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The thesis work aimed to study the effects bass guitar pickups produce when the 

signal is pitch-shifted or detected for synthesis. Due to the significant role a pickup 

plays in the sonic qualities of a stringed electric instrument, it is vital to understand 

the effects it yields when the signal is subject to pitch tracking or alteration 

algorithms. The main goal of the study was to aid Darkglass Electronics, a Finnish 

bass accessory manufacturer, in developing embedded effects for bass guitars 

without any compromise in sonic quality.  

Using data analytics programming languages such as Python, a correlation and 

analysis tool was developed. Data points were collected from using an audio 

signal with the algorithms and compared to the ideal application. The script 

determined and flagged deviations and errors, which led to further investigation 

for the cause and suggested potential improvements. To perform tests on the 

pickup types, a bass guitar was modified to contain a humbucker pickup and a 

piezo bridge pickup. A debugging pre-amplifier was designed for the bass guitar 

to encompass signals from both pickups using Altium - an ECAD software.  

The results of the tests concluded that the piezo pickup produced effects that 

were undesirable for the Darkglass DSP application of the pitch detection and 

shifting algorithms. Furthermore, the harmonic content analysis determined the 

fundamental difference between the pickup types. Although the piezo produced 

the most errors, various applications where the piezo would be a viable choice 

were also discovered.  
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1 Introduction 

In the world of digital audio processing, pitch manipulation effects and sound 

synthesis are commonly researched subjects and are widely used by musicians 

to alter and produce new sounds. The origins of sound synthesizers trace back 

to the early 20th century, where analog oscillators were mainly utilized to produce 

pure tone sounds such as sine, square, and sawtooth waves. In more modern 

applications, synthesis uses digital signal processing or hybrid systems to 

produce more complex musical tones. Similarly, pitch manipulation is a very 

popularly used tool to modify the perceived pitch of an instrument or speech. Most 

common styles of pitch manipulation are often used to shift the signal to different 

musical intervals. An octaver is a common pitch manipulation tool widely used on 

instruments to shift the signal down an interval of an octave, essentially halving 

the frequency of the signal. This results in the addition of subharmonic bass 

frequencies. 

 

With emerging audio technologies, the signal of a stringed instrument can be 

used to synthesize pure or complex tones by tracking the pitch of the note played. 

Although it may seem trivial to track the pitch or fundamental frequency of an 

instrument; in reality, there are complexities stemming from the timbre (tonal 

quality of a sound [1]) and the nature of the instrument that cause tracking errors 

or inconsistencies. Comparable issues occur when the pitch is shifted and 

worsened with certain cases where an error causes perceivable differences.  

 

By understanding the fundamentals of guitar pickup technology, a much wider 

comprehension of the role pickups plays in the harmonic contents of the signal, 

and their effects on the algorithms can be achieved. Moreover, methods to 

mitigate errors in these algorithms can also be investigated.  

 

To test the function of pickup types in errors and the overall functionality of the 

algorithms, a bass guitar was modified to contain two specific types of pickups: a 

generic humbucker pickup in a split-coil configuration and a piezo bridge pickup. 
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An on-board debugging pre-amplifier was designed to encompass the signals of 

the bass guitar utilizing Altium Designer - an ECAD software. Using python, a 

programming language widely used for data analytics, correlation and analysis 

functions were implemented to study the changes in the fundamental frequency 

tracking stability, errors, and deviations. Lastly, the analysis of the harmonic 

contents of the signal and the testing method was validated using Sonic 

Visualizer.  

 

The findings of the study aid Darkglass Electronics, a Finnish bass guitar 

accessory manufacturer, in pursuing technology and methods to implement bass 

guitar effects embedded into an instrument. The algorithms used to acquire the 

test data were effects made in-house by Darkglass Electronics, which include a 

faithful modelling of an analog octaver, a digital hybrid octaver, and a bass guitar 

synthesizer.  

2 Fundamental Theories and Concepts  

To understand the errors conditions and study goals, it is essential to have a solid 

comprehension on the fundamental implementation of the algorithms, guitar 

pickup technology, digital signal processing, and spectral analysis. The following 

section covers the necessary prerequisites.  

2.1 Digital Signal Processing  

Digital signal processing is a commonly used technique to analyze and modify 

real world signals such as sounds, measurements, and other data. Analog signals 

are discretized digitally using Analog-to-Digital converters and using fundamental 

mathematical functions, the data is manipulated. [2.] For discretizing signals, the 

data is sampled at recurring instances. The rate at which these instances are 

captured is known as the sampling frequency (Fs), measured in Hertz. [3.] 

According to the Nyquist-Shannon sampling theorem, an analog signal can be 

accurately reconstructed only if the sampling frequency is more than twice the 
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maximum frequency of the sample [4]. Failing to satisfy the Nyquist-Shannon 

theorem leads to an effect called signal aliasing.  

 

An essential concept in Digital Signal Processing is windowing and hop size. 

Windowing divides a signal into smaller intervals of signal for which the 

processing is performed. Typically, windows are overlapped after each other; the 

number of samples in non-overlapping regions of the window is called the hop 

size. [5.] Figure 1 depicts windowing and hop size for an audio sample. 

 

 

Figure 1. Windowing and Hop size. Q denotes the hop size and K represents the 
window length [6].  

A signal’s contents can be analyzed using methods like spectral analysis. In 

spectral analysis, the Fourier Transform of a signal is performed to calculate the 

magnitude of each frequency component present in a signal. The Fourier 

Transform is translated into DSP via the discretized and sample based Discrete 

Fourier Transform (DFT). The mathematical implementation of the Fourier 

Transform and DFT is shown in Equation (1) and (2): 
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Let 𝑓(𝑡) be a function. Then the Fourier Transform of the function is given as 

follows:   

 

𝐹(𝑘) = ∫ 𝑓(𝑡)𝑒−2𝜋𝑗𝑘𝑡𝑑𝑡
∞

−∞

 

 

(1) 

 

Where 𝑗 is the complex imaginary unit and 𝑘 is the frequency.  

 

Then the DFT for 𝑁 number of samples is given by: 

 

𝐹(𝑘) =  ∑ f(k)e−2𝜋𝑗𝑘/𝑁

𝑁−1

𝑘=0

 

 

(2) 

Each value of 𝑘 denotes a frequency bin. The magnitude and phase of the 

frequency bin is calculated by using the magnitude and angle formulas for a 

complex number 𝑎 + 𝑗𝑏 where 𝑗 is a complex number. The Fast Fourier 

Transform (FFT) algorithm improves the implementation of the DFT. It requires 

fewer computational steps to perform the calculations.  

 

The spectral information calculated using DFT can be represented by graphing 

the magnitude for each frequency bin or a spectrogram. The graphing method 

provides the harmonic contents of the signal as a function of its magnitude, 

whereas a spectrogram provides the magnitude of the harmonic contents, or 

frequency bins, as a function of time. Figure 2 and Figure 3 contain the graphing 

and spectrogram representations. 
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Figure 2. Graphing Frequency as a Function of Magnitude [7]. 

 

 

Figure 3. Spectrogram [7]. 

The lowest frequency component present in the signal is known as the 

fundamental frequency. In a periodic signal, multiples of the fundamental 

frequency are known as the harmonics or overtones. [8.] The relationship 

between the fundamental frequency and subsequent harmonics is shown by 

Equation (3). 
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                                                 𝑓𝑛 = (𝑛 + 1) ∗ 𝑓0 (3) 

Where fn is the nth harmonic. In practice however, the fundamental and 

subsequent harmonics do not necessarily maintain a perfect 1: 𝑛 relationship with 

the harmonics - these deviated harmonics are commonly referred to as 

inharmonic overtones or partials. Partials may be slightly higher or lower from the 

ratio and possibly contain differing phases. The timbre of the sound is unique for 

different sounds due to the varying magnitudes of the harmonics and partials.  

 

Figure 4 describes the relationship between the fundamental frequency and the 

subsequent harmonics. The period of the wave doubles for each harmonic, i.e., 

frequency is twice. In music, it is generally accepted that the perceived pitch is 

the fundamental frequency of the signal.  

 

 

Figure 4. Relationship between Fundamental Frequency and Subsequent 
Harmonics [9]. 

During spectral analysis, it is quite valuable to apply the windowing when 

calculating the DFT of data to optimize for accuracy and performance. The 

windows are often truncated by applying various window functions such that the 

samples taper to zero at the start and the end of the window. Another benefit of 

applying windowing functions when performing spectral analysis is for avoiding 
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the effect of spectral leakage. The phenomenon of spectral leakage causes the 

magnitude information of a frequency bin to affect other bins [10]. This is often 

caused due to the overlapping windows causing discontinuities in the signal, as 

shown in Figure 5. 

 

 

Figure 5. Discontinuities Produced when No Window Function is Applied [10]. 

2.2 YIN Algorithm  

As initially established, estimating the fundamental frequency is a non-trivial 

subject due to the timbre of a signal. The harmonic contents play a large role in 

the transient changes in the time domain of the signal. Most fundamental 

frequency estimations fail to account for these changes. The YIN algorithm by 

Alain de Cheveigné and Hideki Kawhara is a robust method that improves 

existing implementations for fundamental frequency estimations. The three 

stages of the YIN algorithm are as follows: 

 

1. Autocorrelation 

2. Difference Function 

3. Cumulative Mean Normalized Difference Function 

 

The YIN algorithm is used in Darkglass’ in-house bass guitar synthesizer, which 

produces a synthesized bass signal. Moreover, it is also implemented as a plugin 

in Sonic Visualizer to help validate the accuracy of the pitch correlation tool 

created for the research.  
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2.2.1 Autocorrelation Function 

The Autocorrelation Function (ACF) is commonly used in statistics and signal 

processing for measuring the correlation between the signal and its time delayed 

variant [11]. The ACF of a periodic signal always returns a perfect correlation and 

the smallest time delay denotes the period of the signal [12]. The inverse of the 

time delay is an estimate of the frequency of the signal. Mathematical 

representation of the ACF function is presented in Equation (4): 

 

Let 𝑠(𝑡) be a periodic signal, then its ACF 𝑅(𝜏) with delay 𝜏 is: 

 

𝑅(𝜏) =
1

(𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛)
∫ 𝑠(𝑡)𝑠(𝑡 +

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

𝜏)𝑑𝑡 

 

(4) 

The equation can be applied for a discrete signal with a window width of 𝑊 and 

time delay 𝜏, hence Equation (4) can be modified; as shown in below in Equation 

(5):  

 

𝑟(𝜏) = ∑ 𝑥𝑗𝑥𝑗+𝜏

𝑡+𝑊−𝜏

𝑗=𝑡+1

 

 

(5) 

The ACF holds for estimating the fundamental frequency of pure tones; but for 

varying signals of electro-acoustic instruments, the ACF fails and produces 

errors. In Figure 6 the ACF values over a lag range for a sample signal is 

illustrated.  
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Figure 6. (a) Sample Signal. (b) Autocorrelation of the Sample Signal [13]. 

Listing 1 contains the python script to find the frequency of a sine wave using the 

ACF. The script utilizes a window width of 200 samples and generates a 5-

second-long sine wave with a sampling frequency of 500.  

 

def f(x): 

    f_0 = 1 

    return np.sin(x * np.pi * 2 * f_0)  

#Generates a sine wave with frequency of 1 Hz 

 

def ACF(f, W, t, lag): 

    return np.sum(f[t : t + W] * f[lag + t : lag + t + W]) 

 

def returnACF(f, W, t, fs, bounds): 

    ACFv = [ACF(f, W, t, i) for i in range(*bounds)] 

    sample = np.argmax(ACFv) + bounds[0] 

    return fs / sample 

 

Listing 1. Python Script to Create a Sine Wave and Find its Frequency Using the 
ACF.  

As expected, the ACF holds and returns a result of 0.9823 Hz, which can be 

rounded up to 1 Hz. Applying an exponentially decaying envelope to the sine 

signal as shown in Listing 2 proves that the ACF does not hold for decaying 
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signals with varying amplitude or fluctuating periods. Using the same parameters, 

the ACF returns a frequency estimate of 25 Hz.  

 

def f(x): 

    f_0 = 1 

    envelope = lambda x: np.exp(-x) 

    return np.sin(x * np.pi * 2 * f_0) * envelope(x) 

 

Listing 2. Modified Sine Wave with a Decaying Envelope.   

The sine wave with as decaying envelope is shown in Figure 7 below.  

 

Figure 7. Sine Wave with an Exponentially Decaying Envelope.  

2.2.2 Difference Function 

For a shift invariant system, it is true that when a discrete signal 𝑥𝑡 with period 𝑇 

is shifted by a time constant the output is equally shifted. Using this property, the 

following Equation (6) also holds true. [13.] 

 

𝑥𝑡 − 𝑥𝑡+𝑇 = 0 

 

(6) 
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Similarly, by squaring the sums of Equation, the smallest time shift where the 

difference is zero gives the period of the signal. Equation (7) below describes the 

difference function for a discrete signal 𝑥𝑡 using a sampling window of 𝑊 and time 

shift 𝜏. [13.]  

 

𝑑𝑡(𝜏) =  ∑(𝑥𝑗 − 𝑥𝑗+𝜏)

𝑊

𝑗=1

 

 

(7) 

The difference function does not improve over the ACF in terms of estimating the 

fundamental frequency, but rather reduces the overall errors produced by the 

ACF. An elucidation for this is that the ACF is much more sensitive to amplitude. 

Moreover, the difference function can be described in terms of the ACF as shown 

by Equation (8) [13.]  

 

𝑑𝑡(𝜏) =  𝑟𝑡(0) + 𝑟𝑡+𝜏(0) − 2𝑟𝑡(𝜏) 

 

(8) 

The same is implemented in a python function as shown in Listing 3. 

 

def DF(f, W, t, lag): 

    return ACF(f, W, t, 0) + ACF(f, W, t + lag, 0) - (2 * ACF(f, W, 

t, lag)) 

 

Listing 3. The Difference Function Implemented in terms of the ACF using Python. 

Due to the difference function being an intermediate step of the YIN algorithm, 

the values of the difference function being used for estimating the fundamental 

frequency bears no value despite producing lower errors than the ACF. Hence, it 

was not tested using python. 

2.2.3 Cumulative Mean Normalized Difference Function 

The cumulative mean normalized difference function (CMNDF) is the final stage 

of the YIN algorithm. The presence of the 2nd harmonic causes the difference 
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function to produce zero lag regions, thus inducing errors [13]. The CMNDF 

avoids these zero lag regions and improves upon the difference function. 

Equation (9) below shows the CMNDF: 

 

𝑑′(𝜏) = {

1, 𝑖𝑓 𝜏 = 0

𝑑𝑡(𝜏)

[(
1

𝜏
) ∑ 𝑑𝑡(𝑗)𝜏

𝑗=1 ]
,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝜏 

 

(9) 

The function accomplishes lower errors by dividing the preceding difference 

function value over its average of shorter lag values. To further reduce errors, 

using an absolute minimum threshold for the lag values is useful since if no lag 

values are found, the function can default to the absolute threshold. [13.] 

 

Using the parameters from Listing 1 and the decaying sine wave, the CMNDF 

implementation and F0 detection implementation in python is presented in Listing 

4 below. 

 

def CMNDF(f, W, t, lag): 

    if lag == 0: 

        return 1 

    return DF(f, W, t, lag) / np.sum([DF(f, W, t, j+1) for j in 

range(lag)]) * lag 

 

def detect_pitch(f, W, t, fs, bounds, thresh = 0.1): 

    CMNDF_vals = [CMNDF(f, W, t, i) for i in range(*bounds)] 

    sample = None 

    for i, val in enumerate(CMNDF_vals): 

        if val < thresh:  

            sample = i + bounds[0] 

            break 

        if sample is None:  

            sample = np.argmin(CMNDF_vals) + bounds[0] 

    return fs / sample 

 

Listing 4. CMNDF and Fundamental Frequency Estimation.  
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Applying the detect pitch function on the decaying sine wave returns an F0 

estimation of 1.002 Hz, which is 0.2% above the exact F0 of 1 Hz. Furthermore, 

the recommended threshold is 0.1 [13]; increasing the minimum threshold to 1 

returns an estimate of 1.36 Hz, consequently increasing the error. Introducing 

bounds to the search range of the lag value is also beneficial to the processing 

time and improves the accuracy of the algorithm [13]. The knowledge pertaining 

to the source of the sound is also valuable. For example, in the Darkglass bass 

synthesizer, the frequency range of the bass guitar helps optimize the algorithm. 

2.3 Octaver Algorithm and Model 

The octaver is a signal processing effect that shifts a signal down a musical 

interval of an octave, which leads to the signal’s frequency to be halved. The 

measure for the shift in musical intervals from a reference frequency is defined 

as a semitone [14]. For two frequencies 𝑓1 and 𝑓2, the intervallic distance is 

calculated by using Equation (10): 

 

𝑆𝑒𝑚𝑖𝑡𝑜𝑛𝑒𝑠 = 12 ∗ log (
𝑓2

𝑓1
) 

(10) 

 

An octave is 12 semitones apart from a reference pitch.  

 

Octavers are commonly used with guitars and basses to produce sub-bass 

frequencies. Furthermore, the octave down signal is also typically mixed with 

other types of effects such as distortion. Octavers are popularly used in the pedal 

format using analog or hybrid processing, but purely digital versions are also 

available and largely utilized. The digital formats provide the advantage of 

polyphonic processing; allowing a signal containing multiple frequency intervals 

to be shifted. Frequency domain-based processing is a common prerequisite for 

polyphonic processing. Whereas for analog octavers, the processing is 

monophonic, where only one frequency is processed at a time. Analog octavers 

often use time-domain processing.  
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2.3.1 Analog Octaver 

The working principle of an octaver is to generate a square wave at half the 

frequency of a periodic signal. The generated square wave is then used to 

manipulate the input signal. A common method to manipulate the signal is by 

muting the signal with the sub-octave square wave. To generate the muting 

square wave, the peak of the signal needs to be detected and every other peak 

of the signal is considered as a candidate for the mute control circuit. As 

previously established, audio signals do not have perfect periodicity and can have 

varying amplitudes. This effect leads to muting in varied periods and can cause 

discrepancies in the resulting audio signal because of partials and their decay. 

Due to the confidentiality and the legality of sharing schematics of popular 

octavers, the block diagram of an analog octaver is only presented, as shown in 

Figure 8.  

 

 

Figure 8. Analog Octaver Signal Block Diagram. 

The most important section of the octaver is the generation of periodic square 

wave signals that alternate every second cycle of the signal. To achieve this, an 

analog peak detector is implemented using operational amplifiers (Op Amps). 

The signal is first clipped such that it converts the signal to an almost-square 
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wave, this is achieved using diodes and a gain stage to amplify the signal, like 

distortion circuits.  

 

Second, the positive and negative half segments of the signal are individually 

peak detected using an op amp based peak detector. It outputs an exponentially 

decaying envelope of the peak. Third, the output of the signal is compared with a 

reference voltage to detect new peaks using op amp comparators, which produce 

a signal between HIGH and LOW every time the signal crosses or falls below the 

threshold. The comparators produce a pulse every time a new positive or 

negative peak is detected. The output of each stage is shown in Figure 9 for a 

100 Hz sine wave signal.  

 

 

Figure 9. Stages of Square Wave Signal Generation. 

Finally, the peak detected pulses are fed to two D-Flip Flop circuits. The set and 

reset signals are produced in a manner that the circuit sets for every new positive 

peak and reset for a negative peak in the first flip flop. With the second flip flop, 

the period is doubled by enabling set every rising edge of the previous flip flop 

stage. The output of the first and second flip flop stages are presented in Figure 

10 below.  
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Figure 10. Flip Flop Circuit Output.  

The output of the period doubling flip flop circuit is used as a JFET muting circuit’s 

control signal; the JFET conducts to ground when the signal goes LOW and 

disconnects the ground on HIGH. Abrupt muting in the signal causes high 

frequency contents and harmonics which degrade the audio quality. A low pass 

filter is implemented to remove these unnecessary frequencies and further acts 

as a mask for minor glitches that may occur. The final octave signal is achieved 

at this stage of the processing. It is quite common to add a signal mixer between 

the processed sub frequencies and the original clean signal for more control over 

the sound of the octaver. The final output signal of the octaver is shown Figure 

11 below. 
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Figure 11. Octaver Output.  

The analog octaver can be modelled using digital signal processing by emulating 

the analog component logic. Furthermore, the octaver’s errors can be reduced 

by implementing the ACF, or a hybrid of the analog and ACF. Although the ACF 

reduces overall occurrences of errors, it is still prone to producing octave errors 

and inconsistencies in special cases. Lastly, methods other than muting can be 

implemented to produce the octaver’s effect, such as flipping the phase of the 

signal. The output of an analog octaver model implemented using Darkglass’ 

DSP methods in python is presented in Figure 12 below. The test signal is a 100 

Hz sine wave.  

 

Figure 12. Darkglass’ Digital Model of an Analog Octaver. Orange and Green 

represent the envelope. Yellow and Red are the new Peak Detections.  
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Typically, the analog octaver implementation may produce errors in certain 
cases. The two significant errors are the following:  

1. Octave Error 

2. Phase Error 

2.3.2 Octave Error 

The octave error typically occurs during sustained audio signals. During the 

decay of the audio signal, the fundamental of signal may not show dominant 

presence throughout the duration of the decay. Other harmonics usually display 

more presence during decay of the envelope of the signal. In a spectral analysis 

point of view, the fundamental frequency is still dominant. Due to this effect, the 

peak detector accounts for the new harmonics hence leading to the frequency of 

the flip flop circuit doubling.  

 

In Figure 13, the first two cycles of the analog flip flop circuit (vertical red marking) 

produce perfect muting at alternating cycles of the signal. Whereas the advancing 

cycles have twice the period due to the envelope containing two dominant peaks. 

The SUB_ANALOG square wave contains the set-reset cycle error.    

 

 

Figure 13. Octave Error. Signal After the Red Line Marks the Doubling of Period 
in the square wave (SUB_ANALOG). 
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The octave error causes shifts in the signal’s frequency. Furthermore, muting at 

varied cycles of the signal causes the output to shift into other frequencies; 

producing a slight detune effect.  

2.3.3 Phase Error 

Phase error produces subtle to very audible effects in the signal. Furthermore, it 

also affects the mixing of signals. The error occurs when the flip flop circuit 

polarity flips state or contains different periods in muting. This causes the muting 

to take place at points with large phase differences. In certain cases, when two 

signals are mixed for 180-degree phase changes, opposing phases cause 

destructive interference and reduce the overall loudness of the signal [15]. 

Moreover, the phase error worsens when the signal contains shifts above the 

zero region (DC offsets), since the periodic detection of zero-crossings in the ACF 

model no longer holds consistency. Figure 14 marks the signal contents changing 

over time and changes in the SQUARE_ANALOG and SUB_ANALOG signals, 

consequently causing a phase error.  

 

 

Figure 14. Phase Error. The Signal Contents Change and Sub Analog Changes 

Phase.   
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2.4 Pickup Fundamentals  

In acoustic instruments, the sound of the strings is amplified through the sound 

hole [16]. Development of solid bodies for acoustic instruments (such as guitars 

and basses) simultaneously led to the electrification of them. The sound of the 

instrument is captured through a transducer called pickup [17]. Pickups are 

essential for a guitar and bass as they predominantly define the overall sonic 

qualities of the instrument and facilitate the usage of effects to amplify and alter 

the sound of the instrument.  

 

The placement of the pickup plays a large role in the overall dynamic range and 

frequency response of the signal. Moreover, the timbre also greatly varies [18]. 

Common placements of the pickup in a guitar are the neck, middle, and bridge 

positions. The output voltage increases closer to the neck of the guitar while the 

presence of higher order harmonics decreases [18]. Pickups are classified into 

two types:  

 

1. Magnetic Pickups 

2. Piezo-electric Pickups 

 

The primary difference between the two types of pickups is based on their 

construct and output.  

2.4.1 Magnetic Pickups  

Magnetic pickups are constructed by winding wire to form a coil around a 

permanent magnet [19]. The working principle of a magnetic pickup is based on 

the Faraday’s Law of Induction, which states that changes in the magnetic field 

induces current into the coil [20]. Figure 15 shows the inner construction of the 

pickup.  
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Figure 15. Construction of Magnetic Coil Pickups [19].  

 

Electrically, an ideal magnetic pickup can be simplified to an LCR circuit. 

Furthermore, the pickup can also be treated as an AC voltage source to the LCR 

circuit [21]. In Figure 16, the equivalent circuit can be observed.  

 

Figure 16. Electrical Equivalent Circuit of a Pickup [21].  

The ideal pickup circuit behaves as a resonance circuit; therefore, a single 

frequency contains the highest amplitude. The resistive and capacitive elements 

form a low-pass filter, leading to frequencies above the cut-off frequency having 

lower amplitudes [21]. The frequency response and resonance of an ideal pickup 

circuit is presented in Figure 17.  
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Figure 17. Frequency Response and Resonance of a Magnetic Pickup [21].  

Due to external factors such as capacitance in cables, control potentiometers, 

and eddy currents in conductive parts, the overall frequency response and the 

resonance frequency can change [21]. Furthermore, the pickup only detects 

changes through the magnetic field, hence it is independent of the displacement 

of the string and much more sensitive to the velocity of the strings. Strings also 

tend to produce lesser displacement at higher frequencies. The two effects 

essentially cancel each other out. [19.]  

 

In addition, the displacement of a string along a particular axis and the distance 

between the string and the pickup (𝑑0) produces varied harmonic contents in the 

signal. The axis definitions and distances are shown in Figure 18. The output 

signal produces non-linear characteristics when the distance (𝑑0) between the 

string and the pickup is small, whereas the output has a much more linear nature 

when placed farther away. The displacement along the Z-axis contains most of 

the fundamental frequency and movement along the Y-axis produces higher 

order harmonics. Moreover, the distortion also worsens for Y-axis motion. [22.] 
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Figure 18. Axis Definitions [22].  

The signal output and temporal evolutions of the string excitation along the Z-axis 

and Y-axis are presented in Figure 19.  

 

 

Figure 19. Left: Output for Displacement Along Z-axis. Right: Output for 
Displacement along Y-Axis [22]. 

Magnetic pickups have two common configurations:  

 

1. Single Coil 

2. Humbucker  
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The single coil configuration consists of an array of permanent magnets with a 

single coil. Single coils are susceptible to external magnetic fields, therefore, 

produce a hum-like sound and buzz. [23.] Additionally, single coil pickups contain 

a considerable amount of high frequency contents, commonly characterized as 

“bright” sounding [24]. Figure 20 illustrates a single coil pickup.  

 

 

Figure 20. Single Coil Pickup [25]. 

Humbuckers inherently overcome the susceptibility of external magnetic fields. 

Humbucking pickups are constructed using two coils around magnetic pole 

pieces with alternating polarity. The output of the two coils are 180 degrees out 

of phase with each other, hence eliminate noise when mixed. [24.] The overall 

output of the humbucker configuration is much greater than a single coil. Figure 

21 depicts the humbucking effect.  

 

 

Figure 21. Humbucking Effect [19]. 

The internal construction of a humbucker is equivalent to two single coil pickups 

connected in series. Figure 22 shows the humbucker pickup construction.  



25 

 

 

Figure 22. Humbucker Pickup [26]. 

 

Humbucker coils are also connected in several ways. Namely, the split-coil 

configuration and series-parallel configuration. The split-coil configuration 

effectively shorts one side of the humbucker coils to ground, rendering it to 

operate like a single coil pickup. This produces high frequency contents, but it 

also introduces the drawbacks of excess noise and lowers the overall output. The 

series-parallel configuration maintains the humbucking nature of the pickup, while 

preserving the high frequency contents. [24.] The two configurations for 

connecting a humbucker pickup are presented in Figure 23.  

 

 

Figure 23. Humbucker Configurations. (a) Split Coil Configuration. (b) Series-
Parallel Configuration [24]. 
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2.4.2 Piezo-electric Pickups 

Piezo-electric pickups operate based on the principle of piezo-electricity. The 

effect is produced when a crystal is subject to mechanical stress (or pressure), 

thus causing a voltage drop across. Crystals are molecular structures that are 

arranged in an orderly manner. The piezo-electric effect is widely used in medical 

ultrasound equipment, microphones, and time-keeping devices [27].  

 

Similarly, in pickups, the crystal is placed in the bridge of the guitar. The pressure 

of the string motion across the bridge produces a current at the frequency of the 

string’s vibration. Basic internal structure of the piezo-electric pickup is illustrated 

in Figure 24. 

 

 

Figure 24. Basic Piezo-electric Pickup Structure [28]. 

The voltage output across the crystal is typically very low for direct usage, 

therefore, requires a pre-amplifier. Furthermore, the output of the piezo-electric 

pickup is non-linear. The output voltage does not scale very well with the 

dynamics of the string, hence causing distortion or abundance of quietness to 

occur in the audio. To prevent this, the signal is compressed in the pre-amp to 

maintain uniform signal levels throughout. [29.] In addition, piezo-electric pickups 
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have high output impedance and capacitance. Pre-amplifiers are commonly 

designed using discrete JFET amplifier circuits or JFET based Op Amp ICs 

(Integrated Circuits), since JFETs offer high input impedance and low output 

impedance. [30.] This prevents excessive loading in other stages. Component 

selection is quite imperative as pre-amplifiers need to maintain low Total 

Harmonic Distortion and Noise (THD+N). A basic piezo-electric pre-amplifier is 

presented in Figure 25.  

 

 

Figure 25. Basic Piezo-electric Pre-amplifier [30]. 

3 Testing Methods  

The ideal behavior of the pickup is to produce the least number of errors with the 

octaver models and the YIN algorithm-based bass guitar synthesizer. It is 

necessary to understand the harmonic contents of the signals produced by the 

two pickups and compare the types of errors produced. The subsequent section 

covers the testing methods for the pickups and testing requirements.  

3.1 Debugging Pre-Amplifier and Bass Modifications 

To test the piezo and humbucker pickups, a generic bass guitar was modified to 

contain both pickups. Data for testing both the pickups were routed through a 

debugging pre-amplifier Printed Circuit Board (PCB); designed using Altium 

Designer ECAD software. The objectives for the debugging pre-amplifier were to 
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provide an ease of accessing audio signals from both pickups and ensuring low 

noise and distortion. The bass guitar is pictured in Figure 26.  

 

 

 

Figure 26. Bass Guitar.  

The piezo pickup under test was placed in the bridge of the guitar and had a 

discrete pre-amplifier. Furthermore, the humbuckers were connected in a split-

coil configuration with volume controls for each coil. The debugging PCB block 

diagram is shown in Figure 27. 

 

 

 

Figure 27. Debugging Pre-Amplifier Block Diagram.  
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Due to the piezo pickup’s location being on the bridge, the original bridge on the 

bass was replaced. The string tension and the overall scale length of the guitar 

had to be considered during the replacement, since the consequences of 

inadequate string tension would lead to difficulty in maintaining intonation and 

tuning. To achieve this, the original placement and string positions on the saddles 

were marked on the bass. Furthermore, the original cavity for the electronics on 

the bass guitar was deemed to be insufficient for the addition of a PCB and the 

Fishman pre-amp. Therefore, the cavity was expanded. Similarly, an additional 

cavity was made to route the leads from the piezo bridge pickup. Figure 28 

contains the bridge position markings and the cavities.  

 

 

Figure 28. Left: Bridge Position Markings. Right: Expanded Cavities.  

Subsequently, the electronics for debugging PCB were designed. The PCB was 

designed to ensure it was modular, consequently making debugging easier if 

issues were to occur due to design flaws. To accomplish modularity, Surface 

Mount Device (SMD) pads were utilized extensively. 

 

Taking power supply noise into consideration was vital to the overall design of 

the PCB. Most generic power DC (Direct Current) supplies often contain a 

rectifier, or a regulator based designed. While they both have benefits, the most 

common susceptibility is RF (Radio Frequency) and ground noise. Although RF 

frequencies are imperceivable by human ears, ground noise produces a buzz like 
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effect at 50 Hz. For audio signals, this causes considerable disturbances in a 

signal. The effects of bad power supply sources can be mitigated by using proper 

precautions such as shielding, filtering, and grounding [31]. Figure 29 presents 

the power supply design schematics.  

 

  

Figure 29. Power Supply Design Schematics.  

The input DC voltage was connected to a center negative DC barrel power jack 

using wire leads; consequently, connecting the tip to ground and the sleeve to 

the positive supply voltage. D1 in the schematics is a Schottky diode to prevent 

reverse polarity connections, thus preventing accidental usage of negative supply 

voltage. Furthermore, ferrite bead L1 was implemented to filter power supply 

voltage. The specifications of the ferrite bead (Appendix 1) were chosen such 

that it offers low DC resistance, current rating, and a high resonant frequency. 

Then, the R4 and C2 form a low pass filter. R4 also acts as an overcurrent 

protection when excess current is drawn by the ICs, and C2 is a bypass capacitor 

that stores current and provides it when demanded.  The cut-off frequency for the 

low pass filter is determined using Equation (11) and subsequently, the cut-off 
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frequency is calculated. The frequency response of the circuit is presented in 

Figure 30.  

𝐹𝑐 =
1

2𝜋𝑅𝐶
 

(11) 

                 𝐹𝑐 =
1

2𝜋 ∗ 10 ∗ 220 ∗ 10−6
→ 𝐹𝑐 = 72.3 𝐻𝑧 

 

 

  

  

Figure 30. Power Supply RC Low Pass Filter Response.  

Lastly, Zener diode D2 prevents shorts circuits to ground. Since active 

components require a bias point, the bias voltage (VREF) is generated by the 

voltage divider formed by R5 and R6; and C3 is a bypass capacitor. The output 

of the voltage divider is calculated using Equation (12).  

 

𝑉𝑜𝑢𝑡 = 𝑉(
𝑅2

𝑅1 + 𝑅2
) 

(12) 
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𝑉𝑜𝑢𝑡 = 9 ∗ (
10 ∗ 103

10 ∗ 103 + 10 ∗ 103
) = 9 ∗ (

1

2
) → 𝑉𝑜𝑢𝑡 = 4.5𝑉 

 

 

 

Following the power supply design, the humbucker input stage was designed. 

The primary consideration was high impedance of the pickup and the volume 

potentiometers for the individual coils. An ideal op amp in theory can handle the 

high input impedance without excessive loading, but this does not imply the same 

in practice. The utilization of Bipolar Junction Transistors based op amps in high 

impedance applications comes with a noise penalty and possibility of loading, 

which degrades the quality of the signal or drives the op amp to non-linearity. 

Furthermore, JFET based op amps are typically known for their high input. 

impedance and low output impedance; therefore, a much more suitable option. 

[24.] The TL072C op amp is a cost effective and readily available JFET op amp 

that satisfies the needs for this application. Figure 31 illustrates the humbucker 

input circuit schematics.  

 

 

Figure 31. Humbucker Pickup Circuit Schematics.  

The two coil leads containing signals were connected to the volume 

potentiometers. Ideally, the volume potentiometer should be a logarithmic taper. 
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But due to large lead times and costs, an anti-log taper potentiometer was 

connected in reverse to approximate a logarithmic taper. The potentiometer 

values were chosen based on the original electronics of the bass guitar. 

 

R1 and R3 are the input resistors of the summing amplifier formed by U1A. The 

values of R1 and R3 determine the weights of the sum. The feedback resistor R2 

determines the overall gain of the circuit. U1A is biased to VREF since the op 

amp is used in a single supply mode. For Alternating Current (AC) applications 

using single supply, the bias values determine the device operating voltage. In 

this application, the signal is DC shifted by 4.5 volts, thus initiating the signal to 

swing between 9 and 0 volts effectively. C1 blocks DC shifts to prevent the signal 

from distorting due to clipping if other additional shifts are present.  

 

The piezo pickups did not require additional circuitry as the Fishman piezo pre-

amp was adequate. SMD pads were placed for each individual output of the piezo 

and the summed output from the pre-amp. Figure 32 shows the piezo pickup 

schematics.  

 

  

Figure 32. Piezo Pickup Schematics.  

Finally, the outputs of the pre-amp and the summing amplifier were fed to a Single 

Pole-Double Throw switch, to select between the two pickup types. Furthermore, 
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the signals from the pickups were routed to debugging headers. Figure 33 

contains the output circuit schematics.  

 

 

Figure 33. Output Circuit Schematics.  

The output circuit contains an op amp buffer formed by U1B. The signal output 

from the selector switch is biased to VREF to prevent clipping. The output 

capacitor C4 forms a high pass filter with R8 to remove DC offsets at the output. 

The cut-off frequency of the filter is calculated using Equation (11) and the 

frequency response is depicted in Figure 34.  

 

𝐹𝑐 =
1

2𝜋 ∗ 10 ∗ 10−6 ∗ 100 ∗ 103
→ 𝐹𝑐 = 0.159 𝐻𝑧 
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Figure 34. Output RC High Pass Filter Frequency Response.  

R7 in the output circuit fixes the output impedance to 100 Ohms. A low output 

impedance aids in reducing the low pass filter effect due to excessive capacitive 

load in the input of the next device in the signal chain. Lastly, varistor V1 is 

implemented to protect the output circuit from transient voltage changes. 

Varistors are components that have varying resistances based on the voltage 

supplied across them [32].  

 

The PCB was designed using a board shaped based on the cavity on the bass. 

A template was traced using graphic designing tools and imported to Altium. The 

PCB’s primary goal was to have ease of accessibility for any necessary 

modifications. Since the total component count was low, a two-layer board was 

considered satisfactory. The SMD pads were placed and routed on the Bottom 

Layer of the PCB, whereas the components were routed on the Top Layer. 

Additionally, mounting holes were placed on the board for assembling the 

Fishman piezo pre-amp. In Figure 35 the Top and Bottom Layers are shown.  
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Figure 35. PCB Layout. Left: Top Layer. Right: Bottom Layer.  

To hold all the cables and PCB in the cavity, a 3D printed panel was made. The 

3D printed panel was insulated with copper tape to introduce shielding from RF 

noise. Figure 36 and Figure 37 below contain the fully assembled PCB and bass 

guitar. 

 

 

Figure 36. Assembled PCB. Left: Bottom Layer. Right: Top Layer. 
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Figure 37. Modified Bass and 3D Printed Panel. 

3.2 Test Data and Considerations 

The test data for the correlation process were audio clips recorded at 48 kHz 

sampling frequency using both pickups simultaneously. Using the audio 

recordings, the correlation data was gathered using the python script. The 

fundamental frequency of the clean and the processed signal are estimated using 

python, and the data is correlated. Three octaver versions were tested: floating-

point processing, integer processing, and a release version. Due to the 

synthesizer being in development, an early test candidate of the virtual instrument 

was tested. The main points of consideration from the correlation are as follows:  

 

1. Tracking Stability. 

2. Pitch Deviations. 

3. Settling Time.  

4. Error Conditions. 

5. Spectral Data. 

 

The tracking stability is defined as the overall ability of the algorithm to maintain 

the F0 estimates throughout the duration of the audio. The F0 estimates are made 

using python signal processing tool kit (PYSPTK). Good algorithm behavior 

indicates no pitch errors in the algorithm functionality. Furthermore, pitch 
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6deviations may occur at the initial transient of the audio clip – these cases are 

ignored as various factors that are difficult to control may cause the deviation.  

 

The settling time outlines the time the algorithm requires to return to a stable 

value in case a deviation occurs. Ideal behavior of the algorithm would result in 

instantaneous recovery. However, in practice, this may not be the case, therefore 

settling times of the less than 50 ms (milliseconds) or less than the total duration 

of the audio segment is deemed satisfactory. Moreover, the setting time may not 

be difficult to gauge since minor pitch deviations will occur. Therefore, only values 

out of bounds were considered. 

 

Although most error conditions are known and flagged, new errors may arise due 

to the nature of the pickups. The errors are categorized and used as the main 

factor for the pickup selection. The least number of errors produced by a specific 

pickup would be the straightforward choice.  

 

Lastly, the spectral data of each pickup is analyzed to assess the harmonic 

content differences between the two pickup types. Spectral analysis of the 

pickups may provide a broader understanding of the errors and additional 

measures can be implemented or developed to overcome them. It is quite vital to 

note that the errors may not be directly perceivable by the end-user, but it may 

cause disruptions in other aspects of the algorithm and usage. Therefore, all 

errors cases are considered.  

3.3 Python Testing Script and Sonic Visualizer 

Using python, the audio data from using the two pickups were correlated. The 

script intends to detect error cases and flag them appropriately. Furthermore, it 

provides a graphical representation of transient changes in the detection 

parameters. The data flow for testing is shown in  

Figure 38.  
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Figure 38. Testing Data Flow.  

 

The python testing script utilized various libraries – primary operations were 

carried out using Python Signal Processing Tool Kit (PYSPTK), Librosa, Matplot 

and Numpy libraries. Using object-oriented programming, the correlation tools 

were written in the class Analyzer (Appendix 2). A diverse set of tools were 

chosen since the generic tools inherently cause difficulties in interpreting the data. 

The software classes in the script use a set of fixed parameters such as the 

following:  

 

1. Window size: Averaging and Processing. 

2. Threshold: For Gating Unvoiced Segments of the Signal. 

3. Hop Size: F0 Detection and Processing. 

4. Tolerance: Overall Tolerance of the Error Detection 

 

The audio signal is loaded using Librosa. A sampling averaging function was 

implemented for large audio data for the correlation utilities. The averaging 

function calculates the average of the samples of window width 𝑊. Although this 

reduces the overall processing time, using large window sizes causes aliasing, 

thus disrupting the correlation. The averaging function was implemented as a 

redundancy step for preventing excessive processing time for development. 
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Various optimization steps were implemented in other functions. Subsequently, 

the audio data is batch processed using the octaver’s DSP. The synthesizer uses 

a post-processed rendered sample.  

 

The PYSPTK library’s SWIPE fundamental frequency (F0) estimation algorithm 

was the core tool employed. The function calculates the F0 estimate over a fixed 

window length with hop size 𝑛. Clean and processed signal’s F0 estimates 

generally showed an abundance of noise in the estimates at the silent segments 

of the signal. Furthermore, the estimates had large F0 jumps when a wide search 

range was utilized. To overcome this, the search range was limited from 10 Hz to 

600 Hz, as the bass guitar’s highest note is at 523.25 Hz (C5). Similarly, a noise 

gate was implemented on the F0 data using the Librosa library. A value from the 

estimate is only accepted when the signal crosses a fixed threshold. Using binary 

masks, the unvoiced segments are rendered to null and multiplied with the F0 

data array. The accuracy of the F0 estimates were also checked for errors using 

Sonic Visualizer’s P-YIN plugin. Listing 5 contains the binary mask calculation 

and noise gating of the F0 array. 

 

if self.threshold is not None: 

            #Compute the non-silent intervals (i.e., the intervals 

where the signal is above a certain threshold) 

            non_silent_intervals = librosa.effects.split(data, 

top_db=self.threshold) 

 

            #Create a binary mask to nullify the silent parts 

            mask = np.zeros_like(data, dtype=bool) 

            for interval in non_silent_intervals: 

                    start = interval[0] 

                    end = interval[1] 

                    mask[start:end] = True 

                     

            #Applying the mask         

            f = f * mask 

       else: mask = None 

 

Listing 5. Binary Mask Generation and Noise Gating.  
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The octaver models generate debugging data and the script implements 

functions to detect changes in square wave data. The main processing is 

implemented for the square waves generated from the set-reset cycle of the 

octave divider. Essentially, the fundamental frequency can also be estimated 

using this data because of the readily available wavelengths. Moreover, the F0 

changes help detect octave and phase errors are easily viable from the 

correlation of the set-reset cycle. The data is processed using the function 

presented in Listing 6.  

 

        ctr = 0 

        f = [] 

        store = 0 

        for j in range(1, len(data)): 

            if (data[j] * data[j-1] < 0): 

                if ctr > 1: 

                    store = (fs/ctr)/2 

                else: 

                    store = 0 

                ctr = 0 

            else: 

                ctr += 1  

            f.append(store) 

        f.append(f[len(f)-1]) 

 

Listing 6. Set-Reset Cycle Frequency Estimation.  

The process is performed by calculating the product of the sample at index j and 

the preceding sample at j-1. When the product returns a negative value, it 

denotes a change in the polarity of the square wave. Subsequently, the value is 

stored, and the frequency is calculated only when the number of samples counted 

exceeds 1; the estimation is performed by dividing the sampling frequency 

against the number of samples counted before the sign changes. 

 

The final function performs the main correlation by calculating the deviation in F0 

estimates with respect to the clean signal. Flags for excessive deviation and 

octave errors are also set. The pitch differences between the clean and 

processed signal are calculated using Equation (10). Tolerance for differences is 



42 

 

set between 5% and 10% bounds. The flags raise a value of 1 (HIGH) when a 

discrepancy beyond the bounds is detected, otherwise sets a 0 (LOW). In certain 

cases, a value of -1 is set for ignoring the values. Below Listing 7 shows the 

flagging mechanism. The last value of each flag array is set to LOW or Ignore.  

 

        tol = self.tolerance / 10 

        #Setting a flag for unstable values and detecting octave 

differences 

        for i in range(0, len(semi)-1): 

            if semi[i] == float('nan'): 

                setFlag.append(-1) 

            elif semi[i] == 0: 

                setFlag.append(0) 

            elif semi[i+1] - semi[i] != semi[i]: 

                if semi[i] >= semi[i+1] * (1 - tol) or semi[i] <= 

semi[i+1] * (1 + tol): 

                    setFlag.append(1)  

                else: 

                    setFlag.append(0) 

            #Checking for octave differences within bounds and check 

if there are values over an octave 

            if (1 - tol) * 12 >= semi[i] or (1 + tol) * 12 <= semi[i] 

or semi[i] > 12: 

                isOctave.append(0) 

            else: 

                isOctave.append(1) 

        setFlag.append(-1) #Ignoring last value 

        isOctave.append(0) #Ignoring last value 

 

Listing 7. Flagging Mechanism.  

The data from the correlation functions are plotted against time along with the 

clean and processed signal using the Matplot library. The function Plot (Appendix 

2) implements a method for plotting certain correlation values at a time, to 

improve the ease of analysis. Furthermore, the data values are scaled such that 

information does not overlap. Legends were also implemented to enhance 

visibility. Figure 39 shows a sample plotting function output.  
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Figure 39. Sample Plotting Function Output.  

Spectral analysis of the pickups was performed using Sonic Visualizer’s 

spectrogram generator and spectrum analyzer. The clean signal was utilized for 

the analysis. Utilizing the spectral aids in understanding the conditions that led to 

errors in a pickup type. Moreover, it also helps introduce distinction between the 

two pickup types. The spectrogram and spectrum analyzer view of Sonic 

Visualizer is presented in Figure 40.  
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Figure 40. Spectrogram and Spectrum Analyzer View using Sonic Visualizer.  

4 Results  

The final testing results revealed that the piezo is more error prone with the 

Darkglass octaver and synthesizer algorithms. The test data spanned across 4 

different types of audio recordings with both pickups, and the signals were 

subjected to the algorithms under test. Furthermore, the selection of the audio 

recording was based on commonly known error conditions. The correlation 

analysis was performed with no averaging and a hop size of 1 sample, for more 

resolution. A total of 108 errors were detected from both pickup and algorithm 

types, with a 10% tolerance on the error detection bounds. The percentage share 

of errors between the pickups is displayed in Table 1. 

  

Table 1. Total Error Count and Percentages: Sorted by Pickup Type. 

 

Pickup Type Error Count Percentage 

Piezo 66 61% 

Humbucker 42 39% 

Total Errors Detected 108 - 



45 

 

 

With the octaver algorithm, the piezo pickup produced 65% of the errors and the 

humbucker contributed 35% of the errors. The figure worsens with the bass 

synthesizer, where the piezo generated close to 70% of the errors and the 

remainder were humbucker prone errors.  

 

The leading cause for errors with the piezo pickup were low frequency 

oscillations. This produced infra-audio contents (sub 20 Hz) and worsened the 

peak tracking algorithm in the octaver. Similarly, the ACF in the YIN algorithm 

produces significant errors prior to the intermediate steps, leading to errors in the 

frequency estimate. The errors in the ACF are caused due to the DC shifts 

producing large ACF values and possible completely falling out of favor since the 

signal’s correlation becomes improbable. Moreover, the humbucker also 

produced DC shifts in certain cases, but were much controlled and did not 

produce low frequency oscillations, or infra-audio contents. The low frequency 

oscillations are depicted in Figure 41.  

 

 

Figure 41. Low Frequency Oscillations.  

 

Further harmonic analysis using a spectrogram reveals the significant differences 

between the humbucker and piezo pickup signal contents in the sub frequencies 

(black box), as shown in Figure 42. A window size of 4096 samples was used for 

the spectrogram.  
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Figure 42. Spectrogram Contents of the Signals. Checkered Box Marks the 
Region of Interest.  

The speculative causes for this effect may be the nature of the string motion and 

the relationship it has with the output signal. Although this signal characteristic 

can be inaudible in a clean context; the octaver processing produces low 

frequency distortion and perceivable audio artefacts, thus worsening the signal's 

quality. Furthermore, the piezo caused synthesizer errors that produced shifts 

larger than or equal to 12 semitones above the F0.  

 

Another peculiar nature of the piezo pickup signal was the lack of negative peak 

amplitude. In most cases, this did not produce any effects, but in instances with 

significant DC shifts, the peak tracking and the ACF produced instabilities or 

outright errors. Additionally, the muting signal sequence in octaver was aperiodic 

in certain instances due to this effect. The irregular nature of the muting led to 
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significant deviation errors. In the humbuckers case, the positive and negative 

peak of the signal had adequate amplitude, therefore had higher stability. An 

example of the weak negative peak amplitude is shown in Figure 43.  

 

 

Figure 43. Weak Negative Peak Amplitude in the Piezo Pickup Signal.  

In certain cases, the piezo pickup signal produced scenarios where the 

algorithms did not recover within the expected duration for stability. The instability 

typically lasted for over 50 ms and in certain cases the signal did not recover for 

the entire duration of the signal. An example state of instability is illustrated in 

Figure 44. 

   

Figure 44. Unstable Sub Combined Frequency Regions.  

 

Further harmonic analysis of the signal spectrum revealed a much stronger 

presence of higher order harmonics in the piezo pickup. Similarly, the audible 

perception of the piezo pickup correlates to the spectral data. Although the FFT 

of the signal reveals these contents, a significant limitation of the frequency 
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domain analysis is the lack of correlation with the time domain. In some instances, 

a direct correlation of the time and frequency domain was visible. Hence, the high 

frequency contents of the piezo pickup signal were assumed to be the cause for 

certain octave errors in both the algorithms. The spectrum analyzer of the 

humbucker and the piezo pickup are presented in Figure 45. 

 

 

Figure 45. Spectrum Analysis of the Pickup Signals. Orange: Piezo. White: 
Humbucker.  

Another observation from the spectrum analysis was the dominant presence of 

the second harmonic over the F0 in the humbucker signal, whereas the F0 is the 

highest peak in the piezo pickup signal. This effect does not directly pertain to the 

algorithms under test, but the variance in the spectral content is an important 

distinction between the pickup types. Although the humbucker pickup was wired 

in a split coil configuration, the noise performance of the pickup’s individual coils 

was not viable for the testing methods. This limitation may mostly apply to the 

generic pickup used for testing.  

 

Both pickup types required restriction in the overall usability of the bass guitar, 

but the piezo pickup imposed more constraints due to the sensitivity of additional 

string noise and other unwanted signal presence. Furthermore, the piezo pickup’s 

non-linear output characteristics were much harder to control and produce 

consistent results. Though the piezo pickup’s signal can be compressed to an 

extent to overcome this, it was deemed impractical and may have profound 

effects on the testing. Additionally, neither pickup produced any significant phase 

errors.  
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Between the three algorithms of the octaver, namely the fixed point, floating point, 

and release version, the errors were vastly produced with the fixed-point version. 

Furthermore, the floating point and release version produced the same number 

of errors, therefore, to streamline the testing procedure, the release version was 

primarily considered. The synthesizer on the other hand required a significant 

amount of tuning with the YIN algorithm parameters to acquire realistic results. 

Thus, the number of recordings used was limited to three. Lastly, it is quite 

important to note that these algorithms are naturally prone to errors since certain 

assumptions on the properties of a bass guitar’s signals were made. This 

naturally, may cause poor performance with certain types of signals, in this case, 

the piezo pickup. The error rates per algorithm type and version are presented in 

Table 2. 

 

Table 2. Total Error Counts and Rates: Sorted by Algorithm.   

 

Algorithm Type - Version Errors Percentage 

Octaver – Fixed Point 55 50.9% 

Octaver – Release 46 42.5% 

Octaver – Floating Point Same as Release - 

Synthesizer 7 6.5% 

 

Finally, the F0 estimation algorithm of the PYSPTK SWIPE function showed 

excellent correlation to the PYIN algorithm in Sonic Visualizer, thus validating the 

reliability of the overall testing procedure. 

5 Discussion 

The main goal of the correlation was to detect errors the pickup types produce 

when subjected to the algorithm, which was met with satisfactory results. 

Although the piezo pickup produced the most errors with the Darkglass DSP 

algorithms, it may not necessarily mean the pickup is inherently inappropriate for 

usage in other octaver and synthesizer algorithms styles. Moreover, the piezo 

pickup contains certain qualities the humbucker pickup does not possess. For 
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instance, the piezo has higher definition in the note onsets, whereas the 

humbucker severely lacks this quality. Humbuckers also largely limit the acoustic 

qualities of the strings on a bass guitar. Piezo, in this regard, captures these 

acoustic tendencies excellently. 

 

The piezo also allows for multichannel and polyphonic processing using little-to-

no modification to existing techniques in the algorithms, since each string 

contains an individual piezo element. This also offers better string isolation, hence 

reducing unnecessary noise from adjacent strings to interfere with the signal 

contents. Humbuckers require polyphonic DSP algorithms to achieve this, which 

is heavier for processing in small embedded systems. Another unique pickup type 

to evaluate would be hexaphonic pickups, which use individual magnetic pole 

pieces per string. Existing guitar synthesizers use hexaphonic pickups combined 

with MIDI (Musical Instrument Digital Interface) technology to attain polyphonic 

signal processing.  

 

Additionally, filtering the higher order harmonic contents of the piezo signal did 

not improve the errors produced. As previously mentioned, though the high 

frequency contents were removed in the frequency domain, the signal did not 

necessarily undergo vast time domain changes to offer improvement. This was 

mostly because both algorithms are time domain dependent as opposed to 

frequency.  

 

However, tracking the positive peaks for the piezo pickup would vastly reduce 

error rates in the octaver algorithm. Thus, negating the poor negative peak 

amplitude in the signal of the piezo pickup and conversely improving the effects 

of DC offset oscillation errors as well. Certain popular octavers utilize this method 

of peak tracking and auditory testing revealed that the detected effects and errors 

were either negated or on par with the humbucker pickup. 

 

Lastly, from a historical point of view, the humbuckers have been foundational to 

the legacy of the electric basses and guitars, therefore most effects were 

designed in favor of them. The results do not come as a surprise when this factor 
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is considered. Utilizing humbuckers is also cost effect as they are much more 

traditional in this regard and have taken rather large strides in development.  

6 Conclusion 

The testing yielded excellent results in correlating data from the piezo and 

humbucker pickups. Furthermore, a profound understanding in the fundamentals 

of signals and DSP was attained through the process. Although the piezo pickup 

produced the most errors, certain valuable features for various applications were 

also realized. Subsequent modifications to the existing algorithms would certainly 

reduce the overall errors and render the piezo as viable option. Consequently, 

the harmonic analysis of the signals from both pickups helped determine the 

natural differences between them and evaluate the conditions for errors.  

 

The python testing script was beneficial in detecting errors and representing them 

visually. Redundant checks with other open-source applications (Sonic 

Visualizer) for specific tasks were beneficial in validating the overall functionality 

of the script. Moreover, the modified test bass guitar performed reliably for the 

testing procedure. The noise performance and distortion (THD+N) of the 

debugging pre-amplifier was eventually negligible as the design carefully 

identified all sources. This was evident since versions preceding the final design 

introduced a significant amount of noise, thus rendering the data inappropriate 

for testing. 

 

Understanding the fundamental theories and concepts behind the algorithms 

helped simplify the analysis process. Similarly, error conditions were predictable 

with the aid of pre-existing knowledge. The overall thesis work enabled discovery 

and understanding of similar technologies. Furthermore, the process of selecting 

the appropriate pickup for embedding Darkglass’ DSP was greatly simplified. The 

results were vastly necessary and useful for Darkglass’ future projects and 

implementation of embedded effects in bass guitars.  
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