

Henri Hänninen

IMPLEMENTING ADS INTERFACE FOR INTEGRATION OF PLC AND MACHINE

VISION APPLICATION

IMPLEMENTING ADS INTERFACE FOR INTEGRATION OF PLC AND MACHINE

VISION APPLICATION

Henri Hänninen
Opinnäytetyö
Kevät 2023
Sähkö- ja automaatiotekniikka
Oulun ammattikorkeakoulu

TIIVISTELMÄ

Oulun ammattikorkeakoulu
Sähkö- ja automaatiotekniikka, Automaatiotekniikka

Tekijä: Henri Hänninen
Opinnäytetyön nimi: Implementing ADS Interface for Integration of PLC and Machine Vision Appli-
cation
Työn ohjaaja: Timo Heikkinen
Työn valmistumislukukausi ja -vuosi: Kevät 2023
Sivumäärä: 59 + 4 liitettä

Opinnäytetyön tarkoituksena oli toteuttaa kommunikaatiorajapinta Beckhoffin PLC:n (Program-
mable Logic Controller) ja konenäkösovelluksen välille käyttäen ADS-protokollaa. ADS (Automa-
tion Device Specification) on Beckhoff Automationin kehittämä tiedonsiirtoprotokolla, jota Beckhof-
fin ohjelmointiympäristö TwinCAT käyttää kommunikointiin eri ohjelmamoduulien välillä. Sitä voi-
daan käyttää myös ulkoiseen kommunikointiin automaatiolaitteiden kanssa, jotka tukevat protokol-
laa. ADS-rajapinta toteutettiin LabVIEW:n graafisella ohjelmointikielellä hyödyntäen Beckhoffin
TF3710 TwinCAT 3 interface for LabVIEW -kirjastoa, joka tarjoaa mahdollisuuden kyseisen raja-
pinnan luomiseen.

Tiedonsiirtorajapinnan testaamista varten kehitettiin konenäkösovellus. Konenäkösovelluksen tar-
koitus oli tunnistaa ja tarkastella kuusikulmiomuttereita. Konenäkösovellukselle rakennettiin tes-
tausympäristö, joka sisälsi kameralaitteiston. Opinnäytetyö sisältää kameralaitteiston konfiguroimi-
sen ja konenäkösovelluksen ohjelmoinnin. Konenäkösovellus ohjelmoitiin käyttäen National Instru-
mentsin Vision Builder AI -ohjelmistoa.

Opinnäytetyössä ADS-rajapintaa vertaillaan TCP/IP client-rajapintaan. TCP/IP client on TCP/IP-
protokollaan perustuva tiedonsiirtorajapinta, jota käytetään laitteiden väliseen kommunikointiin eri-
laisissa automaatiosovelluksissa ja sen on kehittänyt JOT Automation. Opinnäytetyössä tutkitaan
rajapintojen suorituskykyä kommunikaationopeuden, vakauden sekä käytettävyyden osalta. Ver-
tailu toteutettiin käyttäen PLC-ohjelmaa, joka laskee kommunikaatioajan viestin lähettämisen ja
vastaanoton välillä. PLC-toiminnallisuus ohjelmoitiin TwinCAT 3 -ympäristössä.

Tuloksena opinnäytetyössä saatiin toimiva kommunikaatiorajapinta Beckhoffin PLC:n ja ko-
nenäkösovelluksen välille. ADS-rajapinta osoittautui suorituskyvyltään paremmaksi TCP/IP client-
rajapintaan verrattuna kommunikaationopeuden ja vakauden osalta. Lisäksi ADS-rajapinta on mo-
nipuolinen sekä yksinkertainen käyttää ja muokata. Sitä voidaan käyttää sellaisenaan muissa so-
velluksissa, missä Beckhoffin PLC kommunikoi konenäkösovelluksen kanssa.

Opinnäytetyö tehtiin JOT Automation Oy:lle. Työ tehtiin talven 2022 ja kevään 2023 aikana ja se
tehtiin pääosin toimeksiantajan tiloissa Oulussa.

ADS-protokolla, Konenäkö, Kommunikaatiorajapinta, PLC ohjelmointi

ABSTRACT

Oulu University of Applied Sciences
Electrical and Automation Engineering, Automation Engineering

Author: Henri Hänninen
Title of thesis: Implementing ADS Interface for Integration of PLC and Machine Vision Application
Supervisor: Timo Heikkinen
Term and year when the thesis was submitted: Spring 2023
Number of pages: 59 + 4 appendices

The main purpose of this thesis was to implement a communication interface between Beckhoff
PLC (Programmable Logic Controller) and a machine vision application using ADS protocol. ADS
(Automation Device Specification) is a communication protocol developed by Beckhoff Automation,
and it is used within Beckhoff’s TwinCAT automation software to communicate between different
software components. ADS can also be used for external communication with automation devices
that support the protocol. The ADS communication interface was implemented using LabVIEW
graphical programming language and utilizing TF3710 TwinCAT 3 interface for LabVIEW library by
Beckhoff, which provides tools for such an interface.

A machine vision application was developed to test the interface. The purpose of the machine vision
application was to detect and examine hexagon nuts. A test station with a camera setup was also
constructed for the machine vision application. The thesis consists of the hardware configuration
of the camera setup as well as the programming of machine vision software. Machine vision was
programmed using National Instrument’s Vision Builder AI.

The thesis compares the ADS interface to a TCP/IP client. The TCP/IP client is an external software
used for communication in various automation systems, including machine vision applications. It is
based on the TCP/IP protocol and developed by JOT Automation. Both interfaces were examined
in terms of speed and stability of the connection as well as usability of the interface. The comparison
was established using a PLC application measuring the time between sending a command and
receiving a response from the machine vision application. The PLC functionality was programmed
in the TwinCAT 3 environment.

The result of the thesis was a functional communication interface between Beckhoff PLC and a
machine vision application. The ADS interface proved to be more efficient in terms of speed and
stability. Additionally, it is versatile and simple to use and modify. It can be utilized in similar appli-
cations where Beckhoff PLC communicates with a machine vision application.

The thesis was done for JOT Automation Ltd between winter 2022 and spring 2023. The work for
the thesis was done mainly in their premises in Oulu, Finland.

Keywords:
ADS protocol, Machine vision, Communication interface, PLC programming

CONTENTS

1 INTRODUCTION ... 8

1.1 Background .. 8

1.2 JOT Automation ... 8

2 COMPONENTS OF THE MACHINE VISION SYSTEM ... 10

2.1 Machine Vision Hardware ... 10

2.1.1 Illumination ... 11

2.1.2 Imaging Lens ... 12

2.1.3 Camera Sensor .. 13

2.1.4 Vision Processing System .. 13

2.1.5 Communications System ... 14

2.2 Vision Software .. 14

2.2.1 Preprocessing .. 15

2.2.2 Region of Interest ... 15

2.2.3 Object Detection .. 16

2.2.4 Measurement Tools ... 17

2.2.5 OCR and Code Reading .. 17

3 TCP/IP PROTOCOL .. 19

3.1 TCP/IP Model ... 19

3.1.1 Application Layer ... 20

3.1.2 Transport Layer .. 20

3.1.3 Network Layer .. 21

3.1.4 Datalink Layer .. 21

3.1.5 Physical Layer .. 21

3.2 TCP/IP CLIENT .. 21

4 ADS PROTOCOL .. 22

4.1 Message Router ... 22

4.2 Structure of ADS Communication ... 24

4.2.1 NetId .. 24

4.2.2 PortNr .. 25

4.2.3 Index Group and Index Offset .. 25

4.3 ADS Services ... 26

4.3.1 Synchronous Communication .. 26

4.3.2 Asynchronous Communication .. 27

4.3.3 Event-based Communication ... 28

5 ADS INTERFACE .. 29

5.1 TF3710 TwinCAT 3 Interface for LabVIEW .. 29

5.2 Structure of Read and Write Virtual Instruments .. 30

5.3 Symbol List ... 31

5.4 ADS Read Virtual Instrument ... 32

5.5 ADS Write Virtual Instrument .. 32

5.6 Library File.. 33

6 PLC APPLICATION ... 34

6.1 PLC Functionality ... 35

6.2 ADS Interface PLC Application ... 35

6.3 TCP/IP Client PLC Application ... 36

7 VISION APPLICATION .. 38

7.1 Vision Application ... 39

7.2 Vision Application Communication Protocol ... 42

8 TEST STATION ... 44

8.1 Camera .. 45

8.2 Lens ... 45

8.3 Illumination ... 45

8.4 PLC .. 46

8.5 Camera Configuration .. 47

8.6 Camera Working Distance .. 48

8.7 Camera Calibration .. 49

9 TEST RESULTS .. 50

9.1 Command–Response Test ... 50

9.2 Continuous Communication Test ... 50

9.3 Multiple Data Test .. 51

9.4 Vision Software Code Execution Time ... 52

9.5 Jitter ... 52

9.6 Comparison .. 53

9.7 Usability .. 54

10 CONCLUSIONS .. 55

10.1 Future Implementations .. 56

SOURCES ... 57

APPENDICES .. 60

1 INTRODUCTION

The thesis is comprehensive and consists of several segments. First, it presents components of a

machine vision system in terms of hardware and software as well as theoretical background for

TCP/IP protocol and ADS protocol. In the thesis, the ADS interface and the TCP/IP client are im-

plemented for communication between a PLC and a machine vision application. A machine vision

application is developed to test the interfaces, and a test station with a camera setup is constructed.

The camera setup includes a rack, camera, lens, illumination, and PLC. The thesis describes the

test station’s hardware configuration, PLC programming, establishing of communication interface,

and vision software programming. The performance of both interfaces is examined in terms of

speed and stability of connection and usability. Lastly, the thesis presents results and discusses

possible implementations of the interface.

1.1 Background

The initial objective was to implement a communication interface between PLC and machine vision

application using an ADS interface established with LabVIEW. Machine vision software used in the

company provides an option for running a LabVIEW VI (Virtual Instrument), so this could be possi-

ble. The performance of the interface was to be tested as well. Implementing the ADS interface

between PLC and machine vision application could make communication faster and more stable

since no additional applications are involved. Currently, communication in similar applications is

established using external TCP/IP client software. A further objective was to compare the perfor-

mance of the ADS interface and the TCP/IP client. Usability was also to be addressed.

1.2 JOT Automation

The thesis was commissioned by JOT Automation Ltd. JOT Automation has over 30 years of ex-

perience in the electronics industry. It provides solutions for assembly, testing, and process auto-

mation. The main products are standalone solutions for product handling and testing, but JOT Au-

tomation also provides custom automation solutions for customers. Originally JOT Automation de-

signed solutions mainly for the telecom industry, but since then has also expanded to other indus-

tries, including consumer and power electronics, renewable energy, automotive, and battery indus-

tries. (1.)

Due to growing demand for increased production capacity and quality standards in the industry,

JOT Automation has integrated machine vision into its solutions. Machine vision is mainly used in

JOT automation in product handling, quality control, and measurement applications.

In product handling applications, a machine vision system provides positioning data to an actuator,

typically a robotic arm, which then moves the product according to the provided coordinates. For

quality control applications, a machine vision system provides pass/fail data and other valuable

information about the product, which is then managed according to the results obtained from the

machine vision system. Other uses for machine vision in JOT Automation include measurement

applications and visual reading of 2D codes.

FIGURE 1 presents JOT odd-shape 620 assembly cell, which can be equipped with a machine

vision system to facilitate board and component inspection.

FIGURE 1. JOT odd-shape 620 assembly cell. (2.)

2 COMPONENTS OF THE MACHINE VISION SYSTEM

Machine vision refers to real-time imaging-based automatic inspection technology, and it is one of

the key elements of Industry 4.0. It has limitless applications in manufacturing environments. The

basic principle of machine vision systems is that a machine determines action based on the input

of a camera. The difference between computer vision and machine vision is that computer vision

acquires information from an image or a video. In contrast, a machine vision system uses a live

image from the system’s camera and makes rapid decisions based on the results. Machine vision

systems are often used in industrial contexts, whereas computer vision can be used as a

standalone system. (3.)

The utilization of machine vision systems in industrial applications began in the 1980s, but at first,

they were expensive and required a lot of computer programming. Due to the development of cam-

era and computer components and technologies, machine vision systems have become more com-

mon in manufacturing environments. Since then, they have drastically improved the quality, effi-

ciency, and operations of industrial applications. Some common applications for machine vision

systems include correcting production line defects, inventory control and management, product

tracking, and traceability and measurement applications. (4.)

A machine vision system eliminates human errors as it is not dependent on the performance of the

human. It does not get fatigued and can operate 24/7, thus, lowering production costs and saving

time. It is more accurate and faster than manual labor performed by humans, improving the quality

of the process. A machine vision system can also work in demanding industrial circumstances.

Additionally, it can detect ultraviolet light because it operates in a larger wavelength spectrum than

the human eye. (5.)

2.1 Machine Vision Hardware

A machine vision system, illustrated in FIGURE 2, consists of several components referred to as

machine vision hardware. These physical components work together to acquire and process visual

information. Machine vision hardware plays a critical role in the performance of the automation

system. The choice of hardware components depends on the specific application requirements and

performance parameters. The key components of the machine vision system are described in this

chapter.

FIGURE 2. Machine vision system. (6.)

The machine vision system consists of:

• Illumination

• Imaging lens

• Sensor

• Vision processing system

• Communications system

2.1.1 Illumination

Illumination is one of the most important components of any optical solution. That’s why choosing

the correct lighting system for machine vision is crucial. Illumination needs to be effective and

timely. A comprehensive analysis of the inspection environment and how a sample interacts with

light is required to achieve this. Factors like geometry, reflectivity, and color determine how much

light is reflected to the camera. The lighting system should be selected according to the features to

be measured or observed, maximizing contrast for wanted features and minimizing unwanted fea-

tures. This is achieved by adjusting the intensity of light and choosing the correct placement and

type of lighting. (7.)

Directional lighting is commonly used for machine vision because it is inexpensive and easy to

install. Even though it produces bright illumination and sharp shadows, it is sufficient for most ma-

chine vision cases. For more complex and highly reflective objects, diffused lighting is often used.

A diffused lighting system illuminates an object from multiple directions reducing shadows. A dome

lighting setup is one of the most common diffused lighting systems. (7.)

A backlighting setup is often used when measuring dimensions or the object’s general shape. The

backlighting setup illuminates the object from behind, outlining the edges of the object. The disad-

vantage of the backlighting setup is that the object’s surface is not clearly visible. Additionally, for

moving objects, a strobe light setup is often used. A correctly timed powerful flash of light and short

exposure time enables examining moving objects and prevent an image from getting blurred. A

strobe light setup is especially useful for objects moving at high velocity. (7.)

2.1.2 Imaging Lens

The purpose of the imaging lens is to collect and focus light for the image sensor. The imaging lens

consists of multiple optical lenses with the correct shape and spacing between them. They have

different abilities to refract light and different angles of view. The imaging lens forms an area of

inspection called the field of view, which is then captured on the camera’s imager. It also defines

the depth of field, which refers to the distance between the nearest and the furthest objects that

appear sharp in an image. Defining features for imaging lenses are aperture, focal length, and f-

number. Focal length is an optical property determining the lens’s ability to converge or diverge

light. Aperture refers to the diameter of the opening through which light travels. The ratio between

focal length and aperture is called the f-number. (8.)

Some form of distortion usually occurs in optical systems. In barrel distortion the center of the image

appears to be expanded, whereas, in pincushion distortion, it appears to be shrunk. Barrel distortion

usually occurs with wide-angle lenses, and pincushion distortion occurs with long focal lengths.

Distortion is countered by using a lens with a narrower angle of view or a vision software calibration

algorithm. (9.)

Imaging lenses for machine vision are robust and designed to withstand challenging industrial en-

vironments. They can be interchangeable or integrated into the machine vision system. The selec-

tion of the imaging lens should be based on the function being performed by the machine vision

system, the dimensions of the object under observation, and the distance between the camera and

the object. For example, a macro lens with a long focal length is usually selected for examining

small product parts. (10.)

2.1.3 Camera Sensor

A camera sensor is a component in digital cameras that captures light from the optical system and

converts it into a digital image. It is measured by the number of pixels available in the digital image.

The pixels are arranged into a matrix to form an image. The resolution of the sensor is defined by

the number of pixels in the matrix. Resolutions range from 640x480 to over 10MP, depending on

the application and image accuracy required.

Most cameras in machine vision systems use CCD (A charge-coupled device) or CMOS (comple-

mentary metal oxide semiconductor) sensors. CCD sensors are used due to their ability to produce

high-quality image data. However, in recent years CMOS (complementary metal oxide semicon-

ductor) sensors have been used more since they consume less power and are more economical.

The sensor for the machine vision system should be selected based on the dimensions of the

measurements being made and the tolerance of those measurements. Sensors with higher reso-

lution can produce images with higher quality and details, increasing the accuracy of the machine

vision system. (11.)

2.1.4 Vision Processing System

A vision processing system refers to a processing unit designed to perform vision software tasks.

Said tasks include acquiring an image from a sensor, preprocessing, analyzing the image, and

establishing results. Vision processing systems can be external (computer) or internal (stand-alone

machine vision systems.) External processors that are designed for running vision tasks called CVS

(compact vision system) are also available.

Stand-alone machine vision systems like smart cameras have all the machine vision system com-

ponents integrated into one unit. Smart cameras are easier to install than traditional machine vision

systems making them more accessible. Smart cameras are also smaller and can be mounted on a

moving object, making them suitable for robot applications. (12.)

2.1.5 Communications System

Machine vision communicates with other devices in the automation system, like PLC or HMI, based

on the result of vision processing. Since machine vision makes decisions in real-time, communica-

tion protocol needs to be fast and reliable. Different communication systems are used depending

on the device and manufacturer.

The most common communication solutions for machine vision systems are ethernet-based inter-

faces like GigE Vision. GigE vision is an interface standard that enables high-speed data transfer

and control over Ethernet networks. GigE is based on the Internet protocol (IP) standard, and its

goal is to unify protocols for industrial cameras. USB 3.0 camera solutions are also commonly used

for communication in machine vision systems. With USB 3.0, it is possible to attain even higher

data transfer speed, although cable length might become an issue. Other Communication solutions

include older interfaces like FireWire and Camera Link. (13.)

2.2 Vision Software

Vision software refers to functions and methods applied to the image signal from the camera and

executed by the processing system. There are lots of different vision software solutions available

for various applications. Some companies provide license-based vision software that can be used

as a standalone system, while others provide vision software included with other machine vision

equipment. The most popular machine vision software solutions available include Vision Builder AI

by National Instruments, VisionPro by Cognex, and MVTec by Halcon. Also, Keyence and Omron

provide machine vision solutions. Additionally, OpenCV (Open Source Computer Vision Library)

vision libraries can be used in a machine vision application. This chapter describes common func-

tions performed by vision software.

2.2.1 Preprocessing

Preprocessing is the first vision function performed by the processing unit. A raw camera image is

not optimal for machine vision applications; thus, some preprocessing is usually applied. These

include digital filtering tools and effects like removing noise, adjusting contrast, and thresholding.

Vision processing aims to retain as much information about the object being examined as possible.

FIGURE 3 illustrates image processing with an image sharpening filter in Photoshop. (14.)

FIGURE 3. Image before (left) and after (right) applying an image sharpening filter. (15.)

2.2.2 Region of Interest

Applying a region of interest (ROI) is a form of cropping the image. A Region of interest is an image

region that defines the boundaries of the relevant image processing area. It is typically rectangular,

although it can be any shape. Processing made inside the region of interest does not affect the

outside image, and it can be reset to the entire image at any time. A suitable region of interest

should always be applied for better performance and fewer disruptions. It also decreases pro-

cessing time and resources since the image region to be processed is smaller. FIGURE 4 illustrates

applying region of interest in TwinCAT vision. (16.)

FIGURE 4. Applying a region of interest in TwinCAT vision. (16.)

2.2.3 Object Detection

Object detection is the process of detecting and locating an object from the background using soft-

ware tools. It is part of almost any machine vision application. In manufacturing applications, the

object is usually a product being produced. An object detection tool locates an object and returns

the X and Y coordinates of the object's pixels. If the system is calibrated, object detection returns

X and Y coordinates in real-world units instead.

An object can be detected using various vision software tools. One of the most common methods

is called blob detection. Blob detection detects points and regions that differ from the background

in properties like brightness or color. Image processing filters like greyscale and binarizing with

certain threshold is usually applied before blob detection to make the objects appear bright, and

the surroundings appear dark. A blob is any object that can be clearly distinguished from the back-

ground. Blob detection is commonly used in machine vision applications because it uses less CPU

power than pattern matching. A method called edge detection has a lot of similarities with blob

detection, but whereas blob detection examines regions of connected pixels, edge detection ex-

amines the intensity of transitions in an image. FIGURE 5 illustrates a blob detection software tool

for detecting round shapes in TwinCAT vision. (17.)

FIGURE 5. Blob detection with TwinCAT 3 Vision. (18.)

2.2.4 Measurement Tools

Machine vision is also a powerful measurement tool. Vision software measurement tools are highly

accurate and can measure the object's dimensions and positioning. Also, features like diameter

and roundness can be measured. Machine vision systems are often used for quality inspection

applications in manufacturing. In quality inspection, a product is accepted or rejected based on the

results of a machine vision measurement tool. Using machine vision as a measurement tool has

advantages compared to traditional methods. It is fast, highly accurate, and can measure complex

or even moving objects. For measuring in real-world units, a calibration of the machine vision sys-

tem is required. Calibrating is usually executed by using a special calibrating tool or grid. The ac-

curacy of the measurement depends on how well the calibration is executed.

2.2.5 OCR and Code Reading

OCR (Optical Character Recognition) is a software tool that can recognize characters on printed

text. Early versions of OCR could only read specific fonts, but advanced OCR systems used now-

adays can read most common fonts and even handwritten text. It is mostly used in machine vision

applications to identify parts and products by reading the serial number printed on them. The printed

text might also include expiration dates and other important data that can be used in production.

Code reading in machine vision refers to the process of analyzing and interpreting codes using

machine vision tools. The tools include reading 2D codes, such as data matrix, QR, and bar codes.

The code reading function is useful in manufacturing environments since 2D codes can have more

data in a smaller space than printed text. In addition, it is possible to read codes with machine

vision even if they are damaged or partly removed due to the error correction data included in the

code. (19.)

3 TCP/IP PROTOCOL

TCP/IP consists of two separate network protocols, TCP and IP, but they can be referred to as one

network protocol since they usually work in unison. The TCP/IP protocol is the default method of

data transmission on the Internet. Together TCP/IP enables highly reliable data transfer between

devices over the Internet regardless of the hardware or the operating system. (20.)

TCP (Transmission Control Protocol) is responsible for sending packets over the network and en-

suring the data is delivered successfully. It breaks large amounts of data into smaller packets and

reorganizes them, so they can be transmitted while ensuring data integrity during the process. The

TCP protocol makes communication faster and more reliable since each packet can take its own

route to the destination avoiding the congestion of the network. (20.)

IP stands for Internet Protocol, and its primary purpose is delivering data packets between a source

device and its destination. Each device connected to the Internet is uniquely identified by an IP

address. This enables them to communicate and exchange data through the Internet. The IP pro-

tocol is also responsible for data encapsulation. In data encapsulation, header data is added to a

packet as it travels to its destination through the TCP/IP protocol stack. (20.)

3.1 TCP/IP Model

The working principle of TCP/IP is defined by the TCP/IP model, which is based on the OSI model.

The TCP/IP model represents how data is exchanged and organized over networks. Data is packed

and unpacked on different layers of the TCP/IP stack for a continuous stream of communication.

Each layer will add its own bit of information. After sending the data, the receiving device will then

dissemble the data in the opposite order. The updated TCP/IP model, illustrated in FIGURE 6, has

five layers: application, transport, network, data link, and physical layer. (21.)

FIGURE 6. The TCP/IP model. (22.)

3.1.1 Application Layer

The application layer is the topmost layer of the TCP/IP model. It combines the application, presen-

tation, and session layers of the OSI model. The application layer can be perceived as the interface

which the user interacts with. It includes programs and software which use TCP/IP for communica-

tion. Protocols like HTTP, HTTPS, and FTP are present in this layer. (21.)

3.1.2 Transport Layer

The purpose of the transport layer is to provide reliable data transmission for applications. In the

connection establishment phase, the client requests for connection, the server sends an acknowl-

edgment to the client, and lastly, the client sends an acknowledgment to the server. This method

is called a three-way TCP connection handshake. In the transport layer, TCP divides the data into

smaller packets and adds a header to form a TCP segment, which is sent to the receiver. This

allows TCP to have features like error handling, ordered data transfer, retransmission of lost data,

discarding duplicate packets, and congestion throttling. TCP and UDP protocols are present in this

layer. The UDP protocol is faster but does not support segmentation and is more unreliable. (21.)

3.1.3 Network Layer

The Network layer provides the functions and procedures for transferring data across networks. It

assigns the sender’s and the receiver’s IP address to each TCP segment to form an IP packet. An

IP address is assigned to ensure the IP packet reaches the correct destination. The IP packet is

then sent to other networks through routers. Routing is unnecessary if the source and destination

are in the same network. The network layer also determines the best path from the source to the

destination, although it does not check for errors. (21.)

3.1.4 Datalink Layer

The datalink layer is the second lowest layer of the TCP/IP model. It is responsible for sending and

receiving data through transmission devices, such as Ethernet cables and network interface cards.

The datalink layer adds a header and a trailer to the IP packet received from the network layer. The

header contains the MAC addresses of the sender and the receiver. The trailer contains 4 bytes of

error-handling data used for detecting errors in the transmission. Once the header and the trailer

are added, the data unit is called an ethernet frame. The datalink layer also has similar functional-

ities as the transport layer, like flow control and retransmission of data. (21.)

3.1.5 Physical Layer

The physical layer converts communication data into signals and transmits them to local media.

The physical layer is where actual communication occurs. A signal can be electrical, in the case of

cables, light, in case of optical fiber, or a radio signal. Most of the communication in the physical

layer uses the Ethernet protocol. The physical layer also determines the types of cables that can

be used for transmission. (21.)

3.2 TCP/IP CLIENT

Currently, a TCP/IP client is used for communication in JOT Automation. It is an external software

used for data transmission between the server and the client in various automation systems, in-

cluding machine vision applications. The TCP/IP client is based on the TCP/IP protocol, and it is

developed by JOT Automation.

4 ADS PROTOCOL

ADS (Automation Device Specification) is a communication protocol and interface technology de-

veloped by Beckhoff Automation based on the TCP/IP standard. Within Beckhoff’s TwinCAT auto-

mation software, it is used for communicating between different software components, for instance,

the communication between the NC and the PLC. In addition, ADS can also be used for external

communication with automation devices that supports the protocol. ADS communication between

different software modules within the TwinCAT system and with other automation systems is illus-

trated in FIGURE 7. (23.)

FIGURE 7. ADS communication within the TwinCAT system and for external communication. (23.)

4.1 Message Router

ADS enables communication between UserMode and RealTime. UserMode is the engineering en-

vironment of TwinCAT, whereas RealTime refers to the different operating modules of the TwinCAT

system, such as IO tasks. Messages in the system are exchanged through a consistent ADS inter-

face by the message router, illustrated in FIGURE 8. For every task, there is a software module

called "server" or "client." The servers in the system are the executing working devices in the form

of software. The clients are programs that request the services of the servers in the form of a

program. Within the TwinCAT system, individual software modules are treated as independent de-

vices. (24.)

FIGURE 8. Message router of the TwinCAT system. (24.)

The ADS protocol also applies to external communication. When communicating with other PLCs

or devices, the message router of a TwinCAT system exchanges data with the message router of

another TwinCAT system using ADS as an extension of the TCP/IP protocol. The communication

between TwinCAT systems is illustrated in FIGURE 9. (24.)

FIGURE 9. Communication between TwinCAT systems. (24.)

4.2 Structure of ADS Communication

Individual ADS devices in the network can be addressed by their NetId and PortNr. For internal

communication, only PortNr is needed. ADS data is furthermore specified by its index group and

index offset. The structure of ADS communication is illustrated in FIGURE 10. (25.)

FIGURE 10. Structure of ADS communication. (25.)

4.2.1 NetId

The AMS NetId identifies individual TwinCAT systems. It consists of six octets, and it is initially an

extension of the IP address. The last two octets serve as a subnet mask for field buses or further

devices. The AMS NetId must be unique for all communication partners. The AMS NetId of a local

or remote TwinCAT device can be set in SYSTEM\Routes\NetId Management of a TwinCAT pro-

ject, illustrated in FIGURE 11. (25.)

FIGURE 11. Setting NetId in TwinCAT system.

4.2.2 PortNr

ADS devices in a TwinCAT message router are uniquely identified by a number referred to as the

PortNr. It also states the device’s role in the system. For ADS devices, this has a fixed specification,

whereas pure ADS client applications are allocated a variable port number when they first access

the message router. Default AMS PLC Runtime ports start from 851 (800 for TwinCAT 2). Other

default AMS ports are 500 for NC and 300 for I/O servers. (26.)

4.2.3 Index Group and Index Offset

Index group and index offset are categorized as subclasses for PortNr. The length of the index

group is 16 bits, and it separates data from the PortNr into groups. The index offset indicates the

offset from which reading or writing the byte is to start. The length of the index offset is 32 bits. (26.)

4.3 ADS Services

The client sends an ADS request at the start of ADS communication. Next, the ADS request arrives

at the ADS server, where it is viewed as an ADS indication. Then the ADS server replies with an

ADS response, which the ADS client views as an ADS confirmation. Server-client relation of ADS

communication is illustrated in FIGURE 12. (27.)

FIGURE 12. Server-client relation of ADS communication. (27.)

Generally, ADS communication services are classified into synchronous, asynchronous, and event-

based services. Other methods for communicating with the ADS server are direct access via ad-

dress and indirect access via handles. (28.)

4.3.1 Synchronous Communication

In synchronous communication, client execution stops if an ADS request is sent. The client contin-

ues the code execution once a response from the server is received. The synchronous communi-

cation method is simple to implement between the client and the server. Additionally, this method

is not prone to errors because the client waits for a response from the server. An example scenario

of synchronous communication is the communication between an HMI and a PLC. Synchronous

communication is illustrated in FIGURE 13. (28.)

FIGURE 13. Synchronous communication. (28.)

4.3.2 Asynchronous Communication

In asynchronous communication, the client continues the code execution after an ADS request is

sent. Therefore, the client can send several ADS requests in one cycle. Responses are assigned

accordingly by a unique ID. The asynchronous communication method is considered more unstable

than the synchronous communication method. It is used if it is not possible to stop the code exe-

cution while waiting for the response. An example scenario of asynchronous communication is the

communication between two PLCs. Asynchronous communication is illustrated in FIGURE 14. (28.)

FIGURE 14. Asynchronous communication. (28.)

4.3.3 Event-based Communication

The concept in event-based communication is that the client sets an event where a threshold for

values can be configured. If the threshold is reached, a response message from the server is gen-

erated. This method reduces the number of requests. It also provides an accurate timestamp for

measurement and charting. In event-based communication, notifications are received “cyclic” or

“OnChange.” Cyclic implies that the client gets a value after each cycle. The OnChange method

sends a value only after the value changes. The event-based communication methods are illus-

trated in FIGURE 15. (28.)

FIGURE 15. Event-based communication methods. (28.)

5 ADS INTERFACE

ADS interface between a Beckhoff PLC and a machine vision application was established using

LabVIEW. LabVIEW is a graphical programming software developed by National Instruments. Lab-

VIEW was originally developed as an automatic measurement tool for laboratory applications, but

nowadays, it is a flexible programming environment for various applications like equipment control,

data acquisition applications, and user interface design. Some benefits of using LabVIEW are its

adaptive graphical design and compatibility with 3rd party applications. LabVIEW version 2019 was

used for this thesis. FIGURE 16 illustrates the user interface of LabVIEW. (29.)

FIGURE 16. LabVIEW graphical programming software. (29.)

5.1 TF3710 TwinCAT 3 Interface for LabVIEW

Beckhoff provides user libraries and interfaces for 3rd party applications. The ADS interface was

programmed utilizing TF3710 TwinCAT 3 Interface for LabVIEW. TF3710 is a library extension for

LabVIEW that enables LabVIEW to exchange data with TwinCAT runtime. It provides functions

necessary to write and read values to and from TwinCAT. Other similar tools available were also

considered but the TF3710 library was chosen because it is developed by Beckhoff and seemed

the most suitable for this application. It can be downloaded from Beckhoff’s website free of charge.

FIGURE 17 shows the TF3710 menu in LabVIEW. (30.)

FIGURE 17. TF3710 TwinCAT 3 Interface for LabVIEW user library. (30.)

5.2 Structure of Read and Write Virtual Instruments

The ADS interface was programmed as a LabVIEW VI. A VI (Virtual Instrument) is a basic building

block of programs written in a graphical programming language. It consists of two software compo-

nents: a front panel and a block diagram. The front panel can be perceived as an HMI containing

controls and indicators for the software, whereas the block diagram contains the software's func-

tionality. (30.)

For two-way communication, read and write virtual instruments are required. The read and write

virtual instruments contain a symbol interface, initialization of the ADS client, reading/writing of

values, and type resolver and release functions. Data is exchanged between the functions via han-

dles. Handles are identifiers that are used for keeping track of and managing data objects. A basic

structure of read and write virtual instruments using the TF3710 library is illustrated in FIGURE 18.

(30.)

FIGURE 18. Structure of read and write virtual instruments using the TF3710 library. (30.)

5.3 Symbol List

The first step in establishing the ADS interface is creating a symbol list. This can be achieved by

using a symbol interface function from the TF3710 library or reading symbols from an XML file. The

latter method was used. The symbol list XML file, shown in FIGURE 19, was created using an ADS

DAQ function from the TF3710 library. The ADS DAQ function reads variables from TwinCAT’s

runtime and creates a symbol list in XML format. ADS read and ADS write symbols are defined

accordingly in the XML file.

FIGURE 19. Symbol list XML file.

5.4 ADS Read Virtual Instrument

The purpose of the ADS read virtual instrument is to read variables from PLC to vision software.

The symbol list is read using a basic Read Text File function and the previously configured XML

file. Then an Init function from the TF3710 library is used to initialize variables. The Init function

passes the handles of the ADS symbols to a read function. A Read Sync Single TypeResolved

function was used for reading values. It reads variables from the ADS server synchronously and

converts them to LabVIEW data type. It also releases the ADS client from memory. The variables

are then converted to an appropriate data type using a Variant to Data function. The read function

is placed inside a for loop for reading multiple values. The output of the ADS read virtual instrument

is in array format. ADS read virtual instrument is shown in FIGURE 20.

FIGURE 20. ADS read virtual instrument.

5.5 ADS Write Virtual Instrument

An ADS write virtual instrument consists of similar functions but in a different order. At first, it reads

the symbol list and initializes the variables. The input of the ADS write virtual instrument is in array

format. A Variant to Data function converts the variables to the appropriate data type, and a To TC

function converts them to the TwinCAT data type. Handles and raw ADS write data are then passed

to a write function. ADS Write Sync Single function was used to write values to the server synchro-

nously. The writer is automatically released after the data packet has been successfully sent to

TwinCAT. The write function is placed inside a for loop for writing multiple values. The ADS write

virtual instrument is shown in FIGURE 21.

FIGURE 21. ADS write virtual instrument.

5.6 Library File

After programming the read and write virtual instruments, they must be exported into separate LLB

files. A LLB (library file) is a container file for multiple non-LLB files. In this case, the library file

combines all the sub virtual instruments and the TF3710 library data into a single file, which can

then be imported into vision software. The library file is created by selecting source distribution from

the project item menu of LabVIEW and configuring source file settings and other specifications.

FIGURE 22 illustrates creating a library file in LabVIEW. (30.)

FIGURE 22. Creating a library file in LabVIEW.

6 PLC APPLICATION

The PLC functionality was programmed in TwinCAT 3 environment. TwinCAT (The Windows Con-

trol and Automation Technology) is a complete automation system for PC-compatible computers,

and it is developed by Beckhoff. The TwinCAT system consists of multiple components. The pro-

gramming environment is called eXtended Automation Engineering (XAE.) It allows hardware con-

figuration, programming, and debugging in a single system, and it is integrated into Microsoft’s

Visual Studio. It supports programming languages such as IEC 61131-3 programming languages,

C/C++, and MATLAB/Simulink. (31.)

The real-time capable component of the TwinCAT system is called eXtended Automation Runtime

(XAR.) It allows its components to be loaded, executed, and administrated in real time, making it a

real-time control system. The program code can be simulated in the local target system. The Twin-

CAT system also supports core isolation for multi-core systems making it possible to assign single

cores for specific tasks, which helps with managing RAM usage. For example, I/O tasks can be

assigned to an isolated core. The real-time execution of the PLC code is illustrated in FIGURE 23.

ADS communication takes place after writing outputs in the TwinCAT PLC cycle. (31.)

FIGURE 23. Structure of TwinCAT PLC cycle. (31.)

6.1 PLC Functionality

In the thesis, PLC is responsible for sending a start command and receiving a response message

from the vision application. Two separate PLC applications were programmed for the ADS interface

and the TCP/IP client. These programs are then called in the main program. In the ADS interface

PLC application command and response messages are sent using the ADS protocol. Accordingly,

in the TCP/IP client PLC application, messages are sent using the TCP/IP protocol. Command and

response messages are also timed using a TwinCAT function.

6.2 ADS Interface PLC Application

The ADS interface PLC application is programmed using a case structure. Since the communica-

tion is symbol-based, the TwinCAT symbol list must be equal to the symbol list used in the ADS

interface. The symbol list is shown in APPENDIX 1. The PLC sends a Boolean start command to

start the vision application. The start time is acquired using the FB_LocalSystemTime function from

the TcUtilities library. After sending a start command, the PLC waits for a response message from

the vision application. The response message from the vision application contains measurement

values in the Dint data type. Vision status is updated accordingly. Lastly, the PLC application parses

response data and returns the correct nut size.

For sending commands continuously, a counter is programmed. If the counter value is below the

setpoint, the PLC sends another command and waits for results. Once the counter limit is reached,

the end time is set, and the PLC cycle ends. The code execution time can be calculated from the

start and end time values. It is also possible to send and receive multiple messages at once using

the PLC application. The ADS interface PLC application is shown in FIGURE 24.

FIGURE 24. ADS interface PLC application.

6.3 TCP/IP Client PLC Application

TCP/IP client PLC application has similar functionality to the ADS interface PLC application. The

symbol list for the TCP/IP client PLC application is shown in APPENDIX 2. However, communica-

tion with the TCP/IP client is established using a specific function block. Data unit types are defined

for the function block. Sending and receiving messages with the vision application are executed

using this function block. Command and response messages are string variables and require a

suffix for the TCP/IP client.

An additional delay in the PLC cycle is required to send commands continuously with the TCP/IP

client. This is because the TCP/IP client is event-based communication, and thus, it cannot process

consecutive commands in the network. Communication error occurs when commands are sent

faster than a response is received. Therefore, a timer is programmed as a delay in the PLC appli-

cation. The code execution time is calculated from the start and end time variables. The TCP client

can also send and receive multiple messages at once using a parser in the PLC application for the

response message, which separates different measurement data from a single string. The TCP/IP

client PLC application is shown in FIGURE 25.

FIGURE 25. TCP/IP client PLC application.

7 VISION APPLICATION

Vision application was programmed using Vision Builder AI by National Instruments. Vision Builder

AI has hundreds of vision tools for image processing and inspection. It also includes a vision ac-

quisition software tool that enables connecting and configuring Camera Link, GigE, and USB 3.0

cameras. It allows communication with PLCs and other industrial hardware with interfaces such as

TCP/IP, Modbus, and Ethernet/IP. (32.)

Machine vision functionality is programmed within states in Vision Builder AI. A state contains var-

ious functions and tools for the visual inspection of an object. The transition between states can be

defined for a certain condition. States are programmed between the start and end in the state

diagram. Usually, multiple states and different transition conditions are required in vision program-

ming. An overview of the inspection can be seen in the inspection window. The user interface of NI

Vision Builder is shown in FIGURE 26. (32.)

FIGURE 26. NI Vision Builder AI user interface. (33.)

7.1 Vision Application

A vision application is developed to test communication interfaces between PLC and machine vi-

sion practically. The purpose of the vision application is to detect and examine standard hexagon

nuts. The vision application detects and measures nuts using vision tools and returns various data.

It can detect nuts from size M3 to size M8, as shown in FIGURE 27, and it also works for detecting

multiple nuts simultaneously.

FIGURE 27. Standard hexagon nuts.

Two separate versions of vision application were programmed, one for the ADS interface and the

second for the TCP/IP client. The basic functionality and state machine of the software is similar in

both cases. The state machine consists of Idle, Init, Detect Objects, Find Circular Edge, No Objects

Found, and Results states. FIGURE 28 shows the state diagram of the vision application.

FIGURE 28. State diagram of vision application.

The first state in the vision application is the Init state, which resets counters and variables. In the

Idle state, the vision application waits for a start command from the PLC. The next state is Detect

Objects, which consists of multiple functions. It acquires an image, detects objects, and stores

object count into a variable. The image acquiring can be simulated by reading an image from a file

or acquiring a live image from a camera. Finally, vision start time data is written into a log file using

a Data Logging function. FIGURE 29 illustrates the detect object function in NI Vision Builder AI.

FIGURE 29. Detect objects function in NI Vision Builder AI.

The next state after Detect Objects depends on the result of the state. If no objects were detected,

the next state is No Objects Found. This state overlays an error and sends an error message to

the PLC. If objects are detected, the next state is called Find Circular Edge. In the Find Circular

Edge state, an ROI (Region of Interest) location is defined according to the object's X and Y coor-

dinates. The circular edge is then detected using this ROI. Figure 30 illustrates the find circular

edge function in Vision Builder AI.

FIGURE 30. Find circular edge function in Vision Builder AI.

The Result state sends vision results to the PLC. The result consists of measurement data, includ-

ing diameter, X and Y coordinates, and area of the nut. The PLC parses the results and returns the

correct nut size. An error message is sent to the PLC if no objects were detected. Vision end time

data is acquired using a data logging function. The vision run time is calculated from the difference

between the start and end time variables.

7.2 Vision Application Communication Protocol

The vision application versions have different communication protocols. The ADS interface vision

application communicates with the PLC using a LabVIEW virtual instrument. In the Idle state, the

vision application waits for a start command from the PLC using a RUN LabVIEW VI function and

the previously created ADS read virtual instrument. The ADS read virtual instrument is imported to

the vision application with the corresponding library file. Accordingly, in the Results state, the vision

application sends results using the ADS write virtual instrument. The Run LabVIEW VI function is

shown in FIGURE 31.

FIGURE 31. Run LabVIEW VI function in NI Vision Builder AI.

The TCP/IP client vision application communicates with the PLC using a TCP I/O function, shown

in FIGURE 32. A TCP/IP server is defined in System Resource Manager with a correct port number.

The same port number is set in the TCP/IP client. In the Idle state, the TCP/IP server waits for a

command message from the PLC. Accordingly, the TCP/IP server sends a response message

consisting of the result data in the Result state.

FIGURE 32. TCP I/O-function in NI Vision Builder AI.

8 TEST STATION

A test station was constructed for the thesis. The purpose of the test station was to demonstrate a

real machine vision environment so that the performance of the ADS interface and the TCPIP client

could be compared. The main components for the test station include a rack, camera, lens, illumi-

nation, and PLC. The test station also includes a power supply for the illumination and communi-

cation interfaces. The test station is shown in FIGURE 33.

FIGURE 33. Test station.

Requirements for the test station were to have a rigid test setup with fixed positions for the camera

and the object and with adjustable height for the camera. The rack for the test station was con-

structed from a metallic base plate and aluminum profiles. The camera for the test station needs to

have a Gigabit ethernet connection interface and be fast enough for machine vision applications.

Additionally, illumination with adjustable intensity control is required.

8.1 Camera

Basler acA2500-14gm GigE camera, shown in FIGURE 34, was chosen for the test station. It has

a 5 MP resolution and 14 fps frame rate, and it uses a 5.7 mm x 4.3 mm monochrome CMOS

sensor. Basler acA2500-14gm uses GigE vision for communication, which enables high-speed data

transfer. The camera was connected to the PLC by a PoE (Power over Ethernet) adapter. The PoE

adapter enables data transfer as well as provides power for the device through an Ethernet cable.

FIGURE 34. Basler acA2500-14gm.

8.2 Lens

OPT-AC2514-5M lens was chosen for the camera based on the requirements for performance and

focal length. It is suitable for C-mount 5 MP cameras and has a 25 mm focal length, which is efficient

for relatively short working distances. The aperture was set to about four, and the lens was precisely

focused on the target.

8.3 Illumination

Different lighting solutions were considered for the test station. A light table solution was chosen

as it proved to be the most efficient for this type of vision application. The light table is a backlighting

solution that illuminates the object from behind, displaying the shape of the object and making it

easier to detect. Additionally, it is not too sensitive to interfering ambient light. The light table was

mounted to the base plate with screws.

Adjustable intensity control was achieved by using a power supply with adjustable voltage control,

Agilent U8001A, in this case. It is a single-output DC power supply with adjustable 0-30 V voltage

control. By using adjustable intensity control, illumination can be set according to the vision appli-

cation. The light table is shown in FIGURE 35.

FIGURE 35. Light table.

8.4 PLC

Beckhoff CX2020, shown in FIGURE 36, was chosen as a PLC for this setup. The PLC triggers the

machine vision application, receives a response message, and monitors start and end time values.

It has a 1.4 GHz Intel® Celeron® CPU and 2 GB RAM. Beckhoff CX2020 has an option for a CFast

memory card, two independent Gbit Ethernet interfaces, 4 USB 2.0 interfaces, and a DVI-I interface

for a monitor.

FIGURE 36. Beckhoff CX2020.

However, all the programming and testing of the communication interfaces were executed using

an HP EliteBook laptop operating on a Windows platform. I/O tasks were assigned to an isolated

core for TwinCAT to run in real time. The laptop has an 11th-generation Intel core processor and

16 GB of installed physical memory.

8.5 Camera Configuration

The camera was configurated using Pylon IP configurator software. Also, National Instruments

camera drivers were installed. Finally, the proper functionality of the camera was confirmed using

a live image in National Instruments NI Max software. FIGURE 37 illustrates configuring the camera

in pylon IP configurator software.

FIGURE 37. Configuring camera in pylon IP configurator software.

8.6 Camera Working Distance

Optimal camera working distance (WD) was calculated from the field of view (Y), focal length (f),

and sensor size (X). The field of view is approximately the length of the light table (68 mm.) The

focal length of the OPT-AC2514-5M lens is 25 mm, and the size of the CMOS sensor used is 5,7

mm. The equation for the camera height is shown in Equation 1.

𝑊𝐷 =
𝑌𝑓

𝑋
=

68 𝑚𝑚 ∗ 25 𝑚𝑚

5,7 𝑚𝑚
= 298,245 𝑚𝑚 ≈ 30 𝑐𝑚

EQUATION 1

8.7 Camera Calibration

For correct and accurate measurement, the camera needs to be calibrated. In the calibration, the

pixel coordinate system of the camera is mapped into a real-world coordinate system. The camera

is calibrated using a National Instruments Vision Builder AI software calibration sequence with a

specific dot-patterned calibration grid. The distance between the dots of the calibration grid is 1mm.

After the calibration is finished, the machine vision application can measure in real-world units. The

calibration grid is shown in FIGURE 38.

FIGURE 38. Calibration grid.

9 TEST RESULTS

In automation systems, data is transmitted continuously between different applications and devices.

That is why the performance of the communication interface is crucial for the efficiency of the au-

tomation system. Latency in communication adds up and can increase cycle time significantly. The

latency affects the productivity of the process and makes the automation system less effective. An

unstable communication interface can also lead to errors and data loss. Thus, a fast and stable

connection interface is required, especially in real-time control systems such as machine vision

applications.

This chapter presents the results of test cases executed for both communication interfaces: the

ADS interface and the TCP/IP client. The performance of the interfaces was tested in terms of

speed and consistency of the connection. Command-response, continuous communication, and

multiple commands test cases were executed for the interfaces, and jitter was calculated based on

the results of those tests. Command and response messages were string data types for test pur-

poses. Also, the usability of the interfaces was examined.

9.1 Command–Response Test

The communication speed of the ADS interface and the TCP/IP client was tested with the com-

mand–response test. The command–response test is a case of a single communication cycle be-

tween the PLC and the machine vision application. The PLC sends a command message and

measures the time it takes to receive a response message from the vision application. The vision

application used was identical in both cases, excluding the communication protocol. The content

of the message is irrelevant since the connection's performance is being tested. This test was

executed ten times to measure the average communication time for both interfaces. The results of

the test are shown in Appendix 3 and Appendix 4.

9.2 Continuous Communication Test

Additionally, the ability to send commands continuously was tested. This test case is more similar

to a real-time application where continuous communication between a PLC and a machine vision

application is required. In the continuous communication test case, the PLC sends a command

message, and once it receives a response message from the vision application, a new command

is sent. This set of command and response messages was executed ten times continuously as fast

as possible. The continuous communication test was executed ten times to measure the average

communication time for both interfaces. Start time is measured from sending the first command,

and end time from receiving the last response. Results for the ADS interface are shown in Appendix

5.

For the TCP/IP client, a delay in the loop is required for a stable connection. Different delay values

were tested for optimal performance of the interface. The delay was set to 200 milliseconds, and

the test was executed ten times. In an actual application, the delay would need to be closer to 300

milliseconds to make sure no errors occur in the communication, and the connection will be stable.

The results of the continuous communication test for the TCP/IP client are shown in Appendix 6.

9.3 Multiple Data Test

The previous tests discussed sending a single command message and receiving a response mes-

sage from the machine vision application. The ability to send and receive multiple messages sim-

ultaneously is tested in multiple data test. The ADS interface achieves this by using the same read

and write virtual instruments as in the previous tests. Since the output of the read virtual instrument

is of array data type, the PLC can send multiple commands at once, which are then mapped indi-

vidually in the vision application. The response messages from the vision application are received

accordingly in array data type using the previously programmed write virtual instrument. Commu-

nication time in the multiple data test case was approximately the same as in the command–re-

sponse test case.

Sending and receiving multiple data at once is also possible for the TCP/IP client. The PLC sends

multiple data at once using the TCP/IP client. However, receiving and interpreting a response mes-

sage from the vision application with multiple measurement data is more complex than with the

ADS interface. First, the response message is formed in the vision application into a single string

which is then sent to the PLC. The string is then parsed in the PLC application for each individual

measurement data to be addressed. This method requires extra work in forming the response mes-

sage and parsing it.

9.4 Vision Software Code Execution Time

Vision software code execution time is measured from the vision start time and end time variables

acquired using the data logging function in NI Vision Builder AI. The vision software code execution

time for the ADS interface vision application and the TCP/IP client vision application is shown in

Appendix 7 and Appendix 8.

9.5 Jitter

Jitter affects the performance of the communication interface. Jitter in data transfer refers to the

variation in the time delay between when a message is sent and when a response is received over

the network. Jitter affects the connection negatively since it makes the communication interface act

unpredictably. In an industrial application, an unstable data connection can lead to many issues,

including unplanned process shutdown and data loss. (34.)

Jitter was calculated from the command–response test results. Jitter for the ADS interface is shown

in Equation 2 and for the TCP/IP client in Equation 3.

(𝐴𝐷𝑆𝑇1 − 𝐴𝑉𝐺)2 + (𝐴𝐷𝑆𝑇2 − 𝐴𝑉𝐺)2 + … (𝐴𝐷𝑆𝑇𝑛 − 𝐴𝑉𝐺)2

𝑛

=
(0,23 𝑠 − 0,231 𝑠)2 + (0,23 𝑠 − 0,231 𝑠)2 + ⋯ (0,24 𝑠 − 0,231 𝑠)2

10

= 8,9 ∗ 10−5 𝑠 ≈ 0,09 𝑚𝑠

EQUATION 2

(𝑇𝐶𝑃𝐼𝑃𝑇1 − 𝐴𝑉𝐺)2 + (𝑇𝐶𝑃𝐼𝑃𝑇2 − 𝐴𝑉𝐺)2 + … (𝑇𝐶𝑃𝐼𝑃𝑇𝑛 − 𝐴𝑉𝐺)2

𝑛

=
(0,29 𝑠 − 0,231 𝑠)2 + (0,32 𝑠 − 0,231 𝑠)2 + ⋯ (0,301 𝑠 − 0,231 𝑠)2

10

= 0,005485 𝑠 ≈ 5,5 𝑚𝑠

EQUATION 3

9.6 Comparison

The ADS interface proved to be faster in all the test cases. In the command-response test, the

average time for the ADS interface was 0,231 seconds, and for the TCP/IP client, the average time

was 0,294 seconds. This result is not notable, but it can make a difference in automation systems

where the speed of the communication interface is crucial for the process. The ADS interface was

21% faster in the command-response test, shown in Equation 4.

(1 −
𝐴𝐷𝑆

𝑇𝐶𝑃𝐼𝑃
) ∗ 100 = (1 −

0,231 𝑠

0,2939 𝑠
) ∗ 100 = 21,401 ≈ 21%

EQUATION 4

Also, the jitter was measured from the results of the command-response test. Jitter for the ADS

interface was 0,09 milliseconds, and for the TCP/IP client, 5,5 milliseconds, so there was also less

jitter in ADS interface communication. However, the jitter was slight in both interfaces and can be

seen as insignificant.

In the continuous communication test, the difference in the performance of the interfaces was more

significant. This is due to the delay required in the TCP/IP client PLC application. The average

execution time for the ADS interface was 3,483 seconds, while the average execution time for the

TCP/IP client was 6,031 seconds. These extra seconds can make a notable difference in an indus-

trial application requiring cycle time optimization. The difference between the ADS interface and

the TCP/IP client in the continuous communication test case is calculated in Equation 5. The ADS

interface proved to be 42% faster.

(1 −
𝐴𝐷𝑆

𝑇𝐶𝑃𝐼𝑃
) ∗ 100 = (1 −

3,4827 𝑠

6,0309 𝑠
) ∗ 100 = 42,252 ≈ 42%

EQUATION 5

Test results of the vision software code execution time test were incoherent. The code execution

time should be the same with both applications since they are identical besides the communication

protocol. However, as seen in Appendix 7 and Appendix 8, there is some variation between the

interfaces. The average code execution time for the ADS interface was 0,119 seconds, and for the

TCP/IP client, 0,179 seconds, so the TCP/IP vision software code execution time was slower than

the ADS interface vision time.

9.7 Usability

The ADS interface does not have a user interface and is used by running the previously pro-

grammed read and write virtual instruments in the vision software. The communication is symbol-

based, so the symbol list of the PLC application and the ADS interface must be compatible. New

Variables can be added or removed by modifying the XML file used by the ADS interface.

The ADS interface is versatile as it supports various data types of variables. It supports LabVIEW

data types, including Boolean, string, array, and integer. In addition, the LabVIEW front panel can

be used for debugging purposes by using step status indicators. The ADS interface is simple to

implement in applications where a Beckhoff PLC communicates with a machine vision application.

It requires a modest amount of programming regarding PLC and machine vision software.

The TCP/IP client has a user interface, which can be used for monitoring communication. The user

interface is well-designed and simple to use. However, there was a significant amount of lag during

communication. The lag made the TCP/IP client challenging to use sometimes and required re-

booting occasionally.

The TCP/IP client requires programming and configuring of the PLC, the machine vision applica-

tion, and the client itself. PLC programming for the TCP/IP client was more complex and required

a specific communication block and data unit types. A specific suffix in the command message was

also needed for a successful data transfer. Vision application receives and sends messages by

running a TCP/IP server and using a TCP IO function in the software. The TCP/IP client is less

versatile since it supports only messages of string type. However, the string message can be

parsed in the PLC application and converted into an integer or Boolean data type.

10 CONCLUSIONS

The thesis aimed to establish ADS communication between a Beckhoff PLC and a machine vision

application using a LabVIEW interface. Another objective of the thesis was to make a comparison

with the TCP/IP client. Several ADS libraries were examined. Communication was established us-

ing the TF3710 TwinCAT 3 Interface for the LabVIEW library. The performance of the interface was

tested at the test station with a machine vision application. The Purpose of the machine vision

application was to detect and examine hexagon nuts. Also, the performance of the TCP/IP client

was tested.

Several performance test cases were executed for both interfaces. The ADS interface proved to

perform better than the TCP/IP client in all test cases regarding the connection speed. Especially

in the continuous communication test, the ADS interface proved to perform better. Additionally, the

usability of both interfaces was addressed. The ADS interface proved to be simple to implement

and use and more versatile regarding data types. It also required less PLC programming than the

TCP/IP client.

Overall, the thesis was successful, and the goals of the thesis were achieved. The subject of the

thesis was comprehensive, and the work for it required various skills, including PLC programming,

establishing a communication interface, and vision software programming, as well as constructing

and configuring a machine vision setup. Programming and configuring machine vision was a new

challenge for me, requiring a lot of research. However, the subject proved to be interesting, and

many new skills were acquired. In the future, these skills can be applied to software tasks concern-

ing programming machine vision applications. Also, research about different communication proto-

cols proved to be useful.

The schedule for the thesis was to finish it by the end of May, which was achieved. The work phase

for the thesis was relatively straightforward and was completed in a few months. The guidance from

my colleagues in JOT Automation during the work phase was beneficial and helped me reach my

goal. The writing process took a little longer than expected and was sometimes challenging be-

cause I also worked full-time besides writing the thesis. Regardless, when looking back on this

journey, I am satisfied with the result of the thesis and how it was executed.

10.1 Future Implementations

The established ADS interface is compatible with many applications since Beckhoff control devices

and machine vision systems are commonly used in automation. It enables fast and reliable com-

munication between a PLC and a machine vision system. Fast data transfer between devices de-

creases cycle time and makes automation systems more efficient. More importantly, based on the

performance tests, the established ADS interface is also stable and highly reliable. Fewer disturb-

ances reduce downtime and improve the efficiency of the system even further. Decreasing disturb-

ances could save time and money in real-time control applications like machine vision applications.

Although, the TCP/IP client is currently used for communication with other devices in the automa-

tion system, it may be worth considering switching to the ADS interface. While implementing a new

communication interface might not be practical, the benefits of using ADS could outweigh the costs.

It is also noteworthy that it is possible to use both the ADS interface and the TCP/IP client simulta-

neously by using the ADS interface to communicate with a machine vision application and the

TCP/IP client to communicate with other automation devices. Furthermore, it would be more rea-

sonable to implement the ADS interface into new systems rather than replacing the TCP/IP client

in existing systems. In any case, in machine vision applications where cycle time is crucial, the ADS

interface is recommended for data transfer for its speed and stability.

Another method for achieving fast and reliable data transfer in similar applications would be using

Beckhoff’s TwinCAT vision software. Configuring and programming a machine vision application

with the TwinCAT vision software was an alternative subject for the thesis. However, it was rejected

since the original subject of the thesis proved comprehensive enough. The TwinCAT vision soft-

ware integrates a machine vision system into the TwinCAT environment. Therefore, both PLC and

machine vision functionality can be programmed within TwinCAT. Using the TwinCAT vision soft-

ware, achieving even higher communication speed might be possible since no external vision soft-

ware is involved. Even so, the performance of the software and how it compares to other commu-

nication interfaces would require more research. Also, the TwinCAT vision library would need to be

studied further and compared to other vision software in the market to understand better the soft-

ware and how it can be applied to machine vision applications.

SOURCES

1. JOT Automation Ltd. home page. 2023. Date of retrieval 3.3.2023. https://www.jotautoma-

tion.com/about-us

2. JOT Automation Ltd. ODD-SHAPE XL ASSEMBLY CELL. 2023. Date of retrieval 22.3.2023.

https://www.jotautomation.com/products/assembly/odd-shape-xl-assembly-cell

3. AI Multiple. Machine Vision in 2023: In-Depth Guide. 2023. Date of retrieval 3.3.2023. https://re-

search.aimultiple.com/machine-vision/

4. Vision Systems Design. The history of machine vision. 2023. Date of retrieval 3.3.2023.

https://www.vision-systems.com/knowledge-zone/article/14069209/the-history-of-machine-vi-

sion

5. SAAB RDS. 9 Benefits and Applications of Machine Vision Systems. 2020. Date of retrieval

3.3.2023. https://saabrds.com/9-benefits-and-applications-of-machine-vision-systems/

6. 4th Vector Technologies, LLC. Top 7 Contributors to a Robust Machine Vision System. 2022.

2023. Date of retrieval 22.3.2023. https://4thvectortech.com/tech-briefs/top-7-contributors-to-

a-robust-machine-vision-system

7. National Instruments. A Practical Guide to Machine Vision Lighting. 2023. Date of retrieval

3.3.2023. https://www.ni.com/fi-fi/innovations/white-papers/12/a-practical-guide-to-machine-

vision-lighting.html

8. Vision Systems Design. Understanding Focal Length and Field of View. 2023. Date of retrieval

3.3.2023. https://www.vision-systems.com/sponsored/edmund-optics/article/16752143/under-

standing-focal-length-and-field-of-view

9. Photography Life. What is Lens Distortion? 2023. Date of retrieval 3.3.2023. https://photog-

raphylife.com/what-is-distortion

10. Edmund Optics, Ltd. Types of Machine Vision Lenses. 2023. Date of retrieval 3.3.2023.

https://www.edmundoptics.eu/knowledge-center/application-notes/imaging/imaging-lens-se-

lection-guide/

11. PetaPixel. What is the Difference Between a CCD and CMOS Camera Sensor? 2021. Date of

retrieval 3.3.2023. https://petapixel.com/what-is-ccd-cmos-sensor/

12. Quality Magazine. Smart Cameras: Yesterday, Today and Tomorrow. 2014. Date of retrieval

3.3.2023. https://www.qualitymag.com/articles/91857-smart-cameras-yesterday-today-and-to-

morrow

https://www.jotautomation.com/about-us
https://www.jotautomation.com/about-us
https://www.jotautomation.com/products/assembly/odd-shape-xl-assembly-cell
https://research.aimultiple.com/machine-vision/
https://research.aimultiple.com/machine-vision/
https://www.vision-systems.com/knowledge-zone/article/14069209/the-history-of-machine-vision
https://www.vision-systems.com/knowledge-zone/article/14069209/the-history-of-machine-vision
https://saabrds.com/9-benefits-and-applications-of-machine-vision-systems/
https://4thvectortech.com/tech-briefs/top-7-contributors-to-a-robust-machine-vision-system
https://4thvectortech.com/tech-briefs/top-7-contributors-to-a-robust-machine-vision-system
https://www.ni.com/fi-fi/innovations/white-papers/12/a-practical-guide-to-machine-vision-lighting.html
https://www.ni.com/fi-fi/innovations/white-papers/12/a-practical-guide-to-machine-vision-lighting.html
https://www.vision-systems.com/sponsored/edmund-optics/article/16752143/understanding-focal-length-and-field-of-view
https://www.vision-systems.com/sponsored/edmund-optics/article/16752143/understanding-focal-length-and-field-of-view
https://photographylife.com/what-is-distortion
https://photographylife.com/what-is-distortion
https://www.edmundoptics.eu/knowledge-center/application-notes/imaging/imaging-lens-selection-guide/
https://www.edmundoptics.eu/knowledge-center/application-notes/imaging/imaging-lens-selection-guide/
https://petapixel.com/what-is-ccd-cmos-sensor/
https://www.qualitymag.com/articles/91857-smart-cameras-yesterday-today-and-tomorrow
https://www.qualitymag.com/articles/91857-smart-cameras-yesterday-today-and-tomorrow

13. Basler AG. From Gigabit Ethernet and GigE Vision to 5GigE. 2023. Date of retrieval 3.3.2023.

https://www.baslerweb.com/en/vision-campus/interfaces-and-standards/gigabit-ethernet/

14. UKDiss.com. Colour vs Greyscale in Machine Vision. 2020. Date of retrieval 3.3.2023.

https://ukdiss.com/examples/colour-vs-greyscale-in-machine-vision.php

15. Envira Gallery. How to Sharpen an Image in Photoshop. 2020. Date of retrieval 22.3.2023.

https://enviragallery.com/how-to-sharpen-an-image-in-photoshop/

16. Beckhoff Information System. Region of Interest. 2023. Date of retrieval 3.3.2023. https://in-

fosys.beckhoff.com/english.php?content=../content/1033/tf7xxx_tc3_vi-

sion/7888560139.html&id

17. Medium.com. Blob Detection. 2019. Date of retrieval 3.3.2023. https://medium.com/image-pro-

cessing-in-robotics/blob-detection-309226a3ea5b

18. Beckhoff Information System. Blob Detection with watchdog monitoring. 2023. Date of re-

trieval 22.3.2023. https://infosys.beckhoff.com/english.php?content=../con-

tent/1033/tf7xxx_tc3_vision/4850677771.html&id=

19. Keyence Corporation. Character Inspection/OCR. 2023. Date of retrieval 3.3.2023.

https://www.keyence.com/ss/products/vision/visionbasics/use/inspection05/

20. Fortinet, Inc. What is Transmission Control Protocol TCP/IP? 2022. Date of retrieval 3.3.2023.

https://www.fortinet.com/resources/cyberglossary/tcp-ip

21. GeeksforGeeks. TCP/IP Model. 2023. Date of retrieval 3.3.2023. https://www.geeksfor-

geeks.org/tcp-ip-model/

22. Computer Networking Notes. TCP/IP Reference Model Explained. 2021. Date of retrieval

22.3.2023. https://www.computernetworkingnotes.com/ccna-study-guide/tcp-ip-reference-

model-explained.html

23. Beckhoff Information System. ADS-Communication. 2023. Date of retrieval 3.3.2023. https://in-

fosys.beckhoff.com/english.php?content=../content/1033/cx8190_hw/5091854987.html&id

24. PLCCoder.com. Communicating between Beckhoff controllers part 2: ADS. 2020. Date of re-

trieval 3.3.2023. https://www.plccoder.com/communicating-between-beckhoff-controllers-part-

2-ads/

25. Beckhoff Information System. ADS protocol. 2023. Date of retrieval 3.3.2023. https://in-

fosys.beckhoff.com/english.php?content=../content/1033/bc9xx0/2802214411.html&id

26. Beckhoff Information System. T_AmsPort. 2023. Date of retrieval 22.3.2023. https://in-

fosys.beckhoff.com/english.php?content=../content/1033/tcplclib_tc2_sys-

tem/31064331.html&id=

https://www.baslerweb.com/en/vision-campus/interfaces-and-standards/gigabit-ethernet/
https://ukdiss.com/examples/colour-vs-greyscale-in-machine-vision.php
https://enviragallery.com/how-to-sharpen-an-image-in-photoshop/
https://infosys.beckhoff.com/english.php?content=../content/1033/tf7xxx_tc3_vision/7888560139.html&id
https://infosys.beckhoff.com/english.php?content=../content/1033/tf7xxx_tc3_vision/7888560139.html&id
https://infosys.beckhoff.com/english.php?content=../content/1033/tf7xxx_tc3_vision/7888560139.html&id
https://medium.com/image-processing-in-robotics/blob-detection-309226a3ea5b
https://medium.com/image-processing-in-robotics/blob-detection-309226a3ea5b
https://infosys.beckhoff.com/english.php?content=../content/1033/tf7xxx_tc3_vision/4850677771.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tf7xxx_tc3_vision/4850677771.html&id=
https://www.keyence.com/ss/products/vision/visionbasics/use/inspection05/
https://www.fortinet.com/resources/cyberglossary/tcp-ip
https://www.geeksforgeeks.org/tcp-ip-model/
https://www.geeksforgeeks.org/tcp-ip-model/
https://www.computernetworkingnotes.com/ccna-study-guide/tcp-ip-reference-model-explained.html
https://www.computernetworkingnotes.com/ccna-study-guide/tcp-ip-reference-model-explained.html
https://infosys.beckhoff.com/english.php?content=../content/1033/cx8190_hw/5091854987.html&id
https://infosys.beckhoff.com/english.php?content=../content/1033/cx8190_hw/5091854987.html&id
https://www.plccoder.com/communicating-between-beckhoff-controllers-part-2-ads/
https://www.plccoder.com/communicating-between-beckhoff-controllers-part-2-ads/
https://infosys.beckhoff.com/english.php?content=../content/1033/bc9xx0/2802214411.html&id
https://infosys.beckhoff.com/english.php?content=../content/1033/bc9xx0/2802214411.html&id
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplclib_tc2_system/31064331.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplclib_tc2_system/31064331.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplclib_tc2_system/31064331.html&id=

27. Beckhoff Information System. Client-server relationship. 2023. Date of retrieval 3.3.2023.

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_ads_in-

tro/12902381579.html&id=2963750268128113040

28. Webinar. ADS-communication in TwinCAT: Connecting link for TwinCAT modules. Date of re-

trieval 3.3.2023. https://www.beckhoff.com/en-en/support/webinars/

29. LabVIEW. home page. 2023. Date of retrieval 3.3.2023. https://www.ni.com/fi-fi/shop/lab-

view.html

30. Beckhoff manual. TF3710 TwinCAT 3 | Interface for LabVIEW™. 2022. Date of retrieval

3.3.2023.

31. Beckhoff Automation. Twincat Automation Software. 2023. Date of retrieval 3.3.2023.

https://www.beckhoff.com/fi-fi/products/automation/twincat/

32. National Instruments. What Is Vision Builder for Automated Inspection? 2023. Date of retrieval

3.3.2023. https://www.ni.com/fi-fi/shop/electronic-test-instrumentation/application-software-

for-electronic-test-and-instrumentation-category/what-is-vision-builder-for-automated-inspec-

tion.html

33. National Instruments manual. NI Vision Builder for Automated Inspection Tutorial. 2012.

22.3.2023.

34. IR. Network Jitter - Common Causes and Best Solutions. 2023. Date of retrieval 3.3.2023.

https://www.ir.com/guides/what-is-network-jitter

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_ads_intro/12902381579.html&id=2963750268128113040
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_ads_intro/12902381579.html&id=2963750268128113040
https://www.beckhoff.com/en-en/support/webinars/
https://www.ni.com/fi-fi/shop/labview.html
https://www.ni.com/fi-fi/shop/labview.html
https://www.beckhoff.com/fi-fi/products/automation/twincat/
https://www.ni.com/fi-fi/shop/electronic-test-instrumentation/application-software-for-electronic-test-and-instrumentation-category/what-is-vision-builder-for-automated-inspection.html
https://www.ni.com/fi-fi/shop/electronic-test-instrumentation/application-software-for-electronic-test-and-instrumentation-category/what-is-vision-builder-for-automated-inspection.html
https://www.ni.com/fi-fi/shop/electronic-test-instrumentation/application-software-for-electronic-test-and-instrumentation-category/what-is-vision-builder-for-automated-inspection.html
https://www.ir.com/guides/what-is-network-jitter

APPENDICES

APPENDIX 1. TwinCAT symbol list for ADS interface.

APPENDIX 2. TwinCAT symbol list for TCP/IP interface.

ADS

COM

Start End Result

(S)

1. 34,226 34,456 0,23

2. 42,859 43,089 0,23

3. 5,312 5,312 0,23

4. 43,921 44,161 0,24

5. 33,388 33,618 0,23

6. 42,495 42,735 0,24

7. 14,451 14,691 0,24

8. 27,037 27,247 0,21

9. 50,262 50,482 0,22

10. 37,87 38,11 0,24

AVG 0,231

APPENDIX 3. Communication times for ADS interface in command – response test.

TCP/IP

COM

Start End Result

(S)

1. 41,656 41,946 0,29

2. 6,26 6,58 0,32

3. 51,248 51,467 0,219

4. 39,873 40,274 0,401

5. 22,522 22,921 0,399

6. 59,259 59,479 0,22

7. 42,854 43,084 0,23

8. 24,123 24,492 0,369

9. 0,45 0,64 0,19

10. 45,436 45,737 0,301

AVG 0,2939

APPENDIX 4. Communication times for TCP/IP client in command – response test.

ADS

COM

Start End Result

(S)

1. 30,532 34,143 3,611

2. 57,817 1,296 3,479

3. 51,451 54,84 3,389

4. 50,908 54,467 3,559

5. 56,703 0,073 3,37

6. 17,088 20,519 3,431

7. 2,526 6,505 3,979

8. 4,412 7,773 3,361

9. 51,02 54,328 3,308

10. 41,335 44,675 3,34

AVG 3,4827

APPENDIX 5. Communication times for ADS interface in continuous communication test.

TCP/IP

COM

Start End Result

(S)

1. 2,234 8,344 6,11

2. 13,768 19,808 6,04

3. 48,08 54,319 6,239

4. 38,926 44,916 5,99

5. 36,702 42,88 6,178

6. 31,006 36,867 5,861

7. 42,319 48,319 6

8. 32,325 38,064 5,739

9. 25,138 31,269 6,131

10. 15,473 21,494 6,021

AVG 6,0309

APPENDIX 6. Communication times for TCP/IP client in continuous communication test.

Vision

ADS

Start End Result

(S)

1. 34,313 34,433 0,12

2. 42,94 43,059 0,119

3. 5,393 5,515 0,122

4. 44,018 44,138 0,12

5. 33,471 33,591 0,12

6. 42,595 42,706 0,111

7. 14,536 14,658 0,122

8. 27,1 27,218 0,118

9. 50,337 50,455 0,118

10. 37,973 38,088 0,115

AVG 0,1185

APPENDIX 7. Vision software code execution time for the ADS interface vision application.

Vision

TCP/IP

Start End Result

(S)

1. 41,771 41,939 0,168

2. 6,327 6,574 0,247

3. 51,318 51,463 0,145

4. 40,115 40,27 0,155

5. 22,711 22,91 0,199

6. 59,307 59,475 0,168

7. 42,9 43,074 0,174

8. 24,314 24,486 0,172

9. 0,497 0,635 0,138

10. 45,504 45,729 0,225

AVG 0,1791

APPENDIX 8. Vision software code execution time for the TCP/IP client application.

	contents
	1 introduction
	1.1 Background
	1.2 JOT Automation

	2 Components of the machine vision system
	2.1 Machine Vision Hardware
	2.1.1 Illumination
	2.1.2 Imaging Lens
	2.1.3 Camera Sensor
	2.1.4 Vision Processing System
	2.1.5 Communications System

	2.2 Vision Software
	2.2.1 Preprocessing
	2.2.2 Region of Interest
	2.2.3 Object Detection
	2.2.4 Measurement Tools
	2.2.5 OCR and Code Reading

	3 TCP/IP protocol
	3.1 TCP/IP Model
	3.1.1 Application Layer
	3.1.2 Transport Layer
	3.1.3 Network Layer
	3.1.4 Datalink Layer
	3.1.5 Physical Layer

	3.2 TCP/IP CLIENT

	4 ADS protocol
	4.1 Message Router
	4.2 Structure of ADS Communication
	4.2.1 NetId
	4.2.2 PortNr
	4.2.3 Index Group and Index Offset

	4.3 ADS Services
	4.3.1 Synchronous Communication
	4.3.2 Asynchronous Communication
	4.3.3 Event-based Communication

	5 ADS interface
	5.1 TF3710 TwinCAT 3 Interface for LabVIEW
	5.2 Structure of Read and Write Virtual Instruments
	5.3 Symbol List
	5.4 ADS Read Virtual Instrument
	5.5 ADS Write Virtual Instrument
	5.6 Library File

	6 PLC Application
	6.1 PLC Functionality
	6.2 ADS Interface PLC Application
	6.3 TCP/IP Client PLC Application

	7 Vision application
	7.1 Vision Application
	7.2 Vision Application Communication Protocol

	8 Test Station
	8.1 Camera
	8.2 Lens
	8.3 Illumination
	8.4 PLC
	8.5 Camera Configuration
	8.6 Camera Working Distance
	8.7 Camera Calibration

	9 test RESults
	9.1 Command–Response Test
	9.2 Continuous Communication Test
	9.3 Multiple Data Test
	9.4 Vision Software Code Execution Time
	9.5 Jitter
	9.6 Comparison
	9.7 Usability

	10 Conclusions
	10.1 Future Implementations

	Sources
	Appendices

