

Implementing a Knowledge & System transfer template in the Application

Management team

Nguyen Nguyen

2023 Laurea

Laurea University of Applied Sciences

Implementing Knowledge & System transfer template in

Application Management team

 Nguyen Nguyen

 Business Information Technology

 Thesis

 04, 2023

Laurea University of Applied Sciences Abstract

Business Information Technology

Bachelor of Business Administration

Nguyen Nguyen

Implementing Knowledge & System transfer template in Application Maintenance team

Year 2023 Number of pages 46

Working in a team has many advantages and disadvantages. On the one hand, a person is
rewarded with the knowledge and experiences from being a part of a diverse, professional
environment. On the other hand, it is a struggle to align with various ways of working, and if
a common ground of understanding is not well established, people may find it difficult to
keep up with the speed of collaboration and this may result in decreasing productivity. This
thesis is dedicated to eliminating at least one common problem that a team within the client
company, -Nordcloud, is facing. Specifically, the author explores how the Knowledge &
System transfer process is being conducted in the team, and from there introduce a basic
guideline under the form of a Jira template to help people perform that routine task
efficiently and consensually.

Putting the Application Management team members at the core, with the focus on
productivity, experiences and expectations, the goal of the thesis project was to listen to the
developers telling their stories, sharing their experiences and future expectations. Once the
facts are surfaced, the next step was to check if their team leaders are aligned with the
practice of the squads. From forming the theoretical frameworks to recognizing the feasibility
of the thesis’s objectives, several approaches were used. The first approach utilized a
qualitative research methodology and involved two actions: 1-on-1 interviews and a
Continuous Improvement meeting. The second approach utilized via using collaboration tools
with to the team. Here: Miro and Mentimeter were employed to pick out the most crucial
reflection of the chosen topic.

The main findings indicate a lack of mutual understanding on the details discussed in a
Knowledge & System transfer meeting, while the team leaders and their teammates held
contrasting opinions on how the process should be implemented. Moreover, it is proven to be
impossible to have a one-size-fit-all transfer template, due to the conflicting requirements of
the projects.

Based on the results collected, a sample template was created to promote the general
procedures when performing a Knowledge & System transfer process. Using the common
collaboration tool Jira, the responsible parties of the process have a clear picture of what
needs to be covered, who are the participants, timeline, and other associated factors. The
templates then subjected to a testing period, to evaluate whether they have the potential to
turn into a standard practice for the benefit of the team in the future.

Keywords: Knowledge, system, transfer, experiences, template, Jira, software maintenance

Table of Contents

1 Introduction ... 5

1.1 Problem identification .. 5

1.2 Thesis outline .. 6

2 Nordcloud -Application Management team .. 6

2.1 Nordcloud ... 6

2.2 AM Team .. 7

3 Theoretical frameworks.. 8

3.1 Software Development Life Cycle ... 8

3.2 SPACE framework .. 11

3.2.1 Definition .. 11

3.2.2 Team practice .. 12

3.3 Developer Experience framework ... 13

3.3.1 Definition .. 13

3.3.2 Team practice .. 15

3.4 Continuous Improvement ... 16

3.4.1 Knowledge transfer .. 17

3.4.2 System transfer ... 19

4 Research Methodologies ... 20

4.1 Qualitative research ... 21

4.2 Data collection method ... 21

4.3 Data analysis method ... 21

5 Conducting Research ... 22

5.1 Research setup ... 22

5.2 Data collecting ... 23

5.3 Data analysis ... 25

6 Research Result ... 25

6.1 Interview results ... 25

6.2 CI meeting results ... 28

6.3 Results assessment .. 33

6.4 Sample transfer template .. 34

7 Conclusion ... 36

7.1 Limitation ... 37

7.2 Future suggestion .. 37

References .. 39

Figures ... 43

Appendices .. 44

 5

1 Introduction

Working in a team brings along many advantages. You have the chance to work with many

individuals from different backgrounds and expertise, share the amount of workload, solve

the problems together, create potential for innovation, and enhance personal growth. Being

in a happy team makes people feel more motivated and boost productivity, hence more

contribution towards the company growth (Middleton 2022).

As a member of the Application Management team, the author gets the opportunity to learn

from the strengths of multiple talented individuals, collaborate with them in delivering

smooth operational management service to the customers, and boosting each other softs kills.

We also share the same pain points, go through the similar struggles in our work life. We

constantly make improvements because that is how we can become a healthy and well-

functioning team. Therefore, when noticing that the Knowledge & System transfer process

within the team is facing some obstacles, the author feels the urge to pick up the topic and

start investigating on what has gone wrong, and how can we make the experience better for

everyone. Furthermore, a practical solution is ultimately the final goal of the thesis. The

solution may not be a perfect one, but it is essential that we acknowledge the problem and

seek to replace it with a more efficient, applicable approach.

1.1 Problem identification

The core of this thesis is on implementing a practical template for Knowledge and System

transfer process as a part of Continuous Improvement effort of the Application Management

team, under a Jira ticket format. When a person leaves the team, the knowledge and system

transfer sessions are taken place, which heavily depend on the memory of the main

developers to decide what information to be shared with other team members. This creates a

confusion because the context of each session is different, and sometimes important details

are forgotten during the transfer. The new team members, on the other hand have no way to

track if he or she has captured all necessary knowledge to start with the new project. In

addition, the sessions are always taken place closely to the exit time of the developers, which

is another constraint because it is not possible to share as much details as everyone wants,

since it is not possible to squeeze in all the knowledge of the project within a few meetings.

In other occasions, new contexts emerge after the transfer process, and it is too late to ask

questions or go through the system again, because the people have left the team. This causes

not only confusion for the everyone in the team, but also creates a negative image to our

customers, for us having lack of transfer process practice in place. It is essential to remind

people that an aligned understanding is needed about the steps included in the transfer

 6

sessions and how to implement them sufficiently. This is to make the handover between

people not only smoother but also boost the efficiency and transparency within the team.

1.2 Thesis outline

The thesis consists of seven chapters, starting with a short introduction about the topic and

its objectives, following up with the second chapter presenting the commissioned company-

Nordcloud and the background of the Application Management team where the author was

working. The next chapter provided information on the theoretical frameworks in influence

including the operational focus-Software maintenance, focusing on supporting and improving

development productivities, experiences and how does it look comparing to the current set

up of the team. The fourth chapter specifies which research methodologies were applied in

this case, which is Qualitative research. Fifth chapter covers the steps to conduct the

research, how the data is collected and analyze. The results are presented in the sixth

chapter which leads to the proposal template. In chapter seven, the author concludes all the

findings during the thesis process with recognition on the existing limitation and open

suggestions.

2 Nordcloud -Application Management team

This chapter provides detailed information about the commissioned company and the

background of the team where the author is currently working. In addition, the concept of

teamwork will also be introduced and analyzed from different perspectives.

2.1 Nordcloud

The history of Nordcloud dated back in 2006, when a cloud-native and web application

company is formed, but the name Nordcloud only came to life in 2011. Since then, the

company has grown rapidly, first opening its own foreign office in Sweden, then entering the

markets of Denmark, UK, Netherlands before the expanding in Poland. Throughout the

operational years, not only Nordcloud got to scale up the existence in various locations with a

skyrocket number of employees, but the company also got the pleasure to be called Partner

of the years by Microsoft, received recognition by Gartner Magic Quadrant for Public Cloud

Infrastructure Professionals and Managed Services (Nordcloud n.d.).

In 2020, IBM made an announcement to acquire Nordcloud to gain a deep foothold within the

cloud-service industry. With this acquisition, IBM received unfathomable expertise that not

only work for their current customers on the digital transformation paths, but also to target

future advocacy of the hybrid cloud platforms (Shead 2020). Two years after joining IBM,

Nordcloud now becomes Nordcloud, and IBM company with 1349 employees, spreading across

 7

twelves countries, with headquarter in Helsinki, Finland. Having close to a hundred solutions

and services provided, with multi-cloud platforms option, such as AWS, Azure, and Google

Cloud, customers can rest assured that not only they are guided throughout the strategic shift

into cloud, but also to see their business empowered and blossom within the fast pace of

digital migration and modernization (Nordcloud n.d.).

2.2 AM Team

AM stands for Application Management, which is a team of nineteen people of different level

of expertise. AM team members are locating in various countries, which strategically

contributes to a diversity workplace and cultural aspects. The whole team is divided into four

manageable squads, with their own number of accounts to attend to. The squads share some

common practicality way of working, however, each squad is allowed the independency in

defining what would be the most suitable process and comfort, to not only keeping up with

the expectations of the customers, but also to ensure a smooth flow and transparent

coordination within the team. As the AM team grows, the needs to define a common ground

of the basic tasks should be taken into more consideration for establishing a clear

understanding on what to be carried out in every situation not only within one specific squad,

but to target all squads in AM. This practice allows the people to improve the process of

collaborative work, guidelines are clear, and procedures are followed throughout.

As a member of AM, the author aims to learn for the alternatives, outside of the already

recognized process. The purpose is not only to deliver the best performance towards our

customers, but also to make the work itself meaningful for the members of the team.

Teamwork in AM, like any other organization is an essential contribution towards the success

of the company. It is not viable for a single person to perform all the work, nor should they.

Having multiple people working together towards a common goal is essential, instead of

dividing all the tasks and work independently boosts the effectiveness of a team. There are

four main advantages of what teamwork can deliver. First, teamwork means motivation and

inspiration. Instead of focusing on oneself, working together improves productivity, with

milestones evidently reached, and challenges are more manageable to overcome. Second

advantage is productive conflict management. Being in a team meaning that you must work

with people from different backgrounds, diversities and naturally, different points of views.

To reach the common goals, the team members must conquer these obstacles, both by

challenging each other or compromise to reach an agreement. This means not only are

problems solved, but the team conflict management skill is also evolved. Another benefit of

teamwork is the meaningfulness of team development. Working together allows us to learn

and understand each other, from their expertise skills to the individual’s personalities. The

stronger the connection there is, the more developed the team can be. The final benefit of

teamwork is the one common thing there is: to reach the goals. In fact, the more effective

 8

work a team can do, the bigger goals discovered. A successful team would not want to stay

still for long, instead they would explore new goals where new challenges can be conquered

and new skills to be built up (Waters 2022).

Although participating in a team brings many benefits, it does not guarantee that you would

always have effective teamwork. Not all type of works or tooling fit into the team, nor having

the same process, methods for a long period is ideal for teamwork. Every day there are many

changes in the working life, which enforces us to keep evaluating the way we work within a

team, whereas what used to be effective in teamwork today could still be valid in the future,

should we eliminate some procedures and implement better, more productive one to adapt to

the rapid changes around us, hence, bringing in the concept of Continuous improvement

(Brealey 2017).

3 Theoretical frameworks

We are living in a world, where technology is advanced by the minutes. Everything we do has

at least a bit of technology trace (Bulao 2023). As a member of the society, we must adapt to

this growth by constantly learning and upskilling ourselves, and since we are working in the

software development industry, it is essential to acknowledge the values and goals that we

aim to reach to make our software product or service relevant and favorable to the

customers. However, in this thesis, the customers are not the main audience here, but the

developers are, because we are a part of the value chain that delivers to the customers. In

this chapter, the author hopes to circle back and highlight the definition of Software

Maintenance, to walk people back on the essence of the maintenance work, while at the

same time assessing what we can do to lighten the pressure in our daily work. The goal is to

help all team members collaborate easier, with more visual, well-defined, and time-saving

instruction. This can be learnt better examining the advantages of a few recommended

frameworks, in this case are the SPACE framework, Developer Experience Framework and

Software Development Life Cycle methodology. The purpose is not to try forcing one

framework into the team operation, but to choose which elements are the healthiest to

implement.

3.1 Software Development Life Cycle

Software Development Life Cycle, or SDLC is a process of phases involved in any given

software creation. SDLC consist of seven primary phases, which are: Planning, Analysis,

Design, Implementation, Testing & Integration and Maintenance.

 9

Figure 1: Software Development Life Cycle (Java Point n.d.)

Many software organizations are in favor of applying SDLC strategies into their business

practices to create a customized guidance to all the teams throughout the stages of

development (Velimirovic 2022). By providing specifications for each phase of creating and

deploying software product, companies can assure that the software product is delivered

within timely manner, budget is compiled with and viable future investment. Companies can

choose their own SDLC methodologies that suits their needs, from Waterfall, V-Model, Big

Bang to Agile, Spiral, DevOps and Iterative (Service Now n.d.).

Benjamin Franklin used to say, quote “If you fail to plan, you are planning to fail” (Kellar

2020). It means that whatever you do, having a plan in place is essential. Any project without

a proper planning would lead to many failures, developers don’t know what features they

should work on, managers cannot keep track of the project progress, and the organization

fails to evaluate if the final products are bringing in any profit or not. That is why the

Software Development Life Cycle methodology comes into the picture and removes the

doubts. Each of the organization or project team has all the freedom to choose another

methodology suiting their business, whereas the traditional Waterfall model, or Agile

approach or a combination of a few, the benefits of SDLC is clearly visible: defining common

guideline for each of the development phase, determined communication channels include all

relevant parties, both internals and externals. In addition, the responsibilities between

members of the projects, designers, business analysts are explicitly clarified. Expected

outcomes and actual results can be monitored throughout in every step, and the completion

of each phase is confirmed via the determination of Definition of Done (Swersky 2022).

Software maintenance is the final phase of the Software Development Life Cycle model. Once

a software product is successfully launched, its life does not stop there. Instead, it should be

 10

constantly observed and maintained to ensure the competitiveness and relevancy. It is

defined as the process of “changing, modifying, and updating to keep up with customer

needs. Software maintenance is done after the product has launched for several reasons

including improving the software overall, correcting issues of bugs, to boost performance, and

more” (Thales n.d.). Software maintenance carries the same importance as software

development, in fact, it is stated by Robert Glass in his book “Facts and fallacies of software

engineering” that 60% of the cost is upheld by maintenance, and solution enhancement is

responsible for 60% of total software maintenance cost (Gadhavi 2022). However, based on

Erlikh (2000), the highest estimation for maintenance phase expense can reach over 90 % of

total lifecycle cost.

There are four types of software maintenance: Adaptative maintenance, Perfective

maintenance, Corrective maintenance, and Preventative maintenance. The first type-

Adaptative Maintenance aims at software adjustment to ensure the compatibility whenever

there are changes in business requirement and technology transformation. Software

framework is the focus of this maintenance, to allow the continuity and responsiveness with

the new operating systems, hardware, and platform (Gadhavi 2022).

The next maintenance option is Perfective maintenance, which has an impact on all

elements, functionalities while boosting the system operation and performance. The current

software functionality will be adjusted to improve its receptiveness and usability. If the

purpose is to fix existing errors, then Corrective maintenance is another suitable maintenance

type to choose. In contrast of Perfective maintenance where a whole process is altered,

Corrective maintenance job is fixing bugs or getting rid of any issues in the software. The

maintenance effort can happen frequently, under the formation of small updates (Gadhavi

2022).

The last maintenance type in the list is Preventive Maintenance. Focusing on solving

vulnerabilities, this kind of maintenance deliver improvement solutions towards the software

to enable a defense for future use, while eliminating any alternation that may harm the

product. In addition, Preventative maintenance can also support for scaling, maintaining, and

handling the legacy systems (Gadhavi 2022).

Depending on the purpose and goals, an organization may enhance one or multiple

maintenance types to their SDLC. Nevertheless, in general, software maintenance is essential

for every single organization, as they carry many advantages, from reducing costs when new

features and services added on, to well-preparation before any given problematic situations

emerge, data security is strengthened to allow the business core is always in the focus

(Radcliffe n.d.).

 11

With the focus on software maintenance as the main service delivery, it is crucial for the

Application Management team to understand what maintenance practices bring benefits to

the team and investigate measures to improve the whole operation. From applying the

suitable type of maintenance for different customer projects to select the right tools for

collaboration of having a well-structured way of working is vital to the liveliness of the team,

which resulting in time and cost saving and more business values to the customers.

3.2 SPACE framework

In this subchapter, the concept of SPACE Framework would be explored as one of the

potential implementation for the future team practice. We first look at how the framework is

defined, what are the main factors, its impacts on teamwork and then dive into how the

framework implementation conducted in real life.

3.2.1 Definition

The SPACE framework is a research-based developed by GitHub, Microsoft, and the University

of Victoria (Canada) researchers, focusing on measuring, understanding, and improving

developer productivity, which “encourages engineering leaders to have a holistic approach to

productivity”. The framework has five dimensions: Satisfaction & Well-being, Performance,

Activity, Communication & Collaboration, Efficient & Flow (Gralha 2022).

Figure 2: SPACE Framework (Cortex, No date)

The first dimension, Satisfaction & Well-being (S) assess the satisfaction, happiness, and

positive habits of the people in the team via employee surveys. It is believed that future

productivity can be predicted through the crucial outcome results, and if no improvements

are done, it would lead to dissatisfaction and burnout of the developers. One way to learn

 12

about how people feel is via interviews, polls, and surveys as a qualitative method. People

who take pride in their work, feel happy with their daily tasks, and aim for the best results

are the one who prefer to stay with the same company rather than switching jobs, and that

company can benefit from the contribution of these personnel’s innovation (Simic n.d.).

Performance (P) is the second dimension, which focuses on the team or workflow efficiency.

Via the evaluation of performance measurements, the team leaders can draw the connection

between people’s action and the produced outcomes. The evaluation can be done by using

dashboards to track a couple of metrics such as code reviews approval, code quality and

static code analysis because the health of a service depends on the developer’s coding skills.

The goal is not only to understand how well the team is working, but it also creates an impact

on other aspects, for example customer satisfaction, product acceptance, cost management

and so (Circei 2022).

The next focus is on Activity (A). This dimension concentrates on the developers’ outputs,

with straightforward measurements such as work items, pull requests, deployment frequency

and more (Gralha 2022). Communication & Collaboration (C) measures the efficiency of how

transparent and clear the communication within a team is. By using the metrics such as

Documentation quality, Work integration speed, Work contribution quality, Network metric

etc. the developers can better align when setting priorities, fit their work efforts into a

bigger initiatives and learn from each other (Nussbaum 2022).

Efficiency (E) is the last dimension, which is in relations to all dimensions of SPACE

framework. It catches “the ability to complete work or make progress on it with minimal

interruptions or delays, whether individually or through a system.” (Forgren et al. 2021).

According to Koponen (2022), a few common metrics used to calculate Efficiency include

Team health checks, Workflow observation and completion, Investment balance, Code

commitment and Restoration time.

The SPACE framework allows both the developers, and the team leaders to understand the

developer productivity from a more holistic angle, meaning that the productivity level is not

done by any individual’s effort, but it is from the whole collaboration of everyone in the

team. Using the suitable metrics and insights allows everyone to address the key points which

leads to fruitful engineering and top-notch values delivered to the customers (Pedro 2022).

3.2.2 Team practice

Since the start, the developers of the team are considered the main objectives, therefore

when selecting a suitable framework for further study, the author focused on what are the

most important elements to clarify. It was not about the final products or services that the

customers received, but the process that led to that outcome. The questions that were being

 13

repeated all the time were usually about how well they were doing, what were the obstacles

they were facing and what could we do to make their work easier and more productive. In

short, the goal is to find out what could we do to make our development team happier.

In that sense, the SPACE Framework fits quite well into the picture. The framework reminds

us that we should explore the meaning of development productivity in a broader scope with

holistic manner, not by the number of codes lines or fixed bugs, or how many tickets have

been completed. The framework acts more as a guidance on how to select the appropriate

metrics to evaluate the developer’s productivity and fill in the tension gap between the

management team and development team. If the causes that affect how the developers

perform could be visualized better, the more assistance their team leaders can provide to

ensure a more productive, purposeful environment (Ayanleke 2022).

There are a few methods chosen within the team to approach this concept, depending on the

team level. As the Application Management team is divided into four squads, each squad

decides how to pursue this concern differently. The most common practice is a monthly

retrospective, where all squad members could discuss about their work history, with

feedbacks spit into four categories:

1. What has been done well?

2. What should we stop doing?

3. What more should we do?

4. Future action points

By sticking with these categories, all squad members have the same chance to reflect their

personal work performance and use the meeting as a channel to communicate with the rest of

the team. They could contribute to defining a better mean of work, or simply share how they

struggled with specific tasks. This allows everyone to recognize what aspects are essential to

remember and be able to reach out to others for help or raise their concerns. The collected

feedbacks and opinions could be put under further evaluation, and no matter what action is

chosen, the only goal is to improve the working environment and enhance productivity.

3.3 Developer Experience framework

Developer Experience framework, or DX is the framework subjected for further study here. In

this part, the goals are understanding the concept of DX, its deliverable values and

effectiveness in practice.

3.3.1 Definition

Developer Experience is a comparable narrative of User Experience, but instead of the

customers, the developers are the one who use the products (Andrzejewski 2022). A good DX

 14

framework allows the developers to feel happier, encourage them to proudly promote and

keep up with the products that are useful for them (Cavalcante 2019) by putting yourselves

into the developers’ shoes, searching for ways to improve their working methods. An

exemplary DX means that focus time is supported, all information is documented properly,

ramp-up time reducing, and soft skills are paid attention to (Tsuei n.d.).

Figure 3: Developer Experience (Sasidharan 2021)

Knowing the importance of DX is one thing, executing the plan is another. It is not up to the

developers to conduct the implementation themselves, but their leaders or managers should

be the one who drive that process and prove that they have the full understanding on what

leads to the productivity of the developers, what make them happy and ensure them that all

their needs are met to produce a quality software product (Hrzenjak n.d.).

There are different methods to measure Developer Experience. The first group of pillars

includes findability, usability, and credibility. Findability means how easy it is for the

developers to find the information, tools, systems needed for their work, which can be

achieved by delivering contextual, structure, functional and organized documentation,

together with unlimited access to essential tools. Usability focuses more on how comfortable

the developers are when using codes, documentation, and tools. The last pillar – Credibility

means how much trust the developers have on the products and their benefits (Towns n.d.).

Cavalcante (2020) recommends a similar list of pillars, with the add on of Accessibility. A few

metrics to use for measurement including from guerilla test, lab test, in-person/remote

interview for measuring Usability, Journey map for Accessibility. Asking the question of how

much time it takes to complete a task is accounted for Findability. As for Credibility, it is

suggested to measure bugs that occur in the product and their critical levels.

 15

Another set of metrics can be used to measure developer productivity including Cycle time,

Deployment frequency, Merge frequency, Investment profile, and Planning Accuracy. Cycle

time means the time from when the work starts until it is completed. The shorter the cycle

time is, the better performance the team has. Deployment frequency tracks the regularity of

codes deployed to production environment. Frequent deployments allow higher quality

products reach to the customers. Merge frequency measures the number of pull requests

during a period. The number of code lines and pull requests creation do not bring any value if

nothing is to be merged. The next metric is Investment profile, which calculates how much

time allocated to different type of work. By applying this metric properly, the team would

have a clear understanding if they were aligned with the business requirements or else. The

last metric- Planning accuracy allows the developers to know how much issues or story points

have been finished, comparing to the planned iteration. It helps to recognize any hidden

unplanned and deferred work, and from then the team’s scope could be better adjusted

(Pauly 2022).

Although there are different approaches on what DX measurements to implement, they all

share the same goal of improvement developers’ working life. Learning what truly affects

them allows the managers/team leaders to fill in the gap between what you think they need

and what they really want (Pluralsight 2022).

3.3.2 Team practice

The term of Developer Experience is completely new to the team, and for the author, it was

the first-time hearing about the framework. As a consulting company, the customers in some

way receive more attention than the developers, in fact there have been plenty discussions

and guidance about how to improve Customer Experience within the company, but not the

other way around. When looking into the framework model, there are a few similarities in

focus points in the team’s operation that could be enhanced further. Since there is no one-

size-fit-all structure on how to implement this framework in practice, we need to see if there

is a match between the recommended pillars and the reality of the team. The first pillar to

be considered is Findability- how challenging it is for the team members to find the useful

information; do they have enough tools to perform their task or how well the details are

defined. Usability is the next term that comes to mind. Are we all happy with the context

that we have so far? Is the tooling working well for our needs? Do we feel struggle with any

part of our job? Moreover, do we have enough trust with the current practice that we are

exercising or is it more doubts that we cast- which is what the last pillar Credibility

represents.

 16

By following the proposals of this framework and place the attention into “Experience”, the

author wishes to get to understand the team members more conclusively and turn their

experiences into a more positive, efficient path.

3.4 Continuous Improvement

Continuous improvement is defined as “an ongoing effort to improve all elements of an

organization-processes, tools, products, services, etc.” The size of these improvements can

vary, but they all meet at one point of being frequent (Dewar et al. 2019).

Figure 4: Continuous Improvement (CI) (VMEC 2018)

The Continuous Improvement (CI) consists of four main elements, which are Identify

Opportunities, Plan for Improvement, Execute the Plan, Measure Results. In addition, there

are few key terminologies that useful to remember, for example Value added, meaning the

activities which would boost the functionality of the product or service. Non-value added are

the contrast activity which should be review for reducing or eliminating, simplifying.

Continuous flow focuses on the course of information and materials without being hindered

(VMEC 2018).

The Continuous Improvement approach is for all organizations, regardless of size, area of

trades and geographical aspects. Everyone can benefit from applying continuous improvement

methodology for reduce the risks in operational work, higher level of employees’

engagement, customer satisfaction while being cost effective and stay competitive in their

market to overcome all obstacles given by customers. This approach can come to aid in

 17

various ways, including quality improvement, processing time reduction, boosted morale,

excessive people engagement, decreased employee turnover and intensive professional

growth. To be able to gain these benefits, there are a few elements that one must remember

when introducing this concept to the team or organization, with the first point is to align and

clear vision set throughout the organization. While choosing the metrics is important, it is

even more essential to ensure that the right measurement is in place. Secondly, there is no

need to build up a large measurement but instead staring with a small approach. Running a

small test, finding the individuals who are willing to participate in the trial and observe the

change over time. The method is there to assist, not an asset to win, therefore it is important

to remind people that failing is acceptable, as it is a learning opportunity. The number of

failures is not viable, but the lessons come out of them. Finally, as said many times, goal

setting is the key element. Having goals set clearly is essential as it determine the success of

the organization (VMEC 2018).

The concept of Continuous Improvement is not a stranger to the Application Management

team, instead, the team has organized a bi-weekly session, with different topics for each

session to brush up the current knowledges of team members. There is one main facilitator,

and individuals can suggest which topics they want to elaborate further, with no limitation

from general operation standard to introducing new tooling, experience sharing, technical

workshop and updates between the team with other divisions of the company.

The average length of the session is one and a half hour, depending on the number of issues

to be discussed. The sessions are held at the same time every month to reduce complexity.

Beside the core nineteen members of the team, the facilitator also invites a few more

colleagues outside of the team, either acting as the main speakers or assisting in further

clarification of the topics. The attendees are always encouraged to participate to ensure that

the knowledge is spread evenly. In case of absence, the team members can research the

shared materials or watch the recorded sessions to keep them up to date with the contexts.

3.4.1 Knowledge transfer

Knowledge transfer is defined as a “systematic and purposeful strategy for capturing critical

knowledge from key personnel to store and share within an organization for maximum

efficiency”. It is typically carried out when a person decides to leave the team and instead of

letting all the information faded away, the rest of the organization must trigger multiple

meetings to capture as much knowledge as possible before the departure of the personnel.

Nevertheless, knowledge transfer process can go beyond its original attention by turning into

a developed strategy to have enough knowledge goes to the people who need it. This allows

the organization to create a foundation of teams with people who are capable of growing and

developing despite of personnel change (Maestro 2020).

 18

To approach the concept of knowledge transfer in a simpler, more visual way is to look at the

Triangle of Wisdom. The triangle consists of four levels: Data, Information, Knowledge, and

Wisdom. The goal is to move up from Data into Wisdom to gain tactic knowledge which

contribute greatly to the strategy of planning, coaching, and mentoring (Carruthers 2021).

Figure 5: The Triangle of Wisdom (Carruthers 2021)

Knowledge transferring can sometimes be referred at knowledge sharing, while these two

concepts are very much alike, they are still incompatible. Knowledge sharing has a limited

focus, with the goal is to stimulate the innovation and enhance cross-teams collaboration by

passing the insights and ideas to other members. Knowledge transferring, on the other hand

focuses on succession planning, building the bridge of information between the experienced

members and the new joiners or people who would take on the new roles within the

organization (Carruthers 2021).

When an organization recognizes the importance of Knowledge transferring process, the next

step is to define how to execute it effectively. The knowledge is kept in the people’s mind,

which can be shared by telling, showing, or writing. Depend on the senders and receivers, it is

recommended to exercise different approaches and tools in the five steps of Knowledge

transfer process: Identify & Collect Knowledge, Capture & Store Knowledge, Transfer & Share

Knowledge, Apply Knowledge & Show results, Create New Knowledge (Brown 2021).

Knowledge transfer is a task that has been performed many times by members of the team

and for various reasons, from when a person exits the team or when a new member onboards

to the project. If it is a standard process, then the expectation that everyone should be

 19

familiar with which topics to be covered, how much time should we spend on Knowledge

transfer and where they can find all the necessary documentation. Unfortunately, this is not

the case. While everyone is aware of a few elements of the transfer process, many other

aspects are still be left out, resulting in documents are outdated, important talking points are

forgotten, team leaders ‘supports not arrive at the ideal time and the team members are lost

on what and how to proceed further. If there is a clearer instruction, better-defined formula

to attend to every step of performing the Knowledge transfer progress, the less confusion and

pressure brought to the team.

3.4.2 System transfer

System transfer is a term that regularly used by the Application Management team, besides

the concept of Knowledge transfer. In other situations, people may even prefer using the

name Project handover to describe the change in application ownership. Instead of assigning

the customers who uses the products as the new owner of the system, at least a new

developer would take over that responsibility, as we call it primary developer, and in other

cases new project manager would join force too. Regardless the reason of the transfer, how it

is executed is much more important, because it determines whereas the project would

continue to thrive or turn into failure for whoever takes over (Gavrilovska 2021).

Wójcik (2023) introduces a list of seven points need to be checked when performing a

handover between the old and new teams, which are Code audit, Detailed documentation,

Knowledge sharing sessions, Establishing communication standards, Gradual transition, and

Progress monitoring. When conducting Code audit, there are a couple of options to choose

from, either continue working on the existing codes, or conveying the issues by refactoring. If

these are not possible, re-writing the codes from scratch should be considered. Knowledge

sharing is essentially included as a part of the process, which can be done by pair

programming, team code reviews and even hackathons (Azorin n.d.). A detailed, updated

documentation allows the new developers to get the full understanding of the system’s

features and functionality, with the focus on two key points: process and product

documentation. Process documentation targets testing standards, plans, timelines, and

meeting notes, while product documentation answers questions such as product

requirements, product architecture, functions’ explanation, release notes and more (Vasin

2023).

When conducting the collaboration and communication effort, taking into consideration what

is the best approach. The old and new developers can meet face to face if the situation

allows. Otherwise, there are a few tool choices for collaboration such as Jira, Teams, Zoom,

Slack to help connecting with people from different location and time zone (Dziuba 2021).

Choosing the right tools ensure that everyone in the team can participate effectively from

 20

anywhere in the world and balancing the awareness on the tasks, decisions, and resources

(Needle 2022). As for the Application Team, Slack is the main communication and

collaboration tool, which have been working sufficiently in exchanging conversations and

cooperation on multiple projects.

When the time comes for the team or team members to start working on the tasks, they may

face certain difficulties, therefore it is important to decide which tasks they should start with

first to allow the well-structured transition, for example maintenance work could be an ideal

option, to get acquainted with the code base. When they get a good sense from the source

codes, they can move on to more complicated tasks and proceed deeper with the growth of

the projects. Moreover, the old developers need to keep monitoring the progress, to avoid

any hidden hassles and help steering the people into the right direction, not by having an

exhaustive dominance but by being in touch with the team and answering all issues called for

(Wójcik 2023).

In the AM team case, the objective is not to understand about Knowledge on a phenomenal

level, but to break down the concept and investigate what are considered as Knowledge from

the developers’ perspective, based on the practical work that they perform to make the

decision on what to be transferred to the new owners of that knowledge. For example, as a

customer-focused company, the customer engagement is very important. What we consider as

knowledge when it comes to this element is who are the stakeholders, our mutual way of

working, communication channels are all parts of customer relationship. From a developer’s

perspective, knowledge is about the system’s domain, for example industrial business, utility

operation, retails, together with the architecture behind them, the development phases or

the bugs that have been solved. This is the knowledge that matters the most to the team.

4 Research Methodologies

As Albert Szent-Gyogryi, the Nobel-winner in philosophy used to say, quote “Research is to

see what everyone else has seen, and to think what nobody else has thought” (1957), it is

essential to conduct in-depth analysis on the problem and try to get a useful result out of it.

Doing the research is not even close to a no-brainer, but in fact it is quite challenging and

laborious. However, conducting research is also a rewarding outcomes, where you can put

your skills and expertise in place when pursuing deeply into the interested topic (Reddy n.d.).

In this chapter, we will focus on implementing qualitative research methodology, by applying

to kinds of methods: 1-on-1 interviews and surveys.

 21

4.1 Qualitative research

When searching for the best approach, the thesis author recognized that questions here to be

asked were not relatively close to numerical perspective, but rather seeking the answers for

“how” and “why” to capture a thoughtful understanding of experiences, context, and

phenomena (Cleland 2017, 61-71). In fact, because the author was interested in learning from

a small group of colleagues, to fathom whereas our way of working was still functional, or

should we seek for another alternatives. In addition, the author wished to apply earned

experiences and observation into practice, therefore qualitative research is the most

applicable choice for that goal.

4.2 Data collection method

The first method chosen is 1-on-1 interview. Due to natural course of the environment, a

semi-structured interview style was followed. While having an underlined purpose of what to

ask, there was no order to the questions to allow a more flexible, pleasant atmosphere for

the interviewees. In addition, it helped to prevent any accidents in asking leading questions

and assisted in exploring the topic in interest candidly (George 2022). The interviews were set

up as a conversational event, with the meetings organized through selected options of

communication and no set limit in interview length between the author and the interviewees.

A total of 4 people were participated in the interview process in a period of two weeks.

Focus group is the second method that fits into the scenario. Reason for choosing this

methodology is because it allows the author to explore whereas if the proposed idea has any

link to the practicality. With multiple criteria in place, this method supports further

clarification, expansion of data and getting feedbacks reported back to the research

participants (Gill et all. 2008, 291-295). Since the target audience group size is not large, it

suits ideally, allowing everyone a chance to share their thoughts, while eliminating any chaos

or frustration that may come from a much larger group of participants. In this case, the focus

group includes all nineteen developers of AM team, four squad leads and two team managers.

In addition to the two mentioned methods, the author also applies personal experiences in

use, by participating in the transfer meetings as a mean for collecting more materials for

further evaluation.

4.3 Data analysis method

The data analysis is done by combining two methodologies: Narrative analysis and Interpretive

Phenomenological Analysis (IPA). Narrative analysis is the kind of story telling tactic, and by

listening to people sharing their points of view on specific contexts, we can have a clearer

acknowledgement of how the stories really appear, comparing to how we thought or told it

 22

should be. The goal of applying this type of analysis is to gain powerful insights from the

people’s mindsets and to paint a clear picture of their perspectives (Warren 2020).

Since all the team members would encounter a Knowledge & System transfer at least once

during their working time with Nordcloud, the author put the focus on studying from people’s

experiences and expectations in what elements they feel are important. Drawing a Transfer

guideline template by involving Interpretive Phenomenological Analysis into the process is

essential. IPA is an experimental qualitative research method developed in 1996 by Jonathan

Smith, with its main objective is to gain insights of the experiences through the people who

promptly encounter them (Rodrigruez 2022). By applying the practice of IPA method, the

author seeks to intercept how the Knowledge & System transfer is conducted from the

developers’ points of view and makes meaning of the experiences they have gone through.

Finding the answers for What are their stories are the goals here.

5 Conducting Research

At the early stage of conducting the research, there was no interviews nor questionnaires

designed yet. At the time when the thesis topic was initially emerged, there were a few

situations in the team, including multiple small teams, in which developers left their positions

and must transfer the system ownership to the next person so at least one knowledge and

system transfer meeting was facilitated. The author got the chance to participate, observe

the transfer meetings and collecting the steps on how the meetings were organized and what

details were discussed. After that, the next step was to have the discussions with the team

leading to clarify how each team proceeded with the transfer or handover without any inputs

from the authors. After completing these steps, the topic was introduced to the rest of the

developer team with a sample template revealed, using Google Meet as the core

communication tool.

5.1 Research setup

As mentioned, the research phase was divided into three parts. The first part was about

gathering information on how the current transfer sessions were set up based on personal

experience and team situations. The second part was focusing more on 1-on-1 interviews

between the thesis author and different team leads to capture deeper insights from their own

experiences and mindsets. The next step was to design multiple questionnaires, in addition to

drafting a sampling template based on the data collected. After completion, the idea was

presented using the Continuous Improvement meeting to meet up with all team members,

where the author could get deeper insights on how people perform the transfer in practice,

 23

what has worked well for them and what changes did they wish to apply. Moreover, the

sampling template was disclosed for further discussion and feedbacks.

5.2 Data collecting

The researching data was collected in different phases. During the first phase, the author

participated in the internal knowledge and system transfer between the teams, together with

the current and replaced developers. The meetings were facilitated using Google Meet, with

time span from between 45 minutes to 60 minutes per session. All the talking points including

the transfer process, number of participants, length of sessions, list of materials and common

practices aspects discussed during the meetings were recorded using Miro board template’s

Sticky Notes for visual and tracking purpose.

Figure 6: Sticky Note (Miro Board)

Once the meetings were completed, the author continued with the interview process with the

team leaders. The notes taken during the first phase of research were used as questionnaires

during the interviews. All the interviews were conducted during the period of two weeks.

Again, the answers were logged in using Miro, and besides the four team leads interviewed,

the author also wrote down personal observation for researching purpose. At this stage, there

were two groups of contents, one belonged to the developer group, the other was from the

team lead group, which led to the next phase of transferring the common pain points into

Idea Napkin framework to for ideas comparison and assessments.

 24

Figure 7: The Idea Napkin (Miro Board)

With the details gathered from the first two phases, a draft template was designed, using Jira

tool, and put into testing. All the developers involved in the transfers and their team leads

were introduced and encouraged to track the process of the tickets. The testing phase was

launched from mid-March and still ongoing.

Figure 8: Jira template (Atlassian Community)

 The next step was to present the ideas during the Continuous Improvement meeting on

31.03.2023, with the participation of nine developers and three team leads. A questionnaire

 25

with eight multichoice questions and two open questions was prepared using Mentimeter-a

tool for presentation and immediate feedbacks (Edward 2021) for collecting further opinions,

and the whole presentation was performed within thirty minutes.

As the data was collected via multiple occasions, the last step to perform was to continue

fine-tune the knowledge/system transfer template and turned it into a ready-to-use version,

covering all the basic elements and pain points.

5.3 Data analysis

During the first phase of collecting data, the author joined the knowledge/system transfer

meetings as an active participant and facilitator, with the real intention hidden, addition to

staying in the shadow, meaning not providing any personal opinions or interfering into the

discussions. The focus point at this time was to write down what was discussed, what was

considered as important information to handover. The atmosphere and overall impression of

the participants were also observed carefully.

The interviews set with the team leads on the other hand had more focuses on how the

Knowledge and System transfer was conducted in squad level specifically, to learn to which

extent the people understood about the steps included, the materials required, relevant

parties, and other practicalities matters. Together with personal experiences as one of the

team lead in Application Team, the author began to anticipate in the process of evaluating of

what needed to be included in the draft sample Jira template, what tasks or talking points

the developers should include within the Knowledge/System transfer meetings, and whereas

the template would be practical and beneficial for the team. At least one person said that it

was not possible to define how many meetings should be held, while the rest of the

interviewees thought 2-4 meetings would be efficient. The ideal meeting length would be

about 1-1,5 hours during morning time.

6 Research Result

In this chapter, we discussed the conclusion of the interviews and CI meeting processes. In

addition, the questionnaire’s results were presented to understand the developers’

experiences and what would they expect in the future.

6.1 Interview results

All the interviews were held with the squad leads of the Application Management team.

During the meetings, the thesis’s topic was presented to the interviewees and then proceeded

with a list of questionnaires. All the interviews were conducted online and although there was

 26

a timebox, the interviewees were assured that the length of the meeting was flexible, which

allowed them to feel comfortable and comprehensively focused on the details in that

meeting. During the first meeting, seven questions were asked then gradually increased into

nine questions in total during the other three meetings. The average length was 31,75

minutes with the short interview lasted for 21 minutes, and the longest one lasted for 45

minutes. All the interviews were recorded and later reviewed, with results added as Sticky

Note using Miro.

The first question was asked if the concept of Knowledge transfer and System transfer could

be considered as one, which returned in contrast responses. One person said that they never

notice about the differences between the two factors, while another said that they

understood Knowledge transfer process well, but System transfer was a completely strange

concept. The third person was unsure about what Knowledge transfer was for, and in fact in

their opinion knowledge could not be transferred, but rather the information. The last

interviewee shared that they considered that those two concepts were somewhat related but

could still be standing alone because they served different purposes.

The next focus was on learning about what should be included in the Knowledge transfer and

System transfer. To simplify the question, the interviewees were encouraged to combine the

two concepts at once, and shared all the topics they considered as important to explore

during the transfer. All the interviewees shared the mutual agreement that Runbooks,

Customer engagement rule, System domains were the one that needed to be walked through.

In addition, Business domains, System Architecture, SoW, Code bases were essential to

discussed too. Three out of four interviewees praised the concern that during the transfer

process, we should spend time checking all the open tickets, reviewing common bugs and

blockers, while one interviewee focused on what were the business values, integration set up,

pair programming or shadowing organized between the developers.

Once the transfer process’s contexts were clarified, it was vital to understand how many of

those meetings that required, how long should each of them last, the core participants and

whereas recording was necessary. At least one person thought that there should not be any

limitation to the number of transfer meetings while the other three agreed that 2-4 meetings

should be efficient. The meeting length was recommended to be about 1 hour during the

morning time and recording the meetings was necessary or even made it as a rule. The core

participants were the old and new pair of primary and secondary developers, and while

everyone was welcome to participate, the priority should always go to the focus group

because of budget constraint. The primary developers were always the people held

accountable for the transfer progress, while the team lead’s role was more on the assisting

side. The transfer meetings were expected to occur when a person onboarded to or exited

from the team, or during project rotation. Most of the people agreed that the meetings

 27

should happen as early as possible and more frequently, while one person thought that we did

not have an urgency for having the transfer meetings.

When being asked what the other suggestions were, they wanted their team members to

acknowledge, the team leads shared that people should have the understanding that a good

Knowledge transfer meant good reputation in front of the customers, everyone should know

what contexts needed to be transferred, the goals were to be defined clearly, and

transparent communication should be kept. Furthermore, each system was unique in their

own, so avoiding using the same procedure for all and paid attention to the small details,

because those could be easily forgotten.

The last interview question concentrated more on the team lead themselves, to understand

their points of view toward their own team. Most of them agreed that they have full trust on

their team members, and there was no necessity to take full control of the transfer progress,

as people could be responsible for the tasks in consideration of them being fully aware of the

execution.

Figure 9: Interview results (Miro Board)

 28

6.2 CI meeting results

During the Continuous Improvement meeting, there were eight questions presented and their

responses collected for evaluation, including nine developers and three team leads. At first,

we started with the Knowledge and System transfer concept whereas they would see any

differences between them.

Figure 10: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter)

We received 10 answers, with 6 out of 10 said that the concepts are somewhere relatable in

some contexts, 1 person argued that they should not be considered the same because of

different requirements, while the rest shared that they never put much thought on the

subject.

Next question was about the time to conduct the Knowledge transfer, with 9 answers in total.

No one agreed that Knowledge transfer should occur when a person exited the team, while 2

people said that it should happen when onboarding members. The majority emphasized that

Knowledge transfer should happen any given time, regardless the reason.

 29

Figure 11: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter)

Since everyone in the team had at least once participated in a transfer meeting, they were

asked how many sessions they would need, and for how long those meetings should last

before them losing their focus, the responses were received as followed:

Figure 12: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter)

 30

Figure 13: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter)

Out of 10 responders, only 1 person said that one meeting was needed, while 2 people

thought 3-4 meetings were required. The other 7 people said that it was hard to predict a

specific number of meetings to be held for the transfer progress. When it came to the

meeting length, there was a tight between 30-45 minutes meeting and 1 hour meeting, with 3

people in favor for each, while the other 4 people said that there was no constraint to the

time limit, meaning that they should last as long as insisting.

Figure 14: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter)

 31

Sometimes, it would be hard to remember all the details discussed within the meetings,

therefore the participants were asked whereas they felt that those meetings should be

recorded and stored for later use, only 1 person replied that they did not mind about that,

while the other 9 thought it was essential to record the transfer meetings so that they could

access to them later as references.

Figure 15: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter)

Moving on to checking who should be invited to the meetings, we learnt that 2 people chose

that only the primary and secondary developers should participate the transfer progress,

while the number of responses were equal between all squad members were allowed to join,

and any person, regardless which squad they belonged to should have the chance to

participate.

 32

Figure 16: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter)

Because there were contrast opinions about the definition of Knowledge transfer and System

transfer, we decided to ask what people thought each of those approaches should contain.

Instead of showing the options under multiple choice format, we used the Word Cloud

question type, so that people can provided their own points of view. For Knowledge transfer,

the results showed different aspects, from Project overview, Customer communication to

more system specific, such as Coding walkthrough, Technical stack, Environment set up etc.

Figure 17: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter)

 33

As for System transfer, the results were mostly in favor of technical perspective. The

participants expected that we should cover the System architecture, Popular risks,

Integration and triggers, CI CD guidelines, Deployment process and more. Based on these

assumption, we could see that people believed that System transfer progress referred to any

technical activities performed within the system.

6.3 Results assessment

With the data collected after participating in multiple transfer meetings, combining with the

interview and CI meetings, the most important pain points were picked and transferred to the

Idea Napkin by Miro. In the board, there were three categories: Problem, Solution and

Benefits. For Problem clarification, we could see that currently, there was no clear

instruction on how to execute the Knowledge & System transfer process, the suggested

participants were not defined, and the individuals’ responsibilities during the transfer were

missing. Moreover, the process was not transparent as it should be, leaving the people lost in

tracking the states, making it impossible to recognize hidden issues and communication

blocking.

Once the problem was clarified, the next step was to start with the implementation of what

to change. A solution was proposed with various characters, including writing clear transfer

instruction for the team, creating a sample template, placing it under testing and gradually

requesting feedbacks from the users for improvement. The template should be created using

Jira template format-a well-known collaboration tool using by all members of the AM team

and could be considered as a continuous progress. By putting the template in use, we aimed

to achieve a few goals: time and efforts saving, smooth team collaboration, straightforward

tasks’ visuality while limiting any inherent risks, such as forgotten documents, unsolved bugs,

or lack of customer engagement awareness.

Initially, the author had the intention to separate Knowledge transfer and System transfer as

two separate processes, however, due to the reaction of other team members from the

interviews and CI meeting, it was proved that dividing the two concepts were unnecessary, as

it would create more confusion than validation. Therefore, the template’s name would

precisely be Knowledge & System transfer.

 34

Figure 18: The Idea Napkin for assessment (Miro Board)

6.4 Sample transfer template

We were now heading to the final step: creating a Knowledge & Transfer template and testing

its practicality and relevancy. The template was designed using Jira tool and follow a

standard procedure. The Jira ticket would have the Customer & System name displayed, with

a short Description provided. A checklist was added, with all the general TO DO items that

any individual who were a part of the transfer progress must follow for checkup. The ticket

would be assigned to the responsible person for updating purpose, and from the feedbacks

gathered, that was the primary developers with the assistance from their team leads when

required. The number of meetings would be minimum 2 sessions, with the average of one

hour per session. Recording those meetings was encouraged for later use. When performing a

task in the list with another member, i.e., Project management then a tag linked that

individual should be added. All the tasks were listed based on their priority order, and the

transfer progress should be started as soon as the transfer confirmation was announced.

 35

Figure 19: Sample Transfer Template design (Atlassian)

At the time of concluding the thesis process, there are a few Knowledge & System Transfer

Jira tickets under testing by 2 different squads and 5-7 developers. People use the ticket

checklist as references, and once completed, the tasks would be crossed out. People with

specific roles also tagged to the ticket, either to be assigned to a specific task or to provide

further clarification.

 36

7 Conclusion

The results collected from the personal observation, 1-on-1 interviews and team’s Continuous

Improvement meeting showed that people are interested in having a different approach,

when it comes to Knowledge & System transfer. From the 1-on-1 interview, we learn how the

transfer process is operated in every squad, what are the current understanding and future

expectations. It also shows the team lead’s viewpoints, whereas they are satisfied with the

current transfer arrangement or do they prefer making some improvements. From the results

of Continuous Improvement meeting, we dig deeper on the practicalities of the process,

based on the developers’ experiences: the number of participants, accountability, timeline,

materials, and collaboration tools.

From the results, we make a comparison between the management and the developers’ team

to find the common problems and misunderstanding between the two groups. When the

problems defined, we continue with specifying what is the suitable solution: what would we

do next? How would we do it? Where and when it would happen? The ambition here is to gain

benefits from the changes we make or at least raising the awareness of the problem, while

filling the gap between the management and development team.

It takes the author by surprise that many team members have a different approach when

discussing about the transfer process, its contents, and requirements- which has been a part

of teamwork for a long time. Moreover, the team leaders and their members do not share

similar expectations when walking through the specifics. Nevertheless, we receive positive

impressions by the people on the usefulness of the transfer template. Being a team with

different backgrounds and located in various countries is already a challenge, therefore if we

can agree on the same procedures, number of steps including during the transfer, the

materials to walk through, responsibilities and expected outcomes, we can benefit from

having a shared understanding, smoother collaboration, timesaving, and more independency.

In short, we can be productive while enjoying our work together, as a team.

Of all the theoretical frameworks mentioned, only Continuous Improvement model is the most

familiar with the Application Management team. The other frameworks such as SPACE and DX

are somewhat unheard of, which makes the efforts to implement them are not fully feasible

for the time being, because it is still debatable on what is the best approach. However, it is

worth introducing and diving into the benefits of them to determine which path we should

follow in the future to secure the robustness of the Application Management team, whereas it

is a from specific model or the comprehensions of them all.

 37

7.1 Limitation

One of the first limitation when starting the thesis scope is the time constraint. The author

had a tight schedule of two months for personal observation, doing the interviews and

conducting the questionnaires with the whole team. We also acknowledged the contrast in

every squad’ operation structure, making it difficult to propose a solution that would fit well

into everyone’s needs. Of course, as a whole Application Management team, we share

common values and goals, but it is up to the squad level in defining the specifications, due to

the situation of the squad.

Another limitation that surfaced that despite as much effort as we tried, implementing one

template that covered all requirements was not doable, because every project was different

than the others. When needed, extra steps or clarifications would be added to the template

for better visuality and tracking. The responsibilities of the parties in the transfer process

would also be affected by the scopes and purposes. All the team leaders when being asked

said that micro-management is not their favorite practice, therefore they hope that when

people are assigned with the task, they should be able to deliver and be held accountable for

the outcome results.

The thesis objective included a small focus group containing of 22 people, however, we only

received responses from a total of 12 developers and 4 team leads, making the results not

fully reliable. We cannot force everyone to participate in the process if they do not enjoy it,

and with the others who participated, we can at most make the recommendation on starting

to use the template but not placing it as a rule that everyone must follow. In addition, the

sample templates are currently under testing, and while it shows some positive affection, it is

quite early to determine the success of the implementation. Based on the current situation,

we need to wait for at least 1-2 months to see how effectively the template helps with the

Knowledge & Transfer process, and only then we can conclude on whereas the template can

be officially put into use.

7.2 Future suggestion

We recognized a few points that can enhance the practicality of the template. First, as a

development team, we aimed to align our way of working, meaning that instead of creating

the transfer template for every needed occasion, we can automate the template creation

process. By using a script, we could take in team members or project names and then

generate the Jira ticket automatically, including all the necessary Transfer items check list.

In addition, we can investigate which projects share the similarities and modify the template

contents based on those requirements, for example some projects may require background

checks, which we can include in the instruction or guidance in the designated transfer ticket.

 38

Furthermore, the transfer tickets can be shared in the Team level board to make it easier

with tracking the progress and better visuality. All other relevant discussions can be done by

adding the details in the Comment section within the ticket, rather than communicating in

other channels. This helps to bring full attention to all relevant members and keep them up

to date with the transfer process.

 39

References

Electronic

Nordcloud. About us. Accessed 28 February 2023. https://nordcloud.com/

Andrzejewski, J. 2022. What is Developer Experience? (DX). Accessed 25 March 2023.
https://dev.to/jacobandrewsky/what-is-developer-experience-2lh8

Ayanleke, O. 2022. Why Developers Are Using The SPACE Framework For Productivity.

Accessed 27 March 2023. https://www.scatterspoke.com/post/why-developers-use-space-

framework

Azorin, P. No date. Best Knowledge transfer Methods for Development teams. Accessed 25

March 2023. https://www.bairesdev.com/blog/development-teams-knowledge-transfer/

Brearley, B. 2017. Why your team needs to keep improving. Accessed 28 March 2023.

https://www.thoughtfulleader.com/continuous-improvement-matters/

Bulao, J. 2023. How Fast Is Technology Advancing in 2023? Accessed 28 February 2023.

https://techjury.net/blog/how-fast-is-technology-growing/#gref

Carruthers, R. 2021. Knowledge transfer: Keeping critical know-how within the organization.

Accessed 25 March 2023. https://www.togetherplatform.com/blog/knowledge-transfer

Cavalcante, A. 2019. What is DX? (Developer Experience). Accessed 25 March 2023.

https://medium.com/swlh/what-is-dx-developer-experience-401a0e44a9d9

Cavalcante, A. 2020. Developer Experience Metrics. Accessed 25 March 2023.

https://medium.com/@albertcavalcante/developer-experience-metrics-46b1d087811d

Circei, A. 2022. The SPACE framework For Software Developer Productivity. Accessed 30

March 2023. https://www.forbes.com/sites/forbestechcouncil/2022/12/16/the-space-

framework-for-software-developer-productivity/?sh=3de55bc229d5

Cleland, J. 2017. The qualitative orientation in medical education research. Korean Journal of

Medication Education, 29(2), 61-71. doi: 10.3946/kjme.2017.53

Dewar, C. Doucette, R. & Epstein, B. 2019. How continuous improvement can build a

competitive edge? Accessed 28 March 2023. https://www.mckinsey.com/capabilities/people-

and-organizational-performance/our-insights/the-organization-blog/how-continuous-

improvement-can-build-a-competitive-edge

https://nordcloud.com/
https://dev.to/jacobandrewsky/what-is-developer-experience-2lh8
https://www.scatterspoke.com/post/why-developers-use-space-framework
https://www.scatterspoke.com/post/why-developers-use-space-framework
https://www.bairesdev.com/blog/development-teams-knowledge-transfer/
https://www.thoughtfulleader.com/continuous-improvement-matters/
https://techjury.net/blog/how-fast-is-technology-growing/#gref
https://www.togetherplatform.com/blog/knowledge-transfer
https://medium.com/swlh/what-is-dx-developer-experience-401a0e44a9d9
https://medium.com/@albertcavalcante/developer-experience-metrics-46b1d087811d
https://www.forbes.com/sites/forbestechcouncil/2022/12/16/the-space-framework-for-software-developer-productivity/?sh=3de55bc229d5
https://www.forbes.com/sites/forbestechcouncil/2022/12/16/the-space-framework-for-software-developer-productivity/?sh=3de55bc229d5
https://doi.org/10.3946%2Fkjme.2017.53
https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/the-organization-blog/how-continuous-improvement-can-build-a-competitive-edge
https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/the-organization-blog/how-continuous-improvement-can-build-a-competitive-edge
https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/the-organization-blog/how-continuous-improvement-can-build-a-competitive-edge

 40

Dziuba, A. 2021. Effective Knowledge Transfer Between Software Teams: Methods and Tips.

Accessed 25 March 2023. https://relevant.software/blog/effective-knowledge-transfer-

between-software-teams/#10_Communication_and_collaboration_tools

Edwards, L. 2021. What is Mentimeter and How Can It Be Used for Teaching? Tips and Tricks.

Accessed 05 April 2023. https://www.techlearning.com/how-to/what-is-mentimeter-and-

how-can-it-be-used-for-teaching-tips-and-tricks

Erilkh, L. 2000. Leveraging legacy dollars system for e-business.IT Professional, 2(3), 17-23.

doi: 10.1109/6294.846201

Gadhavi, M. 2022. Why Software Maintenance Is Necessary? Accessed 30 March 2023.
https://radixweb.com/blog/why-software-maintenance-is-necessary

Gavrilovska, A. 2021. How to successfully hand over systems? Accessed 01 April 2023.

https://developers.soundcloud.com/blog/how-to-successfully-hand-over-systems

George, T. 2022. Types of Interviews in Research. Guide and Examples. Accessed 05 April

2023. https://www.scribbr.com/methodology/interviews-research/

Gill, P. Stewart, K. Treasure, E. Chadwick, B. 2008. Methods of data collection in qualitative

research: interviews and focus group. Accessed 05 April 2023.

https://www.nature.com/articles/bdj.2008.192

Hrzenjak, B. Best practices for creating a great developer experience (DX). Accessed 25

March 2023. https://www.shakebugs.com/blog/developer-experience-best-practices/

Atlassian Community. Accessed 25 April 2023. https://community.atlassian.com/t5/Jira-

Software-questions/Checklist-in-jira-ticket/qaq-p/1342697

Kellar, W. 2020. “If you fail to plan, you are planning to fail”. Accessed 30 March 2023.

https://www.humaninvesting.com/450-journal/if-you-fail-to-plan-you-are-planning-to-fail

Koponen, A. 2022. Your organization’s guide to the SPACE framework. Accessed 30 March

2023. https://www.swarmia.com/blog/space-framework/

Maestro 2020. How to Effectively Complete a Knowledge Transfer Plan. Accessed 28 March

2023. https://maestrolearning.com/blogs/how-to-effectively-complete-a-knowledge-

transfer-plan/

Middleton, T. 2022. The importance of teamwork (as proven by science). Atlassian. Accessed

01 April 2023. https://www.atlassian.com/blog/teamwork/the-importance-of-teamwork

https://relevant.software/blog/effective-knowledge-transfer-between-software-teams/#10_Communication_and_collaboration_tools
https://relevant.software/blog/effective-knowledge-transfer-between-software-teams/#10_Communication_and_collaboration_tools
https://www.techlearning.com/how-to/what-is-mentimeter-and-how-can-it-be-used-for-teaching-tips-and-tricks
https://www.techlearning.com/how-to/what-is-mentimeter-and-how-can-it-be-used-for-teaching-tips-and-tricks
https://doi.org/10.1109/6294.846201
https://radixweb.com/blog/why-software-maintenance-is-necessary
https://developers.soundcloud.com/blog/how-to-successfully-hand-over-systems
https://www.scribbr.com/methodology/interviews-research/
https://www.nature.com/articles/bdj.2008.192
https://www.shakebugs.com/blog/developer-experience-best-practices/
https://community.atlassian.com/t5/Jira-Software-questions/Checklist-in-jira-ticket/qaq-p/1342697
https://community.atlassian.com/t5/Jira-Software-questions/Checklist-in-jira-ticket/qaq-p/1342697
https://www.humaninvesting.com/450-journal/if-you-fail-to-plan-you-are-planning-to-fail
https://www.swarmia.com/blog/space-framework/
https://maestrolearning.com/blogs/how-to-effectively-complete-a-knowledge-transfer-plan/
https://maestrolearning.com/blogs/how-to-effectively-complete-a-knowledge-transfer-plan/

 41

Needle, D. 2022. 4 reasons why business need to use collaboration tools. Accessed 07 April

2023. https://www.techtarget.com/whatis/feature/4-reasons-why-businesses-need-to-use-

collaboration-tools

Forsgren, N., Storey, E., Maddila, C., Zimmermann, T., Houck, B., Butler, J. 2021. The SPACE

of Developer Productivity, 19(1). Accessed 29 March 2023.

https://queue.acm.org/detail.cfm?id=3454124

Nussbaum, H 2022. Understand and Optimize Developer Productivity with the SPACE

framework. Code Climate. Accessed 29 March 2023. https://codeclimate.com/blog/the-

space-framework

Pauly, E. 2022. 5 Best Developer Productivity Metrics & How to track them. Accessed 30

March 2023. https://linearb.io/blog/developer-productivity-metrics/

Pedro, T. 2022. Boost your developer productivity with SPACE framework. Accessed 30 March

2023. https://linearb.io/blog/space-framework/

Pluralsight. 2022. Measuring developer experience: The superpower of today. Accessed 28

March 2023. https://www.pluralsight.com/blog/software-development/measuring-developer-

experience

Radcliffe, A. No date. What is Software Maintenance and why it is essential in the current
crisis? Accessed 05 March 2023. https://spyro-soft.com/blog/software-maintenance-services-

benefits

Reddy, C. No date. Why Research is Importance for Students, Humans, Education. Accessed

10 April. https://content.wisestep.com/research-important-students-humans-education/

Rodriguez, E. 2022. What is Interpretative Phenomenological Analysis (IPA)? Accessed 20

April. https://doctorelenagr.com/meet-elena/

Sasidharan, D. 2021. What is Developer Experience and why should we care? Accessed 26

March 2023. https://dev.to/adyen/what-is-developer-experience-and-why-should-we-care-

1k9i

Service Now, No date. What is the Software Development Life Cycle? Accessed 30 March 2023.
https://www.servicenow.com/products/devops/what-is-sdlc.html

Shead, S. 2020. IBM snaps up Finnish cloud firm Nordcloud as battle with AWS, Microsoft and
Google heats up. Accessed 28 February 203. https://www.cnbc.com/2020/12/21/ibm-buys-
nordcloud-as-cloud-wars-with-google-aws-microsoft-heat-up.html

https://www.techtarget.com/whatis/feature/4-reasons-why-businesses-need-to-use-collaboration-tools
https://www.techtarget.com/whatis/feature/4-reasons-why-businesses-need-to-use-collaboration-tools
https://queue.acm.org/detail.cfm?id=3454124
https://codeclimate.com/blog/the-space-framework
https://codeclimate.com/blog/the-space-framework
https://linearb.io/blog/space-framework/
https://www.pluralsight.com/blog/software-development/measuring-developer-experience
https://www.pluralsight.com/blog/software-development/measuring-developer-experience
https://spyro-soft.com/blog/software-maintenance-services-benefits
https://spyro-soft.com/blog/software-maintenance-services-benefits
https://content.wisestep.com/research-important-students-humans-education/
https://doctorelenagr.com/meet-elena/
https://dev.to/adyen/what-is-developer-experience-and-why-should-we-care-1k9i
https://dev.to/adyen/what-is-developer-experience-and-why-should-we-care-1k9i
https://www.servicenow.com/products/devops/what-is-sdlc.html
https://www.cnbc.com/2020/12/21/ibm-buys-nordcloud-as-cloud-wars-with-google-aws-microsoft-heat-up.html
https://www.cnbc.com/2020/12/21/ibm-buys-nordcloud-as-cloud-wars-with-google-aws-microsoft-heat-up.html

 42

Simic, P. Guide to SPACE framework and metrics for developer productivity. Accessed 07

March 2023. https://www.shakebugs.com/blog/dev-space-

framework/#:~:text=what%20they%20are!-,SPACE%20metrics,Source%3A%20Shake

Swersky, D. 2022. The SDLC: phases, popular models, benefits and more. Accessed 01 March
2023. https://raygun.com/blog/software-development-life-cycle/

Towns, A. No date. How to measure developer experience (with metrics!). Accessed 27 March

2023. https://www.getclockwise.com/blog/measure-developer-experience-

metrics#:~:text=Examining%20lead%20time%2C%20automation%2C%20and,to%20understand%20

the%20developer%20experience.

Tsuei, J. No date. Developer Experience (DX) and why it matters. Accessed 29 March 2023.

https://www.getclockwise.com/blog/what-is-developer-experience

Vasin, A. 2023. Knowledge transfer methods for Software team: How to Ensure the Smooth

Onboarding of New Hires. Accessed 02 April. https://youteam.io/blog/knowledge-transfer-

methods-for-software-teams/

Velimirovic, A. 2022. What is SDLC? Understand the Software Development Life Cycle.
Accessed 02 March 2023. https://phoenixnap.com/blog/software-development-life-
cycle#:~:text=An%20SDLC%20(software%20development%20life,all%20major%20stages%20of%20
development.

VMEC. 2018. Using Continuous Improvement (CI) to Benefit Your Business. Accessed 20 March

2023. https://vmec.org/continuous-improvement-benefit-business/

Warren, K. 2020. Qualitative Data Analysis Methods 101: The “Big 6” Methods and Examples.

Accessed 20 April 2023. https://gradcoach.com/qualitative-data-analysis-methods/

Waters, S. 2022. What will make or break your next role? Find out why teamwork matters?

Better Up. Accessed 05 April 2023. https://www.betterup.com/blog/what-is-teamwork

What is a Software Maintenance Process? 4 Types of Software Maintenance. Accessed 02
March 2023. https://cpl.thalesgroup.com/software-monetization/four-types-of-software-
maintenance#:~:text=Software%20maintenance%20is%20the%20process,to%20boost%20perform
ance%2C%20and%20more.

Wójcik, S. 2023. This is not what I expected-how to hand over the software project to new

developers? Accessed 10 April 2023. https://crustlab.com/blog/software-project-handover/

Zainal, Z. 2007. Case study as a research method. Accessed 15 April

2023.https://jurnalkemanusiaan.utm.my/index.php/kemanusiaan/article/view/165/158

https://www.shakebugs.com/blog/dev-space-framework/#:~:text=what%20they%20are!-,SPACE%20metrics,Source%3A%20Shake
https://www.shakebugs.com/blog/dev-space-framework/#:~:text=what%20they%20are!-,SPACE%20metrics,Source%3A%20Shake
https://raygun.com/blog/software-development-life-cycle/
https://www.getclockwise.com/blog/measure-developer-experience-metrics#:~:text=Examining%20lead%20time%2C%20automation%2C%20and,to%20understand%20the%20developer%20experience
https://www.getclockwise.com/blog/measure-developer-experience-metrics#:~:text=Examining%20lead%20time%2C%20automation%2C%20and,to%20understand%20the%20developer%20experience
https://www.getclockwise.com/blog/measure-developer-experience-metrics#:~:text=Examining%20lead%20time%2C%20automation%2C%20and,to%20understand%20the%20developer%20experience
https://www.getclockwise.com/blog/what-is-developer-experience
https://youteam.io/blog/knowledge-transfer-methods-for-software-teams/
https://youteam.io/blog/knowledge-transfer-methods-for-software-teams/
https://phoenixnap.com/blog/software-development-life-cycle#:~:text=An%20SDLC%20(software%20development%20life,all%20major%20stages%20of%20development
https://phoenixnap.com/blog/software-development-life-cycle#:~:text=An%20SDLC%20(software%20development%20life,all%20major%20stages%20of%20development
https://phoenixnap.com/blog/software-development-life-cycle#:~:text=An%20SDLC%20(software%20development%20life,all%20major%20stages%20of%20development
https://vmec.org/continuous-improvement-benefit-business/
https://gradcoach.com/qualitative-data-analysis-methods/
https://www.betterup.com/blog/what-is-teamwork
https://cpl.thalesgroup.com/software-monetization/four-types-of-software-maintenance#:~:text=Software%20maintenance%20is%20the%20process,to%20boost%20performance%2C%20and%20more
https://cpl.thalesgroup.com/software-monetization/four-types-of-software-maintenance#:~:text=Software%20maintenance%20is%20the%20process,to%20boost%20performance%2C%20and%20more
https://cpl.thalesgroup.com/software-monetization/four-types-of-software-maintenance#:~:text=Software%20maintenance%20is%20the%20process,to%20boost%20performance%2C%20and%20more
https://crustlab.com/blog/software-project-handover/
https://jurnalkemanusiaan.utm.my/index.php/kemanusiaan/article/view/165/158

 43

Figures

Figure 1: Software Development Life Cycle (Java Point, No date) 9

Figure 2: SPACE Framework (Cortex, No date) ... 11

Figure 3: Developer Experience (Sasidharan 2021) .. 14

Figure 4: Continuous Improvement (CI) (VMEC 2018) ... 16

Figure 5: The Triangle of Wisdom (Carruthers 2021) .. 18

Figure 6: Sticky Note (Miro Board) ... 23

Figure 7: The Idea Napkin (Miro Board) ... 24

Figure 8: Jira template (Atlassian Community) .. 24

Figure 9: Interview results (Miro Board) .. 27

Figure 10: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter) ... 28

Figure 11: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter) ... 29

Figure 12: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter) ... 29

Figure 13: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter) ... 30

Figure 14: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter) ... 30

Figure 15: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter) ... 31

Figure 16: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter) ... 32

Figure 17: Results from the questionnaire during Continuous Improvement meeting

(Mentimeter) ... 32

Figure 18: The Idea Napkin for assessment (Miro Board) ... 34

Figure 19: Sample Transfer Template (Atlassian) ... 35

 44

Appendices

Appendix 1: Interview questions ... 45

Appendix 2: Topic presentation during CI meeting .. 46

 45

Appendix 1: Interview questions

1. Would you like to share a bit about yourself?

2. How long have you been in your role?

3. What are your daily responsibilities?

4. There are 3 identified problems: the first is not having enough work to do, the second

problem is Knowledge transfer, and the last problem is System transfer process. In

your opinion, are these problems relevant with your squad?

5. How do you understand about the concept of Knowledge transfer?

6. Is it clear for all your team members to know what to do during a knowledge transfer

session? Are they happy with the current process set up?

7. When is the best time to conduct the Knowledge transfer meeting?

8. What about the System transfer process? Is the concept clear to you?

9. Is it clear for all your team members to know what to do during a System transfer

session? Are they happy with the current process set up?

10. When is the best time to conduct the System transfer meeting?

11. Do you need to have follow up with these transfer process, based on your squad

situation? If yes, which methods do you use, i.e., personal notes, official

documentation?

12. Do you feel the need to micro-manage or the team members should have the freedom

in conducting the transfer process?

13. In the squad, is the communication transparent enough?

14. Are the team members confident with asking for help?

15. What changes do you want to see?

16. Other comments? Questions you want to answer?

 46

Appendix 2: Topic presentation during CI meeting

	1 Introduction
	1.1 Problem identification
	1.2 Thesis outline

	2 Nordcloud -Application Management team
	2.1 Nordcloud
	2.2 AM Team

	3 Theoretical frameworks
	3.1 Software Development Life Cycle
	3.2 SPACE framework
	3.2.1 Definition
	3.2.2 Team practice

	3.3 Developer Experience framework
	3.3.1 Definition
	3.3.2 Team practice

	3.4 Continuous Improvement
	3.4.1 Knowledge transfer
	3.4.2 System transfer

	4 Research Methodologies
	4.1 Qualitative research
	4.2 Data collection method
	4.3 Data analysis method

	5 Conducting Research
	5.1 Research setup
	5.2 Data collecting
	5.3 Data analysis

	6 Research Result
	6.1 Interview results
	6.2 CI meeting results
	6.3 Results assessment
	6.4 Sample transfer template

	7 Conclusion
	7.1 Limitation
	7.2 Future suggestion

	References
	Figures
	Appendices

