

Integration of server side rendering
framework with content management
system

Jaber Askari

Bachelor’s thesis

May 2023

Information and Communication Technologies (ICT)

Software engineering

 Description

Askari, Jaber

Integration of server-side rendering framework with content management system

Jyväskylä: JAMK University of Applied Sciences, May 2023, 37 pages

Information and Communication Technologies (ICT). Bachelor’s thesis

Permission for open access publication: Yes

Language of publication: English

Abstract

As modern businesses are trying to be more accessible and easily findable through the internet, search
engines are becoming more important. Therefore, websites are going toward becoming more and more
optimized based on search engine criteria. This has caused the industry to shift towards Search Engine
Optimization (SEO). SEO has become a crucial part of businesses. therefore, the aim was to address this
issue by providing an efficient architecture that offers a highly optimized website for search engines.
To achieve this goal some technologies that offer the best SEO has been researched. Gatsby framework
offers server-side rendering (SSR) which is great for SEO. Gatsby is also used generally with a more static
site which again static contents have the best SEO. To provide this static content to the Gatsby a headless
Content Management System was required (CMS). Contentful is a headless CMS that was researched. To
present the final solution the integration of these 2 technologies was crucial, Gatsby as a SSR framework
and Contentful as a CMS.
The result was Viinimaa’s architecture (viinimaa.fi) which uses the researched technologies to create a fast,
responsive, and highly optimized website for search engines. This architecture can be used as a base
template for similar sites integrating Gatsby and Contentful together.

Keywords/tags (subjects)

Server-side rendering, Gatsby, Next js, content management systems, React, GraphQL, Contentful

Miscellaneous (Confidential information)

 Description

Askari, Jaber

Palvelinpuolen renderöintikehyksen integrointi sisällönhallintajärjestelmään

Jyväskylä: Jyväskylän ammattikorkeakoulu. Toukokuu 2023, 37 sivua

Tieto- ja viestintätekniikan tutkinto-ohjelma. Opinnäytetyö AMK.

Verkkojulkaisulupa myönnetty: Kyllä

Julkaisun kieli: englanti

Tiivistelmä

Hakukoneista on tulossa yhä tärkeämpiä moderneille yrityksille, jotka haluavat olla helpommin saatavilla ja
löydettävissä internetissä. Siksi verkkosivustoja optimoidaan yhä enemmän hakukoneiden kriteerien
perusteella. Tämä on saanut alan siirtymään kohti hakukoneoptimointia (Search Engine Optimization, SEO).
SEO:sta on tullut erittäin tärkeä yrityksille. Siksi tavoitteena oli vastata tarpeeseen tarjoamalla tehokas
arkkitehtuuri, joka tarjoaa erittäin optimoidun verkkosivuston hakukoneille.
Tämän tavoitteen saavuttamiseksi on tutkittu joitakin tekniikoita, jotka tarjoavat parhaan
hakukoneoptimoinnin. Gatsby tarjoaa palvelinpuolen renderöinnin (server-side rendering, SSR), joka sopii
erinomaisesti hakukoneoptimointiin. Gatsbyä käytetään myös yleisesti staattisemman sivuston kanssa, joka
on paras hakukoneoptimoinnin kannalta. Tämän staattisen sisällön tarjoamiseksi Gatsbylle vaadittiin
sisällönhallintajärjestelmä (Content Management System, CMS). Contentful on headless
sisällönhallintajärjestelmä, jota tutkittiin. Lopulliseen ratkaisuun näiden kahden teknologian integrointi oli
ratkaisevan tärkeää, Gatsby SSR-kehyksenä ja Contentful CMS-järjestelmänä.
Tuloksena syntyi Viinimaan arkkitehtuuri (viinimaa.fi), joka luo tutkituilla teknologioilla nopean,
responsiivisen ja hakukoneoptimoidun sivuston. Tätä arkkitehtuuria voidaan käyttää mallina
samankaltaisille sivustoille, joissa käytetään Gatsbya ja Contentfulia.

Avainsanat (asiasanat)

Pavlelinpuolen renderöinti, SSR, Gatsby, Next js, sisällönhallintajärjestelmä, React, GraphQL, Contentful

Muut tiedot (Salassa pidettävät liitteet)

1

Contents

1 Introduction .. 3

1.1 Overview ... 3

1.2 Company’s background ... 3

1.3 Objectives of the thesis ... 4

2 Server Side Rendering (SSR) ... 4

2.1 What is SSR .. 4

2.2 Why SSR? ... 6

2.3 Server Side Rendering vs. Static Site Generation.. 7

2.4 Server Side Rendering vs. Client-Side Rendering .. 8

3 Server Side Rendering frameworks ... 8

3.1 Next.js .. 8

3.1.1 React .. 8

3.2 Gatsby.. 11

3.2.1 How does Gatsby work? .. 11

3.2.2 GraphQL in Gatsby ... 13

3.2.3 GraphiQL tool ... 14

3.2.4 Page queries... 15

3.2.5 Static queries ... 17

3.2.6 Page creation in Gatsby ... 18

3.2.7 Plugins .. 21

4 Content management systems (CMS) ... 23

4.1 What is a CMS?.. 23

4.2 Traditional CMS ... 23

4.3 Headless CMS .. 24

4.4 Contentful ... 25

4.4.1 Contentful content APIs ... 26

4.5 WordPress ... 27

5 Project ... 31

5.1 Overview ... 31

5.2 Technologies ... 31

5.3 Architecture... 32

5.3.1 Gatsby Cloud .. 33

5.3.2 Contentful and Cloudinary ... 33

2

5.3.3 Adobe Commerce .. 34

5.4 Integration ... 34

5.4.1 Gatsby and Contentful integration .. 34

5.4.2 Gatsby Cloud and Contentful... 34

5.4.3 Gatsby and Adobe Commerce integration .. 36

5.5 Results ... 37

6 Conclusion ... 37

References .. 39

Figures

Figure 1. Server-Side Rendering (Verma 2021)... 6

Figure 2: Most popular technology skills in the JavaScript tech stack worldwide in 2021 (Mts.) 9

Figure 3: Gatsby life cycle ... 13

Figure 4: Querying with GraphQL (Attardi 2020, Chapter 2: Gatsby Crash Course) 14

Figure 5: GraphiQL tool ... 15

Figure 6: Page component and page query example ... 16

Figure 7: Page component output in browser .. 17

Figure 8: Static query example ... 18

Figure 9: Creating pages dynamically ... 20

Figure 10: Example of Gatsby plugins ... 22

Figure 11: Traditional CMS (Attardi 2020, Chapter 1: Introduction to Netlify CMS) 24

Figure 12: Headless CMS (Attardi 2020, Chapter 1: Introduction to Netlify CMS) 25

Figure 13: Page structure in WordPress (Pearce 2011, 226-227) .. 29

Figure 14: Post structure in WordPress (Pearce 2011, 226-227.).. 30

Figure 15: Viinimaa's architecture .. 32

Figure 16: Gatsby cloud site settings .. 35

Figure 17: Contentful webhook .. 36

3

1 Introduction

1.1 Overview

As in today’s business every company is trying to be more accessible and easily findable though

internet, search engines are playing a great role. Therefore, websites are going toward becoming

more and more optimized based on search engines criteria. This has caused the industry to shift

into Search Engine Optimization (SEO) a lot more in order to reach more customer and users

through internet and search engines. SEO has become a crucial part of businesses and this thesis

aimed to address this necessity with providing the fundamental technical knowledge of the related

subjects and presenting an efficient architecture that offers a modern, fast, responsive and highly

optimized website for search engines. This architecture has been used in viinimaa.fi which is a sub

brand of Anora group. Viinimaa is mostly a static website with over 2500 pages. It is massive

website that its performance, user experience, modernity and SEO are vital the for the owners.

1.2 Company’s background

Solteq is a Finnish information technology company founded in 1982 that works in various fields.

Among many other products and services Solteq offers eCommerce, ERP solutions, product

information management, digital marketing, store solutions and application development. Solteq

is a growing company with around 676 employees and revenue of 68.4 MEUR in 2022. It has

grown to become an international company that works in 6 different countries, Finland, Sweden,

Norway, Poland, Denmark, and UK with 14 offices. (Company N.D.)

The project example that has been used in this thesis is a real-life website from Solteq's biggest

customers, Anora group. ”Anora is a leading wine and spirits brand house in the Nordic region and

a global industry forerunner in sustainability” (About us N.D). Anora group has used Gatsby

framework (a server-side rendering framework wrapped around React) and Contentful content

management systems for their 2 websites; viinimaa.fi for Finland market and folkofolk.se for

Sweden market.

4

1.3 Objectives of the thesis

The goal of this thesis was to research some of server-side rendering frameworks and their

advantages and disadvantages. Also, a description about some of content management systems

and their features and differences has been held. After the initial research, a real-life project

example using the researched technologies has been presented. In this project the focus was on 2

main parts: architecture and integration. In the project's architecture part an overall perspective

of the project, technologies that has been used, their usage and relations, data flow, content

management, and the project's deployment has been drawn and explained. In the integration

part, the connection, relation, practices of connecting all the technologies together, and how to

create an efficient infrastructure by integrating all those technologies has been explained. The

outcome of this thesis was a research-based project's architecture for creating a static website

using Contentful content management system and Gatsby framework for small to enterprise

organizations.

In his thesis it has been tried to answer to the following questions:

1. What is server side rendering and its frameworks?

2. Why is server side rendering needed?

3. What is content management systems?

2 Server Side Rendering (SSR)

2.1 What is SSR

In recent years the Server Side Rendering (SSR) technology has been gaining more attention and

trending. It is very important for an IT specialist to be up to date and familiar with the new

technologies and trends in the industry. SSR is one of the technologies that eventually an IT

specialist will encounter with.

To comprehend SSR frameworks better, it is necessary here to clarify exactly what is meant by SSR

and why it is needed.

5

In the beginning of the internet servers were responsible for serving the static web pages to the

clients. The web pages were not intractable or dynamic at all and there was no possibility to

change a content or a text but to transit from one page to another. Then some languages such as

PHP, Java, Python and Ruby came along that brought the possibility to deliver HTML to client by

using the templates. This method was called server-generated pages. (Konshin 2018, 13-15.)

When JavaScript came into play it brought the possibility to create dynamic web pages that clients

could interact with. In this case, the servers were responsible only for sending the data to the

client, in our case browsers, and it was not involved in templating the data. This separation of

client side and server side has increased by the shift towards REST APIs. The industry moved away

from server-generated methods to completely client side rendered HTML templates. (Konshin

2018, 13-15.)

To decrease the loading time of a JavaScript page’s data in client side there was a possibility to

take advantage of the server-generated method to match our need. Therefore, the SSR

development method came to play. The term Server-side Rendering is used here to refer to a

development method in web-based applications that allows to load and render the initial data,

serialize the outcome data and HTML on the servers and then send it as an HTML string baked

with data and elements to the client side. On the client side then JavaScript can take over and final

elements will be rendered to users. This approach can optimize the rendering time by caching the

elements, components, or entire pages in the server and sending them to the client. This is a very

efficient way when a page needs to be rendered multiple times in the same state requested by a

single or even multiple users. This strategy has the potential to decrease the load on serves due to

caching possibilities. (Konshin 2018, 13-15.)

In practice it means that when a page is requested by a client, the server will bake the page with

initial data and HTML, then cache it on its local storage. Later when the same or other client clients

request the same page in the same state, there is no need to recalculate the page but to send the

already cached data of the requested page to the client.

6

Figure 1. Server-Side Rendering (Verma 2021)

When creating the cache data of a page or component in server, it is critical to give it a time-to-live

(TTL) (Mts.). “Time-to-live (TTL) is a value for the period of time that a packet, or data, should exist

on a computer or network before being discarded.” (Zola & Burke 2021)

It is important to give the cache data a TTL because if the state of the page had changed and the

cached data of the page has not been expired, the server will send an invalid page from cached

data with the old state to the client. Hence it is critical to regenerate the page’s or component’s

cache data when its state changes.

2.2 Why SSR?

As explained briefly in previous chapter, primarily the benefit of SSR is its fast time of loading and

rendering the content of websites for the clients. This advantage of SSR is more visible for slow

internet and connection, solo devices, and content heavy pages. Since the content will be

rendered in server the client device does not need to have a fast internet connection and much of

processing power to download and process all the data and then to render them for the user. Also,

7

the server-side has much wider bandwidth, faster connection to database and better processing

power than the client side. Since the initial data fetching is done in server-side, the rendering

process will take much less time than it would have taken for the client. This will overall improve

the user experience, accessibility, and web vital metrics. (Server-Side Rendering N.D.)

The other benefit of the SSR is better Search Engine Optimization (SEO) that the search engine

crawlers can find and read the fully rendered pages. This will improve the quality and quantity of

the website’s traffic from a search engine drastically. (Server-Side Rendering N.D.)

It is important to understand the disadvantages of SSR. When this technology is being used it is

critical to realize that it is not only about positive points and gains but there are some trade-offs to

consider. (Server-Side Rendering N.D.)

• There are limitations in development process. For example, the Browser-specific code can only run
in a specific life cycle of the page; external libraries will require unique modification and
development to be able to use them in a server rendered page. (Server-Side Rendering N.D.)

• Unlike a static website that can be deployed in a file in any sever and will be functional, a server
side rendered page needs a sever that can run Node.js. (Server-Side Rendering N.D.)

• SSR websites will add more load to the server. Specially if it is a high traffic website, the server must
perform many CPU-intensive calculation for rendering a whole app in Node.js. So it is important to
implement caching technologies to balance out the server load. (Server-Side Rendering N.D.)

2.3 Server Side Rendering vs. Static Site Generation

To better understand the meaning of the SSR and its advantages and to avoid misunderstanding

the SSR with Static Site Generation (SSG) a comparison of both SSR and SSG is needed. Static is

the key word in SSG method and in practice it means that whole page is static and does not

change its state after build. This method is also called pre-rendering. This is another popular

method for creating fast website. If the pages requested by all clients are the same, the server will

only render the page once during build process and responds to all the requests with that same

page. In pre-rendering practice, the server creates the pages as static HTML string or file and

usually saves it as cache data. (Server-Side Rendering N.D.)

8

SSG provides great performance and time-to-content similar to SSR. Also, it is cheaper and has

simpler deployment process. All the static HTML pages are generated during build time, and they

will be provided to the client as a static website. If the data of the site changes a new build process

triggers and the new static files with the updated data will be generated. (Server-Side Rendering

N.D.)

2.4 Server Side Rendering vs. Client-Side Rendering

The main difference between Server-Side Rendering versus Client-Side Rendering (CSR) is they

how are being offered to the users. In CSR the user’s browser is responsible for downloading and

loading the website’s JavaScript and then executes the React and the server is only response to

the request of the browser/client with requested data.

In the following, the most popular server-side rendering frameworks has been explained.

3 Server Side Rendering frameworks

3.1 Next.js

In short Next.js is a React framework that provides SSR. To clarify this statement, we need to know

what React is and what a framework means.

A framework in information technology means a foundation that a software or website can be

built on. It is usually associated with a programming language and offers different features and

functionalities such as routing, data fetching, integration, and many others to facilitate and

accelerate the development time of a software. A framework removes the necessity of building a

software from scratch and gives a reliable structure to build on. It generally offers a more secure

code base, better testing, and scalable software among other features. (What is Framework N.D.)

3.1.1 React

In the recent years React has gained a good reputation and trend in IT industry. It has been the

most popular technology skill in JavaScript stack in 2021, as it has more than of 26% of market

9

share followed by Typescript and ES6. (Most popular technology skills in the JavaScript tech stack

worldwide in 2021 N.D.)

Figure 2: Most popular technology skills in the JavaScript tech stack worldwide in 2021 (Mts.)

React is JavaScript library developed by Facebook for building user interfaces. React is not a

framework like Angular or Gatsby that provides ready-made solutions and functionalities. It is a

library that gives more possibility and flexibility for development but also it requires more

responsibility and more work unlike a framework. React uses virtual DOM unlike other libraries

and frameworks, that will be batched into the actual DOM. It typically creates a Single Page

Application (SPA). It means that the site is just one page which its contents are dynamic, and

changes based on user input.

The other very important aspect of React is that it uses JSX. Simply put, JSX is a combination of

HTML and JavaScript together in one file, which gives React a very simple and flexible developing

10

experience. For creating the virtual DOM React provides a high-level API, but using this API is a

time consuming and hideous process. For this reason, an intermediate format such as JSX is being

used for creating complex DOM structures. JSX is one of the most popular formats that Facebook

uses in React. (Vepsäläinen 2016, 32-35.)

By using Node, React can render on server too. For this reason, most popular SSR frameworks such

as Gatsby and Next.js are built around it. Also, it can be used to create native applications for

mobile devices suing React Native which targets mobile devices rather than the browser.

Next.js is currently the most popular React-based SSR framework because of its dynamic

characteristics and its flexibility. Generally, we can divide the SSR frameworks into 2 main

categories.

1. Dynamic solutions, such as Electrode, Next.js and After

2. Static solutions such as React Static, Gatsby

The dynamic solution such as Next.js allows the developers to create a more dynamic software

and add any dynamic logic that generates the HTML based on client’s input and request. These

characteristics of the Next.js makes it more flexible and desirable as most the web-based

applications are dynamic and Next.js offers a great out of the box solution for this type of

applications. But as any other solution it has some weaknesses. One of its biggest drawbacks is

that it requires a live server that generates the HTML based on each client’s request. This server is

better to be a cluster of servers to reduce the workload and redundancy. Also, they should be

highly available and monitored consciously for any defects and issues that might appear. Because

Next.js is a dynamic solution it will heavily rely on the servers. (Koshin 2018, 15-19)

The static solution such as Gatsby is another SSR framework. The key point here is static that the

HTML are static and usually do not change greatly after the first build on the server. This type of

static solutions can be served on the services such as Nginx, Apache which are examples of static

servers. In this technology the HTML will be pre-backed with initial state on those servers (Nginx,

Apache) and then can be served to clients. (Koshin 2018, 15-19)

11

This subject is discussed more under the Gatsby title which was one of the main focal points of this

thesis.

3.2 Gatsby

Same as Next.js, Gatsby is a SSR framework based on React. The Only difference is that Gatsby is

mostly a static site generator, but unlike the word static suggests, Gatsby can also have dynamic

features and functionalities on the client side such as interactive component, data fetching and

calling APIs. As it was discussed in React section, React creates a Single Page Application (SPA) but

Gatsby creates multiple pages with the help of page templates. Each page template is similar to

SPA that contains React components and can be used to create multiple pages with the same

layout by looping the data into the template. (Attardi 2020, Chapter 2: Gatsby Crash Course)

Gatsby has its own automatic URL pathing determined by the directory and file structure of the

project. It will create pages with the file name without the .js extension if the files are located in

the src/pages directory. For example, a file with located in the src/pages/home.js will create URL

as /home. It is not mandatory to use the Gatsby’s automatic URL creation. Gatsby gives the

possibility to create custom page URLs by defining them in gatsby-node.js file, which is discussed

more in the next chapters. (Attardi 2020, Chapter 2: Gatsby Crash Course)

3.2.1 How does Gatsby work?

Gatsby has four main methodologies in its usage.

1. React: for creating the user interface and page templates.

2. Data source: it can be markdown file or any content management systems like Contentful and
WordPress.

3. GraphQL: for querying data and feeding them to the React components.

4. Server-side rendering: During the build process that renders and bakes the pages on server and
then send them to the client as ready to be shown HTML

When building a Gatsby site, the first thing that Gatsby does is fetching all the required data

with the help of plugins or its APIs from data sources such as any CMSs, markdown document

12

and databases. Next it combines the fetched data into GraphQL Schema and creates a

snapshot of all the data that is needed in its local storage. This will create a data layer with the

exact shape of the data that has been asked for. This feature removes the necessity to request

and fetch the data over the network because it is already generated during build time as a

GraphQL schema. This locally generated data schema can be accessed with GraphQL queries

and be fed into the page templates and React components.

 The next step is building and compiling the data, assets, styles and React components

together to generate the HTML pages. To generate the final HTML Gatsby uses a Node.js

process in the background to bake and compile everything together to be ready for rendering

in browsers. This process is called SSR as it was explained in the previous chapters. In this stage

Gatsby create the entire site at once, therefore when the site is deployed, it does not need any

servers to handle the data or create the pages because the pages have already been generated

and compiled by Gatsby as static HTML that can be served to client as it is. (Overview of the

Gatsby Build Process N.D.)

After the build process the generated pages can be deployed on the web servers for customer

to use. As a Gatsby site is a full React application, everything that is possible in React is possible

in a Gatsby site too (Overview of the Gatsby Build Process N.D). For example, creating dynamic

components and fetching data in real time on the browser can be done in Gatsby sites as well.

But it should be kept in mind that one of the biggest features of the Gatsby is its static

characteristics that makes it very fast. Therefore, using too many dynamic components and

fetching data extensively on the client the static aspect of a Gatsby site will get undermined,

and it will lose its performance advantages.

13

Figure 3: Gatsby life cycle

Since GraphQL is a major part of Gatsby, it is worth the effort to discuss it more.

3.2.2 GraphQL in Gatsby

GraphQL is a query language for APIs that gives the clients the possibility to request for the exact

data and fields that is required. Unlike a classic Rest API, in GraphQL you only ask for the fields

that you need and nothing more will be sent to you. This makes the responses of GraphQL queries

very predictable and the applications that use it are faster with less errors as it is the application

that decides what data to receive instead of the server. The other positive point of GraphQL is that

in a single query it returns all the resources with the same reference. It means, that if a client asks

for a user data it can return multiple user’s data or only a single user in one query. This feature of

GraphQL is not possible in Rest APIs and a separate end point URLs should be created to support

the same functionality. (A query language for your API N.D.)

Figure 4 is an example of querying a data structure with GraphQL. As it is visible the full data of a

user contains firstName and email fields too, but they are not returned in the result because the

query did not request for those fields. Hence, we will get only the data and the fields that we have

requested for in the initial query.

14

Figure 4: Querying with GraphQL (Attardi 2020, Chapter 2: Gatsby Crash Course)

GraphQL queries can be created in Gatsby using graphql tag. It is used to define template queries

that later Gatsby will run them during build time: graphql`Your query here`. It is important to

mention here that these queries will only run during build time and not in runtime. Also using

variables in GraphQL queries is not support. In the build time Gatsby gathers these tagged

templates and generates the GraphQL query which there returned response will have the same

structure as the queries. These retuned data later will be feed to page templates and components

to generate the HTML pages. (Attardi 2020, Chapter 2: Gatsby Crash Course.)

3.2.3 GraphiQL tool

Gatsby offers a very useful tool for creating GraphQL queries called GraphiQL. It is a powerful

GraphQL integrated development environment (IDE), which has syntax highlighting,

autocompletion and interactive query creation to mention a few.

http://localhost:8000/___graphql is the address that this tool can be found at.

http://localhost:8000/___graphql

15

Figure 5: GraphiQL tool

Figure 5 displays the interface of GraphiQL tool. It is generally consisted of 3 columns. The first

column from left is Explorer that shows the entire GraphQL schema data, content types and its

fields. It can be used to generate queries interactively by clicking the checkboxes. Here it is also

possible to filter and sort the returned data conveniently by using GraphiQL tool’s interactive

features. The next column is the query column whish shows the generated query. Here the query

can be edited and modified too. The third column on the right is the results column that the

retuned data of the queries will be displayed in this section. Lastly there is the Docs button on the

right top side of the GraphiQL tool. Clicking on this button will open a slider that can be used to

check for documentation about the content’s types and schema elements and fields.

Queries can be divided into 2 types in Gatsby, page queries and static queries. static queries are

called component queries too.

3.2.4 Page queries

Page queries are used on the higher level page components. Page components are the high level

React components that Gatsby creates the final pages from them by passing the page queries’

results as a data props (props.data) to them. Page components are like templates that Gatsby can

16

use them to create pages dynamically. To get the right data to the pages components, variables

can also be passed to these page queries. These types of queries can be declared by the help of

Gatsby’s graphql tag and exporting a constant called query, but each page component file can

have only on query. These queries should be placed in the same file as the page components that

later during the build the query’s returned data will be passed to the page component on the

same file and its results can be access inside the page component’s data prop. (Querying Data in

Pages with GraphQL N.D.)

In Figure 6 there is an example of a page component and page query. This page component

(HomePage) should be placed in /src/pages/homePage.js, then Gatsby by default will create a

page from the file and its name will be used as its URL (localhost:8000/homepage).

Figure 6: Page component and page query example

The output of the above page component can be accessed at localhost:8000/homepage in which

the result of the page query will be rendered on the browser (Figure 7).

17

Figure 7: Page component output in browser

3.2.5 Static queries

Static queries (component query) are low level queries that can be used anywhere in a

component. For creating a static query Gatsby provides useStaticQuery that uses the React hooks

to query for the data inside a component during build time. Because it is a React hook all the rules

of the hooks apply to it too. Also, as the static name suggests these types of queries cannot be

dynamic and unlike the page queries, can not contain any variables in them. The other limitations

of the static queries are that they should be located under /src directory, and each file can have

only one single useStaticQuery instance. (Querying Data in Components with the useStaticQuery

Hook N.D.)

In figure 8 there is an example of a static query that shows the usage to useStaticQuery and its

implementation of in an React component. It should be noted that only one static query can be

used in a file.

18

Figure 8: Static query example

Gatsby’s StaticQuery component is the other way to create static queries. But this component is

deprecated in Gatsby version 5. Therefore, it has not been discussed here.

3.2.6 Page creation in Gatsby

As it was discussed in the previous chapters Gatsby will automatically generate pages from files

that are located in the /src/pages/ directory and the file name will be as the URL of generated

page. Imagine if there are hundreds of the recipes and each of them needs to have a separate

page on the site. Creating these manually and hard coding them will be extremity time consuming

and repetitive specially if they have the same structure and interface. To avoid this issue, it is

better to create pages programmatically and use one single page component to generate multiple

pages. To achieve this Gatsby provides some functions to generate multiple pages dynamically

from a page template component. For example, a recipe page template component that can be

used to create multiple pages with the same interface and structure but with different recipe

19

information. It is also possible to customize this page creation process totally, for example change

the location of the page component files, create a custom URL and routing for the pages, add or

remove the page’s data, modify, or create new data types and fields in the GraphQL schema and

many more customizations can be achieved.

All the mentioned customizations can be achieved with a file called gatsby-node.js which should

be located under the root directory of the project. Gatsby provides many useful functions such as

onCreateNode and createPages that can be used in the Gatsby-node.js file. These functions will

run on different stages of build time. onCreateNode function will run every time the Gatsby

creates a node in GraphQL schema, hence it can be used to add or modify a specific node. (Attardi

2020, Chapter 2: Gatsby Crash Course.)

The createPages function can be used to dynamically to generate pages and because it is called

only when the GraphQL schema is ready, it is possible to run queries and get the necessary data

and use them to create pages dynamically. Some helper tools such as action and graphql that can

be passed as arguments to createPages function are available that can be taken in use. The action

object contains a function called createPage, which should be called for each page with three key

value data as follow:

1. path: the page’s desired URL, in which the generated page can be found at.

2. component: the address of the page component which will function as page template.

3. context: the page’s context, where custom data can be added. All the data passed in context will be
available for the page component template and it will be exposed as GraphQL variable. We can
used this in the page component to filter and query data based on page’s ID or path. (Attardi 2020,
Chapter 2: Gatsby Crash Course.)

20

Figure 9: Creating pages dynamically

In the above figure 9 the usage of the createPages function is demonstrated. The graphql API is

called inside the function to query for all the Recipe data which will return a list of all the Recipe

data as an array. Then the returned value of the query is looped through and for each node of the

result the createPage function is called and path, component, and context are passed to it to

create a recipe page from each node. The data in context then can be used as variable in the page

component, in this case RecipePageTemplate.js, to query the page’s data and use these variables

as filters to get the corresponding recipe data.

In this example only one page type, Recipe page, has been used. But if it is required to have other

page types for example article page, then the corresponding GraphQL query for all the article

pages can be added to the same graphql string. Then same as the recipe page creation the

returned data for the article pages should be looped through and the createPage function should

be called for each article node data.

21

3.2.7 Plugins

Plugins are a group of code, functionalities and additions that can be installed into a Gatsby

project codebase to utilize it to our advantage. Plugins are an important part of Gatsby workflow,

without it, Gatsby does not offer many advantages compared to a traditional React project. The

real advantage of a Gatsby project is in utilizing its plugins. Plugins can be found in Gatsby Plugin

Library and can be installed with yarn or npm package managers. It is not mandatory to always use

the already exciting plugins, it is also possible to create a custom plugin of your own that has been

tailored to the project’s need perfectly. Gatsby’s plugins can be categorized into many different

types but the 2 most common and important of them are transformer plugins and source plugins.

(Attardi 2020, Chapter 2: Gatsby Crash Course.)

Transformer plugins

Gatsby's transformer plugins are a type of plugin that can transform data from one format to

another during the build process of a Gatsby site.More specifically, a Gatsby transformer plugin is

responsible for processing content that is sourced from external data sources (such as markdown

files or JSON data) and transforming that content into a format that can be used by Gatsby's

GraphQL data layer. This transformation step is necessary because Gatsby's GraphQL layer

requires a specific format for data in order to be queried and used in the creation of pages and

components. (Attardi 2020, Chapter 2: Gatsby Crash Course.)

Gatsby provides a number of transformer plugins out of the box, including transformers for

markdown files, JSON data, and images. Additionally, third-party transformer plugins can be

installed and used in a Gatsby site to handle other data formats or custom data processing

requirements. Overall, transformer plugins are an important part of Gatsby's data layer, and are

essential for sourcing and transforming data into a format that can be easily consumed by a

Gatsby site's pages and components.

Source Plugins

These types of plugins are used to create more data into Gatsby GraphQL schema from different

sources. Without the source plugins the GraphQL schema is quire empty. Source plugins pull data

from a variety of sources such as APIs, content management systems (CMS), databases,

22

Markdown files, CSV files, and more. Then these data can be used to create static pages and

websites. Each source plugin is designed to handle a specific data source and can be configured

with options to customize how the data is fetched and transformed. For example, the Gatsby

source plugin for WordPress allows Gatsby to pull data from a WordPress site, while the Gatsby

source plugin for Contentful allows Gatsby to pull data from the Contentful CMS. (Attardi 2020,

Chapter 2: Gatsby Crash Course.)

Using source plugins is an important feature of Gatsby's data layer, that allows developers to

easily integrate data from various sources into their Gatsby projects. By utilizing source plugins,

Gatsby projects can be built with up-to-date and dynamic data without sacrificing the benefits of

static site generation. As if the source data changes, the change will trigger a project rebuild,

which will cause the plugin to fetch the data again and the GraphQL schema and the static data of

the site will get updated with the new data.

As stated before, plugins can be found at Gatsby’s plugin library and installed in with yarn and npm

package managers. Most of the plugins in the library have documentation about how to use and

utilize the plugin in a project. Generally, it is required to add the plugin and its options into plugin

array of the gastby-config.js file located in the root directory of the project.

Figure 10: Example of Gatsby plugins

23

4 Content management systems (CMS)

4.1 What is a CMS?

A Content Management System (CMS) is a software application that helps companies to create,

manage and publish their digital content. It is a single location where all the data such as blogs and

articles contents are located. With the CMS it is easier to directly create content inside a browser

and not to worry about writing them in source code or as a markup language. This removes the

necessity to have the developer every time the content of a site needs to be updated. (Attardi

2020, Chapter 1: Introduction to Netlify CMS.)

For example, in a traditional static blog post site every time a new blog needs to be published or

modified a developer is needed to add the new content to the source code or as markup language.

This is a very time consuming and expensive process with multiple steps in between to achieve the

goal. And if the same content needs to be published to other sites as well, the same tedious

process needs to be done to each site in order to update the same content to all of them. This

issue can be overcome by utilizing a content management system for managing the content of all

the sites in a centralized location. A CMS eliminates the need to update the code to publish a new

blog post, hence no developer is needed. A content manager without any technical skills simply

adds the new content to the CMS only once from a browser in a user-friendly environment and all

the sites will be updated with the new content. This aspect of CMS makes them extremely

inexpensive, simple, and efficient.

4.2 Traditional CMS

In a traditional CMS generally the content creation and content display take place in a single web

application. A content manager uses an interface to log in into the system and creates the content

which will be save in a database. Then a user of the site will use the same system to view the

content fetched from the database. (Attardi 2020, Chapter 1: Introduction to Netlify CMS.)

24

Figure 11: Traditional CMS (Attardi 2020, Chapter 1: Introduction to Netlify CMS)

4.3 Headless CMS

In a headless CMS unlike the traditional CMS the content creation and content display take place

on different platforms. In this case content can be provided to the front end via some type of APIs.

One of the great advantages of a headless CMS is that the content can be sent to multiple

frontend application at the same time with the usage of the APIs. In a headless CMS the content

section and its display are totally decoupled from each other which creates the possibility to

present the content with more flexibility. Contentful and Netlify are examples of a headless CMS.

(Attardi 2020, Chapter 1: Introduction to Netlify CMS)

25

Figure 12: Headless CMS (Attardi 2020, Chapter 1: Introduction to Netlify CMS)

In the next chapters Word Press and Contentful has been discussed more.

4.4 Contentful

Contentful is a headless CMS owned by Microsoft with a web-based content editor application

that offers many useful features. Contents such as text, images and videos can be uploaded to

Contentful and be delivered to the front-end through its APIs. The different between Contentful

and other CMSs is that Contentful is not page-based. It means that the front-end application

adapts the content structures not the other way around as is usual for other CMSs. This features

of Contentful is called content modeling. (Introduction to Contentful N.D.)

Content modeling simply put is the overall structure and organization of contents. With content

modeling it is possible define what type of information a content can contain. It is like an outline

for the content. Under content model there are different content types and each content types

can have multiple fields. (Content modeling basics N.D.)

For example, an article page in a website can have its own individual content type in Contentful.

The title of the article page should have its own text field and a reference field to Author content

type for the author of the article. By adding the Author as a reference to the Article page content

type, it can be reused in other articles that has been written by the same author. This way by

26

defining a filed as a reference to another content type we can reuse the same content in other

places and avoid content duplication and redundance.

It is vital to consider the needs and requirements of all parties involved in the service when

designing the content models and content types. It should be future proof and the future

development and feature should be considered. (Content modeling basics N.D.)

4.4.1 Contentful content APIs

For creating or modifying content in Contentful there are 2 methods. The first approach is with the

help of its web application and graphical user interface. The Contentful web application provides a

comprehensive graphical user interface and a user-friendly environment that makes the usage of

the service much easier. For these reasons a content creator will quickly be able to use the service

and start creating and modifying the contents without any extensive technical knowledge.

The second method is with the usage of the Contentful APIs. Contentful provides Rest and

GraphQL APIs, that by utilizing them we can start modifying, updating, creating, deleting,

importing and exporting the content. Generally, Contentful has 5 types of APIs that each of them

are explained in the following:

Content Delivery API (CDA)

This is a public read-only API for retrieving data and content from Contentful which is available at

cdn.contentful.com. The CDA API provides the data to the apps, mobile applications and websites

as JSON and the media data such as images and videos are provided as files. CDA API is accessible

on a global network which works efficiently. It responds to the API calls from the closest server to

the user with the required data. This makes the data delay shorter and improves the user

experience of the application. (Contentful content APIs N.D.)

Content Management API (CMA)

The CMA API unlike the CDA requires logging in as Contentful user and authentication. This is a

read-write API used for managing the content which is available at api.contentful.com. Its main

purpose is to export or import content automatically through code, integrating the Contentful will

27

other system on a backend, or building a custom tool for managing the data. (Contentful content

APIs N.D.)

Content Preview API

Content Preview API is similar to the Content Delivery API, but it is used for previewing the

content before releasing them to the productions which is available at preview.contentful.com.

This is used mainly by content creators, authors, and content managers to preview and test the

content before release as if it is published. Content Preview API can be distinguished from the

Content Delivery API by a different access token. The only different between them is that the

Content Preview API returns the contents that are in Draft and Published status, but the CDA

returns only the contented that are in Published status. (Contentful content APIs N.D.)

Images API

Images API is used to deliver the images stored in Contentful and manipulate them based on the

application’s need. This API can be accessed at images.ctfassets.net, that with the help of it we can

crop, resize, change background, or convert them into other formats. (Contentful content APIs

N.D.)

GraphQL API

It is a content API that provides each space of the Contentful as GraphQL schema based on existing

content type on the space. The schema gets updated every time there is a change in the content

types. The GraphQL API can be accessed at graphql.contentful.com. (Contentful content APIs N.D.)

4.5 WordPress

WordPress is one of if not the most popular blogging platform. It was developed by a company

called Automatic in 2005. It is an open-source platform used mostly for blogging. But during years

28

it has evolved to become a framework used for multiple different purposes. Also, WordPress’s

v3.0 has given it the full capability of becoming a Content Management System. One the reasons

the WordPress has become so famous is because of its active contributors. There are thousands of

free plugins and themes that are available to utilize. This gives the WordPress a wide range of

possibilities that each site will have its own unique view and features. (Pearce 2011, 225-226.)

The core technologies that WordPress is built with is PHP and MySQL. It is important to

understand that WordPress unlike Contentful is not a headless CMS but a traditional CMS which

both content creation, content storing, and content viewing happen inside one platform.

Posts and pages are the fundamental content types that WordPress stores. Posts are generally the

building blocks of a blog that are time-stamped and tagged or categorized. On the other hand, by

default pages are generally the static part of a site which are not tagged or categorized and the

time-stamp is no not that important because of its static nature. (Pearce 2011, 226-227.)

One of the biggest differences between the post and pages is that pages are arranged

hierarchically but and post are categorized and tagged instead. For example, the pages can have

sub-pages and are better to be used for a website that most of its contents are static and

hierarchically navigable. Of course, it can contain posts as well but presenting the blog posts are

the primary goal of the service. (Pearce 2011, 226-227.)

29

Figure 13: Page structure in WordPress (Pearce 2011, 226-227)

Posts are used when the classic blog methodology is required, and main goal of the service is to

provide the blog post to the users as in in Figure 11. The implementation, modification and

management of both posts and pages are extremely similar but it is critical to understand their

difference and the primary purpose of the site when deciding the which section of the site should

be as categorized posts and which as hierarchically arranged pages. (Pearce 2011, 226-227.)

30

Figure 14: Post structure in WordPress (Pearce 2011, 226-227.)

Links and media files are the other type of data entries that WordPress stores. Media files such as

images can be attached to a specific post or page and can be shared among multiple pages.

Images can also be given a specific size that are resized when uploading to the media repository.

This feature will avoid breaking the site’s layout if an image is too big. The other very important

aspect of WordPress is its theme API and plugins. Theme API allows developers to create custom

and unique theme for the site. Plugins are used to extent or modify the functionality of a

WordPress powered site. (Pearce 2011, 228-229.)

 Plugins and themes of the WordPress, themes, and plugins are out of scoop of CMSs, therefore

they have only been shortly mentioned here.

31

5 Project

5.1 Overview

In this section Viinimaa (viinimaa.fi) website was selected as an example project of the previously

researched subjects. Viinimaa is one of two flagship websites of Anora group company. It is

mainly a static web site with hundreds of articles and recipes that promotes the alcoholic and non-

alcoholic drinks and presents a lifestyle around its products. Viinimaa is an enormous site with

around 2000 pages that has many different technologies in is usage. It worth mentioning here that

the goal of this section is to present the overall Viinimaa’s architecture, different blocks and how

they work together seamlessly, not presenting its code base.

5.2 Technologies

Viinimaa’s core technologies are Gatsby framework and Contentful as its CMS. Of course, it is not

only these 2 but a few more technologies and systems that are listed below. Some of these

technologies are out of scope of this thesis therefore they have not been elaborated more.

• Gatsby framework: used for building the site and front end.

• Contentful: as its Content Management Systems for storying all the content except media files and
product information.

• Adobe Commerce: an e-commerce platform written in PHP that was called previously Magento.
Viinimaa uses its GraphQL API for product information and product search.

• Cloudinary: a media platform for storing, manipulating, managing, and delivering images and
videos to websites and apps.

• Elastic search: used for site’s search functionalities

• Azure: used for hosting the website

• Gatsby Cloud: used for Building the site, automatic build triggers and web hooks

• GitHub: source code’s version control

• Google Analytics: site analytics and events

32

5.3 Architecture

In the project's architecture section an overall perspective of the project, and the relations

between the previously explained technologies, their usage, data flow, content management, and

the project's deployment has been discussed.

In the figure 15 the map of the Viinimaa website is visible.

Figure 15: Viinimaa's architecture

33

As the relations of each part of the project is visible in the above figure, a more clarification of

these relations is required.

5.3.1 Gatsby Cloud

When a change happens in Gatsby’s project source code, the code changes get pushed to GitHub

manually. Then Gatsby Cloud gets notified automatically through the configured pipeline that the

source code has been updated. This will trigger a rebuild process of the site on Gatsby Cloud that

will update the site with most recent changes. During the build process the first step is data

sourcing. Gatsby fetches the content from Contentful through its delivery APIs and syncs the

product data from Adobe Commerce, then generates a local schema of all the content. A

successful build generates the Gatsby static code which is then deployed to Azure for hosting.

Then Azure service remove the previous static code from the server and deploys the updated

version instead, which makes the latset changes accessible to the end users. During the build

process in the Gatsby Cloud if build a fails, the site will note get deployed to Azure until the next

successful build. This feature is very handy that removes the possibility of sites going down

because of an error.

Gatsby Cloud also supports site caching. This mean that if a content is updated in Contentful and a

new build is triggered, Gatsby could only rebuilds the pages in which the updated content has

been used and the rest of the site will be used from the cache files generated during previous

build. Therefore, these types of builds will take shorter time and consumes less resources.

5.3.2 Contentful and Cloudinary

As it has been explained in the before, Contentful is the CMS of the Viinimaa site. Contentful is

also directly connected to Cloudinary. Since image are stored in Cloudinary, Contentful needs to

be connected to it. This connection has been achieved by installing the Cloudinary plugins to the

Contentful which allows the content creator to add images from Cloudinary to the contents. This

image information then will be provided to Gatsby when it is fetching the content.

Cloudinary has many useful features such as image and video transformation and manipulation. It

also utilizes the caching which makes the image delivery to the end user much faster.

34

Contentful is also connected to the Gatsby Cloud through webhooks. This connection is needed to

notify Gatsby Cloud to trigger a new site build when there is a change in the content of the site.

After the new build site is updated with the latest changes in Contentful.

5.3.3 Adobe Commerce

Adobe Commerce is used only for product information and product search. Product information is

fetched during build alongside with other data source and the local schema get generated. For

search purposes the Adobe Commerce provides a live API that returns the product information

based on the end user’s search term. Adobe Commerce and Gatsby Cloud are connected same as

Contentful through a webhook. When a product is created or modified in the Adobe Commerce,

Gatsby Cloud gets notified thought the webhook which will trigger a new build to update the live

site with the latest changes.

5.4 Integration

5.4.1 Gatsby and Contentful integration

To integrate Gatsby and Contentful together the official gatsby-source-contentful plugin has been

used. Gatsby-source-contentful is a useful plugin and easy to set up. The only thing that is

required to set this plugin is Contentful space id and access token. This information can be easily

found from Contentful setting/API keys menu. The access token and the space id should be added

to the gatsby-config.js file of the project as it is shown in the figure 10.

5.4.2 Gatsby Cloud and Contentful

To trigger a new build when a content is created or updated in Contentful, a webhook needs to be

set up. To set up the webhook first we need the Gatsby Cloud webhook’s URL. To access this URL,

we need to login into the Gatsby Cloud service and select the correct workspace and site from the

opened list. Under the Site Settings tab (check figure 16) the URL can be found from the Webhook

section. This URL needs to be added to Contentful webhook.

35

Figure 16: Gatsby Cloud site settings

Next, a Contentful webhook needs to be created. To create a new webhook, we need to login into

the Contentful and after going to the correct space, select master environment. Webhooks are

only available in master environment. From the settings tab select webhook and then click on the

Add Webhook button. A window opens that the Gatsby Cloud’s webhook URL needs be pasted in

the URL field of the page (check figure 17). Here you can define other settings such as webhook’s

environment, type a title and on what circumstances the webhook should notify the Gatsby Cloud

for a new build. Finish the other settings and save. Now the webhooks are set up and every time

there is a change in the Contentful a new build will be triggered in the Gatsby Cloud.

36

Figure 17: Contentful webhook

5.4.3 Gatsby and Adobe Commerce integration

Product data are fetched from Adobe Commerce during build with the help of a custom plugin

that had been created only for this purpose. The data are fetched through an API that creates the

necessary schemas and content types. Since all the product data are coming from the Adobe

Commerce, it is required to rebuild the site if there is a change in product data source in order to

have an up-to-date site. There for the Gatsby Cloud and Adobe Commerce are connected to each

37

other through a webhook that triggers a new build in Gatsby Cloud when a product is created or

updated.

5.5 Results

The result of the project was a real-life enterprise organization's architecture that has the

potential to create a modern and blazing fast static website with great SEO. The Anora group has

spent hundreds of thousands of euros to create their infrastructure using this architecture to

achieve their business goals. therefore, this architecture and integration can be used by small to

enterprise organizations as a base template to create their own website to achieve their business

goals without any expenses. This will help especially small to medium organizations to benefit

from it. This architecture can be used for similar sites as Viinimaa that has the same types of

requirements that most of the site is static, and SEO is important. For example, a news website, a

product information website, an article website, a brand's advertisement website, or an

organization's information website.

The reason why Gatsby has been chosen over Next js as the frontend of the project, is because the

Viinimaa.fi is mostly consisted of static contents and pages that does not require user’s input or

interaction. Therefore, Gatsby was the best option as static SSR framework compared to Next js

which is used when the site’s dynamic aspect is greater than its static aspect. Also, Contentful was

integrated with Gatsby because of its modern and headless behavior. It is also very fast, future-

proof and great for enterprises with lots of data such as Viinimaa. The reason why In Viinimaa

WordPress was not used is because, it is not headless as Contentful, it is a quite old system and

tends to perform slow. WordPress is a great option for small to medium companies but in

Viinimaa’s case that the site has more 2500 pages with a huge number of images and medias,

serenely WordPress was not a perfect option as Anora needed something reliable, modern, fast

and future-proof.

6 Conclusion

The goal of this thesis was to research the most popular SSR frameworks and CMSs and present a

real-life project architecture that can be used to a create service which is highly optimized for

search engines. One of the reasons why the SSR frameworks are gaining more popularity is

38

because of their advantages that they provide in SEO and performance. After researching the SSR

and the related frameworks such as Gatsby and Next js, it is quite clear that utilizing these

technologies are crucial if a company wants to stay on the top of the results in search engine,

reach more customers, be more accessible and have better performance. As in today’s business

every company is trying to be more accessible and easily findable though internet, site’s

performance and search engines are playing a great role.

Based on the researched technologies, it is clear why in the Viinimaa project the Gatsby and

Contentful has been used. In Viinimaa the goal was to create a website with technologies that are

modern, fast, responsive, and optimized for SEO. Also, since most the site is statice content, such

us articles, product data, and recipes, Gatsby was the best option that satisfied all the Viinimaa’s

requirement.

In the end, the goals that had been set for this thesis have been achieved and the objectives and

questions of the thesis have been answered. SSR is a technology that is growing in popularity

because of the benefits that it provides. Because in SSR the pages are built on the server the

search engine crawlers can easily access the content of the pages and present them to the users

based on their search term. Therefore, SSR offers much better SEO and performance, since the

pages are already built on the server and client (browser) has less computation to do. On the

other hand, in the client side rendering, the contents are being rendered on the client side, search

engine crawlers have no understanding of the site’s content until it is rendered on the client. For

this reason, the client side rendering sites have less visibility and worse SEO compared to SSR. Two

of most popular SSR frameworks are Gatsby and Next js. Gatsby is used for more static sites and

Next js for more dynamic sites. In the project example viinimaa.fi the Gatsby framework has been

used because most of the site is static pages with its contents coming from Contentful CMS. From

the CMS point of view, the headless CMSs mythology is gaining more attention due its simplicity

and usability. Headless CMS, such as Contentful, has separated the content from the frontend. For

a headless CMS is not important in what technologies and how the data are being used and usually

it is the frontend that adapts to the content not the other way around.

39

References

Attardi, J. 2020. Using Gatsby and Netlify CMS: Build Blazing Fast JAMstack Apps Using Gatsby and
Netlity CMS. Apress publishing. Chapter 1: Introduction to Netlify CMS, Cahpter 2: Gatsby Crash
course

About us. Anora group website. Published N.D. Cited 31.03.2022. https://anora.com/en/about-us

A query language for your API. GraphQL org website. Published N.D. Cited 12.01.2023.
https://graphql.org/

Company. Solteq Oyj website. Published N.D. Cited 12.05.2023.
https://www.solteq.com/en/company

Contentful content APIs. Contentful website. Published N.D. Cited 03.05.2023.
https://www.contentful.com/developers/docs/concepts/apis/

Content modeling basics. Contentful website. Published N.D. Cited 15.04.2023.
https://www.contentful.com/help/content-modelling-basics/

Introduction to Contentful. Contentful website. Published N.D. Cited 15.04.2023.
https://www.contentful.com/help/contentful-overview/

Konshin, K. 2018. Next. js Quick Start Guide : Server-Side Rendering Done Right. Packt Publishing.
13-15, 15-19

Most popular technology skills in the JavaScript tech stack worldwide in 2021. Statista website.
Published N.D- Cited 08.01.2023. https://www-statista-
com.ezproxy.jamk.fi:2443/statistics/1292313/popular-technologies-in-the-javascript-tech-stack/

Overview of the Gatsby Build Process. Gatsby website. Published N.D. Cited 12.01.2023.
https://www.gatsbyjs.com/docs/conceptual/overview-of-the-gatsby-build-process/

Pearce, J. 2011. Professional Mobile Web Development with WordPress, Joomla and Drupal. John
Wiley & Sons, Incorporated. 225-228.

Querying Data in Components with the useStaticQuery Hook. Gatsby website. Published N.D. Cited
22.01.2023. https://www.gatsbyjs.com/docs/how-to/querying-data/use-static-query/

Querying Data in Pages with GraphQL. Gatsby website. Published N.D. Cited 22.01.2023.
https://www.gatsbyjs.com/docs/how-to/querying-data/page-query/

Server-Side Rendering (SSR). Vue.js website. Published N.D. Cited 31.03.2022.
https://vuejs.org/guide/scaling-up/ssr.html

Vepsäläinen, J. 2016. SURVIVEJS webpack and React from apprentice to master. Leanpub
publishing. 32-35

https://anora.com/en/about-us
https://graphql.org/
https://www.contentful.com/developers/docs/concepts/apis/
https://www.contentful.com/help/content-modelling-basics/
https://www.contentful.com/help/contentful-overview/
https://www-statista-com.ezproxy.jamk.fi:2443/statistics/1292313/popular-technologies-in-the-javascript-tech-stack/
https://www-statista-com.ezproxy.jamk.fi:2443/statistics/1292313/popular-technologies-in-the-javascript-tech-stack/
https://www.gatsbyjs.com/docs/how-to/querying-data/use-static-query/
https://vuejs.org/guide/scaling-up/ssr.html

40

Verma, A. 2021. A deep dive into Server-Side Rendering in JavaScript. Towards Dev website. Cited
10.04.2022. https://towardsdev.com/server-side-rendering-srr-in-javascript-a1b7298f0d04

What is Framework. Code Academy website. Published 23.09.2021. Cited 07.01.2023.
https://www.codecademy.com/resources/blog/what-is-a-framework/

Zola, A & Burke, J. 2021. Time-to-live(TTL). TechTarget website. Cited 10.04.2022.
https://www.techtarget.com/searchnetworking/definition/time-to-live

https://towardsdev.com/server-side-rendering-srr-in-javascript-a1b7298f0d04

41

	1 Introduction
	1.1 Overview
	1.2 Company’s background
	1.3 Objectives of the thesis

	2 Server Side Rendering (SSR)
	2.1 What is SSR
	2.2 Why SSR?
	2.3 Server Side Rendering vs. Static Site Generation
	2.4 Server Side Rendering vs. Client-Side Rendering

	3 Server Side Rendering frameworks
	3.1 Next.js
	3.1.1 React

	3.2 Gatsby
	3.2.1 How does Gatsby work?
	3.2.2 GraphQL in Gatsby
	3.2.3 GraphiQL tool
	3.2.4 Page queries
	3.2.5 Static queries
	3.2.6 Page creation in Gatsby
	3.2.7 Plugins
	Transformer plugins
	Source Plugins

	4 Content management systems (CMS)
	4.1 What is a CMS?
	4.2 Traditional CMS
	4.3 Headless CMS
	4.4 Contentful
	4.4.1 Contentful content APIs
	Content Delivery API (CDA)
	Content Management API (CMA)
	Content Preview API
	Images API
	GraphQL API

	4.5 WordPress

	5 Project
	5.1 Overview
	5.2 Technologies
	5.3 Architecture
	5.3.1 Gatsby Cloud
	5.3.2 Contentful and Cloudinary
	5.3.3 Adobe Commerce

	5.4 Integration
	5.4.1 Gatsby and Contentful integration
	5.4.2 Gatsby Cloud and Contentful
	5.4.3 Gatsby and Adobe Commerce integration

	5.5 Results

	6 Conclusion
	References

