

___. ___. _____ ________________________________

Bachelor’s degree (UAS)

Serial communication & MODBUS
protocol implementation using .NET

framework

Subheading

Trung-Hieu Nguyen

Bachelor’s Thesis

SAVONIA UNIVERSITY OF APPLIED SCIENCES THESIS
 Abstract

Field of Study
Technology, Communication and Transport
 Degree Programme
Degree Programme in Information Technology

Author(s)
Trung-Hieu Nguyen
 Title of Thesis

Serial communication and MODBUS protocol implementation using .NET framework

Date 25.05.2014 Pages/Appendices 46/5

Supervisor(s)
Arto Toppinen

Client Organisation/Partners
Savonia University of Applied Sciences

Abstract
In English:
The thesis introduces serial communication used in information technology and some common
serial ports used in industry. Then, it presents the project work which involves developing a data
acquisition software using .NET framework to collect electrical measurements of the whole Savonia
UAS’s power consumption. The communication between the software and ABB M2M measuring
device uses MODBUS protocol over RS-485 serial port. After collecting measurements, the
software sends them to database server using WCF (Windows Communication Foundation)
technology.

Suomeksi:
Opinnäytetyö esittelee tietotekniikassa käytettyä sarjaliikennettä sekä joitain teollisuudessa
yleisesti käytettyjä sarjaportteja. Se käsittelee myös projektityötä jossa kehitettiin .NET
frameworkiin pohjautuva tiedonkeruujärjestelmä joka kerää tietoa Savonia AMK:n
sähkönkulutuksesta. Ohjelman ja ABB M2M mittalaitteen välillä käytetään MODBUS protokollaa RS-
485 sarjaportin yli. Mittausten keruun jälkeen ohjelmisto lähettää tiedot serverille tietokantaan
käyttäen WCF (Windows Communication Foundation) tekniikkaa.

Keywords
Serial Communication, MODBUS, .NET framework, RS-232, RS-485, USB, C#, Visual Studio, ABB,
M2M

Abbreviations:
USB Universal Serial Bus
bps bits per second
Kbps Kilobits per second
Mbps Megabits per second
MSB Most Significant Bit
LSB Least Significant Bit
Tx Transmit
Rx Receive
CTS Clear-To-Send
RTS Request-To-Send
DTR Data Terminal Ready
DSR Data Set Ready
CRC Cyclic Redundancy Check
Hex Hexadecimal
UPS Uninterpretable Power Supply
DTE Data Terminal Equipment
DCE Data Communication Equipment
SE0 Single-ended 0
EOP End-Of-Package
TCP Transmission Control Protocol
RTU Remote Terminal Unit
ASCII American Standard Code for Information Interchange
LRC Longitudinal Redundancy Check
CRC Cyclical Redundancy Check
xxh Number in Hexadecimal
xxd Number in Decimal
word 2-byte
IDE Integrated Development Environment
API Application Programming Interface
WCF Windows Communication Foundation

CONTENTS

1 Introduction ... 7

1.1 Serial Communication ... 7

1.2 Characteristics .. 9

1.2.1 Asynchronous and Synchronous Communications............................... 9

1.2.2 Bit Rate and Baud rate .. 10

1.2.3 Flow Control ... 10

1.2.4 Error Checking .. 11

1.3 Common Standards .. 12

1.3.1 RS232 .. 12

1.3.2 RS485 .. 14

1.3.3 USB ... 15

2 Final Project work: Savonia's Real-time Electrical Measurement 19

2.1 Overview ... 19

2.2 Introduction to MODBUS Protocol .. 19

2.3 RTU MODBUS Communication ... 21

2.3.1 MODBUS RTU & ASCII ... 21

2.3.2 RTU Byte Autopsy ... 22

2.3.3 Message Framing .. 22

2.4 Electric Box Set-up.. 23

2.5 MODBUS Framework application on ABB M2M ... 26

2.5.1 General frame ... 26

2.5.2 Function 03h .. 26

2.5.3 Register Meaning .. 27

2.6 .NET Framework C# application ... 28

2.6.1 Introduction to .NET framework ... 28

2.6.2 The Application Structure ... 29

2.6.3 “Modbus” Class ... 31

2.6.4 “MachineProtocol” Class ... 35

2.6.5 “MeasurementType” Class .. 37

2.6.6 “BufferMeasurement” Class .. 38

2.6.7 “BufferMeasurementValue” Class .. 38

2.6.8 “ElectricityReader” Class .. 39

2.6.9 App.config .. 43

2.6.10 Settings.txt ... 43

2.6.11 Main program ... 43

2.7 The result and conclusion .. 44

REFERENCES ... 47

APPENDICES

Appendix 1 “ElectricityReader” Class Source Code

 7

1 Introduction

Serial Communication is not a new technology. Smoke signal communication had been

used by people since ancient time. Morse code was developed and used since 1800s

for telegraph messaging. ASCII was introduced since 1960s. However, since the

emergence of computer era, serial communication is still used in telecom and computer

science today and serial ports appear as external connections in almost all electronics

devices such as computers, smartphones, and digital cameras. Knowledge about serial

communication in Information Technology is still relevant. Therefore, in first part of the

thesis, I wrote a study on serial communication used in computer technology and

introduce some common serial ports used in industry. In the second part, I introduce my

final project work with Savonia University of Applied Sciences, which is the development

of data acquisition software written in C#, using .NET framework to collect data from

electrical measuring box in real-time and send them to database server. The

communication between PC and electrical measuring box uses MODBUS protocol over

RS485, a serial port standard.

1.1 Serial Communication

In computer technology, serial communication is a process of transmitting one bit at a

time between devices. This is the most common method to communicate between

embedded system and micro-controller as well as between devices in computer

network. Sending one bit at a time seems to be primitive and inefficient but it has its own

advantage. The simplicity enables to use small cheap cables and connectors. In

contrast, parallel communication transfers multiple bits a time over multiple wires. This

method is faster but less flexible and needs bigger cables. One other major advantage

of serial communication is that the range can be very long. RS-232 cable length can be

up to 100 meters long, and RS-485 cable length can be up to 1000 meters long [1].

 8

Fig. 1 Characteristics of some common serial ports [1].

Some protocols are discussed in this report: RS-232 with the range up to 100 m, RS-

422 & RS-285 with the range up to 1 km, USB with the range up to 10 m, Wi-Fi

(wireless) with the range up to 100 m.

Serial Communication also has some drawbacks.

 There is no single universal interface for all kind of purpose. Depending on

requirement of the communication, suitable protocols and ports are used.

 In addition, maximum bit rate of RS-232 is 20 Kbps [2 chapter 1], but there are

several faster interface. RS-485 can be up to 10 Mbps [1]. PC to USB Virtual

COM (USB 2.0) can be up to 480M. [1].

 In communication between PC (Windows for example) and embedded system

using Serial port, the real-time performance is not guaranteed due to multitask

management of the system. But nowadays, the speed of PC micro-processor is

faster and the delay of communication is smaller. Therefore, in practice, the

latency is not a matter. In embedded system like Arduino, the schedule of

communication can be controlled more accurate. [2 chapter 1]

 9

1.2 Characteristics

1.2.1 Asynchronous and Synchronous Communications

1.2.1.1 Synchronous Communication

In communication between two devices, at a time, one is the sender and the other is the

receiver. In bidirectional communication, typically, there are 2 lines corresponding for

Rx-Tx (Receive-Transmit) and Tx-Rx (Transmit-Receive). In synchronous transmission,

an external clock is used as timing reference for both transmitter and receiver. This

clock is controlled by either of two ends. Each bit is available for a predefined clock time.

Transmitting and receiving is triggered on falling and rising edge of the clock pulse

depending on protocol. Examples of this method of synchronization interface are I2C,

SPI, Microwire.

Fig. 2 An example of synchronous communication [2 chapter 2]

The byte is transmitted with MSB first. Each bit is sent at the falling edge of clock pulse.

The receiving end will check the value of the bit at the rising edge.

1.2.1.2 Asynchronous Communication

In contrast of synchronous communication, there is no mutual clock line. Each device

has its own internal clock. Both ends must agree on one common bit rate and few

percent of error in timing is accepted. The communication is started when a start bit from

transmitter is sent. It will continue with its internal clock rate. On the other end, after

detecting the starting bit, the receiver uses its internal clock rate to track the follow bits.

Since they both use the same clock rate, the communication is synchronized.

 10

Fig. 3 An example of asynchronous communication [2 chapter 2]

The byte is transmitted with LSB first. The transmitter uses its own clock rate to send

each bit. After detecting the start bit, the receiver uses its clock rate to follow.

1.2.2 Bit Rate and Baud rate

Bit rate is speed of transmitting or receiving of the device, which is measured by the

number of bits per second can be transferred. Baud rate is the number of data unit can

be transferred per second. In scope of the interfaces covered by this report, bit rate and

baud rate are the same. However, in some communication such as phone lines and

high-speed modems, methods like phase shifts to encode multiple bits in 1 data-

transferring period, the bit rate is bigger than the baud rate.

The speed of transferring a character depends of how many bits it contains and how

many overheads it needs. For example, an ASCII character has 7 bits in an

asynchronous communication with 1 start bit and 1 stop bit. So the total number of bits

for sending the characters is 9. The character sent rate will be bit rate dividing number of

total bits.

Bit rate (bps) Character rate (characters per second)

1200 133.3

2400 266.7

9600 1066.7

Table 1. Character rate of 7-bit word (1 stop bit) calculated from bit rate

1.2.3 Flow Control

In theory, a communication can work fine but in practice, there are many external factors

that could lead to unsuccessful transmission or receiving, delays and missing bits. To

prevent these kinds of problem, multiple techniques are used. Flow control (also called

Handshaking) is one of these techniques. The idea of the method is simple. An

additional line is used to indicate whether it is possible for transmitter to send the data. If

the receiver is still busy processing the previous data or is not ready to receive yet, the

transmitter will wait until the sending line is ready. For bidirectional communication, two

 11

indication lines will be used for two data transmission lines correspondingly. The flow

control can be at either hardware level or software level. In RS-232 port, specific pins

are dedicated for flow control called CTS (Clear-To-Send) and RTS (Request-To-Send).

CTS is for input side or receiver to indicate that it is ready to receive data, while RTS is

for output side or transmitter to indicate that it has data to send.

Fig. 4 RTS\CTS Flow control cable wiring in 2-way communication: one is sender but

also receiver. [3 page 3]

In addition to CTS and RTS, there are two additional signals called DTR (Data Terminal

Ready) and DSR (Data Set Ready). This is commonly used to establish the

communication. But in some applications, they can be also used for flow control similar

to RTS and CTS.

Furthermore, flow control can be implemented at software level. Receiver can send on

Tx-Rx line a signal called Xon to indicate it is ready to receive data and Xoff to signal

stopping seding. Xon is typically 0x11, while Xoff is 0x13. Thus, communication content

must not contain these characters which are Ctrl+Q (Xon) and Ctrl+S (Xoff).

1.2.4 Error Checking

In addition to flow control, error checking is used to prevent wrong or incomplete data

transmission which may be resulted from cable malfunctions or electrical interference.

There are several methods in error checking such as adding parity bit, checksum and

CRC (cyclic redundancy check).

1. In parity bit technique, additional bit will be added at the end of the sending data

to indicate number of on bit (1-bit) odd or even. Option of odd or even parity bit is

predefined and agreed by both sender and receiver. After receiving transmitted

word, receiver will calculate parity bit again. If it doesn't match, error signal will

be raised for resending or ignoring depending on application.

8-bit word Parity bit (count of 1
bit)

Odd parity bit added
in the end

Even parity bit
added in the end

00110011 4 001100110 001100111

10111111 7 101111111 101111110

11111111 8 111111110 111111111

00101111 5 001011111 001011110

Table 2. Example of how parity bit is calculated and added to transferring word (the bit in

bold format at the end).

2. In Checksum method, mathematical calculation such as counting length will be

performed on data bits, then the result will be added to the block of sending data.

Then calculation will be performed again on received data to compare.

 12

3. CRC is a more sophisticated calculation using polynomial arithmetic to obtain the

checksum value. As observing from two previous techniques, simple algorithms

of calculating checksum can leave the error undetected. Strong checksum

calculation function must ensure the odd of two different word matching each

other small. The CRC algorithm resulting in 32-bit Hex number has the odds of

two random numbers matching 1/ (2^32). This means the odds of two different

words having the same CRC are roughly 1 in 4 billion. Furthermore, the result

should be distributed evenly in its possible range, which means each bit of the

data word has the same chance to change any bit of CRC result value.

Parity bit, in other words, is the special case of CRC technique where the calculated

CRC register just has 1 bit.

1.3 Common Standards

1.3.1 RS232

1.3.1.1 Overview

RS-232 used to be standard for modem, UPS, typical peripherals such as mouse,

keyboard, printer... RS stands for “Recommended Standard”. But nowadays it is not

common anymore because of its limitation in transmission rate, big physical port size

and high voltage usage. It is replaced by USB standard. However, RS-232 are still be

used in industrial systems, scientific instruments or development devices because it is

cheap and reliable for short distance and not-high-rate-required communication. With 2

lines of data transmission for 2 directions, RS-232 can perform full-duplex

communication.

1.3.1.2 Line Voltage

The data is sent through data line, which are pulses of voltage referencing to ground

line. Logic “1” is from -3V to -25V, typically -12V. Logic “0” is from +3V to 25V, typically

+12V. Between -3V and +3V is considered undetermined-state [4 page 165].

Fig.5 Typical voltage level of RS-232[4 page 166]

1.3.1.3 Connectors

The first typical type is DB-25 having D-shape 25 pins. RS-232 originally used this type

of port, thus it has RS-232 full functionality. The DCE device (cable connector) has

 13

female pins and male outer case, while DTE device (computer outlet) has male pins and

female outer case.

Fig.6 Example of male (left [5]) and female (right [6]) pin DB-25 connector

The functionality of primary pins is listed in the figure below. Some other pins play

secondary role as backup for the main one. They works correspondingly the same.

There are 3 main type of lines: Data, Control and Ground.

Fig. 7 DB-25 Pin meaning-Date line: Tx is transmit, Rx is Receive. Control line: RTS:

Request-To-Send, CTS: Clear-To-Send, DTR: Data-Terminal-Ready, DSR: Data-Set-

Ready. Ground line: GRD: Ground [4 page 166]

Because of the large size of DB-25, it is not convenient. The DB-9 with D-shaped 9 pins

was introduced. Those secondary pins are omitted resulting smaller in size. This is quite

common implemented in personal computer quite some time ago (not anymore and be

replaced by USB nowadays). Female and Male pins are assigned between DCE and

DTE devices the same way as DB-25.

Fig.8 Example of commercial Male and Female DB-9 connectors [7]

Pin meanings are shown in the figured below.

Fig.9 Pin functionality of DB-9 connector [4 page 166]

 14

1.3.2 RS485

Instead of referencing to the ground like in RS-232, in RS-485 technology uses 2 wires

to transmit data, and check the voltage difference between them to determine logic “1”

or “0”. As the result, the bit rate can be faster than RS-232, up to 10Mbps [1] and the

maximum range can be longer, up to 1km. Typically, there are 3 lines in RS485: A, B

and C. A & B is data lines and C is ground. The signal is determined by the polarity

between A and B. If A is negative to B, logic “1” is determined. On the other hand, B is

negative to A, logic “0” is determined. Typically, the transmitter differential output is

minimum 1.5V (up to 6.0V) and the receiver can detect at least 200mV [8]. Because of

this range of detection, RS-485 is sufficient to be used in electromagnetic noisy

environment like factories which may produce a lot of spikes to communication lines.

Fig. 10 RS-485 specified minimum signal levels [8 page 2]

Unlike RS-232 technology which is point-to-point communication, RS-485 allows

multidrop network which has multiple transmitters and receivers connected to a common

circuit. Terminating resistors (120 Ohm recommended [8]) must be connected in both

ends of the common line to prevent data reflection.

Fig. 11 RS-485 circuit with two terminating Resistors at both ends of common

transmission cable [8 page 3]

With two-line common line circuit, RS-485 can only perform half-duplex communication.

To implement full-duplex, four wires can be used to differentiate receive and transmit

lines.

 15

Fig. 12 Full-duplex RS-485 circuit implementation [8 page 2]

1.3.3 USB

1.3.3.1 Overview

USB, Universal Serial Bus is the most common serial port used today. It is implemented

in almost all computers, scientific equipment, new televisions, smart-phones... USB has

a lot of advantages.

Like its name, it is actually universal standard for PC peripherals. Nowadays, mass

storage, mouse, printers, almost all use USB standard.

 Hot plug: Since Windows and other operating systems already store library of

driver and they can download and install the driver if it is missing, the device

using USB can be plug-and-play conveniently.

 No user setting: The end user don't have to set configurations such baud rate,

stop bits... The host automatically recognizes and classifies connecting devices

into their corresponding speed grade.

 Small cable connector: The size of USB connector is quite small, multiple ports

can be implemented in one laptop conveniently. In smart-phones, micro USB is

typically used. The size of the mounting can be down to 6.9mm x 1.86mm (inside

intersection) for jack connector 6.9mm x 1.8mm [9 page 34].

Fig. 13 Micro-USB B-Receptacle physical schematic [9 page 35]

 16

 Multiple speed grades are used to maximize communication capacity and which

one to be used is determined automatically by circuits and drivers. This is useful

since lower-speed device is cheaper to produce. Thus the standard is

manufacturer-friendly.

Interface Max distance Speed Typical Use

USB 2.0 4.8 meters (up to 21

meters with 5 hubs)

Low speed: 1.5Mbps

Full speed: 12 Mbps

High speed: 480 Mbps

Peripherals, drive, speaker,

printer...

USB 3.0 2.7 meters (up to 15

meters with 5 hubs)

Above speeds and

Superspeed: 5Gbps

Mass storage, video

Table 3. USB versions comparison [11 chapter 1 page 3]

1.3.3.2 Topology

In USB technology, there will be always one host system, which is Host Controller

(which is typically the computer). The communication using polled method. The host

controller starts all transfers. Up to 127 peripherals can be connected to Host Controller

or Root Hub. Multiple devices can be connected into a hub. The hub serves as USB

device to its host and serves as the host for USB devices connected to it. Up to 5

external hubs can be used in topology.

Fig. 14 Example of USB topology [11 chapter 1 page 16]

1.3.3.3 Data transfers

There are 4 types of data transfers which is used for different purposes and in different

types of USB devices.

1. Control Transfer: When the USB device is connected to host, this kind of

transfer is used for configure settings software on host controller.

2. Bulk Transfer: This is used for large data transferring such as printer. The

communication must be loss-less while real-time speed is not required.

 17

Reliability is ensured by error checking. Bandwidth allocation is not fixed,

depending on activities

3. Interrupt Transfer: This is used for peripherals like mouse and keyboards

where latency must be as low as possible. An event notification mechanism is

used instead of constant bandwidth allocation.

4. Isochronous Transfer: This is used for devices such as speaker which needs

constant uninterrupted communication between itself and host controller.

Typically a fixed bandwidth will be allocated for this communication.

1.3.3.4 Mechanical characteristics

There are several USB connectors’ types which are different in size and shape.

However, all of them can be divided into 2 series: A and B. There are 2 definitions:

Downstream and Upstream. The direction of connection towards host devices is

upstream. On the other hand, the direction from host to USB devices is downstream.

Fig. 14 Schematics of typical A and B USB connectors [10 chapter 6 page 85]

 “A” receptacle is plugged by “A” plug. “A” receptacle serves as output of host

system or USB hub. It is connected downstream towards USB Devices.

 “A” plug is meant to be connected to host “socket” or USB hub downstream port.

 “B” receptacles is plugged by “B” plugs. This serves as upstream input to USB

devices or USB hub.

 “B” plug is meant to be connected to USB devices.

For USB 2.0 and 1.0, the cable contains 4 lines as 4 pins on connectors: D+, D-, VBUS,

and GND.

 18

Fig. 15 USB cable [10 chapter 4 page 17]

The VBUS and GND (Voltage and Ground) supply power for the communication, 5V in

standard. D+ and D- are data lines. Polarity between two lines is used determine signal

logic levels because of its better immunity to electromagnetic noise. Additionally, voltage

of Data lines referencing to Ground is used to detect whether the communication is low

speed or full speed, and also to detect whether bus is in SE0 state (both lines voltage

equals 0). SE0 state is when bus enters Disconnect, Reset or EOP (End-Of-Package).

In USB 3.0, 5 more lines are used for Superspeed transmissions: 1 pair for transmitter, 1

pair for receivers and 1 ground grain. The connector in “A” series is designed to be

compatible with USB 1.0 and 2.0. However, in “B” series, only lower versions of

connectors can be connected to USB 3.0 receptacle.

Fig. 16 USB 3.0 “A” plug and receptacle (up) and USB “B” plug and receptacle. Notice

the additional pins added. [12]

 19

2 Final Project work: Savonia's Real-time Electrical Measurement

2.1 Overview

This is a big project where Savonia University of Applied Sciences is monitored, stored

on database server and presented through Mobile's phone, web, or desktop client. I was

in charge of developing the program is written in C#, using .NET framework at the

computer collecting data from an ABB M2M box, which measures electricity and related

measurements of Savonia, and then sends to database server. The method of sending

is implemented using WCF technology. If there is any change in database server, the

communication or device’s connection, the settings and configurations can be easily

modified in application’s configuration files.

Fig. 17 The architecture of the project including 3 main parts: Data acquisition,

Database, Client. My part of the project (in the red box) is the Data Acquisition.

The measuring device in the project ABB M2M using MODBUS protocol over Serial

communication. In the next section, I will introduce MODBUS protocol at the level

needed for using in the project.

2.2 Introduction to MODBUS Protocol

MODBUS is a messaging application Server/Client protocol published by Modicon

(Schneider Electric nowadays) in 1979. Thanks to its simplicity alongside with free cost

as well loyalty freedom, it is widely used in the industry. MODBUS protocol can be

implemented on TCP over Ethernet media or also over serial communication using

RS232 or RS485 standard. In MODBUS serial protocol there are always a Master and

several Slave devices. In the easiest explanation, the Master is like a supreme controller

which sends query to specific slave to request information as well as configuration

commands. If the Slave receives and manages to accomplish the task, information is

 20

sent back to the Master to provide the requested data or indicate that the configuration

has been done. Format and meaning of this information will be described clear in data-

sheet of the devices by manufacturer, and they are usually based roughly on the general

design of the MODBUS standard (maybe different from company to company but

generally the same).

Fig. 18 MODBUS Communication Stack [13 page 2]

All the communications are initiated by the master. From the master, there are two ways

it can send message to the slave devices: Unicast and Broadcast.

In unicast mode, the message from master contains the unique address of the device it

wants to query from. The device with that unique address sends back a reply.

Fig. 19 Unicast mode communication diagram of MODBUS protocol [14 page 7]

In broadcast mode, master sends to all devices on network message, and they will

accept it all. No reply from slave device is needed. Address 0 is reserved for this kind of

communication.

 21

Fig. 20 Broadcast mode communication diagram of MODBUS protocol [14 page 7]

Besides its advantages, MODBUS protocol also has its limitations.

 No super standard to describe or define register address as well as data value

meanings. Each manufacturer defines their own rules.

 The maximum devices can be connected to a master is solely 247 [14 page 7].

 Since it is Master/Slave protocol, there is no such way to report changes (Like

Event mechanism in several High-Level programming language) and Exception

handling. This leads to the Master may have to request over the communication

line all the time to monitor the changes if needed. This process may cost the

bandwidth heavily.

 The protocol itself is designed quite long time ago, in the 1970s, and introduced

in the very late of that era, long binary number such 64 bit integer are not

supported.

2.3 RTU MODBUS Communication

As mentioned above, MODBUS can be implemented in multiple media: TCP, Serial Port

or MODBUS PLUS high speed token passing network. At this moment we will focus

solely on MODBUS communication over serial line, as the electric box supports this

method (even though it also supports MODBUS over TCP).

2.3.1 MODBUS RTU & ASCII

There are two serial MODBUS transmissions mode: RTU (Remote Terminal Unit) and

ASCII (American Standard Code for Information Interchange). Choosing between these

two modes determines how message transmitted over network is packed and decoded.

 MODBUS ASCII MODE MODBUS RTU MODE

Coding System Hexadecimal (Each

hexadecimal number

corresponds for each ASCII

character of the message)

8-bit binary (Each 8-bit

binary number represents 2

Hexadecimal characters)

Byte autopsy 1 start bit

7 data bits

1 start bit

8 data bits

 22

1 bit for parity or none

1 stop bit (with parity) or 2

stop bits (without parity)

1 bit for parity, or none

1 stop bit (with parity) or 2

stop bits (without parity)

Error checking LRC CRC

Table 4. Comparison of MODBUS ASCII and RTU [15 page 6, 7]

In this project application, we use MODBUS RTU for the communication.

2.3.2 RTU Byte Autopsy

As mentioned in previous section, RTU is used for this project. 8-bit bytes are used in

message. Each byte represents 2 hexadecimal characters (therefore 4-bit each).

Typically, the 11 bit format (including overheads) in RTU mode will be like this.

Start bit 8 data bits Parity bit(s) Stop bit(s)

1 1 1 1 1 1 1 1 1 1 1

Table 5. Number of bit for each byte of the message in the communication

Stop bits can be set to 1.5 bits or 2 bits.

Parity Bits can be set to Even, Odd or None (the purpose of this is mentioned in Error

Checking section 1.2.4 of the report)

The 8 Data bits will be transmitted in LSB first order.

All these settings can be set in the box using manual. Then, the setting of COM port

when the device is connected to computer must be set the same correspondingly in

Device Manager Settings (Windows).

Fig. 21 COM port setting in Device Manager (Windows)

2.3.3 Message Framing

Each message from master contains multiple bytes, up to 256 max. The frame for a

message follows as below.

Slave Device Function Data Error Checking (CRC)

 23

Address Code

1 byte 1 byte N bytes (0 to 252 bytes

as the total is 256 max)

2 bytes

Table 6. The frame of a typical message in MODBUS RTU

When transmitting, to let the receiver know when the message is started or ended, the

message is placed into Frame with known starting point and ending point which is at

least 3.5 character times of silence.

Fig. 22 MODBUS RTU Framing with at least 3.5 character time to separate between 2

messages [14 page 13]

Between 2 bytes in each frame, if the waiting time is more than 1.5 character times, the

message will be determined as incomplete and receiver will discard it.

Fig. 23 MODBUS RTU character time determines message is OK or not [14 page 13]

Calculating character time:

For example, with baud rate is 9600, which means 9600 bits per second. Thus, 1 bit

costs 1/9600 seconds to be transmitted. Therefore, one byte which is 11 bits costs

11/9600 = 1.14ms.

So message frame value costs 3.5*1.14ms = 4.01ms.

Character frame value costs 1.5*1.14ms = 1.71ms.

Since it is impossible to synchronize 2 devices to exact time frame, the determination of

each value is “at least” or “at most”, which means the device waits over or less than the

time value to determine the message value and its completion.

2.4 Electric Box Set-up

The electrical set-up is not my main part. My physical set-up for the box is solely the part

from the ABB box to the computer. ABB M2M supports both RTU and Ethernet protocol.

And the mode that we choose for this project is RTU over RS485 lines. At this point, we

connects the box straight to the data acquisition computer. Even though, it is supported

 24

to connect more devices (up to 247), at this stage, the data will be collected with only

one box, which measures the whole Savonia University of Applied Sciences’ main

power consumption and its related measurements.

In general, the device should be connected as below.

Fig. 24 ABB M2M network connection with a terminal resistor used [16 page 5]

If the line is longer than 500m, a terminal resistor 120 Ohm should be connected to A

and B pin.

If the M2M is the end of the connection line, pin T can be connected to pin B to avoid

using terminal resistor.

Fig. 25 ABB M2M network connection without terminal resistor [16 page 5]

To connect the computer, modern one without RS232 or RS485 port, we use a RS485

to USB converter made by FTDI: USB-RS485-WE-1800-BT.

 25

Fig. 26 FTDI-USB-RS485-WE-1800-BT [17]

The color wiring of the converter is described as below

Fig. 27 RS485-to-USB color wiring [18 page 6]

Since we just have one device only in the network. So the Terminator cable will be

connected to A and B pin.

Fig. 28 Wiring of the box and RS485-to-USB converter, A and B pin is used only,

Terminator line is connected to them as well

Then the USB cable is connected to the data acquisition PC.

 26

Fig. 29 The ABB M2M box connected to PC

2.5 MODBUS Framework application on ABB M2M

2.5.1 General frame

Like the standard frame discussed in RTU MODBUS Communication section, the frame

of the message is below

T1 T2 T3

Address Field 8 bits

Function code 8 bits

Data field N*8 bits

Error checker 16 bit CRC

T1 T2 T3

Table 7. M2M MODBUS frame. T1 T2 T3 represent character times. [16 page 4]

To generate the CRC code, in the M2M MODBUS manual, an algorithm written in C is

represented in page 6.

Address Field is the slave unique ID number. This number can be set on the ABB box. It

is used to distinguish between devices and is used to query in unicast mode by the

master device which is the data acquisition computer in this case.

ABB M2M box supports 3 functions:

 03h: Reading Holding Register

 10h: Writing Parameters

 11h: Report slave ID

In this project, the C# application uses function 03h to query the data from the ABB box.

Data field contains the address of start register and number of consecutive ones to read

that contains the information the master wants to query.

2.5.2 Function 03h

In MODBUS protocol standard document [15 page 28], function 3h is meant to “Read

holding Registers”. It is able to read consecutive adjacent registers, which are 2-word in

size each. For ABB M2M, it can read max 24 consecutive registers or 24 measurements

at a time.

As described in “Introduction to MODBUS Protocol” section, this function is Unicast

mode communication. There are two parts of a query: request from master and reply

from the slave.

 27

2.5.2.1 Read Request from the Master

Fig. 30 Function 03h Reading Request Message example [16 page 7]

In the example, the ID address of the slave is 1Fh (31d in decimal), the message using

function code 03h (3d), starting address of the register is 1000h (4096d), read 14

consecutive registers, and the CRC is 42BBh.

2.5.2.2 Reply from slave device

The corresponding slave device will reply in this format.

Fig. 31 Function 03h Reply Message example [16 page 7]

In the example, the address shows the responding device ID, the function code, number

of data bytes count (2xNumber of register). Then number of data byte fields’ value

corresponding to the number of registers requested.

2.5.3 Register Meaning

On page 9 and 10 ABB M2M MODBUS RTU manual, information to check what the

available register are and its corresponding meaning is listed. From this list, we choose

 28

the essential measurement to be read and stored in the database server and put them in

the configuration file of the C# application to poll.

Fig.32 Registers meaning, type of number, theirs registers asserted from the manual [16

page 9]

Take the first reading from the list as an example, this reading shows the 3-phase

voltage of the system, in Volt. The address of it is 1000h (4096d), 2-word in size, and

this number is unsigned long (32-bit).

All the measurements are 32-bit long, but are either Unsigned or Signed. If it is signed, it

will be expressed in Two Complement Format.

All the addresses is converted into decimal number for easier to read in the program.

Thus, the settings in configuration are like below.

Address (in
decimal)

Number
of word

Meaning and Unit Type (signed or

unsigned)

4096 2 3-PHASE SYSTEM VOLTAGE Volt unsigned

4098 2 PHASE VOLTAGE L1-N Volt unsigned

4100 2 PHASE VOLTAGE L2-N Volt unsigned

4102 2 PHASE VOLTAGE L3-N Volt unsigned

Table 8. Example of reading configuration with addresses converted into Decimal

2.6 .NET Framework C# application

2.6.1 Introduction to .NET framework

.NET framework is provided by Microsoft to be the platform for develop Windows related

software application. It contains libraries of interfaces, classes, connectivity, network

services... for purpose of making it easy for developer.

 29

Fig. 33 Main features of .NET framework [19]

In this project, my part software on the data acquisition of computer is developed in

.NET framework API level 4.5, written in C#, using Visual Studio 2013 IDE (also

provided by Microsoft).

It is a simple console application polling data from electrical ABB box. Therefore, user

interface in minimal. The main aspect of .NET framework used in the project discussed

for this report is “SerialPort” Class (in System.IO.Ports) to read data from serial

communication.

SerialPort class helps access to COM-port device from Windows without programming

in low level. The library provides properties, methods and events to establish, read, write

and close communication over serial port. This class was added since API level 2.0 of

.NET framework.

2.6.2 The Application Structure

The software is a console application which reads the data from ABB box continuously

at a predefined interval after started. Then user only need to press any key to stop it. As

mentioned before, the user interface is minimized for the ease of use and maximum of

performance. The structure of the software is also optimized so that it is easy to

maintain and modified if needed. The hierarchy of the console project named

ModbusApp is as below.

 30

Fig. 34 Hierarchy of ModbusApp project

Component Description

“Modbus” Class The core component of the programme: providing all

necessary utilities to access device through Modbus

protocol using System.IO.Ports of .NET library

“MachineProtocol” Class This class contains all properties for Serial Port

connection such Port name, Baud rate, stop bits,

Sample Rate, ABB Box ID, Read function code,

Measurement ID and Provider ID & Passcode on

Database server.

“MeasurementType” Class This class contains address, number of register,

format of number (signed or unsigned) of each wanted

measurement register.

“BufferMeasurement” Class This class contains measuring date, machine ID

number, and list of measurement

(BufferMeasurementValue). This class is used to

serialize to save to local drive in case of the program

having problem of sending data to server.

“BufferMeasurementValue”

Class

This class contains the pair of Register Address &

value, meaning the actual measurement value. This is

used for each element of MeasurementList in

“BufferMeasurement” which is used for serialization

purpose.

“ElectricityReader” Class The ultimate main class of interacting with the device.

It contains all the needed properties, methods helping

accessing to the device, starting and stopping the

communication. Users just have to call 2 methods the

 31

use the class: StartReader() and StopReader() to start

and stop reading accordingly.

All the settings will be changed in App.config file (all

of these configurations are read into

“MachineProtocol” class) in xml format and

settings.txt file (most of these settings are read into

“MeasurementType” class) in text format.

Syntax of these files will be explained clearer later.

App.config Contains configurations of the program and WCF

configurations for communication to database server.

Settings.txt Contains ABB box ID, read function code, and list of

reading register address, number of words, meaning,

number type, and corresponding sensor ID of it on

database server.

Program.cs This is main logic structure of the application. It is

minimized to the simplest. Creating an

ElectricityReader instance, Loading all settings, start

reader, and waiting for any key pressed to stop.

SavoniaMeasurementService This is the reference to the classes created by another

person who are in charge of database server. These

classes contains properties for storing data and

methods needed for sending to database server using

WCF technology.

Table 9. Main components ModbusApp project

2.6.3 “Modbus” Class

This class is modified from a class provided inside a CodeProject tutorial of how to

program MODBUS communication in C# using .NET framework at API level 2.0. The

author username is “distantcity” and the link of the tutorial is

http://www.codeproject.com/Articles/20929/Simple-Modbus-Protocol-in-C-NET-2-0

http://www.codeproject.com/Articles/20929/Simple-Modbus-Protocol-in-C-NET-2-0

 32

Fig. 35 Modbus Class Hierarchy

The class contains on property called sp, instancing from “SerialPort” Class. This is the

basic component to access to COM-Port.

Methods:

Region Methods Description

Constructor /
Descontructor

modbus() Default Constructor Method
~modbus() Default Desctructor Method

Open / Close
Procedures

public bool
Open(string portName,
int baudRate, int
databits, Parity
parity, StopBits
stopBits)

Open port with the setting in
parameters.

 portName typically is COMxx (we
will use COM4)

 baudrate typically is 9600
 databits typically is 8
 parity typically is none
 stopbits typically is none

These settings must be the same as
what are set in Device Manager and on
the box.

public bool Close() Close SerialPort Component

CRC Computation private void
GetCRC(byte[] message,
ref byte[] CRC)

This method calculates the CRC
(Cyclic Redundancy Check) values
from the message and stores it in CRC
byte array.

Build Message private void
BuildMessage(byte
address, byte type,
ushort start, ushort
registers, ref byte[]
message)

This method builds the exact request
message that is sent to the slave
device through serial port. This will be
called in SendFc3(which means send

 33

function code 3)

 address is the address of the
device, or MachineID

 type is function type such 3 is
Read Register

 start is the starting register for
reading

 registers is the number of
adjacent registers to be read

 message is a byte array which is
sent over the serial port

Check Response private bool
CheckResponse(byte[]
response)

This method checks the response by
calculating the CRC values from it and
compares the calculated values with
the CRC component at the end of the
response.

Get Response private void
GetResponse(ref byte[]
response)

This methods is called in the SendFc3
method, right after the request
message is sent over serial port. This
read bytes from the reply from the
corresponding slave device.

Function 3- Read
Registers

public bool
SendFc3(byte address,
ushort start, ushort
registers, ref
ushort[] values)

 This method checks the sp
(SerialPort) component opened
or not. Then the method builds
the message with information
provided in the parameters and
sends it over the serial line.

 Then it reads the response on
serial port, checks error with
CRC calculation and stores the
result in “values” byte array

Table 10 Methods of “Modbus” class

Note: the “values” array is in ushort since then will be shifted afterward in integer number

to create Unsigned 32-bit long or Signed 32-bit long number. If using short type only,

this may result problem of unexpected negative number. This is one problem that we

encountered during the project.

 34

2.6.3.1 Inside SendFc3 method

Fig. 36 Part of SendFc3 method

The message to send over serial line is made through BuildMessage method with

“address”, “start” (start register address) and “registers” (number of adjacent registers

to read) parameters. The message value is applied to “message” byte array (8-byte in

length).

The message is sent using Write method in SerialPort class. The reply is read and

pushed into “response” byte array.

Then the reply is checked with CRC. If it is ok, the result will be applied to “values”.

2.6.3.2 Inside BuildMessage method

Fig. 37 BuildMessage method

The address, function code, start register, number of adjacent registers to read are

applied to each byte of “message” array.

 35

CRC values are calculated and applied to 2 last bytes.

2.6.3.3 Inside GetResponse method

Fig. 38 GetResponse Method

Each byte of “response” byte array is read using ReadByte method in SerialPort class.

2.6.3.4 Inside CheckResponse method

Fig. 39 CheckResponse method

The CRC values are calculated with the response byte array. Then the result is

compared with the CRC part of the response (last two bytes). If they are matched, the

method returns true. Otherwise, the method returns false.

2.6.4 “MachineProtocol” Class

This class basically loaded all the configurations and settings of the application when

started. It contains only properties and is instanced and used in “ElectricityReader”

class.

 36

Fig. 40 “MachineProtocol” Class hierarchy

The meaning of each property is self-defined by its name. Each of these property is read

from either App.config or settings.txt. App.config is for unique single configuration while

settings is for generic one such as list of measurements' addresses and its related fields.

Property Description Location to read
from

Portname Typically COMxx (in this project, this is

default COM4) This values can be set in

Device Manager in settings of COM port)

App.config

Baudrate Default 9600 (also can be set in Device

Manager)

Databits Typically 8 (also can be set in Device

Manager)

Parity Typical none (also can be set in Device
Manager)

StopBits Typical none (also can be set in Device

Manager)

SampleRate In milliseconds (3000 = 3 seconds)

MeasurementTypeID These three values are used for

authentication to send measurement values

to database server.

ProviderID

ProviderPasscode

MachineID This is the Slave ID of the ABB M2M box (31 Settings.txt

 37

is used in this project) (this setting must be

set correspondingly with the ID setting on the

ABB M2M box).

ReadFucntion This is 3 here for reading. To use SendFc3 in

Modbus (besides 3 there are several more

reading function, but for this project, function

code 3 is enough).

MeasurementTypeList List of MeasurementType, each of this type

includes Register address, number of

register, and format of it (unsigned or signed

number) and corresponding sensor ID on

database storing class.

Table 11. Properties of “MachineProtocol” Class

2.6.5 “MeasurementType” Class

This class stores each measurement's information such as address, number of adjacent

registers, meaning, format (signed or unsigned) and corresponding Sensor ID on

database server's storing class.

This is used for each element of the MeasurementTypeList generic list inside

“MachineProtocol” Class.

Fig. 41 “MeasurementType” Class Hierarchy

Properties Description

Address Start address of the first register to be read

RegisterNumber Number of adjacent register to be read

 38

Meaning The meaning of the reading value

MeasurementFormat Format of the number: signed long or unsigned long

MatchSensorID The corresponding sensor ID in the storing class on

Database Server

Table 12. Properties of “MeasurementType” Class

Besides, there is one customized constructor with parameters: public

MeasurementType(ushort pAddress, ushort pRegisterNumber, string pMeaning, string
pMeasurementFormat, int pMatchSensorID)

2.6.6 “BufferMeasurement” Class

This class and BufferMeasurementValue is used for serialization purpose in case of

problem in connection resulting measurements cannot be sent to the database server.

In that scenario, the measurements will be saved on local drive, at a location defined in

App.config. Then when the next sending is successful, the application will send all the

measurement inside saved location (or “buffer” folder).

Fig. 42 “BufferMeasurement” Class hierarchy

Note: above each class definition and each property, there is tag definition required for

serialization.

Properties Description

Timestamp Data and time of measurements (this will be saved in GMT)

MachineID ID of the slave device

MeasurementList List of measuremnts (each element is a

“BufferMeasurementValue”)

Table 13. Properties of “BufferMeasurement” class

2.6.7 “BufferMeasurementValue” Class

This class contains 2 properties: Register and Value, which is the address of

measurement start register and its value.

 39

Fig. 43 “BufferMeasurementValue” Class hierarchy

Properties Description

Register The address of measurement, its meaning is stated in

datasheet of the ABB M2M (this is in decimal, converted from

Hexadecimal number in manual)

Value The value of measurement

Table 14. Properties of “BufferMeasurementValue” Class

2.6.8 “ElectricityReader” Class

This is the most important class of the program. It serves as the back bone of it. In the

main program, an instance of “ElectricityReader” is needed. The programmer just has to

call StartReader and StopReader method to start and stop requesting and reading

measurement over serial port. In the application, StartReader is called when the program

is started. And StopReader is called when user press any key to stop the application.

Inside the class, multiple properties and methods are provided for all functionality such

as accessing serial port, loading configurations, sending data to database server and

serializing data to local drive when needed.

 40

Fig. 44 Property Hierarchy of “ElectricityReader” class

Property Description

machineProtocol1 This is the instance of “MachineProtocol” Class, storing all

configurations and settings of program from App.config and

settings.txt when program loaded.

modbus1 This is the instance of “Modbus” class, which is in charge of

communicating to the ABB M2M box over serial line.

timer1 Timer for polling, the sample rate is set in through this object

isPolling Boolean variable showing the program is reading or not

isProtocolLoaded Boolean variable showing the program load protocol or not

folderDirectory The folder directory where the buffer will be stored. (this is defined in

App.config)

settingPath The path of the settings.txt file (this is defined in App.config)

bufferSize The number of measurements in buffer

Table 15. Properties of “ElectricityReader” Class

 41

Fig. 45 Method Hierarchy of “ElectricityReader” Class

Method Description

ElectricityReader() Constructor which initializes all properties

LoadAppConfig This method is used to load configurations from App.config, to

machineprotocol1 property

LoadProtocol This method is used to load generic settings in settings.txt

timer_Elapsed This method is attached to timer1's Elapsed Event Handler.

Thus, it is fired at every interval time defined in timer1.

Inside the method, it simply calls PollFunction, which is in

charge of sending request message and reading reply

message from ABB M2M box.

StartReader Start to poll measurement from the box

StopReader Stop polling measurements from the box

PollFucntion When starting the reader, the timer will start. This will be called

when the timer is elapsed. This method is used to send request

message to slave device and read reply from it. It puts Time

stamping to measurement and sends it to server using

“SendToServer” method. If the measurement cannot be sent, the

data will be stored to the buffer on local drive using

“SaveToBuffer” method.

SendToServer Send the measurement to server, using WCF technology. The

 42

storing data class on data server is referenced in

“SavoniaMeasurementService” component

SaveToBuffer If there are some problems resulting the measurements cannot

be sent to server, the measurements will be serialized, saved

to local drive. The program continue to do so as long as the

problem is still there. When the next measurement is sent

successfully, the buffer will be released to the server using

“ReleaseBuffer” method.

ReleaseBuffer This method de-serializes all the measurements saved in

buffer folder and sends them to server

Table 16. Methods of “ElectricityReader” class

Inside PollFunction method

Fig. 46 Part of PollFunction method content

The PollFunction method iterates over all MeasurementType inside

machineProtocol1.MeasurementTypeList. This means all the wanted measurement

defined in settings.txt.

 43

Then modbus1 object builds message using information in machineProtocol1 and its

current MeasurementType element. After that, the message is sent over serial port using

SendFc3 and the reply value is stored in values array.

Then the “values” array is converted into number using byte-shifting operation and

stored in longValue.

Then depending on its pre-defined format, it will be converted into signed number if

needed.

2.6.9 App.config

The file in XML format stores all needed configuration for the application and the file can

be changeable. In this way, if there is anything needed to be changed like COM-Port

settings or Provide passcode, the user doesn't need to change the project code and

compiles the application again.

Fig. 47 Part of App.config content

2.6.10 Settings.txt

Since App.config cannot store list or generic information. Settings.txt text file is used for

easy reading through iteration.

Fig. 48 Part of Settings.txt: 31 is Slave device ID (ABB M2M box), 3 is function code.

Each line contains address of start register of measurement in decimal, number of

registers, its meaning and unit and corresponding sensor ID on server side.

The format of each measurement is

[Start register address]\t[Number of register to read]\t[Meaning and unit]\t[Match

sensor ID on database server]

2.6.11 Main program

The main program is simplified since all functionality is already coded in

“ElectricityReader” class. Everything is loaded after starting program. The program

reads measurement continuously at interval defined in App.config. The user only need

to press any key to stop the program.

 44

Fig. 49 Main program of ModbusApp

2.7 The result and conclusion

During implementation, we countered various problems. For the first time of testing the

reading, I set the reading interval quite low: hundred milliseconds, which means the

application queries from the ABB M2M box quite fast. This leads to overflowing problem.

The application send too many requests before the slave device can handle and send

back reply. The problem makes the PC freezing after some time of running. After that, I

set the interval higher from 1 seconds and above. The problem doesn't happen

anymore. The PC is left running to collect data for weeks with no error happening.

Fig. 50 Screenshot of ModbusApp.exe running up to 21.05.2014 with 5 minutes interval.

The application is still reliable.

At the time I finish my part, the mobile application client is not finished yet. Therefore, I

cannot show any reading from mobile phone client side. However, the person in charge

of database server created a simple web client to show measurement stored in

database. This client at this moment can only be opened inside Savonia UAS's network.

Here are some screenshots of it.

 45

Fig. 51 Screenshot of testing web client showing list of received measurement packages

with their time stamp

Fig. 52 Screenshot of measurement values of one measurement package

 46

Even though, time interval between measurements can be set in real-time (down to one

second), it is set to 5 minutes because the capacity of database server may not be

enough. 5-minute setting is enough since some of measurement is actually average

values over 10 minutes time period.

 47

REFERENCES

[1] Martin P. Bates, “Interfacing PIC Microcontrollers, 2nd Edition”, Chapter 8 Serial

Communication, Publisher: Newnes, Pub. Date: September 18, 2013, Print ISBN-13:

978-0-08-099363-8

[2] Jan Axelson, "Serial Port Complete: COM Ports, USB Virtual COM Ports, and Ports

for Embedded Systems, 2nd Edition", Publisher: Lakeview Research, Published Date:

2nd edition (December 1, 2007). ISBN-13: 978-1931448062

[3] Casper Yang, “The Secrets of Flow Control in Serial Communication”, Moxa Tech

Note, MOXA Inc. Released on Sep 30, 2009

[4] William Buchanan, “Mastering Pascal and Delphi Programming”, Publisher:

Palgrave Macmillan Pub. Date March 23, 1998, ISBN-13: 978-0333730072, Chapter

16: RS-232

[5] NorDevX DB-25 Male Connector https://www.nordevx.com/content/db25-male-

connector 14.05.2014

[6] Networx DB-25 Female Connector

http://www.computercablestore.com/DB25_Female_Solder_Connec_PID49956.aspx

14.05.2014

[7] Commercial Male and Femal DB-9 Connector http://delta-

electronic.com/shop/index.php?cPath=50_168&osCsid=8ed4397858dc10786dc5228d9

86cc675 14.05.2014

[8] Thomas Kugelstadt, “The RS-485 Design Guide-Application Report”, February 2008,

Revised May 2008 http://www.ti.com/lit/an/slla272b/slla272b.pdf 14.05.2014

[9] Universal Serial Bus Cables and Connectors Class Document, Revision 2.0, August

2007 http://www.usb.org/developers/devclass_docs/CabConn20.pdf

[10] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, Philips “Universal Serial

Bus Specification”, Revision 2.0, April 27 2000

[11] Jan Axelson, “USB Complete, The Developer's Guide 4th Edition”, Publisher:

Lakeview Research, Published Date: 1 June 2009, ISBN-13: 978-1931448086

[12] USB 3.0 A & B type connectors example

http://www.totalphase.com/support/articles/200349256-USB-Background

[13] modbus.org, MODBUS Application Protocol Specification V1.1b3,

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf 14.05.2014

[14] modbus-IDA.org, “MODBUS Over Serial Line, Specification and Implementation

Guide V1.02”

http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf 14.05.2014

[15] MODICON, Inc., Industrial Automation Systems, “Modicon Modbus Protocol

Reference Guide PI–MBUS–300 Rev. J”, June 1996

https://www.nordevx.com/content/db25-male-connector
https://www.nordevx.com/content/db25-male-connector
http://www.computercablestore.com/DB25_Female_Solder_Connec_PID49956.aspx
http://delta-electronic.com/shop/index.php?cPath=50_168&osCsid=8ed4397858dc10786dc5228d986cc675
http://delta-electronic.com/shop/index.php?cPath=50_168&osCsid=8ed4397858dc10786dc5228d986cc675
http://delta-electronic.com/shop/index.php?cPath=50_168&osCsid=8ed4397858dc10786dc5228d986cc675
http://www.ti.com/lit/an/slla272b/slla272b.pdf
http://www.usb.org/developers/devclass_docs/CabConn20.pdf
http://www.totalphase.com/support/articles/200349256-USB-Background
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf

 48

[16] ABB, “M2M/DMTME Instruments Communication Protocol, Technical specification

V2.0”

http://www05.abb.com/global/scot/scot209.nsf/veritydisplay/635fd2b8ca9d770ac12578c

b0023448f/$file/2csg445011d0201.pdf 14.05.2014

[17] Farnell, FTDI-USB-RS485-WE-1800-BT http://fi.farnell.com/ftdi/usb-rs485-we-1800-

bt/cable-usb-rs485-serial-converter/dp/1740357 14.05.2014

[18] FTDI-USB-RS485-WE-1800-BT datasheet

http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_USB_RS485_CAB

LES.pdf 14.05.2014

[19] Microsoft, Overview of .NET framework http://msdn.microsoft.com/en-

us/library/vstudio/zw4w595w(v=vs.110).aspx 14.05.2014

http://www05.abb.com/global/scot/scot209.nsf/veritydisplay/635fd2b8ca9d770ac12578cb0023448f/$file/2csg445011d0201.pdf
http://www05.abb.com/global/scot/scot209.nsf/veritydisplay/635fd2b8ca9d770ac12578cb0023448f/$file/2csg445011d0201.pdf
http://fi.farnell.com/ftdi/usb-rs485-we-1800-bt/cable-usb-rs485-serial-converter/dp/1740357
http://fi.farnell.com/ftdi/usb-rs485-we-1800-bt/cable-usb-rs485-serial-converter/dp/1740357
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_USB_RS485_CABLES.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_USB_RS485_CABLES.pdf
http://msdn.microsoft.com/en-us/library/vstudio/zw4w595w(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/vstudio/zw4w595w(v=vs.110).aspx

Appendix One 1(5)

APPENDIX One-“ElectricityReader” Class Source Code

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.IO.Ports;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Timers;
using System.Xml.Serialization;
using System.Configuration;
using ModbusApp.SavoniaMeasurementService;

namespace ModbusApp
{
 class ElectricityReader
 {
 #region PROPERTIES
 public MachineProtocol machineProtocol1
 { set; get; }
 public modbus modbus1
 { set; get; }
 public System.Timers.Timer timer1
 { set; get; }
 public bool isPolling
 { set; get; }
 public bool isProtocolLoaded
 { set; get; }
 public string folderDirectory
 { set; get; }
 public string settingsPath
 { set; get; }
 public int bufferSize
 { set; get; }
 #endregion
 public ElectricityReader()
 {

 machineProtocol1 = new MachineProtocol();
 modbus1 = new modbus();
 timer1 = new System.Timers.Timer();
 isPolling = false;
 isProtocolLoaded = false;
 timer1.Elapsed += new ElapsedEventHandler(timer_Elapsed);
 bufferSize = 0;
 LoadAppConfig();
 }
 private void timer_Elapsed(object sender, ElapsedEventArgs e)
 {
 PollFunction();
 }
 private void LoadAppConfig()
 {
 try
 {
 folderDirectory = ConfigurationManager.AppSettings["folderPath"].ToString();
 settingsPath = ConfigurationManager.AppSettings["settingsFilePath"].ToString();
 machineProtocol1.Portname = ConfigurationManager.AppSettings["portName"].ToString();
 machineProtocol1.Baudrate = Convert.ToInt16(ConfigurationManager.AppSettings["baudRate"]);
 machineProtocol1.DataBits = Convert.ToInt16(ConfigurationManager.AppSettings["dataBits"]);
 machineProtocol1.Parity = ConfigurationManager.AppSettings["parity"].ToString();
 machineProtocol1.StopBits = ConfigurationManager.AppSettings["stopBits"].ToString();
 machineProtocol1.SampleRate =
Convert.ToInt32(ConfigurationManager.AppSettings["sampleRate"]);
 machineProtocol1.MeasurementTypeID =
Convert.ToInt32(ConfigurationManager.AppSettings["MeasurementTypeID"]);
 machineProtocol1.ProviderID =
Convert.ToInt32(ConfigurationManager.AppSettings["ProviderID"]);
 machineProtocol1.ProviderPasscode =
ConfigurationManager.AppSettings["ProviderPasscode"].ToString();
 }
 catch (Exception err)
 {
 Trace.WriteLine("# 'LoadConfig' in 'ElectricityReader': " + err.Message);
 }

Appendix One 2(5)

 }

 #region METHODS
 public bool StartReader()
 {
 if (isProtocolLoaded)
 {

 try
 {
 Parity parity = new Parity();
 StopBits stopbits = new StopBits();
 switch (machineProtocol1.Parity)
 {
 case "none": parity = Parity.None; break;
 case "odd": parity = Parity.Odd; break;
 case "even": parity = Parity.Even; break;
 case "mark": parity = Parity.Mark; break;
 case "space": parity = Parity.Space; break;
 default: parity = Parity.None; break;
 }

 switch (machineProtocol1.StopBits)
 {
 case "none": stopbits = StopBits.None; break;
 case "one": stopbits = StopBits.One; break;
 case "onepointfive": stopbits = StopBits.OnePointFive; break;
 case "two": stopbits = StopBits.Two; break;
 default: stopbits = StopBits.None; break;
 }
 if (modbus1.Open(machineProtocol1.Portname, machineProtocol1.Baudrate,
machineProtocol1.DataBits
 , parity, stopbits))
 {
 //Set polling flag:
 isPolling = true;

 //Start timer using provided values:
 timer1.AutoReset = true;
 timer1.Interval = machineProtocol1.SampleRate;
 timer1.Start();
 Console.Out.WriteLine("Timer stated...");
 }
 // timer1.Start();
 }
 catch (Exception Err)
 {
 Trace.WriteLine("# 'StartReader' in ElectricityReader' class: " + Err.Message);
 return false;
 }
 }
 else
 {
 Trace.WriteLine("# 'StartReader' in 'ElectricityReader' class: " + "Protocol is not loaded
before starting Reader");
 return false;
 }
 return true;
 }
 public bool StopReader()
 {
 try
 {
 isPolling = false;
 timer1.Stop();
 Console.Out.WriteLine("Timer ended...");
 modbus1.Close();
 }
 catch (Exception Err)
 {
 Trace.WriteLine("# 'StopReader' in 'ElectricityReader' class: " + Err.Message);
 return false;
 }
 return true;
 }
 public void LoadProtocol()
 {
 try

Appendix One 3(5)

 {
 LoadAppConfig();
 System.IO.StreamReader sr = new System.IO.StreamReader(settingsPath);
 machineProtocol1.MachineID = Convert.ToByte(sr.ReadLine());
 machineProtocol1.ReadFunction = Convert.ToByte(sr.ReadLine());
 string temp;
 while (sr.Peek() >= 0)
 {
 temp = sr.ReadLine();
 string[] values = temp.Split(new string[] { "\t" },
StringSplitOptions.RemoveEmptyEntries);
 ushort address = Convert.ToUInt16(values[0]);
 ushort number = Convert.ToUInt16(values[1]);
 string meaning = values[2];
 string format = values[3];
 int matchSensorID = Convert.ToInt32(values[4]);
 machineProtocol1.MeasurementTypeList.Add(new MeasurementType(address, number, meaning,
format,matchSensorID));
 }
 isProtocolLoaded = true;
 Console.Out.WriteLine("Settings loaded...");
 }
 catch (Exception err)
 {
 isProtocolLoaded = false;
 Trace.WriteLine("# 'LoadProtocol' in 'ElecityReader': " + err.Message);
 }
 }

 private void PollFunction()
 {
 try
 {
 Dictionary<int, long> l = new Dictionary<int, long>();

 List<BufferMeasurementValue> listM = new List<BufferMeasurementValue>();
 BufferMeasurement bufferM = new BufferMeasurement();

 #region Interact with machines
 foreach (MeasurementType mt in machineProtocol1.MeasurementTypeList)
 {
 if (machineProtocol1.ReadFunction == 3)
 {
 ushort[] values = new ushort[mt.RegisterNumber];
 try
 {
 if (modbus1.SendFc3(machineProtocol1.MachineID, mt.Address, mt.RegisterNumber,
ref values))
 {
 long longValue = (long)values[0];
 for (int i = 1; i < mt.RegisterNumber; i++)
 {
 longValue <<= 16;
 longValue += (long)values[i];
 }
 switch (mt.MeasurementFormat)
 {
 case "unsigned": break;
 case "signed":
 //if (longValue > int.MaxValue) longValue -= 4294967296; break;
 longValue = (int)longValue; break;
 }
 //l.Add((int)mt.Address, longValue);
 listM.Add(new BufferMeasurementValue()
 {
 Register = (int)mt.Address,
 Value = longValue
 });
 }
 }
 catch (Exception err)
 {
 Trace.WriteLine("# 'PollFunction' in 'ElectricityReader: " + err.Message);
 }
 }

Appendix One 4(5)

 }
 #endregion

 bufferM.Timestamp = DateTime.UtcNow;
 bufferM.MachineID = Convert.ToUInt16(machineProtocol1.MachineID);
 bufferM.MeasurementList = listM;
 SendToSever(bufferM);

 }
 catch (Exception err)
 {
 Trace.WriteLine("# 'PollFunction' in 'ElectricityReader': " + err.Message);
 }
 }
 public void SendToSever(BufferMeasurement pBM)
 {
 try
 {
 MeasurementServiceClient ws = new MeasurementServiceClient();
 MeasurementData md;
 md = new MeasurementData();
 md.MeasurementTypeId = machineProtocol1.MeasurementTypeID;
 md.ProviderInfo = new ProviderData();
 md.ProviderInfo.ProviderId = machineProtocol1.ProviderID;
 md.ProviderInfo.ProviderPassCode = machineProtocol1.ProviderPasscode;
 md = ws.GetMeasurementTypeSensors(md);

 md.MeasurementTimeUTC = pBM.Timestamp;
 foreach (var p in machineProtocol1.MeasurementTypeList)
 {
 md.SensorDatas.First(s => s.Id == p.MatchSensorID).Value =
(double)pBM.MeasurementList.First(s => s.Register== p.Address).Value;
 }

 Stopwatch stopwatch = new Stopwatch();
 stopwatch.Start();
 ModbusApp.SavoniaMeasurementService.MeasurementResponse mr = ws.SaveMeasurement(md);
 stopwatch.Stop();
 ws.Close();
 if (mr.Success)
 {
 Console.Out.WriteLine("Measurement at " + pBM.Timestamp + " sent.");
 Console.Out.WriteLine("Elapsed: {0} ({1} ms)", stopwatch.Elapsed,
stopwatch.ElapsedMilliseconds);
 Console.Out.WriteLine("Press any key to stop and quit...");
 ReleaseBuffer();
 }
 else
 {
 Console.Out.WriteLine("Measurement at " + pBM.Timestamp + " sent failed. It will be
stored in buffered.");
 Console.Out.WriteLine("Press any key to stop and quit...");
 SaveToBuffer(pBM);
 }
 }
 catch (Exception err)
 {
 Trace.WriteLine("# 'Send' in 'ElectricityReader': " + err.Message);
 }
 }
 public void SaveToBuffer(BufferMeasurement buffer)
 {
 try
 {
 if (!Directory.Exists(folderDirectory))
 Directory.CreateDirectory(folderDirectory);

 XmlSerializer mySerializer = new XmlSerializer(typeof(BufferMeasurement));
 StreamWriter myWriter = new StreamWriter(folderDirectory + bufferSize.ToString() + ".xml");
 bufferSize++;

 mySerializer.Serialize(myWriter, buffer);
 myWriter.Close();
 }
 catch (Exception err)
 {
 Trace.WriteLine("# 'SaveToBuffer' in 'ElectricityReader': " + err.Message);

Appendix One 5(5)

 }
 }
 public void ReleaseBuffer()
 {
 MeasurementServiceClient ws = new MeasurementServiceClient();
 MeasurementData md;
 md = new MeasurementData();

 XmlSerializer deSerializer = new XmlSerializer(typeof(BufferMeasurement));
 foreach (string file in Directory.EnumerateFiles(folderDirectory, "*.xml"))
 {
 TextReader textReader = new StreamReader(file);
 BufferMeasurement pBM = (BufferMeasurement)deSerializer.Deserialize(textReader);

 md.MeasurementTypeId = machineProtocol1.MeasurementTypeID;
 md.ProviderInfo = new ProviderData();
 md.ProviderInfo.ProviderId = machineProtocol1.ProviderID;
 md.ProviderInfo.ProviderPassCode = machineProtocol1.ProviderPasscode;
 md = ws.GetMeasurementTypeSensors(md);
 md.MeasurementTimeUTC = pBM.Timestamp;
 foreach (var p in machineProtocol1.MeasurementTypeList)
 {
 md.SensorDatas.First(s => s.Id == p.MatchSensorID).Value =
(double)pBM.MeasurementList.First(s => s.Register == p.Address).Value;
 }

 Stopwatch stopwatch = new Stopwatch();
 stopwatch.Start();
 ModbusApp.SavoniaMeasurementService.MeasurementResponse mr = ws.SaveMeasurement(md);
 stopwatch.Stop();
 if (mr.Success)
 {
 Console.Out.WriteLine("Measurement at " + pBM.Timestamp + " sent.");
 Console.Out.WriteLine("Elapsed: {0} ({1} ms)", stopwatch.Elapsed,
stopwatch.ElapsedMilliseconds);
 Console.Out.WriteLine("Press any key to stop and quit...");
 bufferSize--;
 }
 else
 {
 SaveToBuffer(pBM);
 }
 }
 ws.Close();
 }
 #endregion

 }
}

