible within a single CEX
where quotes for conversion rates were manipulated. The focus then shifted
away from efficiency and towards finding concrete verification of profitable
arbitrage in some crypto markets. Further research in the field of crypto
arbitrage revealed aggregated exchanges by the service SwapSpace and the
web3.py library that simplified crypto transactions.

2.6 Related Works

The project discussed in this thesis has been refined and enhanced by related
works in the field. While the project originally focused on only the CEX Binance,
specifically its Convert API, further research about circular arbitrage within a
single DEX seemed far more ideal than a CEX where the conversion rates
appeared to be heavily controlled and confined by the exchange providing
them. The git repository “uniswap-arbitrage-analysis” by user ccyanxyz, was

enlightening on changing the area of searching for circular arbitrage by
considering a DEX like Uniswap; the repository also gave validation for

22

implementing a recursive DFS function for finding profitable circular arbitrage
(ccyanxyz 2022). However, in ccyanxyz’s analysis of their projects results,
finding profitable arbitrage on a single DEX like Uniswap is challenging due to
how much competition for arbitrage already exists. Additionally, in their tests the
found profitable arbitrage was no longer profitable after paying the gas fees for
each part of the trade (ccyanxyz 2022). Combining all of the previous research
and effort inspired change to the original state of the thesis project, to finding a
new area for performing circular arbitrage, different from a single CEX or a
single DEX such as ccyanxyz’s Uniswap arbitrage project, that would potentially

be less crowded with competition.

23

3 PROGRAM METHODS

FIGURE 10. Sequence Diagram of the entire program's process.

The purpose of this program is to identify circular arbitrage opportunities across
multiple cryptocurrency exchanges. The program “circular-arbitrage-lib” (evvic

2023a) was developed using Python 3.9, along with several external sources
including Web3.py, SwapSpace API, and Etherscan API. Web3.py was used to
interface with the Ethereum blockchain, while SwapSpace was used to
aggregate and order all the exchanges by the best rate for the given coin trade
pair. Ultimately, the main functions of the program can be grouped into three
sections.

1. Gather the currencies to be used and preprocess their important data.
2. Perform the algorithmic depth-first search over the currencies until

finding a profitable circular arbitrage.

24

3. Execute transactions necessary to perform trades when a profitable
circular trade is found

The following sections in this chapter will be presented in the order of their
execution (Figure 10) within the software program's methods.

3.1 Load and Pre-process Currencies

FIGURE 11. Sequence diagram for creating a data frame of currencies with
necessary data.

While SwapSpace can exchange over 2250 crypto currencies, the program
searching for arbitrage would be very slow and have high chances of slippage if
using all available currencies on all possible networks. Therefore, it is important
before searching for any arbitrage to filter the currencies to only those desired.
Figure 11 is a sequence diagram giving an overview of how the currencies are
filtered, and this will be expanded upon in the following subsections. This
diagram of loading and preprocessing the currencies does not include error
handling that occurs, however if an error does occur the program will abort
because there is no purpose in attempting to continue onto searching for
profitable arbitrage when missing crucial information.

25

3.1.1 Configure Network and Tokens

FIGURE 12. Running the program, arbitrage.py with the help flag: -h.

Before running the program, it is important to know the important optional
parameter that changes the tokens used in finding circular arbitrage. Figure 12
displays an example of the program's output when the help (-h) option is
passed, providing a succinct explanation of the -c option parameter, which
enables the customization of the token set and trading network. The program
offers the flexibility to search for arbitrage opportunities within a specified
network and list of desirable tokens. This can be achieved by modifying the
config.json file located in the project's root folder; by adding a list of desired
tokens and the network on which they are traded.

{
 "erc20_currencies": {
 "network": ["erc20", "eth"],
 "currencies": [
 {"code": "eth", "contract_address":
"0x00"},
 {"code": "uni", "contract_address":
"0x1f9840a85d5af5bf1d1762f925bdaddc4201f984"},
 {"code": "zrx", "contract_address":
"0xe41d2489571d322189246dafa5ebde1f4699f498"},
 {"code": "usdt", "contract_address":
"0xdac17f958d2ee523a2206206994597c13d831ec7"},
 {"code": "shib", "contract_address":
"0x95ad61b0a150d79219dcf64e1e6cc01f0b64c4ce"},
 {"code": "link", "contract_address":
"0x514910771af9ca656af840dff83e8264ecf986ca"},
 {"code": "1INCH", "contract_address":
"0x111111111117dc0aa78b770fa6a738034120c302"},
 {"code": "lrc", "contract_address":
"0xbbbbca6a901c926f240b89eacb641d8aec7aeafd"}
],
 "hasContractAddress": "True"
 },
 "test_main_tokens": {
 "network": ["eth", "btc", "doge", "dot", "ada", "xrp", "sol"],
 "currencies": [
 {"code": "eth"},
 {"code": "btc"},
 {"code": "doge"},
 {"code": "dot"},
 {"code": "ada"},
 {"code": "xrp"},
 {"code": "sol"},

26

 {"code": "usdc"}
],
 "hasContractAddress": "False"
 }, …
}
FIGURE 13. Showing two configurations in the config.json file:
“erc20_currencies” and “test_main_tokens”.

By creating a custom configuration, users are able to tailor the circular arbitrage
to the tokens and network the wallet is capable of interacting with. As shown in
Figure 13, config.json is an array of config objects that should hold currency
codes, the network(s) the currencies exist on, and a Boolean value of whether
or not the currencies have contract addresses. The first object in the JSON
array being the default option, “erc20_currencies”, is all Ethereum based and by

SwapSpace standards is on the erc20 and eth networks. This data is crucial for
filtering all currencies returned by the SwapSpace API call to get all available
currencies to exchange. It is important to note that while any crypto
blockchain/network and any coin can be used for searching for profitable
circular arbitrage, the program only has the functionality of executing
transactions for tokens on the Ethereum network.

FIGURE 14. An example of getting an ERC20 tokens contract address using
CoinMarketCap.

27

Also optionally, the contract address is supplied for each currency object in the
config.json file (Figure 13) if the currencies require it; ERC20 tokens require a
contract address for transactions because it builds the smart contract. Finding
an Ethereum based tokens contract address can be deceptive because there is
a different address for each currency for every net such as test net and proxy
address. Therefore, it is important to search for the Ethereum mainnet contract
address of the token; CoinMarketCap is a reliable price tracking website that
easily gives the mainnet contract address for (ERC20) tokens (Figure 14).

3.1.2 Filter Currencies

FIGURE 15. Example of running the program without any option, defaults to
“erc20_currencies” configuration option.

28

[
 {
 "name": "Ethereum",
 "extraIdName": "",
 "popular": false,
 "stable": false,
 "validationRegexp": "",
 "code": "eth",
 "network": "arbitrum",
 "hasExtraId": false,
 "id": "yIUgrQdpat"
 },
 {
 "name": "Binance Coin (ERC20)",
 "extraIdName": "",
 "popular": false,
 "stable": false,
 "validationRegexp": "",
 "code": "bnb",
 "network": "erc20",
 "hasExtraId": false,
 "id": "s8YX6aH1AX"
 },
…
]
FIGURE 16. Snippet of SwapSpace API response for getting list of tradable
currencies.

Upon starting the program, it first checks if there was an optional name of a
configuration object included. If none was passed, then the program defaults to
the first object in the config.json file, “erc20_currencies” as shown in Figure 15.
Then, performs the API call to SwapSpace, getting the list of all available
currencies; this list will have thousands of currencies that SwapSpace has the
ability to trade given the partnered exchanges. This JSON response of
currencies contains important information (Figure 16) such as name, network,
currency code, id, and “extraIdName”, if the specific currency requires it. All

these currency objects from the response JSON list are filtered by their network
and currency code to just the desired currencies for arbitrage.

29

FIGURE 17. The program displays the Data frame of currencies information
after being filtered.

Furthermore, if the currencies of the configuration object include a contract
address, and the Boolean value “hasContractAddress” is assigned true,

contract addresses of the currencies will be appended to the filtered currencies
Data frame. Additionally, if the currencies have contract addresses, their ERC20
token contract ABI will be appended as well. The ABI (Abstract Binary Interface)
provides rules for interacting with a program or contract at the binary level,
identifying functions by their unique signatures based on their name and
parameter types. By comparing incoming data to function signatures in the
contract's bytecode, the ABI standard ensures compliance and standardized
function calls (Di Angelo, M. & Salzer, G. 2020, 2). The contract ABI for each
ERC20 token holds all the function declarations the token is capable of using in
its smart contract; therefore, it is also needed with the contract address of the
token for generating the smart contract.

In this program, the ABI contract for a token is obtained through the Etherscan
API. Given the contract address and the Etherscan API key, the get request url
would appear as follows:

https://api.etherscan.io/api?module=contract&action=getabi&address={}&

apikey={}

The first {} placeholder was replaced with the actual contract address, and the
second {} placeholder was replaced with the API key. This API call uses the
“getabi” action of the contract module to retrieve the ABI, and requires an API

https://api.etherscan.io/api?module=contract&action=getabi&address=%7B%7D&apikey=
https://api.etherscan.io/api?module=contract&action=getabi&address=%7B%7D&apikey=

30

key for authorization. With the “abiContract '' column appended to the Data
frame of currencies, the order of the rows is then shuffled, so traversing the
currencies will always be slightly different in its order even if the currencies
chosen from config.json remain the same.

Once finished collecting this additional information needed for creating the
transactions with the currencies, the program prints the data frame to the
terminal as shown in Figure 17. Ethereum has an error with its ABI contract field
but that is because it is not relevant or required for its transactions. An
Ethereum transaction on the Ethereum network is set up differently from the
ERC20 tokens on the ERC20 network in the web3.py library; Ethereum does
not need to have a smart contract made manually.

3.2 Searching for Profitable Arbitrage

3.2.1 Graph Theory

FIGURE 18. Example of a bidirectional graph of 5 nodes of all connected
edges

31

The data structure used in this program represents a bidirectional graph where
each node is a currency and the edge between two nodes represents a
conversion between those two currencies; an example of this with five
“currencies” is shown in Figure 18. Specifically, each edge is labeled with the
“toAmount” and “fromAmount” values, which represent the amount of the base
(from) currency converted to the destination (to) currency. These edge labels
allow the graph to represent the specific conversion rates between different
currencies, rather than just the exchange rates. This method of edge
representation has its benefits and drawbacks, but ultimately cannot be
changed due to the SwapSpace API and will be discussed in the next section.

TABLE 3. Currency object representing a vertice; values as a row in a Data
frame of currencies.
Attribute Name Data Type Description
name String Official name of the token/currency
code String Unique code to identify token/currency
network String Network the token’s transaction occur on
hasExtraId Boolean SwapSpace conditional for additional id name
id String SwapSpace id for token
extraIdName String SwapSpace additional id name for token
contract_address Ethereum address (ERC20 only) Smart contract address for token
abiContract Stringified JSON (ERC20 only) ABI of smart contract for token

Typically, in graph theory, an adjacency matrix or adjacency list data structure is
used to represent all available edges between nodes of a graph. However, the
program only requires a one-dimensional array of the nodes (currencies),
because it is implied, they are all connected to one another in both directions as
any of the currencies used for finding arbitrage with the SwapSpace API can be
traded. This one-dimensional array is represented in the program as a Pandas
DataFrame (Table 3) of (shuffled) currencies in Figure 17. A Python list data

32

structure would also work but the DataFrame data structure can organize and
represent data more efficiently than a list of Python dictionaries.

3.2.2 Getting Edge Values

An edge value in this bidirectional graph (Figure 18) is an object containing the
amount of the base currency to trade, the amount of the destination currency to
receive, the DEX/CEX partner the trade is occurring on, fixed or float exchange
rate, and other data shared in Table 4. To get an edge object value (for one
direction) between two nodes/currencies, the API call: get estimated exchange
amounts to SwapSpace will receive all information for this edge. For example,
to find edge options for 0.1 BTC-ETH:

https://api.swapspace.co/api/v2/amounts?amount=0.1&fromCurrency=btc&to

Currency=eth&fromNetwork=btc&toNetwork=eth

This API call returns a list of exchange options, from different DEX/CEX
exchange partners and options of fixed or float exchange rate types (see
Appendix 1). In the case of this program, the most important metric is the
“toAmount” value, which is the amount received of the destination currency. The
best exchange option (edge) is obtained by sorting the JSON array of exchange
objects in ascending order by their “toAmount” value and returning the top one,

because the “fromAmount” value for each option in the array is the same.

https://api.swapspace.co/api/v2/amounts?amount=0.1&fromCurrency=btc&toCurrency=eth&fromNetwork=btc&toNetwork=eth
https://api.swapspace.co/api/v2/amounts?amount=0.1&fromCurrency=btc&toCurrency=eth&fromNetwork=btc&toNetwork=eth

33

TABLE 4. Trade edge Data frame row representing an edge in the graph.
Attribute Name Data Type Description

partner String Name of the exchange the swap occurs through
fromAmount Double Amount of the base token being sent
fromCurrency String Currency code of the base token
fromNetwork String Network code of the base token
toAmount Double Amount of the destination token being received
toCurrency String Currency code of the destination token
toNetwork String Network code of the destination token
fixed Boolean Conditional whether edge is fixed or float
id String Optional id to reference the quote
partnerId Unsigned Integer Id of the partnered exchange the swap occurs through

Just this small part of the program is where the exchange arbitrage occurs;
choosing the exchange with the best value for each part of the trade adds extra
chances of profitability. Additionally, the program is capable of finding circular
arbitrage with the count of trades being only two, therefore in that case it is no
longer circular arbitrage, just exchange arbitrage. Table 5 is an example of a
logged profitable exchange arbitrage due to it only being two trades: BTC-ETH
on LetsExchange exchange and ETH-BTC on Changelly. This is just one
example of edges in a profitable trade logged by the program. Ultimately, how
an edge is used next will be discussed in the next section.

TABLE 5. Example of only exchange arbitrage (BTC-ETH-BTC) found for
profitability in the program on 16 February 2023.
partnerId partner fromAmount toAmount fromCurrency fromNetwork toCurrency toNetwork fixed
23 letsexchange 0.5 7.2656 btc btc eth eth False
9 changelly 7.2656 0.5026 eth eth btc btc False

34

3.2.3 Depth-First Search

Although there are multiple graph-theoretic algorithms that can be implemented
for finding circular arbitrage, Depth-first search (DFS) seemed most ideal with
the constraints put on by the SwapSpace API and its speed for quickly finding a
circular path regardless of profitability. DFS is a graph traversal algorithm that
explores as far as possible along each branch before backtracking (Reif, J.
1985, 230). When applied to a bidirectional weighted graph, DFS uses a stack
to keep track of nodes to visit, and the most recently explored node is chosen
for expansion first. This is because DFS follows a last-in-first-out (LIFO)
strategy for adding and removing nodes from the stack.

Recursive DFS function exploring adjacent currencies (nodes) for SwapSpace
@Requires const currencies: list of all coins & their (SwapSpace) data
@Requires visited: list of booleans aligned with currencies flagging where DFS has
been
@Requires const root: string name of root coin
@Requires path: indexed path aligned with currencies and visited of current path
@Requires trade_edges: path of current edges constructing where DFS is exploring to
(edges are data from SwapSpace)
@Requires fromAmount: latest amount from last trade that will be the amount used
for next trade
@Returns return_code, trade_edges, best:
def DFS(currencies, visited, root, path, trade_edges, fromAmount, best):
FIGURE 19. The program's declaration of the implemented DFS function.

The DFS implementation, which is illustrated in the activity diagram of Appendix
2 and the code snippet of the implemented recursive DFS function's parameters
in Figure 19, will be explained in this section. The goal of the implementation is
to find the root node, Ethereum (ETH), through forward exploration, beginning
from the root node. To avoid redundant exploration, a boolean array named
"visited" is used to keep track of the explored currencies, and when a currency
is explored, its index in the "visited" array is switched to true. For the purpose of
not just exploring, but also tracking the circular trades, a stack (a list in Python)
named path holds the indexes of the currencies sequentially being explored
through DFS. As a currency gets explored it is pushed onto the stack, then after
exhausting the search of all nodes adjacent to it, that currency index is popped
off the stack, plus the visited array for that currency index is switched back to
false, and the DFS retracts to the previous currency before continuing
exploration. For further data tracking, a Data frame “trade_edges”, acting like a

stack of the edges data in parallel to the path stack also pushes and pops off

35

the exchange edge data obtained from the SwapSpace API call as the graph is
traversed. The “fromAmount” is the amount of the currency available to

exchange for the next currency it's exploring, this makes the API call of getting
all exchange rate data between the two (nodes) currencies easier. Finally, a
Pandas data frame “best” holds the current best-found circular trade so far for
statistical purposes. Every time a (profit or non-profitable) circular arbitrage is
found, the resulting amount of Ethereum from the current path of “trade_edges”

is compared with the resulting Ethereum from “best”, and if the current is better

than best, Data frame best copies the edges. To simplify the activity diagram
(Appendix 2), the “best” Data frame is not mentioned, but does not affect how
DFS functions to find profitable arbitrage.

Run recursive DFS function
@Returns return_code int: number to determine return status:
(0 = profit, 1 = no profit, 2 = no circ arb)
@Returns trade_edges Data frame: trade edges of last circular trade
@Returns best Data frame: Last best found circular arbitrage (logging)
return_code, trade_edges, best = DFS(currencies, visited, root, path, trade_edges,
fromAmount, best)
FIGURE 20. The DFS entrypoint initial call of recursive DFS function and return values.
Upon the recursive DFS function returning back into the entrypoint function, it
returns three values shown in Figure 20. The “return_code” is simply an integer

used to ultimately determine and handle the DFS outcome:

0. Successfully found profitable arbitrage.
1. The program found arbitrage from DFS, but none profitable.
2. No circular arbitrage found at all in DFS.

If profitability was found then the next section of creating and sending the
transactions would occur. Otherwise, this section about DFS would run again,
checking again for arbitrage possibilities. The “trade_edges” value is the Data
frame holding the stack of edges completing the circular arbitrage. This is
necessary for creating the transactions so the exchange partner and amounts of
the currencies are known. Finally, “best” is used simply for tracking the best

circular arbitrage trade found from this DFS attempt, in most cases no profitable

36

arbitrage is found, therefore this is used for statistical tracking of the best non-
profitable arbitrage found in the entire DFS attempt.

3.2.4 Time Complexity Constraints

If not the root node and path length > 4: skip node
MAX_PATH_LENGTH = 4
Because the API is slow, long arbitrage path lengths are bad for efficiency
if not currencies.iloc[i]["code"] == root and len(path) >= MAX_PATH_LENGTH:
 if DEBUG_PRINT:
 print("Skipping node because path length is already at", MAX_PATH_LENGTH)
 continue
FIGURE 21. Inside the DFS function, an imposed limit on max length of found
circular arbitrage.

The ideal situation for finding the most profitable circular path in a directional-
graph is to have the data structure representing the graph already contain all
the edge weights. For example, if all the currencies (vertices) had the rate of
exchange as the edge weight, then DFS could run through the list of currencies
and their exchange rates to produce an ordered list of the most profitable
circular trades in milliseconds.

 𝑂 (𝑉 + 𝐸) (2)

The O-time complexity for performing DFS on a graph of (V) vertices and (E)
edges (2).

 𝐸 = 𝑉 (𝑉 − 1) (3)

The number of edges (E) can be calculated when it is known the number of
vertices in a bidirectional graph and all vertices (V) are connected (3).

 𝑂 (𝑉2) (4)

Therefore, O-time complexity for performing DFS on a bidirectional graph with
all vertices (V) connected to one another in both directions is exponential (4),
extrapolated from Equations 2 and 3. This time complexity would still be fast on

37

a graph where all vertices and edge weights are already known. But
unfortunately, SwapSpace has no method of giving the exchange rate between
two currencies (let alone multiple currency edges); rather, as mentioned in the
previous section (Appendix 1), SwapSpace only gives the amount to receive of
the destination currency when given the initial amount of the base currency in
the swap. This means every iteration in DFS for exploring other nodes, requires
an API call to get the amount of the destination currency, given the amount of
the previously explored currency. This limitation of speed has a few major
constraints to track:

1. Slippage: If the SwapSpace API for estimated exchange rate (Appendix
1) is listed as a float rate, it will likely encounter slippage (positive or
negative); however, if it is a fixed rate, “the exchange service will freeze

the rates for some time to help you to escape the rate fluctuations”
(SwapSpace 2023b).

2. Size of graph: When the graph of currencies for finding circular arbitrage
is bidirectional and all currencies are connected with edges in both
directions, Equation 4 holds. Therefore, every additional currency added
to the list of currencies to explore for finding profitable circular arbitrage
exponentially lengthens the time to complete the DFS algorithm. The
more time it takes to find circular arbitrage because of a larger graph
means more price slippage (Figure 9).

3. Length of circular trade:

 𝑂 (𝑉2 + 𝑛) (5)

Due to the many API calls required to get all data for a circular trade,
every additional currency included in the circular trade adds an
exponential amount of time searching vertices and adds a linear amount
of time to execute the (n) number of transactions (5). Therefore, Figure
21 shows purposely limiting the length of found circular arbitrage in the
program for efficiency. Finding smaller profitable circular trades is always
preferable when considering other factors too, such as gas fees and
SwapSpace API call limits (Table 2).

38

Fortunately exchange rates are not too volatile due to saturated arbitrage,
therefore not much slippage would occur even if it took a minute between
exploring nodes to executing the transactions. Additionally, before sending the
transaction the program will do a final check of prices, which will be discussed
more when executing the transactions.

3.3 Executing Transactions

3.3.1 Creating the Exchanges

Upon finding a profitable circular trade, the DFS algorithm recursively returns
and brings back the Data frame of trade edges, the edge representing each
trade with crucial information specified in Table 4. The “return_code” also

returned from the DFS function would equal 0, meaning profit was detected.
This calls the “executeTrades” function with the currencies and “trade_edges”

Data frames as parameters. The “trade_edges” are then iterated through

sequentially to create an exchange for each trade in the circular arbitrage.
Creating an exchange on SwapSpace (see Appendix 3) returns crucial
information such as the wallet address to transfer the base token to.

After creating all the exchanges from each trade edge, the important data
collected from the API response is added to the trade edge data frame,
modifying the columns and transforming the Data frame from trade edges to
exchange edges (Table 6). Although most of the data remains the same as the
two edges are similar, differentiating them by names and their columns helps
simplify the transaction process and to focus on the necessary data. Creating
the exchange for the transaction is different from getting the estimated amounts
during DFS because in the former, SwapSpace communicates with the
partnered DEX/CEX to officially establish the trade. As shown in Table 6, crucial
data from creating the exchange is returned, such as the wallet address to
transfer the tokens to for the CEX/DEX to swap with. Additionally, the ID of
trade is important to have to check the status of the exchange after sending the
funds.

39

TABLE 6. Exchange edge changed data from trade edge to relevant data
captured from API
Attribute Name Data Type Description
partner String Name of the exchange the swap occurs through
toAddress String Ethereum wallet address of partnered exchange to transfer base currency funds to
fromAmount Double Amount of the base token being sent
fromCurrency String Currency code of the base token
fromNetwork String Network code of the base token
toAmount Double Amount of the destination token being received
toCurrency String Currency code of the destination token
toNetwork String Network code of the destination token
rate Double SwapSpace given rate of exchange between tokens
exchangeId String SwapSpace id of the created exchange
status String SwapSpace labeled current status of the exchange

Finally, to check if any slippage has occurred since the estimated amounts were
given during the search for profitable arbitrage, the rate of exchange for each
edge is multiplied together. If the product is greater than 1, the trade is still
profitable before factoring gas fees and further unexpected slippage that could
occur until all the received tokens are in the MetaMask wallet associated with
the program. If it has changed and the circular trade is no longer profitable, the
function returns and the program cycles back to searching for profitable
arbitrage; otherwise, it continues with the transaction.

40

3.3.2 Sending the Transactions

FIGURE 22. Sequence diagram of the steps in sending all transactions.

Since the exchange edges involved in circular arbitrage are still profitable after
creating the exchanges, each token will now be sent sequentially to the
responding wallet address SwapSpace created with the exchange (Figure 22).
Every ERC20 token has a contract address and ABI included in the edge; the
contract address is the address to find the specific smart contract (Figure 5) on
the Ethereum network, and the ABI is basically a JSON-formatted dictionary of
the specific smart contract’s functions and their parameters and return type(s).

The program functionality currently only supports Ethereum and ERC20 tokens
for transactions. For each exchange edge which is an ERC20 token, the smart
contract for the token is created through web3.py with the contract address and

41

ABI; with the smart contract created, all functionality defined in the ABI of the
contract can be used. Before creating any transaction with the smart contract,
the balance of each ERC20 token is checked, and if any token balance in the
wallet associated with the project is less than the amount required to send to
SwapSpace, the function returns and the search for profitable arbitrage
continues.

tx = token_contract.functions.transfer(
 toAddress, int(amount)
).build_transaction(
 {
 "chainId": CHAIN_ID_ETH_MAINNET,
 "nonce": nonce,
 "maxFeePerGas": int(w3.eth.gas_price * 1.5),
 "maxPriorityFeePerGas": int(w3.eth.max_priority_fee * 1.5),
 "type": 2,
 }
)
FIGURE 23. Code snippet of building a transaction and using ERC20 transfer
function.

Otherwise, the ERC20 token transaction is built with the basic information
(Figure 23) of the amount, the wallet address to send to and other minor details.
The transfer function is then called with the built transaction; every ERC20
token smart contract has a mandatory transfer function (Figure 5). Afterwards
the transaction is signed and sent to the Ethereum network. If the transaction
was successfully sent, it will return a transaction hash that can be used to
reference the transaction and check its status. Although this transfer can be
checked with the transaction hash, it is more beneficial to monitor the overall
status of the exchange with the SwapSpace exchange ID.

42

3.3.3 Verify the Transactions Success

FIGURE 24. Activity diagram demonstrating logic flow of verifying all
transactions success.

Verification must be performed because the transactions are sent to
SwapSpace wallets through the blockchain, not through a SwapSpace API call
returning a status of the transaction. SwapSpace does have an API endpoint for
exchange status, this is useful for tracking all statuses after sending the
transaction to their wallet address. Transaction verification of all trades involved
in the detected profitable circular arbitrage involves two main checks.

1. The first check is whether all the trades were sent to the SwapSpace
wallets through web3.py, represented in the first conditional block in
Figure 24. Before SwapSpace makes the swap and the desired currency
is transferred into the wallet associated with the project, SwapSpace
must first detect the base token was sent to their wallet. If the trade was
successfully sent to the blockchain, the program will receive a
transaction hash, basically a receipt that can be used to check the status
of the transaction through web3 or websites like Etherscan. Although a
transaction hash does not confirm the currency made it to the

43

SwapSpace wallet, it at least confirms the transaction was sent which is
enough for this first check.

2. The second check involved using the “exchangeId” value given from

SwapSpace upon creating an exchange for a trade (Table 6).
SwapSpace has an API endpoint to check the status of an exchange
given its “exchangeId”, therefore this API call is performed for each leg of

the circular trade. The status SwapSpace returns is one of the keywords
in Table 7, these keywords are categorized for the program to
understand when a trade is complete, failed, or still pending and needs
time to be determined (Figure 24).

Whether the circular arbitrage was successful in all the transactions or not, the
exchange edges data frame is logged so the “exchangeId” can be checked in
the future in case there are still pending trades. Some exchanges can take
nearly an hour to complete so when it takes too long the program will continue
searching for arbitrage rather than keep waiting for an update.

TABLE 7. A list of all SwapSpace exchange statuses grouped into categories of
pending, successful, and failed.
Group Status Description

pending

waiting Waiting to receive funds into designated wallet
confirming Confirming the exchange/swap
exchanging Currently exchanging currencies
sending Sending exchanged currency to project wallet
verifying Verifying currency made it back to project wallet

successful finished Successfully completed exchange

failed

failed Failed the exchange
refunded Initial currency being sent back to project wallet
expired Funds were not sent to SwapSpace wallet in time

44

4 RESULTS

The purpose of this thesis was to build and test a programmatic method of
finding profitable circular arbitrage across multiple crypto DEXes and CEXes.
The results of what the program was able to find after being allowed to run for
lengthy windows of time, around 6-8 hours per session over a month, are
presented in this report. The data collected and logged was the SwapSpace
quoted exchange of two currencies that combined with others made a profitable
circular trade. Ultimately, over the span of the month, the program ran for an
estimated total of 96 hours.

Circular arbitrage is a competitive area saturated with bots and programs
looking to find price discrepancies in the market and quickly make trades to
profit off that discrepancy. This keeps the market balanced but makes arbitrage
opportunities very low. Table 8 shows four logged profitable circular trades on
February 27, 2023, however the profitability is extremely low and while most
arbitrage opportunities will be like this, they most likely will be disregarded,
unless the high volume of the trade allows its low profit percentage to still profit
after covering the gas fees.

TABLE 8. Profitable circular/exchange arbitrage trades logged on 27 February
2023.
Logged trade ID Profit (%) Start amount (ETH) End amount (ETH) Number of transactions
00 0.01 1.0 1.000107 4
01 0.09 1.0 1.000856 3
02 0.11 1.0 1.001125 2
03 0.2 1.0 1.002021 4

Interestingly, a case of only exchange arbitrage was found on 27 February 2023
from trade-02 (Table 8). As shown in Table 9, the exchange involved swapping
Ethereum for Loopring (LRC) and back to Ethereum; this did not involve circular

45

arbitrage as it only involved the base currency and one other currency. The
swap from ETH to LRC occurs on SimpleSwap and the second trade of LRC to
ETH occurs on Changelly, generating a profit of 0.11% or 0.001125 ETH.
Therefore, showing profitable exchange arbitrage can be found on this program
as well.

TABLE 9. Trade 02 from TABLE 8 more in depth with a profit of 0.11%,
displaying exchange arbitrage only.
partner From amount From currency (code) To amount To currency (code)
simpleswap 1.0 eth 4499.232997 lrc
changelly 4499.232997 lrc 1.001125 eth

Arbitrage is a low risk, low reward field in finance, therefore arbitrageurs
understand their profit margins will never typically be in the double digits. An
ideal profitable circular trade is shown in Table 10, where the profit is 2.46%
over a total of four trades to return back to the starting crypto currency,
Ethereum (ETH). This logged trade is also an ideal example for showing the
benefit of combining circular arbitrage with exchange arbitrage, as out of the
four trades, there are three distinct partners used for swapping crypto
currencies.

TABLE 10. A logged circular arbitrage with an ideal profit of 2.46% on 8 March
2023 consisting of 4 trades.
partner From amount From currency (code) To amount To currency (code)
changelly 1.0 eth 4811.943275 lrc
changelly 4811.943275 lrc 1516.336022 usdt
swapuz 1516.336022 usdt 0.072269 wbtc
letsexchange 0.072269 wbtc 1.024628 eth

46

So far for all circular trades logged the found profitability has been low but
expected for arbitrage trading. However, the logged trade in Table 11 shows the
program finding a circular trade of 4 currencies (inclusive) for a profit of
146.02%; a surreal four-part trade of starting with 1 ETH and ending with 2.46
ETH. Although this was originally disregarded as a bug, all JSON responses
from creating each exchange with the partners were examined (see Appendix
4) and no inconsistencies were found. All four exchanges were created within a
10 second window shown by their timestamps, and the JSON data looks correct
for any initiated exchange.

TABLE 11. A logged circular arbitrage with an inconceivable profit of 146.02%
on 9 March 2023 consisting of 4 trades.
partner From amount From currency (code) To amount To currency (code)
changehero 1.0 eth 7117.041501 zrx
changelly 7117.041501 zrx 0.073341 wbtc
swapuz 0.073341 wbtc 646.590213 uni
changelly 646.590213 uni 2.460185 eth

FIGURE 25. USDC price from 8 March 2023 to 15 March 2023
(CoinMarketCap).

47

After the collapse of a major US bank, Silicon Valley Bank (SVB) on Friday,
March 9th 2023, the crypto market was disrupted. The stable coin USDC (USD
Coin) meant to imitate USD, fell to $0.87 on Saturday (Figure 25) causing it to
deviate from its 1:1 dollar peg (Helmore, E. 2023). This affected other crypto
currencies and the market was in heavy turmoil, this disruption ultimately led to
price disparities between crypto currencies and between DEXes thus allowing
an extremely high profit (Table 11) to be possible in arbitrage. It can be
expected that the end result from actually executing the transactions would not
be close to the predicted profit percentage due to high slippage from all the
market turmoil.

48

5 DISCUSSION

While this thesis accomplished its purpose of finding profitable circular and
exchange arbitrage across multiple crypto CEXes and DEXes, the research
thus far has unveiled further avenues to explore for improving the program's
efficiency and search for profitable arbitrage. For example, creating a custom
crypto exchange aggregator that would replace the functionality of SwapSpace.
This would especially benefit the program by conceivably populating all edges
in the graph of currencies so DFS would run faster, rather than be limited to one
API call per iteration of the algorithm to get the next trade edge. Also, besides
just optimizing the code for faster execution time, other methods mentioned
below can be further researched and tested to drastically improve the goal of
the program.

5.1 Funding

FIGURE 26. Transaction history of the Metamask wallet associated with the
program provided by Etherscan.

Unfortunately, none of the detected circular trades could become successful
transactions on the blockchain due to lack of funds in the wallet. Given the trade
volume for each trade being around 1 Ethereum or $1450.00 USD, and the
wallet having only at most 0.0058443 ETH, or $10.00, there was only enough
Ether for gas fees. The program attempted to send transactions to the
blockchain, but the miners were unable to execute them due to the absence of
funds in the Metamask wallet associated with the program. As a result, the
designated SwapSpace wallet could not receive the funds to initiate the swap.

49

Figure 26 shows failed transactions of sending ERC20 tokens out from the
project’s wallet; although they failed, the gas fee was still paid to the miner who

attempted the transaction. When the wallet no longer had funds to cover the
gas fee, the transaction would fail to send.

5.2 Expanded Graph

A current limitation is the number of currencies used in the DFS algorithm for
finding arbitrage: typically, only 7 or 8 currencies were used (Figure 17) and
were mostly the same currencies throughout testing. Every additional currency
used adds an exponential amount of unique paths from the graph for traversal,
thereby increasing arbitrage potential. Increasing the number of current
currencies in the graph has the drawback of making the algorithm much slower
because each one-directional edge between currencies requires an API call to
SwapSpace to get the “to amount” and "from amount” of currencies in the

exchange. Increasing the amount of currencies increases the graph size,
thereby increasing total time for DFS graph traversal. Mathematically testing the
optimized amount of currencies/nodes in the graph would give the most amount
of arbitrage opportunities while ensuring it is not too slow for entire graph
traversal. Along with lack of nodes used for arbitrage detection, all the
currencies were limited to Ethereum based tokens due to the program only
having functionality for sending transactions on the Ethereum network.
Arbitrage detection in the program can work with any coins SwapSpace
supports, but the program only has access to a Metamask wallet that only
supports transactions on the Ethereum network. It would be beneficial for
finding price discrepancies by expanding the network diversity through allowing
currencies that function on other networks such as Bitcoin, Polygon, Binance
Smart Chain and so on.

5.3 Expanded Networks

As previously touched on as a graphical limitation, the arbitrage possibilities
could be increased by broadening the number of crypto currencies used by

50

allowing different crypto networks. The current state of the program can only
handle Ethereum based transactions, ERC20, tokens. However, allowing other
networks such as Bitcoin and Polygon would diversify the coins and markets
further to potentially find even more price discrepancies in a circular trade
between them all. It is possible to implement these other networks in the
program as SwapSpace has these networks and more, already tradeable. The
program would just need to be expanded upon to have functionality of sending
transactions to the Bitcoin blockchain, Polygon blockchain, and so on.
Additionally, each new supported network would need a wallet that supports
that specific network; such as the Metamask wallet used with the program only
functions with tokens on the Ethereum blockchain.

5.4 C++ PyBind

#include <pybind11/pybind11.h>
#include <pybind11/stl.h> // Needed for list -> vector conversion
#include <vector>
#include <iostream>

namespace py = pybind11;

PYBIND11_MODULE(arbitrage, m) {
 // C2CEdge struct (all product pairs as edges)
 pybind11::class_<C2CEdge>(m, "C2CEdge")
 .def(pybind11::init<unsigned short, unsigned short, double, std::string,
std::string>())
 .def(pybind11::init())
 .def_readwrite("from", &C2CEdge::from)
 .def_readwrite("to", &C2CEdge::to)
 .def_readwrite("rate", &C2CEdge::rate);
}
FIGURE 27. C++ class interface into Python library from circular-arbitrage-
lib/pybind.cpp (evvic 2023a).

One drawback on performance with the program is it is entirely written in
Python. This allowed the development to be much faster, but using a compiled
language like C++ would improve speed, thereby decreasing the amount of
uncalculated slippage between price calculation and transaction execution.
Although it is too much to expect the whole program to be rewritten in a low-
level language, considering the complicated Python libraries used such as
web3.py. Instead, it is possible to have the benefit of using Python for making
and sending the smart contracts but using C++ for DFS and finding circular

51

arbitrage through the PyBind11 package. A C++ class (Figure 27) can be
imported into Python as a library using PyBind11 to reap the benefits of C++s
efficiency and speed. The library can then replace the majority of the current
Python program, and just have to return the information needed for web3.py to
create the smart contracts and send them.

5.5 Solidity

FIGURE 28. Flowchart of creating and deploying a smart contract from Solidity.

Solidity is a programming language and most popular for writing smart contracts
for Ethereum and other blockchains (Solidity 2023). While smart contracts can
be created with web3.py, custom smart contracts have to be written in Solidity
(Figure 28) and compiled so the Python script or any program can use the
custom smart contract. Learning and implementing Solidity into the program
involved with sending transactions to a blockchain would allow for new methods
of sending the transactions that will be further expanded on below.

 5.5.1 Atomic Transactions

One significant issue regarding how transactions are sent sequentially (Figure
22) in the created program is the possibility of one or more of the transactions to
fail. Most likely this would ruin the chance of profitability in the circular trade.
Traders can group all n trades of a circular arbitrage into a single blockchain
transaction using smart contracts, which allows for atomic execution (Ye Wang
et al. 2022, 7); any attempt to insert other transactions between these trades is
prevented. Additionally, Ethereum allows for the cancellation and state-
reversion of the smart contract if not all conditions are met, therefore, the entire

52

smart contract is cancelled and actions are reversed if one transaction within
the entire circular trade is not executed. Although the gas fees paid with the
smart contract are not recouped to the trader, this solves the issue of
sequentially executing the transactions.

FIGURE 29. Deployment cost of a smart contract on Ethereum network 22
March 2023.

Deploying a custom smart contract to the Ethereum network can be very
expensive; any changes or additions to the smart construct would have to be
redeployed and the fees would need to be paid again. When attempting to
implement atomic transactions in the program, the created smart contract on
Remix IDE would cost 0.0075106 ETH, or $13.65 at the time of deployment
(Figure 29). Deployment fees are one of the reasons the program for this thesis
ultimately did not implement atomic transactions.

53

5.5.2 Flash Loans

For profitable arbitrage it is important to trade in high volumes to minimize the
impact of gas fees; this can make it difficult to begin if it is not possible to supply
a large sum of capital to the program to trade with. However, smart contracts
allow transactions to be grouped into one atomic transaction on the Ethereum
blockchain. Therefore, flash loans were introduced in Uniswap V2 to enable
users to borrow funds up to the total liquidity available in a pool and repay the
full sum in the same Ethereum transaction. Flash loans have no credit risk to
the lenders because the loan is both originated and repaid in the same atomic
transaction (Lehar, A. & Parlour, C. 2021, 13). Further research must be done
to truly determine if implementation of flash loans into the Solidity-made smart
contracts is viable with this program's approach for circular arbitrage across
different DEXes/CEXes. If possible, it might be limited to parts of the trade
occurring on the Uniswap DEX only.

54

6 CONCLUSIONS

In this paper the viability of combining circular arbitrage and exchange arbitrage
is demonstrated to find new profitable trade opportunities. To find profitable
arbitrage on the Ethereum network despite high gas fees, a high trade volume
is necessary to offset the impact of subtracting gas fees from low percentage
profitable trades. All instances of profitable exchange and circular arbitrage
found in the results were not capable of being executed onto the blockchain due
to lack of funds in the wallet (Figure 26), therefore it was ultimately not verifiable
profit can be realized through the program, but can at the very least detect
profitable trade paths across multiple DEXes/CEXes. Executing transactions on
an Ethereum testnet would be ideal for testing the realized profit, but
SwapSpace only supports Ethereum mainnet for swapping transactions, so
testing the detected profitable circular trades requires funding.

This paper also supports the use of graph-theoretic algorithms for finding
profitable trades. Although the program and thesis only used depth-first search
for finding profitable circular trades, other graph-theoretic algorithms such as
Bellman-Ford and breadth-first search (BFS) could easily be implemented
instead. Any graph-theoretic algorithm used must be modified for the technical
implementation because of the unconventional directional graph used in this
program. A directional graph where edge weights were not the implicit rates
between currencies rather, they are the exact amount of each currency being
exchanged is an unconventional and limiting approach imposed by use of the
SwapSpace API for aggregating exchanges to trade crypto currencies on. This
limitation is ultimately valued as beneficial as the DFS algorithm can still find
profitable trades, either as circular or exchange arbitrage.

While profitable circular arbitrage across DEXes was found occasionally, a
higher quantity of profitable trades was expected to be found. Although there
are numerous limitations to consider as to why the quantity of profitable trades
found was underwhelming. The main and most likely reason for this is lack of
program run time: over the span of March and late February 2023, the program
was actively running for a total of 1 week and the windows of time it ran at were
usually at the same time of the day. More runtime would allow for more

55

exposure, and running the program at different times of the day would add more
variety to market fluctuations as different parts of the world are actively trading.

56

REFERENCES

Ansari, K. & Kulkarn, U. 2020. Implementation of Ethereum Request for Comment (ERC20) Token. Proceedings of the 3rd International Conference on Advances in Science & Technology (ICAST). Read on 04.03.2023. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3561395
ccyanxyz. 2022. uniswap-arbitrage-analysis. [Computer program]. Updated on 05.11.2022. Read on 18.01.2023. https://github.com/ccyanxyz/uniswap-arbitrage-analysis
Cuffe, P. 2018. The role of the erc-20 token standard in a financial revolution: the case of initial coin offerings. IEC-IEEE-KATS Academic Challenge, Busan, Korea, 22-23 October 2018. Read on 04.03.2023. https://researchrepository.ucd.ie/entities/publication/9fb39a34-fac8-47dc-af16-58f6332351c4/details
Deer, M. 2022. Will the Ethereum 2.0 update reduce high gas fees? [Article] Released on 12.03.2023. Read on 03.03.2023. https://cointelegraph.com/explained/will-the-ethereum-20-update-reduce-high-gas-fees
Di Angelo, M. & Salzer, G. 2020. Tokens, types, and standards: identification and utilization in Ethereum. 2020 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS). IEEE. Read on 07.03.2023. https://publik.tuwien.ac.at/files/publik_287890.pdf
Ethereum. 2022. EIP-20 Token Standard. EIPs. [GitHub] Updated on 06.05.2022. Read on 04.03.2023. https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
evvic. 2023a. circular-arbitrage-lib. [Computer program]. Updated on 06.04.2023. Read on 06.04.2023. https://github.com/evvic/circular-arbitrage-lib
evvic. 2023b. graph-theory. [Computer program]. Updated on 31.01.2023. Read on 31.01.2023. https://github.com/evvic/graph-theory
Helmore, E. 2023. USD Coin Value Falls after Revealing $3.3bn Held at Silicon Valley Bank. The Guardian. Release on 11.03.2023. Read on 14.03.2023. https://www.theguardian.com/technology/2023/mar/11/usd-coin-depeg-silicon-valley-bank-collapse
Lehar, A. & Parlour, C. 2021. Decentralized exchanges. Available at SSRN 3905316. Read on 03.03.2023. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3905316

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3561395
https://github.com/ccyanxyz/uniswap-arbitrage-analysis
https://researchrepository.ucd.ie/entities/publication/9fb39a34-fac8-47dc-af16-58f6332351c4/details
https://researchrepository.ucd.ie/entities/publication/9fb39a34-fac8-47dc-af16-58f6332351c4/details
https://cointelegraph.com/explained/will-the-ethereum-20-update-reduce-high-gas-fees
https://cointelegraph.com/explained/will-the-ethereum-20-update-reduce-high-gas-fees
https://publik.tuwien.ac.at/files/publik_287890.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/evvic/circular-arbitrage-lib
https://github.com/evvic/graph-theory
https://www.theguardian.com/technology/2023/mar/11/usd-coin-depeg-silicon-valley-bank-collapse
https://www.theguardian.com/technology/2023/mar/11/usd-coin-depeg-silicon-valley-bank-collapse
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3905316

57

Lo, Y. & Medda, F. 2021. Uniswap and the Emergence of the Decentralized Exchange. Journal of Financial Market Infrastructures 1-25. Read on 03.03.2023. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3715398
Merriam-Webster. 2023. Arbitrage. Merriam-Webster Dictionary. Read on 04.03.2023. https://www.merriam-webster.com/dictionary/arbitrage?src=search-dict-box
Panda, S. & Satapathy, S. 2021. An investigation into smart contract deployment on Ethereum platform using Web3. js and solidity using blockchain. 549-561. Data Engineering and Intelligent Computing: Proceedings of ICICC 2020. Read on 06.04.2023. https://link.springer.com/chapter/10.1007/978-981-16-0171-2_52 Reif, J. 1985. Depth-first search is inherently sequential. Information Processing Letters 20.5. 229-234. Read on 10.03.2023. https://users.cs.duke.edu/~reif/paper/dfs.ptime.pdf
Smith, C. 2023. Gas and Fees. Ethereum. Updated on 17.02.2023. Read on 03.03.2023. https://ethereum.org/en/developers/docs/gas/
Solidity. 2023. Solidity (Version 0.8.19). Updated on 22.02.2023. Read on 20.03.2023. https://docs.soliditylang.org/en/v0.8.19/ SwapSpace. 2023a. Docs. SwapSpace API (V2). Read on 29.01.2023. https://docs.swapspace.co/ SwapSpace. 2023b. F.A.Q. SwapSpace. Read on 29.01.2023. https://swapspace.co/faq
Wang, Y., Chen, Y., Wu, H., Zhou, L., Deng, S. & Wattenhofer, R. 2022. Cyclic arbitrage in decentralized exchanges. In Companion Proceedings of the Web Conference 2022. 12-19. Read on 26.02.2023. https://arxiv.org/pdf/2105.02784.pdf
Wood, G. 2014. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper. 1-34. Read on 12.03.2023. https://files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf
Zarir, A., Oliva, G., Jiang, Z. & Hassan, A. 2021. Developing cost-effective blockchain-powered applications: A case study of the gas usage of smart contract transactions in the ethereum blockchain platform. ACM Transactions on Software Engineering and Methodology (TOSEM). 1-38. Read on 07.03.2023. http://www.cse.yorku.ca/~zmjiang/publications/tosem2020_zarir.pdf

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3715398
https://www.merriam-webster.com/dictionary/arbitrage?src=search-dict-box
https://www.merriam-webster.com/dictionary/arbitrage?src=search-dict-box
https://link.springer.com/chapter/10.1007/978-981-16-0171-2_52
https://users.cs.duke.edu/~reif/paper/dfs.ptime.pdf
https://ethereum.org/en/developers/docs/gas/
https://docs.soliditylang.org/en/v0.8.19/
https://docs.swapspace.co/
https://swapspace.co/faq
https://arxiv.org/pdf/2105.02784.pdf
https://files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf
http://www.cse.yorku.ca/~zmjiang/publications/tosem2020_zarir.pdf

58

Zhou, L., Qin, K. & Gervais, A. 2021. A2mm: Mitigating frontrunning, transaction reordering and consensus instability in decentralized exchanges. Cornell University. Read on 03.03.2023. https://arxiv.org/abs/2106.07371
Zhou, L., Qin, K., Torres, C., Le, D. & Gervais, A. 2021. High-frequency trading on decentralized on-chain exchanges. In 2021 IEEE Symposium on Security and Privacy (SP). Cornell University. 428-445. Read on 11.03.2023. https://arxiv.org/pdf/2009.14021.pdf?utm_campaign=ConsenSys%20Diligence&utm_source=hs_email&utm_medium=email&_hsenc=p2ANqtz-9syjEr6eOfKaTzHLqmYJYnNrQbNAA4bYsCZamlMBjA8f65_pfvV8c35FsfKbtbtwByA6Ko

https://arxiv.org/abs/2106.07371
https://arxiv.org/pdf/2009.14021.pdf?utm_campaign=ConsenSys%20Diligence&utm_source=hs_email&utm_medium=email&_hsenc=p2ANqtz-9syjEr6eOfKaTzHLqmYJYnNrQbNAA4bYsCZamlMBjA8f65_pfvV8c35FsfKbtbtwByA6Ko
https://arxiv.org/pdf/2009.14021.pdf?utm_campaign=ConsenSys%20Diligence&utm_source=hs_email&utm_medium=email&_hsenc=p2ANqtz-9syjEr6eOfKaTzHLqmYJYnNrQbNAA4bYsCZamlMBjA8f65_pfvV8c35FsfKbtbtwByA6Ko
https://arxiv.org/pdf/2009.14021.pdf?utm_campaign=ConsenSys%20Diligence&utm_source=hs_email&utm_medium=email&_hsenc=p2ANqtz-9syjEr6eOfKaTzHLqmYJYnNrQbNAA4bYsCZamlMBjA8f65_pfvV8c35FsfKbtbtwByA6Ko
https://arxiv.org/pdf/2009.14021.pdf?utm_campaign=ConsenSys%20Diligence&utm_source=hs_email&utm_medium=email&_hsenc=p2ANqtz-9syjEr6eOfKaTzHLqmYJYnNrQbNAA4bYsCZamlMBjA8f65_pfvV8c35FsfKbtbtwByA6Ko

59

APPENDICES

Appendix 1. SwapSpace aggregating BTC-ETH exchange rates

[
 {
 "id": "cbc1b41d-da4b-3e39-b4ab-a56e4fa2b865",
 "supportRate": 2,
 "duration": "3",
 "min": 0.00777151,
 "max": 0.46875816,
 "fixed": true,
 "partner": "switchain",
 "exists": true,
 "fromAmount": 0.1,
 "fromCurrency": "btc",
 "fromNetwork": "btc",
 "toAmount": 1.3064042117483,
 "toCurrency": "eth",
 "toNetwork": "eth"
 },
 {
 "id": "",
 "supportRate": 3,
 "duration": "17-36",
 "min": 0.00045906,
 "max": 3.1861559,
 "fixed": false,
 "partner": "fixedfloat",
 "exists": true,
 "fromAmount": 0.1,
 "fromCurrency": "btc",
 "fromNetwork": "btc",
 "toAmount": 1.3408817,
 "toCurrency": "eth",
 "toNetwork": "eth"
 },
...
]

Snippet of SwapSpace API response returning an array of all exchange options
(DEXes and CEXes) for exchanging BTC-ETH. Given the amount of Bitcoin
being sent, the array gives all the partnered exchanges and the amount of
Ethereum that would be received from each exchange.

60

Appendix 2. Activity Diagram of DFS implementation in the program

61

Appendix 3. SwapSpace response for creating a token exchange
{
 "id": "k93fHaj7glmT",
 "partner": "fixedfloat",
 "fixed": false,
 "timestamps": {
 "createdAt": "2023-02-20T17:23:07",
 "expiresAt": "2023-02-20T17:53:07"
 },
 "from": {
 "code": "eth",
 "network": "eth",
 "amount": 1,
 "address": "0xd64239c98dd0665f6cd6f11acd185ce23a4bb822",
 "extraId": "",
 "transactionHash": ""
 },
 "to": {
 "code": "shib",
 "network": "erc20",
 "amount": 125304110,
 "address": "0xEc20a9BFE04Bec61A9fAaaB7014E7644AFb23ed6",
 "extraId": "",
 "transactionHash": ""
 },
 "rate": 125304110,
 "status": "waiting",
 "confirmations": -1,
 "refundExtraId": "",
 "blockExplorerTransactionUrl": {
 "from": "",
 "to": ""
 },
 "blockExplorerAddressUrl": {
 "from":
"https://blockchair.com/ethereum/address/0xd64239c98dd0665f6cd6f11acd185ce23a
4bb822?from=swapspace",
 "to":
"https://blockchair.com/ethereum/address/0xEc20a9BFE04Bec61A9fAaaB7014E7644AF
b23ed6?from=swapspace"
 }
}

The SwapSpace API response for creating the exchange between ETH-SHIB
token pair through the FixedFloat exchange platform. Upon creation of the
exchange on SwapSpace, a wallet address is provided where the base
currency (ETH) is required to be sent so the swap can occur.

62

Appendix 4. Responses for a detected 4-token abnormal arbitrage
page (1/4)

{
 "id": "vw-rohF_mIlH",
 "partner": "changehero",
 "fixed": false,
 "timestamps": {
 "createdAt": "2023-03-09T10:07:53",
 "expiresAt": "2023-03-09T11:07:53"
 },
 "from": {
 "code": "eth",
 "network": "eth",
 "amount": 1,
 "address": "0x3a3f64d58a80600f58d9b7117b6ed675c746154d",
 "extraId": "",
 "transactionHash": ""
 },
 "to": {
 "code": "zrx",
 "network": "erc20",
 "amount": 7117.041500984951,
 "address": "0xEc20a9BFE04Bec61A9fAaaB7014E7644AFb23ed6",
 "extraId": "",
 "transactionHash": ""
 },
 "rate": 7117.041500984951,
 "status": "waiting",
 "confirmations": -1,
 "refundExtraId": "",
 "blockExplorerTransactionUrl": {
 "from": "",
 "to": ""
 },
 "blockExplorerAddressUrl": {
 "from":
"https://blockchair.com/ethereum/address/0x3a3f64d58a80600f58d9b7117b6ed675c7
46154d?from=swapspace",
 "to":
"https://blockchair.com/ethereum/address/0xEc20a9BFE04Bec61A9fAaaB7014E7644AF
b23ed6?from=swapspace"
 }
}
 Starting the 4-part exchange with 1 ETH for 7117.04 ZRX on ChangeHero. (continues)

63

Appendix 4. Responses for a detected 4-token abnormal arbitrage
(page 2/4)

{
 "id": "9PVXadmlW2UC",
 "partner": "changelly",
 "fixed": false,
 "timestamps": {
 "createdAt": "2023-03-09T10:07:57",
 "expiresAt": "2023-03-09T11:37:57"
 },
 "from": {
 "code": "zrx",
 "network": "erc20",
 "amount": 7117.041500984951,
 "address": "0x160e2dcd3aa610e031bc795f26b8cea65f0bd247",
 "extraId": "",
 "transactionHash": ""
 },
 "to": {
 "code": "wbtc",
 "network": "erc20",
 "amount": 0.07334122,
 "address": "0xEc20a9BFE04Bec61A9fAaaB7014E7644AFb23ed6",
 "extraId": "",
 "transactionHash": ""
 },
 "rate": 0.000010305015081034734,
 "status": "waiting",
 "confirmations": -1,
 "refundExtraId": "",
 "blockExplorerTransactionUrl": {
 "from": "",
 "to": ""
 },
 "blockExplorerAddressUrl": {
 "from":
"https://blockchair.com/ethereum/address/0x160e2dcd3aa610e031bc795f26b8cea65f
0bd247?from=swapspace",
 "to":
"https://blockchair.com/ethereum/address/0xEc20a9BFE04Bec61A9fAaaB7014E7644AF
b23ed6?from=swapspace"
 }
}

Swapping 7117.04 ZRX for 0.0733 WBTC on Changelly.

64

Appendix 4. Responses for a detected 4-token abnormal arbitrage
(page 3/4)

{
 "id": "CVbrCgVvKvIg",
 "partner": "swapuz",
 "fixed": true,
 "timestamps": {
 "createdAt": "2023-03-09T10:08:00",
 "expiresAt": "2023-03-09T13:08:00"
 },
 "from": {
 "code": "wbtc",
 "network": "erc20",
 "amount": 0.07334122,
 "address": "0xded23c676BeF1Afd03923557019e214D235e9adF",
 "extraId": "",
 "transactionHash": ""
 },
 "to": {
 "code": "uni",
 "network": "erc20",
 "amount": 646.5902133616008,
 "address": "0xEc20a9BFE04Bec61A9fAaaB7014E7644AFb23ed6",
 "extraId": "",
 "transactionHash": ""
 },
 "rate": 8816.1911318301066,
 "status": "waiting",
 "confirmations": -1,
 "refundExtraId": "",
 "blockExplorerTransactionUrl": {
 "from": "",
 "to": ""
 },
 "blockExplorerAddressUrl": {
 "from":
"https://blockchair.com/ethereum/address/0xded23c676BeF1Afd03923557019e214D23
5e9adF?from=swapspace",
 "to":
"https://blockchair.com/ethereum/address/0xEc20a9BFE04Bec61A9fAaaB7014E7644AF
b23ed6?from=swapspace"
 }
}

 Swapping 0.0733 WBTC for 646.59 UNI on Swapuz.

65

Appendix 4. Responses for a detected 4-token abnormal arbitrage
(page 4/4)

{
 "id": "TnOkUe3EjlWl",
 "partner": "changelly",
 "fixed": false,
 "timestamps": {
 "createdAt": "2023-03-09T10:08:03",
 "expiresAt": "2023-03-09T11:38:03"
 },
 "from": {
 "code": "uni",
 "network": "erc20",
 "amount": 646.5902133616008,
 "address": "0xfca87847c627e582dc20537e0b4b09a82fb7b320",
 "extraId": "",
 "transactionHash": ""
 },
 "to": {
 "code": "eth",
 "network": "eth",
 "amount": 2.46018496,
 "address": "0xEc20a9BFE04Bec61A9fAaaB7014E7644AFb23ed6",
 "extraId": "",
 "transactionHash": ""
 },
 "rate": 0.00380485956817933,
 "status": "waiting",
 "confirmations": -1,
 "refundExtraId": "",
 "blockExplorerTransactionUrl": {
 "from": "",
 "to": ""
 },
 "blockExplorerAddressUrl": {
 "from":
"https://blockchair.com/ethereum/address/0xfca87847c627e582dc20537e0b4b09a82f
b7b320?from=swapspace",
 "to":
"https://blockchair.com/ethereum/address/0xEc20a9BFE04Bec61A9fAaaB7014E7644AF
b23ed6?from=swapspace"
 }
}

 Swapping UNI for ETH on Changelly, finishing the circular trade and ultimately
showing the end amount of ETH. Initially starting the circular trade with 1 ETH
and ending with 2.46 ETH.

	1 INTRODUCTION
	2 BACKGROUND
	2.1 Arbitrage
	2.2 Ethereum
	2.2.1 Gas Fees
	2.2.2 ERC20 Tokens
	2.2.3 Smart Contracts

	2.3 SwapSpace
	2.3.1 Structure of Fees and Service
	2.3.2 API Endpoints
	2.3.3 API Call Limit

	2.4 Slippage
	2.5 Previous Implementation
	2.6 Related Works

	3 PROGRAM METHODS
	3.1 Load and Pre-process Currencies
	3.1.1 Configure Network and Tokens
	3.1.2 Filter Currencies

	3.2 Searching for Profitable Arbitrage
	3.2.1 Graph Theory
	3.2.2 Getting Edge Values
	3.2.3 Depth-First Search
	3.2.4 Time Complexity Constraints

	3.3 Executing Transactions
	3.3.1 Creating the Exchanges
	3.3.2 Sending the Transactions
	3.3.3 Verify the Transactions Success

	4 RESULTS
	5 DISCUSSION
	5.1 Funding
	5.2 Expanded Graph
	5.3 Expanded Networks
	5.4 C++ PyBind
	5.5 Solidity
	5.5.1 Atomic Transactions
	5.5.2 Flash Loans

	6 CONCLUSIONS
	REFERENCES
	APPENDICES
	Appendix 1. SwapSpace aggregating BTC-ETH exchange rates
	Appendix 2. Activity Diagram of DFS implementation in the program
	Appendix 3. SwapSpace response for creating a token exchange
	Appendix 4. Responses for a detected 4-token abnormal arbitrage

