

Samuli Kalliomaa

IP reputation based IPS-system for
Unix-routers

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Bachelor’s Thesis

9 May, 2023

Abstract

Author: Samuli Kalliomaa
Title: IP reputation based IPS-system for Unix-routers
Number of Pages: 49 pages
Date: 9.5.2023

Degree: Bachelor of Engineering
Degree Programme: Information and Communication Technology
Professional Major: IoT and Cloud Computing
Supervisors: Tapio Wikström, Senior Lecturer

The ever-increasing number of connected devices in home-networks has led to a
growing concern of home network security. A typical set of security measures of the
average user are lacking, leaving these networks vulnerable to cyber-attacks. This
thesis-work was meant to explore the possibility of having the home network gateway
check all traffic for known bad IP addresses automatically, allowing for real-time
blocking of malicious traffic.

Thesis visits the working principles of antiviruses and firewalls and proposes that IP-
address reputation data could be utilized to strengthen the network security
significantly – if this could be achieved without affecting the network throughput and
stability at a noticeable degree.

Thesis work was carried out as a personal project, and its goals were to produce a
proof-of-concept of the software described above in addition to experiment on
programming network-software using the Go-programming language, which it was
built with.

The project produced a proof-of-concept of a free-of-charge IP reputation based IPS-
system for UNIX-routers using Go that does not seem to slow the internet connection
at a noticeable level in normal browsing, this should be further studied by testing the
effect over longer period. Added latency for opening a new connection turned out to
be between 100-200ms, which might be unbearable in some demanding use cases
such as competitive gaming.

Keywords: Network Security, UNIX, Go, Golang, Linux, IP, IPS, IoT

Tiivistelmä

Tekijä: Samuli Kalliomaa
Otsikko: IP mainepohjainen IPS-järjestelmä Unix-reitittimille
Sivumäärä: 49 sivua
Aika: 9.5.2023

Tutkinto: Insinööri (AMK)
Tutkinto-ohjelma: Tieto- ja Viestintätekniikka
Ammatillinen pääaine: Verkot ja pilvipalvelut
Ohjaajat: Tapio Wikström, Lehtori

IoT-laitteiden yleistyminen on tuonut uusia haasteita kotiverkkojen
tietoturvallisuuteen. Tyypillisen kotiverkon turvamekanismit torjuvat yleisimmät
uhat, mutta niissä on merkittäviä sokeita pisteitä. Tämän insinöörityön tarkoitus
oli tutkia, josko reitittimessä IP-osoitteiden maineeseen perustuva
tunkeutumisenestojärjestelmä olisi käytännöllinen ratkaisu
kotiverkkoturvallisuuden parantamiseen.

Työ tutustui antivirusten ja palomuurien turvallisuusmekanismeihin ja esitti, että
julkisesti saatavilla olevien IP-osoitteiden mainetietojen hyödyntäminen
kotiverkon turvallisuuden parantamiseen olisi käytännöllistä, mikäli tämä
onnistutaan toteuttamaan siten, ettei verkon nopeus ja luotettavuus
mainittavalla tavalla kärsi.

Työ tehtiin henkilökohtaisena projektina ja sen tavoitteina olivat
konseptitodistuksen tuottaminen ylläkuvatusta ohjelmistosta sekä verkko-
ohjelmistojen ohjelmointiin tutustuminen Go-ohjelmointikielellä.

Projekti tuotti konseptitodistuksen ilmaisesta IP-mainepisteytykseen
perustavasta tunkeutumisenestojärjestelmästä UNIX-reitittimille. Järjestelmä ei
ensimmäisten testien perusteella hidastanut internetyhteyttä merkittävästi,
mutta tämä vaatii pidemmän aikavälin seurantaa tarkemman kuvan saamiseksi.
Uuden yhteyden avaamiseen järjestelmä aiheutti noin 100-200 ms ylimääräisen
latenssin, tämä saattaa vaikuttaa tiettyihin vaativiin käyttötarkoituksiin, kuten
videopelaamiseen.

Avainsanat: tietoverkko, tietoverkkoturvallisuus, UNIX, go,
golang, Linux, IoT, IPS, IP

Contents

List of Abbreviations

1 Introduction 1

2 Home-network security monitoring 1

2.1 Antiviruses 2

2.2 Firewalls 2

2.3 IP and DNS as Indicators of Compromise (IOC) 3

3 Maltrail 4

3.1 Requirements and benchmarking 5

3.2 Features 5

3.2.1 Application layer-based features 5

3.2.2 Transport and Network-layer based features 6

3.2.3 The web-interface 7

3.3 Conclusions 8

4 Golang 8

4.1 Go Syntax 9

4.2 Pointers, references, and memory optimization 9

4.3 Goroutines 11

4.4 Go-modules 11

5 Project plan 12

6 Project diary 14

6.1 Setting up the development system 14

6.1.1 Visual Studio Code 14

6.1.2 Git 15

6.1.3 Golang 16

6.1.4 Creating the project-repository 16

6.2 The development 18

6.2.1 Feature: Open capture on network-interface 18

6.2.2 Feature: Extract IP-addresses from traffic 21

6.2.3 Feature: Support Interactive mode 23

6.2.4 Feature: Transparent proxy 25

6.2.5 Feature: Manipulate Firewall to route everything to the
transparent proxy 28

6.2.6 Feature: Write logs to file 30

6.2.7 Study: Fixing connection issues 31

6.2.8 Feature: Implement white- and blacklist usage 34

6.2.9 Feature: Implement Threat Intel API usage 35

6.3 Final Testing 38

6.4 Future Development 39

7 Conclusions 39

References 40

List of Abbreviations

LAN: Local Area Network

OSI: Open Systems Interconnection

IP: Internet Protocol

TCP: Transmission Control Protocol

UDP: User Datagram Protocol

IOC: Indicator of Compromise

SOC: Security Operations Center

DN: Domain Name

DNS: Domain Name Service

HTTP: Hypertext Transfer Protocol

HTTPS: Hypertext Transfer Protocol Secure

GB: Gigabyte

CPU: Central Processing Unit

RAM: Random Access Memory

IPS: Intrusion Prevention System

API: Application Programming Interface

I/O: Input/Output

VS: Visual Studio

CLI: Command Line Interace

WIP: Work In Progress

1

1 Introduction

Demand for smart-home appliances has been rapidly growing for the past

decade. According to earthweb.com In 2021, there were 258.54 million smart

homes globally. As of the time of writing, 23% of broadband household in US had

a minimum of three smart-home-appliances and alarmingly 40.8% of smart

homes globally have one or more susceptible connected device that an attacker

could be able to use as a gateway into the home-network. [1]

For the forementioned surplus of devices, there are quite a few ways to ensure

of the confidentiality, integrity and availability of all traffic flowing in the typical

modern home-network. Firewalls and antiviruses are well known tools for home-

network security, but there is a number of potential security-threats they do not

help with. [2] And especially when it comes to smart-home devices – it all might

just fall on the router’s firewall’s ability to block threats, which can be woefully

inadequate. [3]

This thesis-project aims to produce an open-source intrusion prevention system

(IPS) that utilizes IP-address- reputation as means to identify and block malicious

traffic.

2 Home-network security monitoring

Defence-in-depth is a military concept that was coined to a cybersecurity context

by the U.S. National Security Agency. It refers to layering defences to mitigate

risk hoping that if ill-meaned actor were to penetrate some layers of the defence

– other layers might still prevent the intrusion. [4]

The following sections introduce the typical security tools of a home-network, and

elaborates on their strengths and their shortcomings, arguing for the need for the

IPS-system.

2

2.1 Antiviruses

Antivirus software is considered as an essential in any end-user device as a

protective measure against cyber threats such as spyware or ransomware.

Antiviruses come in many shapes and sizes, but they do share not only their

purpose, but their means of accomplishing what is expected from them. They

work by first detecting malicious files, and then they either quarantine said files;

[5] In other words: block their hypothetical execution, [6] or just flat-out delete

them.

Historically the forementioned detection has been based on fingerprinting, i.e.,

checking whether the antivirus-provider has seen that exact piece of malware

before. Modern antiviruses have also heuristic capabilities; An example of these

would be the ability to analyse program’s behaviour for resemblance to known

viruses. [7]

2.2 Firewalls

Another essential tool that most user-devices and home networks have in place

in addition to antiviruses are firewalls. They also do come in various forms, but

their functionality is mostly concerned on layers from five to three in the OSI-

model. [8]

Firewalls are great for blocking most of automated scanning and similar

opportunistic threats on the internet. Provided below are the latest firewall logs of

the author, comprising only the last minute of blocked traffic as of the time of

writing.

Apr 4 22:07:11 kernel: DROP IN=eth0 OUT= MAC=(SENSORED) SRC=35.204.36.X
DST=(SENSORED_LOCAL_IP) LEN=40 TOS=0x00 PREC=0x00 TTL=59 ID=41255 PROTO=TCP
SPT=56651 DPT=5432 SEQ=3427139256 ACK=0 WINDOW=1024 RES=0x00 SYN URGP=0
MARK=0x8000000
Apr 4 22:07:12 kernel: DROP IN=eth0 OUT= MAC=(SENSORED) SRC=62.233.50.X
DST=(SENSORED_LOCAL_IP) LEN=40 TOS=0x00 PREC=0x00 TTL=248 ID=13002 PROTO=TCP

3

SPT=49067 DPT=6603 SEQ=1901814182 ACK=0 WINDOW=1024 RES=0x00 SYN URGP=0
MARK=0x8000000
Apr 4 22:07:16 kernel: DROP IN=eth0 OUT= MAC=(SENSORED) SRC=183.136.225.X
DST=(SENSORED_LOCAL_IP) LEN=44 TOS=0x00 PREC=0x00 TTL=113 ID=0 PROTO=TCP
SPT=12731 DPT=41795 SEQ=2144109552 ACK=0 WINDOW=29200 RES=0x00 SYN URGP=0 OPT
(020405B4) MARK=0x8000000
Apr 4 22:07:21 kernel: DROP IN=eth0 OUT= MAC=(SENSORED) SRC=192.241.221.X
DST=(SENSORED_LOCAL_IP) LEN=40 TOS=0x00 PREC=0x00 TTL=242 ID=54321 PROTO=TCP
SPT=45151 DPT=17185 SEQ=1493399949 ACK=0 WINDOW=65535 RES=0x00 SYN URGP=0
MARK=0x8000000
Apr 4 22:07:39 kernel: DROP IN=eth0 OUT= MAC=(SENSORED) SRC=213.226.123.X
DST=(SENSORED_LOCAL_IP) LEN=40 TOS=0x00 PREC=0x00 TTL=248 ID=5933 PROTO=TCP
SPT=59181 DPT=925 SEQ=1931632151 ACK=0 WINDOW=1024 RES=0x00 SYN URGP=0
MARK=0x8000000
Apr 4 22:07:49 kernel: DROP IN=eth0 OUT= MAC=(SENSORED) SRC=89.248.163.X
DST=(SENSORED_LOCAL_IP) LEN=40 TOS=0x00 PREC=0x00 TTL=249 ID=26841 PROTO=TCP
SPT=47468 DPT=5008 SEQ=422982126 ACK=0 WINDOW=1024 RES=0x00 SYN URGP=0
MARK=0x8000000
Apr 4 22:07:54 kernel: DROP IN=eth0 OUT= MAC=(SENSORED) SRC=75.80.10.X
DST=(SENSORED_LOCAL_IP) LEN=40 TOS=0x00 PREC=0x00 TTL=53 ID=51928 PROTO=TCP
SPT=32081 DPT=23 SEQ=1536969383 ACK=0 WINDOW=25930 RES=0x00 SYN URGP=0
MARK=0x8000000

All the packets in the example above were dropped by Asus-router as being

unsolicited by any user-device. The unsolicited nature of these packets could

have been derived from the unknown sender IP-addresses, port-numbers, and

TCP-sequence numbers. Process of dropping packets based on the mentioned

details is called packet filtering. [9]

But if devices inside the local network were to solicit some malicious connections,

be it due to some user-error or say malware inside the local network - firewall

would let the packets in. [9]

Unlike antiviruses, firewall at the router does protect the whole local network. But

as argued earlier, firewalls’ means for protection are limited.

2.3 IP and DNS as Indicators of Compromise (IOC)

To summarize previous sections, antiviruses use mainly fingerprinting and

behavioural analysis to detect bad intentions. [7] Simple firewalls depend on

packet filtering and manual blacklisting of ports and IP-addresses by the

administrator. [8]

4

However, routers do have full visibility to IP-addresses and domain names, which

are known to be valuable IOCs [10] and neither antivirus nor your typical home-

router firewall takes this into consideration.

There are free tools that analyse both IP-addresses and domain names for

malicious content. One of these tools is virustotal.com. It can analyse files,

fingerprints, IP-addresses, and URLs and provides an API for programmers to

create automation for security analysis. [11]

Services, such as VirusTotal allow for free up-to-date threat intel that could be

used at a router to significantly fortify home-network security. However, free

version of VirusTotal API allows for maximum of 4 requests per minute.

Therefore, should be studied if any other Threat Intel-provider would prove more

useful for this use case. [11, 12]

3 Maltrail

The goal of this thesis was to produce an efficient and free-of-charge automated

system for home-networks that would use services such as Virustotal to utilize

the routers’ visibility to IP-details to strengthen home-networks antimalware-

capabilities.

There does already exist an open-source project called Maltrail, [13] it has

functionalities similar to ones planned for this thesis-project. However - Maltrail

requires comparatively lot of resources due to being excessive in features and

being implemented using python-programming language, which is known for

being inefficient both execution- and memory-wise. [14]

However, since Maltrail is open-source it can be used both as an inspiration and

as a reference point for goals regarding memory- and execution-efficiency on the

development process of the IPS-system.

5

One key difference to mention is the fact that Maltrail only logs traffic and events.

It alone does not block any traffic but requires the administrator to act on the

intelligence it provides. [13] The IPS-system planned to create in this thesis

should work as a proxy that will automatically block suspicious traffic.

3.1 Requirements and benchmarking

Maltrail’s Github-documentation states that it requires a minimum of 1GB of RAM

to run in a single-process mode. [13] A running instance of Maltrail should be

benchmarked to investigate the resource-usage further.

3.2 Features

Maltrail has a range of features for both the detection and for the security event

management on the provided web-interface.

3.2.1 Application layer-based features

Maltrail can detect and analyse application layer- protocols, such as HTTP and

detect suspicious file downloads, vulnerability-scans, and data leakage. All the

mentioned threats and how they are mitigated are described in the Maltrail’s

documentation. [13]

6

(Screenshot, https://github.com/stamparm/maltrail, Data leakage, accessed

2.5.2023)

Another application-layer protocol well utilized in security monitoring is DNS. A

typical malware behavior is to use DNS while checking for victim IP-address with

some IPinfo-service. Also, malware’s communications with some command and

control-server may be identified based on suspicious DNS-requests. [13]

3.2.2 Transport and Network-layer based features

Similar to what was planned in this thesis – Maltrail checks IP-addresses for

known bad actors. In addition, it can detect port scanning using a heuristic

mechanism. Some light is shed upon the mechanism this is based on, but details

are left unclear in the document. [13]

7

(Screenshot, https://github.com/stamparm/maltrail, Port scanning, accessed

2.5.2023)

3.2.3 The web-interface

As previously mentioned, Maltrail provides quite a sophisticated web-interface,

which allows for regular expression-based searching on the security events and

some Open-source intelligence automation on attacker IP-addresses just to

name a few of the capabilities. [13]

8

(Screenshot, https://github.com/stamparm/maltrail, IP-address-lookup, accessed

2.5.2023)

3.3 Conclusions

Maltrail is a versatile and rather easy to use intrusion detection system, it has an

excessive feature-list that strengthens network-administrator’s visibility into the

network with a multitude. However, it does not provide intrusion prevention

capabilities and thus requires swift hands and active participation from the

administrator to maintain network security in a case of a security incident.

The IP-monitoring capabilities are similar to what was planned for this thesis-

work.

4 Golang

Go-language (later referred to as simply “Go”) is an open-source programming

language launched in 2009 by Rob Pike, Ken Thompson and Robert Griesemer

at Google. Go is a procedural language for server software that promises a

concurrency implemented via “goroutines” instead of traditional multiprocessor-

threading. This is said to drastically decrease the memory consumption

compared to other multithreaded high-level languages such as python while

being flexible, dynamic, and easily maintainable. [15] The main philosophy

behind Go was to be C-like in terms of efficiency in execution, yet to be scalable

and easy to use and maintain such as python - this makes Go an attractive option

for developing production software. [16]

9

4.1 Go Syntax

As mentioned earlier – Go is portrayed as dynamic, easily scalable, and

maintainable language for software production. The following code-snippet is a

generic example of how it looks. [17]

package main

import (// Multiple imports are defined as such
 “fmt”
 “time”
)

func printString(str string) { // Define a function
 fmt.Println(str) // Print to terminal using fmt-package
}

func main() {

 var x int // Declare single var with explicit type
 y := 0 // Declare single var - implicit type and initialization
 var z, q int = 1, 2 /* multiple variables - explicit type (int) */

 timeVar := time.Now() // Function-call from the imported time-library

 for index := 0; index < 10; i++{ // for-loop
 fmt.Println(“Index is %d\n”, index)
 }

 index := 0
 for index < 10 { // while-loop
 fmt.Println(“Index is %d\n”, index)
 }

 printString(“Hello World”) // Call a function
 go printString(“Hello goroutine”) // Call a function as a goroutine
}

4.2 Pointers, references, and memory optimization

Go has both implicit and explicit typing, and pointers. A pointer is a variable

holding a memory-address of a value rather than holding the value itself, this

address is usually called “a reference”. This is most efficient when dealing with

large structs, as only the memory-address (usually 64bits) rather than the whole

object needs to be copied around. [18]

10

func main() {

 frstVar := 5 // the variable is declared and set to 5

 frstVar = multiply(5) // the result (10) is returned and assigned to frstVar

 scndVar := 5 // the variable is declared and set to 5

 multiplyWithPointer(&scndVar) // a reference is given as an input and the

 // value is multiplied in the function.

 fmt.Println(frstVar) // Will print “10”

 fmt.Println(scndVar) // Will print “10”

}

func multiply(input int) {

 return input*2

}

func multiplyWithPointer(input *int) {

 *input = *input*2

}

In the example above the multiply()-function takes in the variable input. The value

in function-call is copied from the main-functions stack-memory frame to another

temporary instance in the memory frame of the multiply-function. When

implemented as such, program will have the variable frstVar in memory twice

when executing multiply().

However, in the function-call of the multiplyWithPointer(), the function takes in a

reference to input-value. This value is then dereferenced and multiplied in the

function using the original value in memory; Thus, the effect from the function

(multiplication in this context) continues to exists outside of the function, and both

frstVar and scndVar will hold value of 10 when printed in the last lines of main().

Again - when dealing with simple integers, this does not really matter, but say if

the input-variable were a slice of 3000-string-values; Using pointers and

references would become a necessity.

But it is not that simple efficiency-wise - when one passes a variable to a function

in Go, Go copies this variable to stack-memory; But whenever one passes a

reference to a function in Go, Go does an escape analysis to see if the data

11

should be stored in heap-memory or in stack-memory. This adds buffer to the

execution. In addition to that, having larger heap adds buffer to garbage

collection-processes of Go. [18]

However, all this extra overhead may be leveled out by the fact that potential

large structs are processed as pointers, hence the only way to know for sure

whether to use pointers or not is to benchmark the software. [18]

4.3 Goroutines

In the end of the code-snippet in the beginning of this chapter, the printString(str)-

function was called both normally and as a goroutine. Using a goroutine

multiplexes all independent executions, or “coroutines” onto a set of threads.

Whenever such function executes a blocking system call, the run-time moves all

other coroutines to other non-blocked threads allowing them to keep running

regardless of the blocking call. [17]

Each goroutine is allocated a miniscule amount of resizable and bounded stack-

memory. The buffer for CPU is said to average on around three machine-code

instruction for each function call and this efficiency allows for as much as six-

figure sums of goroutines to coexist in the same address space. With traditional

multithreading this would be unthinkable because of the inevitable resource

shortage. [17]

4.4 Go-modules

Dependency management in Golang is done using a go.mod-file. It is used to

maintain all modules used in the project in question. Said file can be initialized

using “go mod init”-command. Whenever new packages are imported, “go get X”

can be executed to download the imported library. Another tool to know is “go

12

mod tidy” which synchronizes the go.mod-file and the packages used in the

project. [19]

5 Project plan

This project aimed to create an IPS system that would consist of a transparent

proxy that all IP-traffic is routed through. If the remote address is whitelisted the

packet should pass. On the other hand, if the remote address is blacklisted the

packet should be dropped.

The program should check all non-white- nor blacklisted remote IP-addresses

with threat intel API, to see if the system is connecting to known suspicious

addresses. If threat intel API marks the address as suspicious, that IP-address

should be blacklisted. If address comes out clean, this address should be

whitelisted.

The original project plan is broadly broken down into a bullet-point list of tasks in

this section. There might have come some minor tweaking along the line.

- Setup a development system

A virtual Linux-system for the development should be created.

- Study appropriate libraries for the implementation

A study should be conducted to find out what libraries could be utilized to

create the IPS-system

- Implement: Capture traffic on network-interface (IPv4)

Program should be able to capture traffic on network-interface to a network-

listener.

- Implement: Interactive mode

13

Program should be able to be executed in a manner where IPS-functionality

can be started and stopped. In a real scenario this could be left running on a

system in a detached terminal.

- Implement: Logging

Program should be able to write events to a log-file.

- Implement: Manipulate firewall-rules to proxy traffic to IPS

Program should be able to set the system to proxy all traffic to a network-

listener

- Implement: Ability to pass on traffic

Program should be able to send allowed traffic to the recipient.

- Implement: Ability to drop traffic (+ logging details)

Program should be able to drop blocked traffic and log details on the event.

- Implement: White- and blacklist functionalities

Program should have a list of allowed and a list of blocked addresses

- Implement: Check with threat intel API

Program should be able to ask the threat intel API to provide threat intel on

the IP-addresses of interest.

- Implement: IPv6 support

Program should be able to use IPv6-addresses as well.

- Implement: Set verbosity levels

User should be able to set verbosity level of logging.

- Implement: Add revocation-loop to whitelist

Whitelist should be broken down to two different lists, a permanent user-

created whitelist of fixed good addresses, and automatically created whitelist

14

of checked addresses. The items on the latter one should be periodically

revocated, to ensure that the system has up-to-date intel on foreign

addresses.

6 Project diary

The project began by setting up a virtual development environment. This process

is documented in the following section.

6.1 Setting up the development system

The first step was to setup a virtual instance of the latest Ubuntu-Linux, which

was 22.04 at the time of writing.

(Screenshot, bash-terminal, system details, 13.04.2023)

6.1.1 Visual Studio Code

Visual Studio Code was used as an IDE for this thesis project, which was

available as an .dep-package to be installed in Debian-based Linux-systems,

such as Ubuntu. [20]

Said package was installed using dpkg-command with -I (install) option and sudo-

privileges in Ubuntu.

(Screenshot, bash-terminal, Install VScode, 13.04.2023)

15

Installation was verified by running code-command using --v (version) option.

(Screenshot, bash-terminal, Verify VScode installation, 13.04.2023)

The output above proves that the installation was successful and that the installed

version was 1.77.3. In addition, output consisted of the 40 character long

hexadecimal value stating the software build-id and of the system architecture,

which was 64-bit Intel x86.

6.1.2 Git

Git and Github were used for version control on this project. First requirement

was to install the git-package using apt-package manager.

(Screenshot, bash-terminal, Installing git, 18.04.2023)

16

An SSH-keypair was created as means for authentication between development

environment and Github. ED25519 signature-system was used for key-

generation, as it was the de facto secure and efficient signature system at the

time of writing. [21]

6.1.3 Golang

Comprehensive instructions for installing the latest version of Go can be found

from Go’s website https://go.dev/doc/install. A binary release for Linux was used

in this project.

The steps were:

1. Download the correct archive, which was go1.20.3.linux-amd64.tar.gz

2. execute “rm -rf /usr/local/go && tar -C /usr/local -xzf go1.20.3.linux-

amd64.tar.gz”, to remove any hypothetical previous installation of Go and

extract the downloaded archive to /usr/local. Needs sudo-privileges.

3. Add Go’s binary-directory to the $PATH environment variable by adding

“export PATH=$PATH:/usr/local/go/bin” to ~/.profile

Small optional logic was added to ensure the path exists before adding it

to $PATH:

(screenshot, vim, if-statement for $PATH, 18.04.2023)

4. Execute the export-command above for immediate application.

5. Verify installation by executing “go version”

6.1.4 Creating the project-repository

As mentioned earlier, Github was used to store the project-code. A working title

of “RepBouncer” was chosen. Project was published under GNU General Public

License v3.0 to allow for free usage and modification of the project for anyone,

17

but to leave a minimum amount of room for privatizing any component of the

project compared to say MIT license, which is another well-known open license

model, but less strict on usage-policies. [22]

Should be added that project was kept private until a minimum value product-

state.

(Screenshot, https://github.com/stackbirb/RepBouncer, accessed 18.04.2023)

As the repository was now created, it was time to verify the connection and

authentication between the git-CLI and github.com, by cloning the RepBouncer-

repository to the local development-system.

(Screenshot, bash-terminal, git clone, 18.04.2023)

18

It worked, the public-key of github.com was added to local known_hosts-file, and

a local clone of RepBouncer-repository was created into ~/inssiprojekti/git/-

directory.

6.2 The development

Initially a new development branch was created to begin developing the program.

(Screenshot, bash-terminal, git-status, 18.04.2023)

When building software using go-lang, first thing is to initialize a module-file using

the “go mod init”-command as described earlier in the Golang-chapter.

6.2.1 Feature: Open capture on network-interface

First planned feature was ability to read from network-interface. This began by

studying the libraries needed, they are listed and briefly described in the following

bullet-point list:

- “fmt” - a go standard library for formatted I/O functionalities.

- “log” - a go standard library for simple logging functionalities, also provides

error-handling.

- “net” – a standard library for network I/O.

- “syscall” – a standard library for using system-calls. [23]

Google provides a library called “gopacket” that provides packet capture and

inspection capabilities. [24] This library was cloned from Github for further

studying.

19

The library is broadly documented in the fascinating doc.go-files provided in the

repository for each package and sub-package individually.

One sub-package of interest to mention was pcap, which was advertised as “C

bindings to use libpcap to read packets off the wire”. This allows for reading live

packets from a network interface using pcap-class’s method called “OpenLive”.

(Screenshot, VScode, gopacket/pcap/doc.go, 18.04.2023)

Next the pcap-package was imported using go get-command.

(Screenshot, bash-terminal, go get-command, 20.04.2024)

And the very first executable was written, this version just wrote a welcoming

message to std.out and opened and closed a network-interface for capturing.

Retrospectively, this opening should have been verified by adding an else-

statement on row 21 with some print in, but luckily one was not necessary.

20

(Screenshot, VScode, First WIP, 20.04.2023)

Trying to execute the first WIP-software revealed that there is some error in

importing the pcap-library.

(Screenshot, bash-terminal, go run- output, 20.04.2023)

After some research turned out other developers have had similar issues, and

these had been resolved by setting the $CGO_ENABLED-environmental variable

to 1. [25] In addition to setting said variable immediately, said set was added to

~/.bashrc to stop the need for running that with each login. Turned out the system

was missing GCC as well, therefore that had to be installed.

21

And of course, capturing on network interface requires sudo-privileges, with that

in mind the execution produced no errors!

(Screenshot, bash-terminal, successful execution, 20.04.2023)

The development-branch was pushed to GitHub, merged to main and new

development-branch was checked out with plan to implement the ability to read

IP-addresses to std.out from traffic.

(Screenshot, bash-terminal, Git log after first merge, 20.04.2023)

Similar git-operations were executed after each feature implementation onwards

and will not be mentioned further.

6.2.2 Feature: Extract IP-addresses from traffic

Next step was to implement the extraction of IP-addresses from traffic. This was

done using the layers-subpackage.

22

(Screenshot, VScode, reading IP-addresses, 20.04.2023)

Decoding packets with gopacket/layers was straightforward. The ipLayer-variable

in the code above is a gopacket.layer-object and ipPacket object is derived from

that. Then source and destination IP-addresses can be accessed as net.IP-

objects and said object-class has a .String()-method which casts the net.IP-object

to human-readable strings that can be printed to std.out using the fmt-library.

An iterator was added to packet-reading loop to exit the program in a clean and

timely manner.

23

(Screenshot, bash-terminal, reading IP-addresses, 20.04.2023)

6.2.3 Feature: Support Interactive mode

Ability to execute program in an interactive mode where user can interactively

launch the IPS-functionality and set settings etc. was built next. Idiomatic way to

parse CLAs in golang is using the flag-builtin package, this was implemented as

well.

24

(Screenshot, VScode, RepBouncer main and CLA-parsing, 25.04.2023)

Functionalities so far were broken down into functions and library called termbox

was added to allow for reading keystrokes from user while in interactive mode.

(Screenshot, VScode, RepBouncer menu-control, 25.04.2023)

Interactive mode was executed using –interactive flag.

25

(Screenshot, bash-terminal, execution in interactive mode, 25.04.2023)

6.2.4 Feature: Transparent proxy

At the time being the RepBouncer only read packets off the wire – in other words

took copies of traffic passing by. For the intended functionality the traffic should

have been proxied to sockets controlled by RepBouncer and then it would have

automatically decided what to do with the packets. All this should have been

transparent to both the client and any server communicating with the client. Such

network function is called transparent proxy. [26] Turned out that go has package

for exactly that called tproxy, [27] and that was implemented to do the listening

instead of the one previously implemented.

(Screenshot, https://pkg.go.dev/github.com/LiamHaworth/go-tproxy#section-

readme, Golang TProxy documentation, accessed 29.04.2023)

26

The example use case offered in tproxy’s github-page influenced the

implementation heavily. Own listeners were implemented for both UDP and TCP

connections.

(Screenshot, VScode, listenForTraffic(), 29.04.2023)

To be able to stop listeners once they are activated, a go-native channel-

implementation was created to achieve that for both TCP and UDP connections,

the screenshot from below is an example from listenTCP()-function.

(Screenshot, VScode, Select-statement with <-stopChannelTCP case,

29.04.2023)

27

The proxies were tested and indeed they got connections. This was verified using

nmap.

(Screenshot, bash-terminal, nmap scans to TCP and UDP proxies, 29.04.2023)

These scans were printed to screen on the running instance of RepBouncer.

Connections did fail as can be seen from the screenshot below, but that could

have been due to the way of testing. This would be further studied in the following

chapters.

28

(Screenshot, bash-terminal, listening works, 29.04.2023)

6.2.5 Feature: Manipulate Firewall to route everything to the transparent
proxy

To better simulate the IPS-functionality, a new virtual system was created to act

as the user device, all traffic from user were to be router via the IPS-system by

first setting them both to the same virtual network and then setting the default

gateway on the client system to point to the IPS-system.

(Screenshot, both virtual systems side by side, 30.04.2023)

29

(Screenshot, bash-terminal, set default gateway, 30.04.2023)

Plan was to try setting the routing manually via terminal on the IPS-system, and

once a working set of configurations would be found, these settings would be

forced in RepBouncer whenever the IPS would be executed, and vice versa

previous settings would be forced back when IPS would be turned off.

A working set of commands was found, first the IP-forwarding was allowed on the

system, this was achieved with command:

sysctl net.ipv4.ip_forward=1

Executing said command without the “=1” checks for current value, a logic was

introduced that does the checking and sets the value if it is off.

(Screenshot, VSCode, allowing ip_forward, 1.5.2023)

To route traffic to transparent proxies, iptables were configured.

30

(Screenshot, VSCode, setting iptables-rules, 1.5.2023)

These settings allowed for routing traffic from the client via the IPS-system.

However, seemed as if the UDP-forwarding was broken. TCP-did not produce

any error logs, but UDP did the very same ones that were visible in the nmap-

testing.

This needed further studying, but first thing was to create proper logging.

6.2.6 Feature: Write logs to file

Before further studying the UDP-issues and other oncoming issues, a persistent

log with timestamps was required. This was implemented as follows - logs were

written to string-slice variable until it reaches a size-limit of 150 items. Then all

those would be appended to the log-file and the variable would be re-initialized

as empty. The reasoning behind this implementation was to minimize the times

writing is done to persistent memory.

31

(Screenshot, VSCode, logging-functions, 1.5.2023)

The screenshot above was taken before this change was made, but later the log-

file writing was temporary done to an absolute path of /run/repbouncer.log to store

and write the logs on RAM-memory, due to the number of debug-messages per

second being excessive while still in testing phase.

6.2.7 Study: Fixing connection issues

The error message from UDP-connections suggested that the issue was in trying

to use the same socket for multiple calls at once.

(Screenshot, Bash-terminal, udp-errorlogs, 1.5.2023)

32

The error message came from tproxy.DialUDP()-call in handleUDPConn()-

function, visible in the screenshot below on row 471. The error-message is

created on row 473.

(Screenshot, VSCode, handleUDPConn(), 1.5.2023)

This handleUDPConn()-function was called as a goroutine from listenUDP()-

function (on row 421) so it was likely to have had multiple simultaneous threads

running at once.

(Screenshot, VSCode, listenUDP(), 1.5.2023)

Assuming that the issue was the first UDP-call hanging up the UDP-port, as

seemed likely - this could have theoretically been resolved by running it via a

normal function call, but this could have ended up creating quite a bottleneck on

the network-throughput as only one UDP-connection could have been open at a

33

time. Another solution could have been to have a pool of UDP-ports available that

would have been iterated over until an open one was found every time UDP-

connection needed to be created. A decision was made that the UDP-

functionalities would be implemented once a working product was produced with

only TCP-support. For now - all UDP-related functionalities were commented out.

TCP-proxy’s functionality was verified, and a new problem surfaced –

RepBouncer did otherwise work as expected when only TCP-connections were

monitored, but when the original destination address was parsed from the

net.Conn-object in the handleTCPConnection()-function, the parsing would return

the IPS-system’s address and connect to that. The solution was easy to describe

at a high level, but potentially harder to fix – the destination address parsing

should be fixed to point to the original destination.

(Screenshot, VScode, handleTCPConn(), 3.5.2023)

The DialOriginalDestionation()-function was supposed to be able to parse the

original destination, but for some reason it did not work as documented in this

use case.

34

(Screenshot, VScode, DialOriginalDestination()-inline documentation, 3.5.2023)

The solution was setting the dontAssumeRemote to true, which seemed

counterintuitive, but seemed that in this context “the client” in the documentation

referred to the iptables. and the IP-address and port from the Linux kernel were

the ones holding the true remote address. Perhaps incorrect firewall-settings

were the root cause for this and for the UDP issues as well. But for the time being

- changing that Boolean value allowed the TCP connections to pass at some

volume as can be interpreted from the packet-capture from IPS-system that was

taken after implementing the changes. These connections were visible in the

repbouncer.log as well. Therefore, RepBouncer was now proven to be able to

proxy the connection from client to server and vice versa.

(Screenshot, wireshark, Successful TCP-handshake, 3.5.2023)

6.2.8 Feature: Implement white- and blacklist usage

White- and blacklist usage was implemented next. The lists were implemented

as global variables – On execution, the initial lists were fetched from white.list

and black.list files and new findings were to be written to either of lists based on

the Threat Intel API’s response. For memory optimization purposes the lists

should probably be fetched from files on demand in some way, as in this version

the whole lists were constantly kept in heap-memory.

35

(Screenshot, VScode, White-/Blacklist usage, 4.5.2023)

6.2.9 Feature: Implement Threat Intel API usage

VirusTotal API had the previously mentioned limits on the API-usage, with the

most restricting one for this use case being the limit for maximum of 4 requests

per minute. Hence the AbuseIPDB-API was used instead, which allows for 1000-

ip checks a day using a free account.

36

(Screenshot, https://www.abuseipdb.com/pricing, Accessed 4.5.2023)

The API-usage was studied from the AbuseIPDB’s documentation. Requests

were sent to the check-endpoint using HTTP and the responses were JSON-

encoded. The parameter of interest was called AbuseConfidenceScore which

was an integer value between 0 and 100, where 0 was the most trustworthy and

100 the least. [28]

Function isOKAccordingToThreatIntelAPI() began by fetching the personal API-

key from file. Then it sent the requests. All this is visible in the screenshot below.

37

(Screenshot, VScode, Sending the request to AbuseIPDB, 5.5.2023)

Afterwards the response was parsed and the AbuseConfidenceScore was read

to determine if the address is malicious, a value of 10 was used as an initial

threshold.

(Screenshot, VScode, Parsing the API response, 5.5.2023)

38

6.3 Final Testing

Now every functionality required for proof-of-concept was implemented, and it

was time to verify the program works as expected.

(Screenshot, bash-terminal, Successful AbuseIPDB-check, 5.5.2023)

Blocking malicious sites was tested by manually adding safe IP-addresses to

blacklist to be connected to.

(Screenshot, bash-terminal, Successful banning of blacklisted traffic, 5.5.2023)

Another point to mention was the timestamps – The delay of waiting for

AbuseIPDB-response was around 170 milliseconds, which is very acceptable –

especially as this would have to be executed only once for each new IP-

addresses the client is connecting to. The overall internet speed should be tested

using some online tester to determine the effect of the IPS-system in general.

39

6.4 Future Development

There were still numerous obvious features to have in this IPS-system, some of

them are listed below.

- IPv6 support

- UDP support

- DNS support for domain name reputation as well

- White- and blacklist revocation loop

The lists should be revocated with a period such as 30 days to ensure that

the system has up to date threat intel.

- Unit-tests for all software-components

- Feature tests

- Verbosity levels configurable via CLAs

- Installation script that takes care of the configurations and dependencies

for as far as possible

- Proper documentation for everything required to set this on a personal

router.

7 Conclusions

This thesis was a versatile introduction into programming network-automation

with Go for the author, similarly it could be used as such for anyone reading it.

Unfortunately, as the software was not yet developed with test-driven-

development paradigm – there might be some uncertainty in some of the

reasoning in the project diary.

This thesis proved the flexibility of Go in server-software and produced a proof-

of-concept of IP-reputation based IPS-system for UNIX-routers.

The AbuseIPDB’s limit of 1000 requests per day did set some boundaries of

usage of such system, but otherwise this project proved that it was possible to

40

have free-of-charge IPS-system on a home-network with tolerable burden on the

network speed.

Unfortunately, this system does require manual configurations that requires solid

familiarity with computer networking and hence this does not seem like a viable

resolution to IoT’s security risks at a larger scale.

Overall, this thesis and the project associated with it was a fun, challenging and

educational experience for the author.

References

1 The Earthweb. Smart Home Statistics 2023: How many smart homes are
there? [Internet]. [place unknown]: Wise; 2023 [updated 2023 Apr 08; cited
2023 Apr 12]. Available from: https://earthweb.com/smart-home-statistics/

2 Spiceworks. Malware threats can easily bypass antivirus software (know
the limits of antivirus) [Internet]. [place unknown]: Locutus; 2020 [updated
2020 Oct 20; cited 2023 Apr 14]. Available from:
https://www.spiceworks.com/it-security/data-security/articles/malware-
threats-can-easily-bypass-antivirus-software/

3 Dryden Municipal Telephone System. What can’t a firewall protect
against? [Internet]. Dryden (CA): Dryden Municipal Telephone System;
[cited 2023 Apr 14]. Available from: https://www.dmts.biz/faqs-
firewalls/what-cant-a-firewall-protect-against/

4 Cyberark. What is Defence-in-Depth? [Internet]. [place unknown]:
Cyberark; [cited 2023 Apr 15]. Available from:
https://www.cyberark.com/what-is/defense-in-depth/

5 National Cyber Security Centre. What is an antivirus product? Do I need
one? [Internet]. UK: National Cyber Security Centre; 2019 Jan 21 [cited
2023 Apr 15]. Available from: https://www.ncsc.gov.uk/guidance/what-is-
an-antivirus-product

6 Safety Detectives. How does antivirus quarantine work? [Internet]. [place
unknown]: Glamoslija; [cited 2023 Apr 15]. Available from:
https://www.safetydetectives.com/blog/how-does-antivirus-quarantine-
work/

7 Safety Detectives. How does antivirus software work in 2023? [Internet].
[place unknown]: Kane; [cited 2023 Apr 15]. Available from:
https://www.safetydetectives.com/blog/how-does-antivirus-software-work/

41

8 Fortinet. What is a Firewall? [Internet]. [place unknown]: Fortinet, inc.;
[cited 2023 Apr 17]. Available from:
https://www.fortinet.com/resources/cyberglossary/how-does-a-firewall-
work

9 Techtarget. Definition: packet filtering [Internet]. [place unknown]: Wright;
[updated 2023 Mar; cited 2023 Apr 17]. Available from:
https://www.techtarget.com/searchnetworking/definition/packet-filtering

10 Securelist. Indicators of compromise (IOCs): how we collect and use them
[Internet]. [place unknown]: Nazarov, Delcher, Sapronov; 2022 Dec [cited
2023 Apr 19]. Available from: https://securelist.com/how-to-collect-and-
use-indicators-of-compromise/108184/

11 Virustotal. How it works [Internet]. [place unknown]: Virustotal; [cited 2023
Apr 20]. Available from: https://support.virustotal.com/hc/en-
us/articles/115002126889-How-it-works

12 Cyber Management Alliance. Why is IP address data important for
Cybersecurity & threat intel [Internet]. [place unknown]: Bishop; 2022 Jun
[cited 2023 Apr 20]. Available from: https://www.cm-
alliance.com/cybersecurity-blog/why-is-ip-address-important-for-
cybersecurity-threat-intel

13 Github. Maltrail – Malicious traffic detection system [internet]. [place
unknown]: stamparm; 2016 [updated 2023 Mar 1; cited 2023 Apr 21].
Available from: https://github.com/stamparm/maltrail

14 DOIT software. Go vs Python in 2023: Which one to choose? [Internet].
[place unknown]: Osadchuckto; 2023 Mar 26 [cited 2023 Apr 24].
Available from: https://doit.software/blog/go-vs-python#screen8

15 Geeksforgeeks. Go programming language (introduction) [Internet]. [place
unknown]: Yadav; [updated 2023 Apr 24; cited 2023 Apr 24]. Available
from: https://www.geeksforgeeks.org/go-programming-language-
introduction/

16 Google. Frequently Asked Questions (FAQ) [Internet]. [place unknown]:
Google; [cited 2023 Apr 24]. Available from: https://go.dev/doc/faq

17 Go by Example. Go by Example: Goroutines [Internet]. [place unknown]:
McGranaghan, Bendersky; [cited 2023 Apr 24]. Available from:
https://gobyexample.com/goroutines

18 Medium. When to use pointers in Go [Internet]. [place unknown]: Meeus;
2019 Nov 17 [cited 2023 Apr 24]. Available from:
https://medium.com/@meeusdylan/when-to-use-pointers-in-go-
44c15fe04eac

42

19 FAUN Publication. Understanding go.mod and go.sum [Internet]. [place
unknown]: Janteshital; 2021 Jun 23 [cited 2023 Apr 24]. Available from:
https://faun.pub/understanding-go-mod-and-go-sum-5fd7ec9bcc34

20 Microsoft. Visual studio code [Internet]. [place unknown]: Microsoft; [cited
2023 Apr 18]. Available from: https://code.visualstudio.com/

21 Ed25519: high-speed high-security signatures. Introduction [Internet].
[place unknown]: Bernstein, Duif, Lange, Schwabe, Yang; [cited 2023 Apr
18]. Available from: https://ed25519.cr.yp.to/

22 Exygy. Which License Should I Use? MIT vs. Apache vs. GPL [Internet].
[place unknown]: Morris; 2016 Jun 21 [cited 2023 Apr 18]. Available from:
https://www.exygy.com/blog/which-license-should-i-use-mit-vs-apache-vs-
gpl

23 Google. Standard library (go1.20.3) [Internet]. [place unknown]: Google;
2023 Apr 4 [cited 2023 Apr 18]. Available from:
https://pkg.go.dev/std@go1.20.3

24 Github. GoPacket [internet]. [place unknown]: Google; [updated 2022 Aug
10; cited 2023 Apr 18]. Available from: https://github.com/google/gopacket

25 Github. gopacket linux undefined: pcapErrorNotActivated . Windows has
no problem #629 [internet]. [place unknown]: Hilisecs; 2019 Apr 5 [cited
2023 Apr 20]. Available from:
https://github.com/google/gopacket/issues/629

26 Fortinet. What is a Transparent Proxy? [Internet]. [place unknown]:
Fortinet, inc.; [cited 2023 Apr 29]. Available from:
https://www.fortinet.com/resources/cyberglossary/transparent-proxy

27 Google. Golang TProxy [Internet]. [place unknown]: Haworth; 2019 Jul 26
[cited 2023 Apr 29]. Available from:
https://pkg.go.dev/github.com/LiamHaworth/go-tproxy#section-readme

28 AbuseIPDB. CHECK Endpoint [internet]. [place unknown]: AbuseIPDB;
[cited 2023 May 4]. Available from: https://docs.abuseipdb.com/#check-
endpoint

