

Rostislav Goncharov

DEVELOPING TOOLS FOR AUDIO
VISUALIZATION AND DATA

SONIFICATION IN UNREAL ENGINE 5

Bachelor’s thesis

Bachelor of Culture and Arts

Game Design

2023

Degree title Bachelor of Culture and Arts
Author(s) Rostislav Goncharov
Thesis title Developing Tools for Audio Visualization and Data Sonification in

Unreal Engine 5
Commissioned by Dark Amber Softworks / Eleven Productions
Year 2023
Pages 48 pages
Supervisor(s) Marko Siitonen

ABSTRACT

This production-based thesis was aimed at exploring the possibilities of

implementing audio visualization and/or data sonification in video games using

Unreal Engine 5.

In the first part of this thesis, an overview of previous research in the field was

provided. Functions of game audio were identified along with purposes of audio

visualization and data sonification in video games. Practical examples were

provided of how the techniques have been used in several popular video games

of the past decade. Additionally, basics of audio analysis and synthesis were

discussed in that part.

In the second part of the thesis, a practical project in Unreal Engine 5 was

documented. The project was commissioned by Dark Amber Softworks and

produced over the course of the work. The techniques discussed in the

theoretical part were implemented in five prototype scenes and intended for use

as development tools in current and future Dark Amber Softworks projects.

Possible use cases for each prototype were discussed and further development

ideas were suggested. Feedback from focus group testing within the company

was also discussed in that part.

The research indicated that audio visualization and data sonification could be an

important part of the gameplay and showcased how the discussed techniques

could be implemented in an Unreal Engine 5 project.

Keywords: Unreal Engine 5, audio visualization, data sonification, sound design,

game audio

CONTENTS

ABBREVIATIONS .. 5

1 INTRODUCTION .. 6

2 RESEARCH OUTLINE ... 7

2.1 Research aims and questions .. 7

2.2 Research methods .. 7

2.3 Key concepts .. 9

3 THEORETICAL BASIS ... 10

3.1 Basic functions of audio in video games ... 10

3.2 Basics of sound analysis and synthesis .. 13

3.3 Audio visualization and data sonification in video games 15

3.3.1 Audio visualization .. 15

3.3.2 Data sonification ... 15

3.3.3 Gameplay analysis: the Dark Souls series (2011, 2014, 2016) 17

4 PRACTICAL IMPLEMENTATION ... 18

4.1 List of tools and instruments ... 18

4.2 Unity Engine Prototypes ... 19

4.2.1 Music visualizer using FFT in C# .. 19

4.2.2 Cutscene using manual data sonification.. 21

4.3 Unreal Engine 5 Project .. 23

4.3.1 Audio visualization: submix envelope follower .. 24

4.3.2 Data sonification: proximity-based diegetic sound .. 27

4.3.3 Data sonification: proximity-based non-diegetic audio 31

4.3.4 Data sonification: procedural audio with parameter mapping 34

4.3.5 Data sonification: adaptive loop-based background music 38

4.4 Focus group testing .. 43

5 CONCLUSION .. 44

REFERENCES .. 47

5

ABBREVIATIONS

FFT – Fast Fourier Transformation

DAW – Digital Audio Workstation

VST – Virtual Studio Technology

LFO – Low-Frequency Oscillator

GPU – Graphics Processing Unit

UI – User Interface

AR – Augmented Reality

VR – Virtual Reality

6

1 INTRODUCTION

Over the past few decades, the video game industry has shown explosive

growth, while video games themselves have become one of the most popular

multimedia formats in existence. Video games are one of the main driving forces

behind the further development of certain technologies (such as GPUs for

example), while game engines and game development techniques often find use

in non-gaming fields such as cinematography, architecture or medical training.

From a technical standpoint, however, video games are a manifestation of the

same process as any other software product: data manipulation. This thesis

focuses on two closely connected ways of audio-related data manipulation: audio

visualization and data sonification. The purpose of this work is to showcase the

way those processes have been used in video games, explore the most common

techniques for audio visualization and data sonification in modern game engines,

and create a project in Unreal Engine 5 which would provide a number of

reusable templates for implementing the aforementioned techniques in video

games.

The first part of this thesis focuses on existing material (mainly articles, books

and conference talks) which provides a theoretical basis for the project. It

describes the scientific foundations for audio visualization and data sonification

and explores various implementations of the two processes in popular video

games.

The second part of this work describes some of the audio visualization and data

sonification techniques available in Unreal Engine and Unity. It also documents a

practical implementation of said techniques in an Unreal Engine 5 project which

allows other developers to use them in their own games.

The primary goal of this thesis is to assess the importance of audio visualization

and data sonification in video games, as well as to create a set of tools for

implementing those processes in video games. Parts of the resulting project will

be implemented in future Dark Amber Softworks products.

7

Dark Amber Softworks is an independent software development and media

production studio based in Kotka, Finland. The majority of the company’s work to

date has been performed in Unity engine and has a strong audiovisual focus.

This thesis project has allowed the company to branch out into Unreal Engine 5

while simultaneously developing new audio-related ideas for further

implementation.

2 RESEARCH OUTLINE

2.1 Research aims and questions

The aim of this research is to produce an Unreal Engine 5 project which would

contain a series of prototypes with a focus on audio visualization and data

sonification. The project will later be used in future games by Dark Amber

Softworks and might also be made available to other game developers. Thus, the

primary question for this research can be formulated as follows: how can various

audio visualization and data sonification techniques be implemented in Unreal

Engine 5?

To reach the primary goal of the research, the following secondary questions

must be considered as well:

• What audio visualization and data sonification techniques exist?
• Are any of the techniques supported in popular game

development engines such as Unity and Unreal Engine?
• Are there any downsides (either technical or design-related) to

using any of the techniques in a game?

2.2 Research methods

In The Video Game Theory Reader 2, Perron & Wolf (2009, 2) state that “video

game systems and games themselves are the starting points of theories” while

also emphasizing that video game studies tend to evolve slower than the video

game industry. Additionally, they point out the lack of a rigid academic approach

to video game research due to the volatile nature of the field (Perron & Wolf

8

2009, 5-6). Thus, researchers have a considerable amount of freedom in

methodology choices when studying video games and related concepts.

Seeing as the purpose of this thesis is to build a set of tools for further use within

Dark Amber Softworks and possibly to make it available to other developers as

well, it is reasonable to use gameplay analysis and focus group testing as the two

key research methods for this work.

Gameplay analysis focuses on specific audio visualization and/or data

sonification techniques in a selection of games. The way those techniques affect

the gameplay in each case is explained, and possible risks arising from using the

technique are assessed. This research method constitutes a direct way to

analyze video games from the player’s perspective, which is important for the

outcomes of the practical part of this thesis. Additionally, gameplay analysis

highlights the author’s subjective perception of the discussed phenomena and

provides inspiration for the practical project.

Focus group testing was performed by offering the rest of the Dark Amber

Softworks team to test the tools created as part of this thesis. Team members

were asked for feedback regarding their experiences and possible suggestions

for further development. The feedback is discussed in the final part of the thesis.

This method seems appropriate because of the subjective nature of the

phenomena in question (audiovisual perception and workflow convenience).

Collecting and analyzing the focus group’s opinions is a way to get a deeper,

more objective understanding of the impact the discussed phenomena might

have on individuals, which is not possible when using quantitative research

methods (Boncz 2015, 23).

Aside from the two methods mentioned above, this work analyzes multiple

relevant articles, blogs and other publications along with the official

documentation for Unity and Unreal Engine. All sources used in this thesis are

included in the list of references.

9

2.3 Key concepts

This paper views audio visualization, data sonification and any related concepts

within the context of game design. This means that player experience is taken

into account in terms of both gameplay and accessibility. Any audio visualization

or data sonification techniques implemented in the practical project are supposed

to enhance player experience from an aesthetical and/or functional standpoint.

Figure 1 represents the key concepts for this research.

While audio visualization and data sonification in the context of video games is

still a relatively new area of studies, a vast amount of research has been done on

those concepts in general, as well as on related concepts such as sound

synthesis. Notable previous works in the field which provide basis for this thesis

include The Sonification Handbook by Hermann et al. (2011) and On the

Functional Aspects of Computer Game Audio by Jørgensen (2006). Additionally,

the official documentation for Unity engine and Unreal Engine 5 provides the

knowledge base for practical implementation of the concepts discussed in this

thesis. The list of references contains all sources which have been used in this

thesis.

Audio Visualization Data Sonification

Audio Synthesis

Player Experience

Audio Analysis

Figure 1. Key research concepts

10

3 THEORETICAL BASIS

3.1 Basic functions of audio in video games

Before starting to explore audio visualization and data sonification in video

games, it is important to understand the basic functionality of game audio. Juul

(2005, 1) suggests viewing games as a set of real rules and events which are set

in a fictional world. This means that the role of sound in video games includes a

wide range of functions which support this “real / fictional” duality.

According to Jørgensen (2006), five different functions can be defined for in-

game audio: those include action-oriented, atmospheric, orienting, control-related

and identifying functions. A brief summary of each function type is provided

below.

Action-oriented functions imply using auditory icons and earcons (both of which

are explained in more detail in section 4.3.2 of this thesis). In other words, any

audio that provides auditory feedback to in-game events and/or urges the player

to perform certain actions has an action-oriented function. Examples include

sounds of weapons hitting or missing enemies, enemy attack alerts, adaptive

soundtracks, and any other auditory icons or earcons which have a connection

with in-game events. (Jørgensen 2006, 2.)

Atmospheric functions imply using audio for emotional engagement, immersion,

and emphasis. While this can be seen as a mostly aesthetical element,

atmospheric audio can also influence the player’s behaviour to a certain extent.

For example, a stereotypical horror game soundtrack is supposed to convey the

feelings of fear and anxiety to the player, which may influence their emotional

state and thus affect the way they play the game (the player may start exploring

the game world with extra caution, avoid enemy encounters, and perform other

similar actions). Additionally, atmospheric functions are tightly connected to other

function types: for instance, an adaptive soundtrack which goes up in intensity

when enemies are nearby can both inform the player of immediate danger and

set the mood for combat. (Jørgensen 2006, 3.)

11

Orienting functions have a somewhat similar role to that of action-oriented ones:

both function types convey information about the actions and events in the game

world to the player. The distinction is that orienting functions are focused on

informing the player about the relative location of in-game characters, items

and/or events. This function type implies that game audio can be used to extend

the player’s visual perception by presenting them with data regarding events

which are not immediately visible. An obvious example of such a function would

be hearing distant gunshots or enemy shouts: while the enemies themselves are

not yet within the player’s line of sight, the loudness and position of their sounds

in the stereo field informs the player about the approximate distance and direction

towards the enemies. (Jørgensen 2006, 3-4.)

Control-related functions are in many ways similar to orienting ones, but they

focus specifically on the player’s ability to control certain parts of the game world.

For instance, in a real-time strategy game the player may receive an alert that

their base is under attack while they are at a completely different point on the

map. Such a notification guides the player to a certain location within the game

world and urges them to use their ability to influence the game state. (Jørgensen

2006, 4.)

Finally, identifying functions are once again bound to auditory icons and/or

earcons, except that the sound is bound to various identifying characteristics of

objects, characters or events within the game, rather than to specific player

actions. Different audio responses from units with different ranks and purposes in

a strategy game can be an example of this type of functions. (Jørgensen 2006,

4.)

Aside from the five function types, another important characteristic of game audio

is whether it is diegetic or non-diegetic. The Greek word “diegesis” can be

translated as “narration”; in a video game, diegesis would apply to the game

world and everything it includes and/or implies. According to Berndt (Grimshaw

2011, 62), diegetic and non-diegetic audio differs in whether its source exists

12

within the diegesis. A simplified way to define this distinction would be that

diegetic audio comes directly from within the game world and can be perceived

by in-game characters, while non-diegetic sounds originate from within the game

and can only be heard by the player. This thesis does not aim to explore more

complex, “fourth-wall-breaking” cases of audio implementation in games, so the

simplified definition should suffice for its purposes. The project discussed in the

practical part of this thesis features both diegetic and non-diegetic audio.

A good example of game audio performing multiple functions is the way sound is

implemented in Hellblade: Senua’s Sacrifice (2017). One of the core elements of

the game’s design is a number of voices which the protagonist hears inside her

head almost constantly. The game has no visual UI; instead, all the relevant

information is delivered to the player by the voices, which behave differently

depending on the situation: for example, they may get agitated when the

protagonist’s health drops, provide hints regarding the objectives, or reveal

pieces of in-game lore. Additionally, each voice seems to have their own

personality. A point can be made that the voices perform all five of the

aforementioned functions in a fully diegetic manner.

It is, however, worth considering accessibility when designing audio for a game.

While Hellblade: Senua’s Sacrifice (2017) is a great example of game audio

having a critical role in the gameplay, its accessibility is quite low: it is possible to

complete the game based on visuals alone (and subtitles can be turned on for the

voices), but a player who is unable to hear the audio would still miss a substantial

part of the game experience. Thus, it is important to identify the desired balance

between general accessibility and the desired prominence of in-game audio for

any game project.

While the practical project does not have a specific goal to highlight any particular

function(s) described in this chapter, it is safe to assume that at least action-

oriented, atmospheric and/or orienting functionality can be easily identified in its

parts.

13

3.2 Basics of sound analysis and synthesis

To have a better understanding of the core principles behind the practical project

described later in this thesis, it is beneficial to possess basic knowledge of

acoustics. This chapter takes a closer look at audio waveforms, basics of sound

synthesis, and the Fast Fourier Transformation (FFT) algorithm for audio

spectrum analysis.

Fundamentally, any sound we hear is produced by a vibrating body: for example,

a guitar string or a speaker cone. This vibration creates a chain reaction of

vibrating air molecules which eventually reaches our ears and can be

represented as a waveform. (Comeau 2018.)

A waveform can be defined as a graph which represents the way the vibration’s

amplitude changes over time. The shape of this graph depends on the harmonic

content of the sound: in other words, it is influenced both by the fundamental

pitch of the sound and its overtones (if any). The fundamental pitch is the basic

pure tone which the sound possesses; if the sound has no overtones, the

waveform looks like a perfect sine wave. However, most sounds we hear are

much more complex than that: aside from the fundamental frequency, they

contain a number of harmonic and/or non-harmonic overtones. A musically

meaningful sound has a clear fundamental tone which is accompanied by a

series of higher-frequency overtones, which usually have lower amplitude.

Harmonic overtones are directly related to the fundamental frequency as they are

exact multiples of it. Non-harmonic overtones, on the other hand, have no such

relation to the fundamental; a sound containing much non-harmonic content can

be perceived as noisy and/or dissonant. (White 1994.)

This relationship between a sound’s fundamental tone and any overtones it might

have is the basis of various sound synthesis techniques. While a thorough

exploration of sound synthesis is beyond the scope of this work, it is beneficial to

have a basic understanding of one of its oldest forms: additive synthesis.

14

Additive synthesis is a technique based on summing multiple waveforms to

achieve a different one. While technically any kind of waveform can be used in

additive synthesis, sine waves are used most commonly, as their lack of

harmonics yields the most predictable and controllable results. By summing a

number of sine waves, each with its own frequency, amplitude and phase, much

more complex waveforms can be achieved. This summation principle is the

reason why the Fast Fourier Transformation algorithm is a popular choice for

sound analysis, as it essentially deconstructs the sound into a series of sine

waves. (Mantione 2017.)

The Fast Fourier Transformation (FFT) algorithm is an audio measurement

method which samples the analyzed audio over a period of time, splits it into

separate spectral components, and provides frequency information about the

signal as a result. Each spectral component is a sinusoidal oscillation at a distinct

frequency with its own amplitude and phase characteristics. (Fast Fourier

Transformation FFT – Basics n.d.)

The output of the FFT algorithm can be represented by a spectrogram which

displays the amplitude or “loudness” of various frequencies present in the signal

over time (What is a Spectrogram? n.d.). Figure 2 displays a spectrogram of a

harmonically rich noise sample processed through a band-pass filter, which has

been obtained from Renoise DAW. A band-pass filter reduces the signal’s

harmonic content both above and below a specified frequency; in this case, the

spectrogram shows that the frequencies approximately between 1.2kHz and

2kHz are the most prominent in the signal, while ranges below 200Hz and above

10kHz have little to no content at all.

Figure 2. Screenshot of a spectrogram in Renoise DAW

15

3.3 Audio visualization and data sonification in video games

This section focuses on the definitions and possible use cases of audio

visualization and data sonification in video games, as well as several important

accompanying concepts.

3.3.1 Audio visualization

According to Yingfang Zhang et al. (2018, 2), audio visualization can be defined

as “an objective interpretation and judgement for music representation, and an

approach of representation used to understand, analyze and compare

representation capacity and internal structure of music”. The definition fits the

purposes of this thesis, but it should be noted that the principles and techniques

utilized in the practical project are not necessarily limited to music and are

applicable to any type of in-game audio.

Speaking of music visualization based on mathematical properties, Li & Li (2020)

define three distinct levels of music information: underlying (which includes the

sound’s waveform and frequency spectrum as well as other mathematical and

physical properties), mid-level (which concerns musical properties such as

melody, rhythm or harmony), and high-level (which describes the overall structure

and perception of the music). This thesis assumes that game audio can be

viewed in a similar manner without being limited to music specifically: for

example, a voiceover track can be analyzed and subsequently visualized on all

three levels. The practical part of this work mostly uses elements of low-level

audio information analysis to visualize in-game sounds.

3.3.2 Data sonification

In contrast to audio visualization which represents audio data in a visual way,

data sonification is an act of representing non-audio data through sound. This

type of data manipulation is widely spread in the modern world: sounds such as

EKG machine blips and smartphone notification chimes are examples of data

sonification. (Geere 2020.)

16

Hermann et al. (2011) suggest that there are at least 5 distinct techniques for

data sonification: audification, auditory icons, earcons, parameter mapping

sonification, and model-based sonification. While all those techniques can

potentially be used in video games, the three that seem immediately usable are

auditory icons, earcons, and parameter mapping sonification.

Auditory icons and earcons are two very similar techniques of assigning acoustic

markers to certain events. The key distinction between those two approaches is

that earcons bind an abstract sound to an event (for example, a sequence of

tones which plays upon startup of a computer’s operating system), while auditory

icons are based on an existing relationship between the sound and the

underlying data. (Hermann et al. 2011, 325 – 361).

Auditory icons are used in video games as a natural link to various objects,

events and actions existing in the game environment. For example, gunshots,

footsteps and enemy shouts are auditory icons which can be commonly found in

first-person shooter games. By providing a naturally recognizable sonic

representation of objects and events, auditory icons provide the player with an

intuitive non-visual way of gathering information about the game world. (Ng &

Nesbitt 2013.)

Earcons, on the other hand, are abstract tones which are used to create auditory

messages. Their independence from context allows them to be used with any

interaction happening in the game while often providing a more precise message

compared to auditory icons. However, this lack of context also means that the

player has no immediate intuitive association with the sound and needs to

explicitly learn the connection while playing the game. UI sounds, warning signals

and adaptive background music can all be considered earcons. (Ng & Nesbitt

2013.)

Parameter mapping sonification is an approach which associates data values

with auditory parameters for visualization purposes. A simple example would be

mapping the temperature of water in a tea kettle to the pitch of a continuous

17

sound signal: the higher the temperature gets, the more the signal’s pitch goes

up, and vice versa. However, this approach allows for infinitely more complex

data sonification systems due to enormous range of mapping decisions available.

(Hermann et al. 2011, 363.)

Because of the vast number of possibilities regarding parameter mappings and

interpretations, parameter mapping sonification can be challenging to implement.

Deliberate choices need to be made when designing such systems due to the

fact that mappings can be continuous (such as sound volume or duration) or

discrete (such as choice of instrument). Some parameters can even fit both

categories: for instance, when data parameters are continuously mapped to

audio pitch, the latter is often quantized to a musical scale in order to achieve

more aesthetically pleasing results. (Geere 2020.)

Despite its inherent complexity, parameter mapping sonification can be a

powerful data sonification tool in video games due to its flexibility. It is particularly

interesting within the scope of this work as a method for creating generative and

adaptive soundtracks, which will be explored in the practical project.

3.3.3 Gameplay analysis: the Dark Souls series (2011, 2014, 2016)

An example of auditory icons and earcons working together is the Dark Souls

series (2011, 2014, 2016). In each of those games, combat has multiple auditory

icons such as weapon hits, footsteps or screams; those are diegetic sounds

which naturally originate from relevant actions such as swinging a sword or

running. At the same time, prominent earcons are present as well: for example,

distinct sounds can be heard whenever a character gets stunned, a successful

parry happens, the player is killed, or an enemy dies and grants the player some

in-game currency. Those earcons do not seem to necessarily originate from

within the game world, and they are more abstract in nature than the auditory

icons. However, the connection between the earcon and the event it represents is

established at the early stages of the game, and the player quickly becomes able

to distinguish important combat events based on game audio alone (this

consecutively mitigates the lack of instinctive connection between the earcon and

18

the linked event, which is an inherent downside of using earcons). Moreover,

those earcons have become so iconic that they are consistent throughout all of

the Dark Souls series (2011, 2014, 2016), as well as some other games from the

same developer such as Elden Ring (2022). This way, a player who has

experienced one of those games will instantly recognize the earcons when

starting another game from the series.

4 PRACTICAL IMPLEMENTATION

This chapter describes the implementation of various audio visualization and data

sonification techniques in a series of prototypes which has been created for Dark

Amber Softworks / Eleven Productions.

First, the chapter describes the tools and instruments (both hardware and

software) which were used in the development process. Next, two Unity

prototypes are briefly reviewed and explained. Finally, the chapter provides a

detailed description of the development process for a project in Unreal Engine 5

which can provide game developers with a number of reusable tools and

prototypes to be used in their own games.

4.1 List of tools and instruments

Game engines:

• Unity 2021.3.3f1
• Unreal Engine 5.1.1

DAWs:

• Reaper
• Renoise

Instruments:

• Dreadbox Erebus v3 analog synthesizer
• Neutral Labs MEG waveshaper Eurorack module
• Electric guitar
• Electric bass
• Ugritone KVLT II VST

19

4.2 Unity Engine Prototypes

The prototypes described in this section were done in Unity and might be ported

to Unreal Engine later. Their inclusion in this thesis is warranted for three

reasons. Firstly, they illustrate some of the audio visualization and data

sonification concepts described in the previous chapters (such as the usage of

FFT for audio visualization purposes). Secondly, most of the techniques used in

the scenes can be implemented in a similar manner in Unreal Engine. Finally, the

Unity prototypes served as inspiration for creating the Unreal Engine project.

4.2.1 Music visualizer using FFT in C#

This scene visualizes the audio coming from the audio source by utilizing the

available audio spectrum-related functions in C#. The scene consists of an audio

source, a main camera, and multiple stationary point lights. In addition, moving

light sources are spawned throughout the scene’s lifetime. Figure 3 shows the

default layout of point lights in the scene.

Figure 3. Default light positioning in the Audio Visualizer project

The audio is split into 8 frequency bands, then the volume of each band is

normalized (i.e. its value is converted into a float between 0 and 1). The average

volume of all normalized bands is calculated as well. The normalized band

volumes and the normalized average volume are then used to control various

visual parameters: the colour and/or intensity of separate light sources, the rate

20

at which new moving lights are spawned, and the post-processing effects on the

main camera. Figure 4 shows a screenshot of the ongoing audio visualization

with a noticeable lens distortion effect.

Figure 4. Lens distortion effect in the Audio Visualizer project

The key element that makes this scene work is the GetSpectrumData() function

which is a member of the AudioSource and AudioListener classes in Unity. This

function provides a block of the currently playing audio source’s spectrum data

and fills a samples array with its values. It utilizes the Fast Fourier Transformation

algorithm and allows the user to select the FFT window for optimized results.

(Unity Technologies 2023.)

Splitting the samples array into frequency bands and normalizing each band is

done manually. At the time of writing, Unity does not seem to provide dedicated

functions for doing that.

The techniques used in this audio visualizer can be applied to game scenes

which do not necessarily require high visualization precision and have a mostly

aesthetic purpose. A good use case would be an animated background and/or

other atmospheric elements which react to an audio loop.

21

4.2.2 Cutscene using manual data sonification

This Unity prototype uses audio visualization and data sonification in a more

narrative-focused way, combining the spectrum analysis capabilities of the

AudioSource and AudioListener classes with manual setup of triggers for audio

and visuals. The cutscene aims at setting the mood through a combination of

synced audiovisual content, as well as to highlight the importance of a particular

location while maintaining a mysterious vibe.

While using spectrum analysis for audio visualization can yield great results, in

certain situations it may be quicker and easier to achieve the desired effect by

manually setting up the audiovisual events. Non-interactive cutscenes are one

such example, as the developer usually wants them to display the exact same

behaviour every time they happen. Using a spectrum analysis algorithm could be

an overly complicated approach to setting up something that essentially never

needs to change; additionally, precise fine-tuning of a given effect can often be

easier to perform by changing the relevant values manually.

For this reason, the cutscene has several audio triggers placed around it with a

custom script attached (AudioTrigger.cs). The audio trigger script offers a number

of customization options: audio clip selection, audio volume, fade-in switch, fade-

in duration, and fade-in curve. Combined with two separate scripts for one-shot

and looping sound sources, this allows the developer to fine-tune the way in

which a specific audio file is triggered at a specific point of time. Additionally, one

of the trigger objects has another script attached to it which handles a skybox

change. Figure 5 displays the position of the audio triggers along the train track.

22

Figure 5. Positions of audio triggers in the scene

The tower at the far end of the scene is supposed to be the focal point of the

whole arrangement. It has a point light and an audio source attached to it, as well

as a script (TowerPulse.cs) which handles the synchronized changes in audio

volume and light intensity. The script allows the developer to specify the rates at

which audio volume and light intensity should increase every frame, as well as

the maximum volume at which both values are reset to 0, after which the cycle

continues. This essentially creates a ramp-shaped LFO. Figure 6 shows what the

tower lighting looks like while its intensity is high.

Figure 6. A close view of the tower

23

The way the tower is represented in the scene can be viewed in terms of both

audio visualization and data sonification. Technically, the most important value in

the TowerPulse.cs script is the maximum volume, as it determines the volume at

which a new cycle of the waveform begins; from this standpoint, the audio is the

primary element which also gets visualized by the intensity of the light source. On

the other hand, the player can faintly hear the low-pitched drone emitted by the

tower right before he or she even sees the red light, and the tower itself is only

revealed when the player arrives a little closer to it. By this logic, the fact that the

player is approaching a potentially important location is conveyed through audio

among other things, allowing it to be viewed as an instance of data sonification as

well. Additionally, this scene opens up the possibility to use the tower’s sound as

an earcon further in the game, as it allows the player to establish the mental

connection between the sound and the importance of the location.

Finally, the perceived importance of the tower is highlighted by the simple audio

visualizer in the bottom left corner of the screen. It operates on the exact same

principles as the audio visualizer described in chapter 4.2 and provides a visual

representation of the loudness of specific frequency bands in the tower’s audio.

This is the only element in the scene which requires no manual setup outside of

selecting the frequency bands for each of its segments, as the audio visualizer’s

purpose here is purely aesthetical and requires no extra precision.

Overall, this prototype demonstrates the way in which audiovisual content can be

synchronized manually in order to craft a particular experience which is supposed

to look and sound the same every time. While the same (or at least similar)

results could have been obtained through output and spectrum analysis

algorithms, manual placement of trigger objects has proved to be an efficient way

of achieving the desired outcome in this case.

4.3 Unreal Engine 5 Project

The primary goal of doing the thesis project in Unreal Engine 5 was to create a

series of audio-focused prototypes which could be easily integrated into present

24

and future projects by Dark Amber Softworks. Each prototype’s idea was based

on team discussions to ensure maximum relevance to the company’s needs. This

section describes the five scenes which the project consists of.

All prototypes were created using Blueprints in Unreal Engine 5. C++

implementation is planned for the future. Unless specifically noted, all the audio in

the scenes is generated in real time using MetaSounds within the engine.

4.3.1 Audio visualization: submix envelope follower

This prototype focuses on audio visualization and can be used for

puzzles/obstacles which have to be resolved through audio manipulation. Real-

time envelope following analysis is used to visualize the audio in the scene. To

understand the operation of this prototype, it is necessary to be familiar with

submixes in Unreal Engine 5, as well as with the concept of envelope following.

The official documentation for Unreal Engine 5.1 defines a submix as a “DSP

(digital signal processing) graph that is always running, even when no audio is

being sent” (Epic Games, Inc. n.d.). A simple way to think about submixes is that

they allow the developer to group multiple sound sources together and apply

DSP effects to them; aside from a few differences, submixes are very similar to

audio buses (which are also present in Unreal Engine). Submixes in Unreal

Engine 5 support real-time analysis through envelope following or spectral

analysis (Epic Games, Inc. n.d.). This prototype uses envelope following analysis

for audio visualization.

An envelope follower is an algorithm which analyzes the amplitude of an audio

signal and outputs a control signal based on the sound’s dynamics. The control

signal is usually smoothed out by having its own attack and decay parameters,

which control how fast the envelope follower reacts to each change in the signal’s

amplitude (Ferguson 2020). Envelope followers should not be confused with

envelope generators, which are utilized in other parts of this project. Unreal

Engine 5 offers multiple ways of using envelope followers; the submix envelope

following approach is used in this prototype.

25

The basic setup for the scene involves two platforms which are interconnected by

a bridge. The player starts on one of the platforms and needs to get to the other

one; however, the bridge segments are displaced because their position is

affected by the sound coming from a source on the start platform. The player

needs to touch the sound source (represented by the glowing white cylinder) to

fade out the sound, which will cause the bridge segments to float back into place.

Figure 7 shows the basic layout of the scene. Figure 8 illustrates one of the

possible ways the bridge may look like while the sound is playing.

Figure 7. Basic layout of the scene

Figure 8. Bridge segment positions affected by audio

There are two distinct looping sounds in the scene: a noisy sound (which affects

the position of the bridge segments) and a calmer ambient soundtrack. Each of

26

the two sounds is sent to its own submix; the ambient soundtrack submix has a

sidechain compressor (represented in Unreal Engine 5 by a submix effect of the

SubmixEffectDynamicsProcessorPreset type) which is controlled by the noise

submix. Sidechain compression automatically reduces the amplitude of the

affected signal when the amplitude of another specified audio signal increases.

The compressor is set to a low threshold and high ratio, meaning that the

ambient soundtrack is playing at low volume while the noise is still audible but

fades into full volume once the noise has been turned down.

The bridge segments have their own blueprint which facilitates envelope

following. This is done by getting a reference to the submix which the noise goes

to, then calling an Add Envelope Follower Delegate node and specifying that

submix as the target at the start of the scene. This node will fire an event every

time the envelope follower value changes, providing an array of envelope values

(one per channel) each time. In this prototype, the array has a length of 2

because the project uses stereo sound; only one of the channels is used for

analysis. After the envelope follower delegate has been added, it is also

necessary to call the Start Envelope Following node targeting the same submix.

Each time the envelope follower event is fired, the bridge segment blueprint calls

one or several of its move functions (for the X, Y and/or Z axis). The move

functions take a float input for the amount of movement which is calculated from

the envelope follower’s output via the Map Range Clamped node; the maximum

and minimum move distances are set at random within a specified range of

floats. The range of envelope follower values is mapped to the move distance

range in a way that low envelope follower values result in negative values (or

positive ones if the maximum move distance happens to be negative). This

results in the segments moving back and forth with the sound, rather than just

moving away without changing direction.

Finally, the bridge segment blueprint has exposed Boolean inputs for X-, Y- and

Z-axis movement. This way, the level designer can specify the direction of the

movement while the rest of the parameters are either randomized (maximum and

27

minimum move distances) or controlled by the envelope follower values (the

actual movement amount).

To turn off the noise, the player needs to collide with the cylinder, which will

trigger a volume fade-out over 5 seconds. As the signal fades out and envelope

follower values approach zero, the bridge segments will smoothly float back into

place, allowing the player to make their way to the other platform. It is important

to note that the submix to which the noise is sent should have Auto Disable

turned off, otherwise the envelope following will stop when the noise fades out

and not let the segments fully reach the appropriate position.

This prototype is a simple but effective way of utilizing audio visualization as a

game mechanic rather than a purely aesthetical element. The idea can be further

developed by including several more sound sources (which may or may not affect

the position of the bridge segments) and allowing the player to increase or

decrease the volume of each sound. This way, the player will have to interact

with multiple sound sources and observe the effect of those interactions, which

can provide a foundation for more complex puzzles or obstacles.

4.3.2 Data sonification: proximity-based diegetic sound

This scene focuses on creating a diegetic sound source which grows louder as

the player approaches it. There are multiple ways of achieving that in Unreal

Engine 5: for example, by making a script which would explicitly control the

volume of the sound, or by using the UE.Attenuation interface in the MetaSound

source. However, this scene uses the simplest implementation which does not

require any code at all: it sets up attenuation parameters of audio components in

the sound source blueprint.

The scene consists of a corridor which is sealed at both ends. One of the ends is

the starting point for the player, while the sound source is placed at the other end.

The sound source consists of a point light (which is one of the few light sources in

the scene), a Niagara particle system using Vortex Force to make the particles

spin around, and two audio components (ProximitySoundFar and

28

ProximitySoundClose). Each of the audio components has its own MetaSound

source, as well as its own attenuation settings. Figure 9 shows a close-up view of

the sound source in the scene.

Figure 9. A close-up view of the sound source object

The audio components are set up in a way that one of them starts fading in

almost immediately when the player starts moving towards the sound source,

while the other is only audible when the player gets close to it. This is achieved

by setting up their attenuation settings individually. Both sources have Allow

Spatialization and Override Attenuation set to true in the blueprint editor; this

allows the developer to access specific attenuation settings. The important

section for this scene is Attenuation (Volume), which exposes parameters for the

distance and character of the attenuation process. For both audio components,

Attenuation Function is set to Natural Sound to simulate natural sound falloff

behaviour, while Attenuation at Max is set to -60 (meaning that the sound source

is playing at a volume of -60dB when the listener is beyond falloff distance).

Attenuation Shape is set to Sphere for both components.

The only difference between the two components is in the Inner Radius and

Falloff Distance settings. Inner Radius defines the distance between the listener

and the sound source at which attenuation begins; in other words, as long as the

listener is within this distance, the sound is playing at full volume. The Falloff

29

Distance parameter determines the distance over which the sound will attenuate:

the further the listener moves away from the source, the quieter the sound will

become until eventually decreasing to the minimum level (specified by the

Attenuation at Max parameter here) upon reaching the Falloff Distance value.

Figure 10 shows the settings for the audio component which fades in when the

player is close to the sound source.

Figure 10. Attenuation settings for one of the audio components

Figure 11 represents the top-down view of the Falloff Distance and Inner Radius

settings for both audio components. Starting from the largest, the spheres are

ordered as follows: ProximitySoundFar Falloff Distance, ProximitySoundClose

Falloff Distance, ProximitySoundFar Inner Radius, ProximitySoundClose Inner

Radius.

Figure 11. Visual representation of the falloff distance and inner radius for both audio components

30

With this parameter arrangement, the player first starts hearing a buzzing sound

slowly fading in while moving along the corridor towards the sound source. About

halfway through, another sound starts fading in – a more tonal but still noisy loop.

Soon after that, the buzzing sound reaches its full volume, while the tonal loop

keeps fading in. Eventually the latter reaches its own full volume when the player

gets very close to the sound source.

To make the scene more visually appealing and highlight the introduction of the

tonal loop, a post-processing volume is placed around the sound source with its

bounds roughly corresponding to the tonal loop’s falloff distance. It adds bloom

and film grain effects to the camera around the time when the sound becomes

audible and removes them if the player gets further away from the sound source.

Additionally, the particles in the sound source blueprint react to the frequency

spectrum of the sound in the scene: the higher the volume, the faster some of

them move (depending on the sound’s frequency content). This is achieved by

setting up a Niagara Module Script (not to be confused with the Niagara System

which sets up the visual representation and overall behaviour of the particles).

Among other things, Niagara Module Scripts allow developers to use real-time

spectrum analysis to control various parameters of a Niagara System. In this

case, velocity of the particles is controlled by the frequency spectrum of the

master submix, which all the audio in the scene flows into. The frequency band

which each individual particle reacts to is determined by the particle’s normalized

age, which is its actual age mapped to a range of 0 to 1 (where 1 represents its

maximum age determined by the Niagara System settings). The result is that the

particles are moving quite slowly when the listener is far away and the sound is

playing at a low volume. As the player gets closer, the sounds start fading in,

causing the particles to move faster and in a slightly more chaotic way. While this

has a purely aesthetical purpose (just like the use of the post-processing

volume), it can also slightly improve accessibility by introducing visual changes to

the scene when the player is close to the sound source.

31

This simple setup results in a fully diegetic sound source which requires no code

or blueprint nodes to operate. The flipside of this simplicity is its limited usability:

while this approach can work very well for highlighting a single specific object in

the scene (such as a portal to the next level), it is not particularly usable if the

scene has multiple objects which need to be sonified with the exact same sounds

simultaneously. The reason is that the sound source has the audio components

attached to itself, meaning that two or more identical sound sources in the scene

will result in two or more identical sets of sounds potentially playing at the same

time, which is not always desirable. Additionally, this approach implies that the

sound source is fully spatialized (meaning that the sound’s position in the stereo

field depends on the relative angle at which the listener is rotated). Unless these

effects are intended by the developer, a better approach to the sonification of

multiple similar objects would be to have a non-diegetic sound (or set of sounds)

which reacts to the events happening in the scene. The implementation of such

an approach is explained in the next section of this thesis.

4.3.3 Data sonification: proximity-based non-diegetic audio

As detailed in chapter 4.3.2 of this thesis, attaching a sound source directly to an

object in the scene may not always be the optimal solution as it may cause

various side effects (such as several identical pieces of background music

playing diegetically at the same time, which may lead to volume jumps and

phasing issues). While that approach may work well for the sonification of a

single unique object in the scene, developers might often want to use non-

diegetic sound effects and/or background music as a functional element of the

game – for instance, as an alert that one or more enemies are near. In this case,

instead of sonifying each enemy individually, it makes more sense to focus on

whether or not the player is within dangerous distance from any number of

enemies. In other words, the developer can essentially set up an audio cue for a

Boolean value (true/false), which in this scene answers the question of whether

or not there is at least one enemy within a specified distance from the player.

The scene consists of a large area with four enemies moving back and forth

across it. The player starts near the edge of the area and can freely move

32

around, observing the audio effects of getting closer to the enemies or further

away from them. To make things more interesting, there are three different

sounds (EnemyFar, EnemyMedium and EnemyClose) which get layered on top

of each other depending on how close the distance is between the player and the

enemies. Additionally, there is one ambient noise track which is playing

continuously but fades out while enemies are near.

There are multiple ways to set up a non-diegetic sound which would still react to

events happening in the scene. A rather common solution would be to use the

singleton pattern, where a single (and often persistent) object is exposed to all

other objects in the scene. By default, Unreal Engine 5 provides developers with

several objects of this kind including the Game Mode blueprint, which can be

edited or replaced to implement the needed functionality. This scene uses a

customized Game Mode blueprint to set up the non-diegetic audio.

It is worth noting that there is much debate among developers regarding the use

of the singleton pattern. Documenting the pros and cons of the pattern is beyond

the scope of this work, but using the Game Mode blueprint appears to be one of

the viable solutions for implementing the functionality discussed in this chapter.

The three sounds used for alerting the player about enemy presence are

attached to the Game Mode blueprint as audio components. Auto Activate is set

to false for all three to prevent them from playing automatically at the start of the

scene.

The scene uses a specific player pawn which is different from other scenes. This

pawn has three collision spheres of different sizes attached to it. The spheres are

set to generate overlap events when colliding with enemies. At the start of the

game, the player pawn gets a reference to the active Game Mode blueprint

(which is exposed to every object in the scene by default), then binds overlap

events to each sphere. The overlap events ensure that whenever an overlap

occurs between an enemy and a sphere, an appropriate sound source attached

to the Game Mode blueprint starts playing and fades in (using the Play and Fade

33

In nodes; a status check is also implemented before that to make sure that the

sound source is not already playing). Whenever an enemy stops overlapping with

a sphere, the sphere checks whether it is overlapping with any other enemies; if it

finds none, the audio is faded out and stopped (using the Fade Out and Stop

Delayed nodes with matching time values).

Figure 12 shows the top-down view of the player pawn with three collision

spheres attached. Each sphere is generating overlap events which affect a

particular sound source in the Game Mode blueprint (EnemyFar, EnemyMedium

and EnemyClose respectively, starting with the largest sphere).

Figure 12. Collision spheres attached to the player pawn

Each of the sound sources attached to the Game Mode blueprint has its own

submix (technically the scene would work the same if all of them were assigned

to a single submix for enemy sounds, but having individual submixes allows for

setting up more complex effects in the future). The ambient noise track is also

assigned to its own submix which has a sidechain compressor attached to it. The

submix for the EnemyFar sound is assigned as the key source for the

compressor; in other words, the ambient noise track fades out whenever at least

one enemy is within the largest collision sphere attached to the player pawn, and

it fades back in when the player gets sufficiently far away from the enemies.

34

This arrangement results in a non-diegetic sound which is always centered in the

stereo field and consistently reacts to the proximity of enemies regardless of their

actual count (meaning that it does not get louder with each additional enemy

overlapping one of the collision spheres). This way, the audio can be used as a

general alert for the player while also retaining its atmospheric function.

Two issues have been identified while testing this setup. Firstly, the enemy sound

may not start playing if at least one enemy starts the game within the radius of

any collision sphere attached to the player pawn. This is likely caused by the fact

that in this case the overlap event happens before the audio effects are bound to

the spheres. If the scene is set up so that enemies might begin the game close to

the player, a different system might be needed. Otherwise, the easiest way to

overcome the issue is to simply move the player’s starting position further away

from the enemies.

The second issue is that sounds may sometimes fail to play if the enemy is

rapidly entering and exiting the bounds of one of the player pawn’s collision

spheres. This is caused by the Fade Out and Stop Delayed nodes in combination

with the status check which prevents an already playing sound source from

retriggering. While this is mostly a non-issue with the current movement speed

and fadeout time settings in the scene, it may be worth implementing more

variables and status checks if the player and/or enemies are supposed to be

moving rapidly in the scene.

Additionally, it should be noted that the current setup of the Game Mode blueprint

(which has the three sound sources attached to it directly in the blueprint editor)

works well if the alert sounds are supposed to be consistent throughout the

game. Otherwise, it might be beneficial to attach them dynamically at the start of

the level (or at any other appropriate point).

4.3.4 Data sonification: procedural audio with parameter mapping

This scene explores the usage of MetaSounds’ synthesizer capabilities for data

sonification through procedurally generated audio. To achieve that, a complex

35

synthesizer voice with multiple parameter inputs has been constructed in

MetaSounds and used as a sound source in the scene.

Procedural audio generation implies that the developer provides a set of rules

and boundaries for the process but has no way to influence the outcome directly.

This matches up well with the parameter mapping approach to data sonification,

which (as discussed earlier in this thesis) generates an audio representation of

the sonified object or event based on its properties. This scene combines the two

concepts by allowing the player to hear the results of different values being sent

to the synthesizer’s inputs.

The scene consists of a number of planets, each having four parameters

(Population Density, Atmosphere Density, Water Coverage and Rings Density)

with different values. Those values are used to control the main sound source in

the scene, which is a complex synthesizer voice with external inputs for the

following parameters:

• Saw wave oscillator frequency
• Saw wave oscillator amplitude envelope attack
• Saw wave oscillator amplitude envelope decay
• Sine wave oscillator frequency
• Sine wave oscillator amplitude envelope attack
• Sine wave oscillator amplitude envelope decay
• Noise oscillator amplitude envelope attack
• Noise oscillator amplitude envelope attack
• Mixer gain: saw wave oscillator
• Mixer gain: sine wave oscillator
• Mixer gain: noise oscillator
• Filter cutoff frequency
• Bit depth
• Sample rate

Each of the inputs goes through a Map Range (Float) node before reaching its

destination. That node allows transforming a value from a specified range to an

appropriate value of a different range (for example, 0.0 – 1.0 for mixer gain

inputs). The Map Range node is clamped to prevent the output value from going

beyond the specified range boundaries. This way, the system allows the

36

developer to provide virtually any float value to the input and still get somewhat

predictable results. The input range is set to 0.0 – 100.0 for each input but can

easily be changed to accommodate for different parameters.

The scene starts with the planets laid out in front of the player; this time, the

player pawn cannot move but allows the player to click on objects with the

mouse. An ambient noise soundtrack is playing – this is another MetaSound

source which uses a different synthesizer voice and has no parameter inputs

(meaning that its sound characteristics do not depend on any other objects in the

scene).

Whenever the player clicks one of the planets, a UI widget appears on the

screen, listing all the parameter values for the selected planet. Additionally, a

Niagara particle system is spawned at the planet’s location to help visualize the

selection. Figure 13 shows an example of an active widget.

Figure 13. UI widget layout

As soon as the widget appears, the MetaSound source used for data sonification

starts playing while the ambient noise track fades out (this is once again achieved

by assigning the sounds to two different submixes and using the sidechain

compressor effect on the ambient noise submix). This time, the sound that the

37

player hears is determined by the planet parameters, which are listed in the

bottom right corner of the screen.

When the Back button is clicked, the widget disappears along with the particle

system. The sonification track stops playing, prompting the ambient noise track to

fade back in. After that, the player can repeat the process by clicking another

planet and hearing a different sound (assuming that the planet’s parameters have

been assigned different values).

The way the scene works is that each planet is an instance of the same blueprint

which has four public variables of type float (the four parameters which are used

as inputs for the synthesizer). The synthesizer that is used for data sonification is

also a separate blueprint, which allows the Game Mode blueprint to have a

variable of that type. That variable is referenced both by the planet blueprint and

the UI widget to start and stop the audio; the planet blueprint also uses it to send

the values of its parameters to the synthesizer’s inputs. Spawning the UI widget

and the Niagara particle system is also handled by the planet itself via an On

Clicked event, while the logic for removing the widget and the particles resides in

the UI widget blueprint.

As previously noted in this thesis, parameter mapping can be a challenging way

to implement data sonification because of its inherent complexity and

unpredictability. Indeed, the sound source in this scene is biased towards noisy

textures rather than conventional musical results, which may or may not fit a

particular game. It should also be noted that each mixer input (for the saw wave,

sine wave and noise oscillators) is mapped to have the full range of 0.0 to 1.0;

this means that a planet with all parameters set to 0 or just above that will

produce little to no sound. This behaviour is intentional, just like the overall

character of the sound in the scene. However, it is possible to achieve more

musical results by adjusting the ranges to which input ranges are mapped, as

well as by using MIDI note quantization and/or trigger sequences to introduce

conventional rhythm and melody into the sound.

38

4.3.5 Data sonification: adaptive loop-based background music

The fifth and final prototype scene in the project focuses on creating a loop-based

adaptive soundtrack where all the loops are synchronized to each other. While

this scene uses MetaSounds just like all the other ones, it is the only case in this

project where externally recorded audio is used as actual sound sources.

In MetaSounds, playing an imported audio file is done via the Wave Player node.

Among other things, the node allows looping the sound and has Play and Stop

trigger inputs, which can be triggered externally. This functionality alone is

enough to set up a simple looping soundtrack where a single audio file would be

looped throughout the level (with optional play/stop triggers placed in the game

world). Additionally, it allows the developer to play multiple looping audio files

which may or may not be in sync. Simultaneously playing multiple audio loops

which are triggered at different points in time and/or have different lengths is a

valid generative music technique; depending on the audio content, musical

results can be reliably achieved by using this approach.

Figure 14 shows the Wave Player node in MetaSounds. Inputs are placed on the

left side of the node while outputs are on the right.

Figure 14. Wave Player node in MetaSounds (Unreal Engine 5)

39

However, a more complex setup is required if the soundtrack consists of multiple

looping parts which are supposed to be synchronized to each other. In this case,

simply triggering the loops at various points during the gameplay is not enough:

unless the player manages to do that with perfect timing, the loops will be playing

out of sync and the result may be vastly different from the composer’s intention.

MetaSounds provides developers with tools for trigger manipulation, which can

be helpful in setting up an adaptive soundtrack with multiple looping pieces. This

chapter details one of the possible solutions which utilizes those tools.

The scene consists of a sealed corridor with four platforms as its floor, each

platform adding a new loop to the soundtrack. The player starts at one end of the

corridor and can freely move in any direction within the enclosed area.

The soundtrack consists of four separate loops: drums, bass, and two guitar

parts. The loops are supposed to be added on top of each other and are not

supposed to be stopped at any point. Each loop is a separate MetaSound source

which uses a Wave Player node with Loop set to true; however, the only sound

source that is actually played is the master loop (which is drums in this case).

The master loop’s MetaSound graph references all the other loops, sending them

an On Looped trigger: in other words, it attempts to trigger every other loop in the

scene each time it has completed an iteration. The master loop’s output is then

mixed with all the other loops’ outputs via the Stereo Mixer node.

Each non-master loop is set up identically: it uses a Wave Player node with Loop

set to true, a Trigger Control node, and a Trigger Delay node. The latter two

nodes are needed to ensure that the loop is only triggered once during the whole

playthrough; otherwise, if the non-master loop is longer than the master, it would

be retriggered with every iteration of the master loop and never play to the end.

The Trigger Control node acts as a gate which can be either open or closed at

any given point in time. When the gate is closed, it does not let triggers through

and produces no output. In the graph, it is set to start in the open state; this

means that the first On Play trigger the loop receives will go through the Trigger

Control node to the Wave Player node and start the playback. The On Play

40

trigger also goes to the Trigger Delay node, which in turn sends a trigger to close

the gate after 0.1 seconds (this value can be anything that is sufficiently short to

make sure that the Trigger Control node is closed by the time the next On Play

trigger arrives). With this setup, the first On Play trigger goes through and starts

the loop, and the Trigger Control node gets closed shortly after, ensuring that the

loop is never retriggered again. Figure 15 shows the layout of any non-master

loop graph in this scene.

Figure 15. Non-master loop graph layout

The master loop graph also uses Trigger Control nodes to send triggers to the

other loops. Without those, every other loop would start playing simultaneously

as soon as the master loop has finished its first iteration. The Trigger Control

nodes in the master graph are set to start closed, and custom triggers are used to

open the gate. Each of the custom triggers is bound to its own trigger box placed

at the start of the next platform. This way, the further the player gets through the

level, the more triggers get through the Trigger Control nodes, and the more

loops are added to the master loop.

Finally, the master loop utilizes the Trigger Counter node to keep the playback in

sync. The node is required if the master loop is shorter than the other loops; in

this scene, the master loop is intentionally set to be 4 times shorter than the other

loops to showcase this functionality. The Trigger Counter node’s purpose in this

case is to keep track of the number of triggers it has received (which corresponds

to the number of times the master loop has played through) and to send out a

41

trigger every time the Reset Count is reached. Since the master loop is 4 times

shorter than the other loops, Reset Count is set to 4. However, only sending an

On Looped trigger to the Trigger Counter node would not be correct, as the

trigger appears to be sent out at the start of the next iteration; this means that in

order to reach the Reset Count of 4, the master loop would need to play 5 times

(one initial playthrough + 4 iterations which actually yield the On Looped triggers).

Thus, the On Play trigger also needs to be sent to the Trigger Counter node so

that the initial playthrough is included into the count. This can be done via a

Trigger Any node, which outputs a trigger when it receives any of the specified

input triggers. Figure 16 shows the full layout of the master loop graph.

Figure 16. Master loop graph layout

The master loop is set up and triggered in the Level Blueprint as soon as the

scene starts. After that, each of its custom triggers used to open the Trigger

Control nodes for other loops is assigned to an overlap event with one of the

trigger boxes placed throughout the level. Executing a MetaSounds trigger is

done in blueprints via the Execute Trigger Parameter node (it is important to

make sure that the name of the trigger is spelled exactly the same as in the

MetaSounds graph).

Figure 17 showcases the Level Blueprint for this scene. Note the Do Once nodes

in the overlap events: while they are technically not required given the Trigger

Control setup within the master loop’s MetaSounds graph itself, it is still beneficial

to use them to make sure that the trigger can only happen once even if the

MetaSounds graph is changed. Additionally, they are chained in such a way that

42

triggering the next loop is only possible after having triggered the previous one;

with the current scene layout this is not needed, but it can be useful for more

complex levels.

Figure 17. Level blueprint for the scene

Figure 18. Trigger box layout in top-down view

Figure 18 shows the layout of the three trigger boxes (drawn with a green outline)

in a top-down view of the level. The resulting setup allows the developer to create

an adaptive loop-based soundtrack which builds up as the player progresses

through the level. Currently, loops can only be triggered once and cannot be

stopped regardless of the player’s location in the level. To expand the

43

functionality, additional trigger boxes can be placed in the level (or the existing

ones can be reused) to stop individual loops.

The easiest way to prepare audio loops for such a setup would be to make sure

that they are all the same length, which would allow the developer to get rid of the

Trigger Counter node in the master loop graph. However, as shown in this

prototype, it is possible to use shorter master loops with the help of the Trigger

Any and Trigger Counter nodes (as long as the length of the other loops is

divisible by the master loop length with a remainder of 0). Additional Trigger

Counter nodes may be needed if more length variation is introduced among the

loops; depending on the length ratios between individual loops, it may or may not

be convenient to set it up in the engine, so it is recommended to try and make all

the loops the same length in the DAW.

4.4 Focus group testing

As part of the research, the Unreal Engine 5 project was tested by the rest of the

Dark Amber Softworks team as a focus group. Each team member has a different

technical background and skill set, meaning that the testing conditions varied

from one team member to another. Thus, the focus group testing was conducted

in a free format where each participant was asked for their general impressions,

opinions and suggestions regarding the project.

The overall feedback for the prototypes presented in this thesis project was very

positive, highlighting the variety of audio-related features explored across the

scenes as well as their usefulness for the company’s ongoing and future projects.

The modular nature of the prototype was also noted, as it allows for relatively

easy implementation of the audio features in new and existing projects alike.

Finally, the fact that the project was built in Unreal Engine 5 was well-received, as

it has allowed the company to branch out into that environment while continuing

the Unity productions as well.

The feedback also included several suggestions for further development of the

project. First of all, it would be beneficial to have a uniform UI for each existing

44

scene (and any scenes that might be added to the project in the future). While the

current prototypes allow enough parameter customization to be used as

development tools and satisfy the company’s needs, they require a good

understanding of the concepts and goals relevant to each scene. Developing a

user interface which would allow easy control over those parameters would make

the project more accessible to users of any experience level while also improving

the testing process for feature implementations. A well-developed UI could turn

the current collection of prototypes into a fully fledged audio framework which

could later be shared with third-party developers (for example, through Unreal

Marketplace).

The second suggestion concerns testing the prototypes in VR. As Dark Amber

Softworks frequently works on AR/VR projects in Unity engine, it would be useful

to add Unreal Engine VR to that while maintaining the focus on the engine’s

audio features explored in this thesis project.

Finally, the feedback expressed encouragement to continue developing the

project and exploring the audio-related possibilities facilitated by Unreal Engine 5.

It has been noted that tools focusing on a single feature implementation are

particularly useful, as they can be later used for building more complex scenes in

a modular fashion.

5 CONCLUSION

In this thesis, the theory behind audio visualization and data sonification in video

games has been explored, and a number of techniques has been successfully

implemented in the practical project. This work has proved that audio

visualization and data sonification can play a significant part in a game – not only

as an aesthetical element but also as a functional aspect of the gameplay. In the

practical part of this thesis, five different scenes have been created in Unreal

Engine 5, each focusing on different aspects and techniques of audio

visualization and/or data sonification. The advantages and possible drawbacks of

using the techniques have been discussed, and changes have been proposed to

accommodate for different use cases. Thus, the thesis has provided a concrete

45

practical example of how various audio visualization and data sonification

techniques could be implemented in Unreal Engine 5, which was the primary

question for this research.

The research has also provided answers to the following secondary questions:

• What audio visualization and data sonification techniques exist?
• Are any of the techniques supported in popular game

development engines such as Unity and Unreal Engine?
• Are there any downsides (either technical or design-related) to

using any of the techniques in a game?

While it would have been physically impossible to explore every relevant

technique due to the vast nature of the study field, this thesis has highlighted

several important techniques which can be directly applied to video games (for

example, adaptive background music or parameter mapping for data

visualization), while also referencing multiple notable works in the field.

Some of the researched techniques were then implemented both in Unity and

Unreal Engine 5 (with the focus being on the latter). While it can be confidently

stated that both engines allow for rather complex audio-related implementations,

a subjective outtake would be that Unreal Engine 5 provides more audio solutions

by default, while Unity commonly expects the developer to create custom

implementations and/or use third-party solutions to achieve the result. With that

said, all the features implemented in the Unreal Engine 5 project could be

replicated in Unity engine as well.

Regarding the possible downsides of using the aforementioned techniques in a

game, it is important to consider accessibility concerns during the development.

Introducing audio visualization and/or data sonification features may or may not

affect the player’s perception of the game; if the gameplay strongly depends on

audio-related features, the game can become unplayable to individuals who are

unable to hear the sound. While it might be impossible to make a game (or any

other multimedia product) which would be universally accessible to all target

audience groups, it is beneficial to keep accessibility concerns in mind when

46

designing the game, as they can have an effect both on design and marketing

decisions for the product.

In conclusion, it can be said that this thesis has fulfilled its goals and provided

answers to all of its research questions. Development of the practical project will

be continued in the future and the results will be used in Dark Amber Softworks

products. Additionally, this thesis might provide a foundation for further research

of audio visualization and data sonification in video games.

47

REFERENCES

Bandai Namco Entertainment. 2011. Dark Souls. Video game. Tokyo: Bandai
Namco Entertainment.

Bandai Namco Entertainment. 2014. Dark Souls II. Video game. Tokyo: Bandai
Namco Entertainment.

Bandai Namco Entertainment. 2016. Dark Souls III. Video game. Tokyo: Bandai
Namco Entertainment.

Bandai Namco Entertainment. 2022. Elden Ring. Video game. Tokyo: Bandai
Namco Entertainment.

Boncz, I. 2015. Introduction to Research Methodology. Pécs: University of Pécs.

Comeau, J. 2018. Let’s Learn About Waveforms. The Pudding. Web page.
Available at: https://pudding.cool/2018/02/waveforms/ [Accessed 4 March 2023].

Epic Games, Inc. n.d. Unreal Engine 5.1 Documentation: Submixes Overview.
Web Page. Available at: https://docs.unrealengine.com/5.1/en-US/overview-of-
submixes-in-unreal-engine/ [Accessed 4 April 2023].

Fast Fourier Transformation FFT – Basics. n.d. NTi Audio. Web page. Available
at: https://www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft
[Accessed 4 March 2023].

Ferguson, K. 2020. Audio Reactive Programming: Envelope Followers. Blog. 21
November 2020. Available at: https://kferg.dev/posts/2020/audio-reactive-
programming-envelope-followers/ [Accessed 4 April 2023].

Geere, D. & Quick, M. 2020. Telling Stories With Data & Music. Blog. 8
December 2020. Available at: https://medium.com/nightingale/telling-stories-with-
data-music-f60ac0b5f1be [Accessed 7 March 2023]

Grimshaw, M. (ed.) 2011. Game Sound Technology and Player Interaction:
Concepts and Developments. USA: IGI Global.

Hermann, T., Hunt, A. & Neuhoff, J.G. (eds.) 2011. The Sonification Handbook.
Berlin: Logos Verlag Berlin GmbH.

Jørgensen, K. 2006. On the Functional Aspects of Computer Game Audio.
Research paper. Available at: https://bora.uib.no/bora-
xmlui/bitstream/handle/1956/6734/paper-KJorgensen.pdf?sequence=1 [Accessed
11 March 2023].

Juul, J. 2011. Half-Real: Video Games Between Real Rules and Fictional Worlds.
Cambridge: MIT Press.

https://pudding.cool/2018/02/waveforms/
https://docs.unrealengine.com/5.1/en-US/overview-of-submixes-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/overview-of-submixes-in-unreal-engine/
https://www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft
https://kferg.dev/posts/2020/audio-reactive-programming-envelope-followers/
https://kferg.dev/posts/2020/audio-reactive-programming-envelope-followers/
https://medium.com/nightingale/telling-stories-with-data-music-f60ac0b5f1be
https://medium.com/nightingale/telling-stories-with-data-music-f60ac0b5f1be
https://bora.uib.no/bora-xmlui/bitstream/handle/1956/6734/paper-KJorgensen.pdf?sequence=1
https://bora.uib.no/bora-xmlui/bitstream/handle/1956/6734/paper-KJorgensen.pdf?sequence=1

48

Li, W. & Li, J. 2020. Research on Music Visualization Based on Graphic Images
and Mathematical Statistics. IEEE Access, 8, 100654. E-journal. Available at:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9104977 [Accessed
12 March 2023].

Mantione, P. 2017. The Basics of Additive Synthesis. Pro Audio Files. Web page.
Available at: https://theproaudiofiles.com/what-is-additive-synthesis/ [Accessed 5
March 2023].

Ng, P. & Nesbitt, K.V. 2013. Informative Sound Design in Video Games.
Conference paper. Available at:
https://novaprd.newcastle.edu.au/vital/access/services/Download/uon:13441/ATT
ACHMENT03?view=true [Accessed 7 March 2023].

Ninja Theory. 2017. Hellblade: Senua’s Sacrifice. Video game. Cambridge: Ninja
Theory.

Perron, B. & Wolf, M.J.P. 2009. The Video Game Theory Reader 2. New York:
Routledge.

What is a Spectrogram? n.d. PNSN. Web page. Available at:
https://pnsn.org/spectrograms/what-is-a-spectrogram [Accessed 13 March 2023].

Unity Technologies. 2023. Scripting API: AudioSource.GetSpectrumData. Web
page. Available at:
https://docs.unity3d.com/ScriptReference/AudioSource.GetSpectrumData.html
[Accessed 12 March 2023].

White, P. 1994. Sound Synthesis: Part 1. Sound On Sound. E-magazine.
Available at: https://www.soundonsound.com/techniques/sound-synthesis-part-1
[Accessed 5 March 2023].

Zhang, Y., Pan, Y. & Zhou, J. 2018. Journal of Physics: Conf. Series, 1098. E-
journal. Available at: https://iopscience.iop.org/article/10.1088/1742-
6596/1098/1/012003/pdf [Accessed 12 March 2023].

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9104977
https://theproaudiofiles.com/what-is-additive-synthesis/
https://novaprd.newcastle.edu.au/vital/access/services/Download/uon:13441/ATTACHMENT03?view=true
https://novaprd.newcastle.edu.au/vital/access/services/Download/uon:13441/ATTACHMENT03?view=true
https://pnsn.org/spectrograms/what-is-a-spectrogram
https://docs.unity3d.com/ScriptReference/AudioSource.GetSpectrumData.html
https://www.soundonsound.com/techniques/sound-synthesis-part-1
https://iopscience.iop.org/article/10.1088/1742-6596/1098/1/012003/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1098/1/012003/pdf

	Abbreviations
	1 INTRODUCTION
	2 Research outline
	2.1 Research aims and questions
	2.2 Research methods
	2.3 Key concepts

	3 Theoretical basis
	3.1 Basic functions of audio in video games
	3.2 Basics of sound analysis and synthesis
	3.3 Audio visualization and data sonification in video games
	3.3.1 Audio visualization
	3.3.2 Data sonification
	3.3.3 Gameplay analysis: the Dark Souls series (2011, 2014, 2016)

	4 Practical implementation
	4.1 List of tools and instruments
	4.2 Unity Engine Prototypes
	4.2.1 Music visualizer using FFT in C#
	4.2.2 Cutscene using manual data sonification

	4.3 Unreal Engine 5 Project
	4.3.1 Audio visualization: submix envelope follower
	4.3.2 Data sonification: proximity-based diegetic sound
	4.3.3 Data sonification: proximity-based non-diegetic audio
	4.3.4 Data sonification: procedural audio with parameter mapping
	4.3.5 Data sonification: adaptive loop-based background music

	4.4 Focus group testing

	5 Conclusion
	REFERENCES

