

Thang Dang Duc D4988

MULTIPLAYER SOLUTION FOR 3D
UNITY GAME PROTOTYPE USING

UNITY NETCODE

Bachelor’s thesis

Information Technology

T5616SN

2023

Degree title Information Technology
Author(s) Thang Dang Duc
Thesis title Multiplayer solution for 3D Unity game prototype using Unity Netcode
Commissioned by
Year 2023
Pages 41 pages
Supervisor(s) Juutilainen Matti

ABSTRACT

Multiplayer games are an attractive market for game developers, taking up a

sizable portion of the market. However, adding multiplayer features to a game

increases the scope of the project significantly, which deters potential ideas from

being formed.

In 2022, Unity Netcode became production-ready, reintroducing a native solution

for multiplayer game development and easing out the process of multiplayer

game creation. This thesis aimed to explore the process of prototyping a

multiplayer 3D game using Unity Netcode, a high-level networking library built for

Unity that enables sending GameObjects and world data across a networking

session.

In the thesis, the author implemented the procedure for making a simple game

prototype named “Tagteam” and evaluates its feasibility and effectiveness from

the author’s working experience and perspective as a game designer.

The study showed that while Unity Netcode eased out the development process,

it did not outperform other tools significantly in terms of performance and

development cost.

Keywords: documentation, model, thesis, report writing

CONTENTS

1 INTRODUCTION .. 5

2 UNITY ... 6

2.1.1 Unity Editor ... 7

2.1.2 Scene view ... 8

2.1.3 Hierarchy view .. 12

2.1.4 Game view .. 14

2.1.5 Project explorer ... 15

2.1.6 Inspector ... 15

2.1.7 Build settings .. 17

2.2 Unity mechanics ... 19

2.2.1 Components ... 19

2.2.2 GameObjects .. 20

2.2.3 Assets ... 21

2.2.4 Prefab ... 21

2.2.5 Scenes .. 22

2.2.6 Scripting .. 23

2.3 Asset store and Package manager ... 24

3 NETCODE .. 24

3.1 Network .. 25

3.1.1 NetworkObject .. 25

3.1.2 NetworkBehaviour .. 26

3.1.3 NetworkVariables .. 27

3.2 Remote Procedure Calls ... 28

3.3 Components ... 29

3.3.1 NetworkManager .. 29

3.3.2 NetworkTransform .. 30

3.3.3 NetworkAnimator .. 31

3.4 Relay .. 31

4 GAME PROTOTYPE .. 32

4.1 Pillars of Tagteam ... 33

4.2 Game Design .. 33

4.3 Implementation ... 33

4.3.1 Starter Assets ... 34

4.3.2 Netcode implementation ... 35

4.3.3 NetworkManager .. 36

4.3.4 Prefab ... 38

4.3.5 UIManager .. 39

4.3.6 Player’s movement ... 40

4.3.7 Player’s Animation .. 41

5 CONCLUSION .. 42

REFERENCES .. 43

LIST OF FIGURES

APPENDICES

 Appendix 1. Template functions and recommended styles

Appendix 2. Equations

Appendix 3. Lists of figures or tables

5

1 INTRODUCTION

In 2021, the games market generated total revenues of 180.3 billion USD, up

+1.4% over the year 2020. Despite the COVID-19 pandemic's seemingly

unstoppable surge in players, 3 billion players worldwide were responsible for this

revenue, which was a +5.3% increase over 2020. This slight increase in both

revenue and player number suggested that while the surge of players could have

been accounted for by the pandemic, the players were staying even after the

peak of the situation (70% of people report spending more time on mobile

devices in 2021). This resulted in the games market no longer being considered

the hit-driven business it once was. (Tom 2021.)

Due to quarantine becoming a common practice across the globe, players have

been turning to multiplayer games in order to connect with each other. 60% of

survey respondents stated that they were playing more multiplayer games during

the pandemic in order to replace the face-to-face interaction that was, in many

places, severely restricted.

It could be inferred from Facebook’s game marketing insights for 2021 (Figure 1)

that more than a quarter of players around the world prefer multiplayer or online

game modes to their single-player counterparts (Facebook, 2021). The table

below shows that new gamers are more likely to cooperate with others in the

world of gaming.

Figure 1. Survey on multiplayer related games

Many multiplayer games have received enormous attention compared to their

cost of creation, leading to unprecedented cases of success over the last two

years. Some notable games include “Fall Guys,”, “Among Us,”, “It Takes Two,”

and "Genshin Impact”. In such a rapidly changing industry that is booming in

6

potential, one is brought back to the ever-going question within the game

industry: “How to quickly prototype products, especially multiplayer games?”

Game prototyping is a vital phase in the game development process that involves

creating a method to test the concept of the game. The prototyping period usually

lasts between 1 and 30 days, with a preferred length of about 2 weeks for rough

game ideas. One of the principles of prototyping is minimizing the cost of time

and human resources so game studios can test the game’s effectiveness before

spending their budget on developing a full game. This means that the principle of

prototyping is more about efficiency than the product’s completeness.

In the author’s workplace, a Gameloft studio, despite countless prototypes being

made every year, not many of them support multiplayer. One of the reasons for

this is that multiplayer games introduce tremendous complexity compared to their

single-player counterparts, rendering the prototyping process slow, heavy, and

unworthy of delivery. The team would need to take care of both the game’s client

mechanics, server logic, and assets. However, if multiplayer games can be

prototyped in such a short period of time, they can bring valuable payoffs like

opening up potential games to a large chunk of the market or easing the testing

process (testers can simulate AI cases).

In this thesis, the author will explore approaches to ease the process of

multiplayer game prototyping. The main technologies used include Unity Engine,

one of the most commonly used game engines at the time of writing, and Fusion

by Photon, a reliable and versatile network engine on the market. The thesis aims

to analyze the impact of these tools and discuss their usability through the

process of creating a Unity game prototype. The use of some other readily

available assets will be discussed. However, these assets are only considered

helpers for almost all genres of prototypes.

2 UNITY

The Unity engine was initially released in 2005 by the company Unity

Technologies from a small Copenhagen apartment, one year after their

foundation.

“Unity wants to be the 3D operating system of the world,” says Sylvio Drouin, VP

of the Unity Labs R&D team. (Eric 2019.)

7

With such a vision, Unity has recently been widely used for 3D design and

simulation in multiple industries, including video game creation. In 2019, nearly

half of the world’s games were built with Unity, according to the company’s CEO.

(Romain 2018.)

Unity’s growth is a case study of Clayton Christensen’s theory of disruptive

innovation. Unity’s main rival in the market – Unreal Engine caters for AAA

developers who create highly complex and detailed games or 3D

representations. While Unity’s main target market was smaller companies or

independent developers who need a simpler game engine with lower price range.

However, Unity has recently appealed to even professional game studios,

powering the creation of market leading games like “Angry birds 2”, “Hearth

stone”, “Monument Valley”, “Ori and the Blind Forest”, etc. (Clayton et al. 2015.)

This success has some of the same reasons why the author chose the engine for

this project. Unity supports over 20 different platforms for game deployment. It

offers a complete toolkit for building games, from graphics and audio to level-

building and teamwork. Unity is relatively easy to use with C#, compared to

Unreal Engine with C++. Unity is readily available thanks to its free plan.

A strong community is built around this engine, creating thousands of assets on

Unity’s asset store at https://assetstore.unity.com/. Supports from the community

can be found in abundance on Unity’s forum at https://forum.unity.com/. Unity

Technology also provides its own support for the community with multiple

tutorials, project templates, and, more recently, classes.

However, as of May 2022, Unity does not provide an official networking solution.

The community has recommended against and deprecated their initial plan using

MLAPI. Some other options include Fusion networking or Mirror networking.

2.1.1 Unity Editor

The Unity editor (Figure 2) is a modular set of interfaces serving multiple

purposes and, in turn, shaping the game development workflow. Some default

interfaces are: object hierarchy, project explorer, console, inspector, game view,

scene view, etc. These interfaces are treated like windows, which can be moved

8

around, docked, grouped, and detached depending on the user's needs.

Figure 2. Unity’s Editor view

Each layout can be customized and later accessed through the “Layout”

dropdown menu at the top right of the editor screen. This chapter will go into the

method of utilizing said layout for the purpose of prototyping a 3D game.

2.1.2 Scene view

The scene view (Figure 3) is one of the most important views in Unity. It is an

interactive visual interface for the game scene, providing features like 3D

maneuvering views or drag-and-drop object manipulation. The user can pan the

camera view by dragging the mouse wheel, rotate the view by dragging the right

mouse button, zoom in and out by scrolling the scroll wheel, or move around the

area like they would in a first-person shooter video game using the arrow buttons

on the keyboard.

9

Figure 3. Unity's Scene view

The scene view also supports the option to change the viewing perspective by

clicking on the colored handles (Figure 4) of each dimension.

Figure 4. Unity's dimensional view control

Users can switch between the Isometric render mode or Perspective render

mode to increase precision in object modification (Table 1).

Table 1.Isometric and Perspective render mode

View mode Button Result

Perspective

10

Isometric

On the left side of the view, a list of object-manipulating actions can be chosen to

modify the game scene. These tools are listed in Table 2.

Table 2. Unity object-manipulation tools

Tool name Illustration Interaction Hotkey

View tool

Drag to move the camera view,

click on objects to select them in

the hierarchy

Q

Move tool

Each dimension (x, y, and z) is

represented by an arrow-shaped

handle of different colors. Drag on

individual handles to slide the

object among one dimension, or

drag the squares in the pivot of the

object to move them along a plane.

W

Rotate tool

Each dimension (x, y, and z) is

represented by a round-shaped

handle of different colors. Drag on

individual handles to rotate the

object along the respective plane.

E

11

Scale tool

Each dimension (x, y, and z) is

represented by a handle of a

different color. Drag on individual

handles to scale the object along

the respective dimension.

R

Rect tool

The object is represented by a

rectangle shape. Drag the vertices

or edges to resize and reposition

the object at the same time.

T

Transform

tool

This tool is a combination of

moving, rotating, and scaling tools.

Y

Edit

bounding

volume

The collider of the object is

represented by one of Unity’s basic

shapes. Drag the drops to scale

and move the object’s collider at

the same time.

Another feature of the scene view is the toolbar, which offers various other tools,

as shown in the Table3.

Table 3. Miscellaneous tools

Tool name Illustration Interaction

Pivot

Choose how to pivot objects.

Global/local

rotation

Pivot objects locally or globally.

Grid visibility

Toggle the visibility of the grid.

12

Snap to grid

Toggle snapping to grid.

Snap increment

Choose how the object is

snapped into the 3D world.

Shading

Choose the shading mode,

2D/3D view

Toggle 2D/3D view mode

Sound

Toggle sound on/off

Sky box

Choose how skybox is

presented

Camera

Change various camera

settings

Gizmo

Toggle to show/hide gizmos

If the main camera is selected in the hierarchy view, a small representation of

what the camera is currently capturing is shown in a float box at the bottom right

of the screen by default (Figure 5).

Figure 5. Main camera view

2.1.3 Hierarchy view

The hierarchy in the figure below shows a tree of objects within the scene called

“BasicMultiplayerWithRelayClientTransform”. Everything listed in this hierarchy is

a GameObject (Figure 6). The order in which objects are listed will be used to

13

determine the render order when the game is built, meaning an object that is

higher in the hierarchy will be shown on closest to the player’s screen. However,

this order should only be used as a reference and not the main way to order

objects, as it can lead to some rendering problems.

Figure 6. Hierarchy window

Objects are shown in relation to each other. Some objects are nested in other

objects. In Unity, objects can be nested in multiple layers. When an object is

nested in another object, it is called a child of that parent object. Parenting

objects offer a more organized human view of the hierarchy. In addition, it also

introduces dependencies and relationships between different objects. The

children’s scale and position change in regards to their parents, while the reverse

does not hold true.

14

Here, objects can be created or spawned from the asset folder. However,

deleting or moving an object within the hierarchy view does not modify it in the

game’s asset folder.

2.1.4 Game view

The game view (Figure 7) automatically shows up when the user presses the

Play button to test the game. It shows what is actually seen in the final product of

the game, in contrast to the free view and edits offered by the scene view.

Figure 7. Game view

This view offers a drop-down menu (Figure 8) that shows how the game is shown

in various screen sizes or the user’s custom screen size. This increases the

speed of testing for UI responsiveness on multiple devices or platforms.

Figure 8. Screen Aspects dropdown menu

15

2.1.5 Project explorer

The project explorer screen holds the view of every file within the scope of a

Unity project. It displays everything in a tree structure, similar to how files are

organized on the hard drive. To navigate this interface, the user can click on the

hierarchy on the left side and choose the objects on the right side of the interface.

Files can be moved, renamed, or deleted in the right-click drop-down menu.

Figure 9. Unity's file explorer

This interface offers more features than the regular Windows file explorer. For

example, dragging a GameObject from the hierarchy interface onto the project

explorer will automatically create a prefab of that object. And dragging a prefab of

an object onto the scene view will instantiate an instance of that prefab. It also

has an expanding view for more complex file types like “.fbx” files. Figure 10

shows how the file “Jump–InAir.anim.fbx” is shown in the editor.

Figure 10. FBX file as shown in Unity's file explorer

2.1.6 Inspector

One of the most important interfaces in Unity is the Inspector view. The inspector

window (Figure 11) helps users view and edit properties and settings for almost

everything in the Unity Editor, including GameObjects, Unity components, assets,

materials, and in-editor settings and preferences.

Each section of the Inspector interface stands for an individual Unity Game

component, which can be ready out of the box or represent a class that the user

has input into. With the game inspector, developers can add C# classes to an

existing GameObject.

16

Figure 11. Unity Inspector

These components can be modified in the inspector outside and inside of a

game’s runtime. Game developers can add or remove components and view or

edit their values in real time using the interface. Procedural changes to the game

made from code automatically reflect themselves in the inspector view. For

example, a moving GameObject’s transform component will have its position

values of x, y, and z modified every frame during game play.

Users can modify the class of the component by adding or removing custom

values, as shown in Table 4.

Table 4. C# scripts in correspondence with the Inspector

Code Inspector view

public class

PlayerControlAuthorative :

NetworkBehaviour

[SerializeField]

17

 private float walkSpeed = 3.5f;

[SerializeField]

 private Vector2

defaultInitialPositionOnPlane =

new Vector2(-4, 4);

It is a good practice in companies that game developers create and expose these

fields to the Unity editor so that game designers can modify them in real time,

saving testing time and progressing towards the final results as soon as possible.

2.1.7 Build settings

The “Build Settings” screen (Figure 12) takes into account the final phase of

game development, which is building the game and targeting different platforms.

A scene from the game must be listed in the “Scenes in Build” list to appear in the

build.

18

Figure 12. Build settings screen

From here, users can access the Project Settings menu (Figure 13) through the

button “Player Settings...”. It is a configuration interface for everything in the

game, from game Icon, to gameplay, to services offered by Unity

19

Figure 13. Project settings screen

2.2 Unity mechanics

The Unity Engine is component-based, meaning everything can be expressed

through the use of game components. C# classes can be assigned to a

GameObject, similar to components, granting them specified characteristics or

behaviors.

2.2.1 Components

Components are the base class for everything added to GameObjects. Users’

code never directly creates a Component. Instead, users write script code and

attach the script to a GameObject. A C# has to be inherited from the base class

MonoBehaviour to utilize other parts of Unity like appearing in the editor’s

Inpector screen, or being assigned to a GameObject (Figure 14).

Figure 14. A class called "ThirdPersonController"

An object can have multiple components attached to it, and a component can be

attached to many objects. For example, both the player’s character and the

enemy have the same components that support the running action. However, the

20

player’s character will also have a component that handles the player's input,

while the enemy might have an AI script attached to it. With this structure, Unity

heavily supports object-oriented programming.

Components are aware of other components in the same scene, meaning that

they can be easily referenced in code to create relationships between different

classes. GameObject.Transform is a special component that keeps the data that

all objects must have, namely their positions in the world space and a list of their

parents and children. It is created by default along with GameObjects, and cannot

be removed.

2.2.2 GameObjects

GameObjects are another indispensable building block of Unity games. While

these objects do not carry out any actions, they are necessary as carriers for the

components. They can be thought of as nouns and verbs. While all objects have

transform information, they do not have any shapes, meaning a default empty

GameObjects is simply unobservable in the world space. These objects are often

used only as containers for actionable scripts like Network Manager or a game

manager that takes care of miscellaneous things in the game.

In-game interactable objects, on the other hand, are what players see in the

game. The visual appearance of an object is made by adding a mesh renderer

component (for visual shaping) along with a collider and rigidbody component (for

physical interactions) to it (Figure 15). Unity provides different basic shapes like

cubes, spheres, or capsules ready-made for simple applications. In fact, the

capsule is one of the most commonly used shapes for a player character’s

physical representation in games.

21

Figure 15. A spherical GameObject

2.2.3 Assets

Unity is noun-based, meaning that the core of logic revolves around assets.

Assets can be anything that might be needed in the game. Unity supports the

creation and addition of many assets for game development. Some asset types

that can be mentioned are: materials, physics materials, animations and

animators, scripts, sounds, and prefabs. Even scenes are considered assets.

These assets can be utilized through the engine-supported tools, e.g., the Audio

Mixer for sounds and the mesh renderer for material.

Every file in Unity is tracked using a metafile of the same name. Any modification

of assets in a Unity project will result in a reload of the assets and a modification

of the meta files. Unity can detect file modifications that are made outside of the

engine; however, it is not made to handle Git smoothly, as changing a position

slightly will introduce conflicts in many places within the game in a non-human

language.

Assets also contain items that are downloaded from the Unity Asset Store or the

Package Manager. Usually they have a default parent folder called “Packages”

and kept track in a metadata file called “manifest.json”

2.2.4 Prefab

Unity has a special asset type named "prefabs." Prefabs are like classes for

GameObjects; they contain information regarding all components and value

22

settings in an object. Furthermore, when the prefab is modified, all objects that

are instantiated from it will update accordingly. This is a key process for

increasing the speed and reusability of projects.

Prefabs can be used to handle complicated objects, saving time every time that

object is reused. In addition, prefabs are also utilized for generating multiple

objects of the same type using scripts. On the scale of thousands of repeating

GameObjects, developers have to use prefabs instead of dragging and dropping

by hand.

Prefabs will appear in the hierarchy view in blue text as shown in Figure 16. They

have their own editor view in the scene view and have the same inspector view

as every other game object.

Figure 16. A Prefab in the Hierarchy

2.2.5 Scenes

Scenes are a premade settings in which the game will be played in. A scene can

be a main menu UI scene, or a level that players spawn in. The scene holds the

information of every GameObjects initiated in it through metadata files. Scene

may be edited one at a time in the Unity editor. To instantiate objects, the

developer either drags the prefabs onto the scene or generates them using code.

Scenes can include the environment, decoration, pre-spawned player characters,

and script-carrying objects. By default, all GameObjects in the scene are

destroyed when another scene is loaded, unless specified otherwise.

23

2.2.6 Scripting

Scripts in Unity are written with components in mind. To be assigned to an object,

the script has to be inherited from MonoBehavior. Developers have to take into

account the engine’s cycle to utilize the functions provided by Unity. For example,

the Start function will be called only once after the carrier object is instantiated,

while the Update function will run every visual frame of the game. Both functions

are automatically generated by Unity at the start of every script. The below script

generates a private integer ii, sets it to be -100 when this script’s GameObject is

initialized, and adds 1 to i every frame of the game.

Figure 17. Unity execution cycles demonstration

The simple program shown in Figure 17 plans that, after 60 frame (roughly 2

seconds in a 30fps game), the variable ”i” holds the value of 40. By default, Unity

gives 2 comments to help users who are new to the program.

24

2.3 Asset store and Package manager

The asset store is a key part and needs to be utilized by smaller teams to create

games in Unity. Launched in November 2010, the Unity Asset Store is an online

marketplace where Unity users and other developers or artists can buy and sell

project assets. With over 40,000 asset packages in a variety of categories and

prices ranging from free to over $1000, the Asset Store provides a potential

opportunity to save money on game development. The publisher of an asset

receives a 70 percent cut of the asset's set price in the store, while Unity retains

30 percent of each sale. In addition to free tutorials, sample projects, and

standard assets, Unity Technologies also offers free tutorials, sample projects,

and standard assets.

From the asset store, developers can purchase artwork and sound sets that are

custom-made for games. There are also plugins or more Unity windows to

increase ease of use. Many Unity-made components that are not included in the

engine build because they are not commercially stable yet can be found and

downloaded here.

The third-person starter pack is an example of Unity’s assets. It is a ready-made

project that can be run right after downloading, giving developers a framework to

kickstart a third-person game or act as research material for best practices in

Unity. This project will utilize said asset for its map.

3 NETCODE

Netcode for GameObjects (Netcode) is a high-level networking library for Unity

that allows developers to abstract network logic. It allows you to send

GameObjects and world data to multiple players simultaneously over a

networking session. With Netcode, developers can concentrate on building their

games rather than on low-level networking protocols and frameworks.

25

3.1 Network

3.1.1 NetworkObject

NetworkObject is the component that enables the most important features of

Netcode like RPCs, NetworkVariables, and the object spawning system. It

essentially is an ID that is assigned to a GameObject to make it awared by the

whole network (clients, servers, hosts).

For example, a game world usually has the ground, that is the same across all

clients, and does not need customized interaction among different players. This

ground object can be stored locally and does not need to be recognized over the

network. On the other hand, a player character needs to be spawned on all

clients when he joins the game, and when it is moved by the owner, that

movement has to be reflected on other machines as well. In this case, when that

player object is spawned, it will be assigned an NetworkObjectID of, for example,

1. After said assignment, the server or host can tell the clients to spawn the

object with the ID of 1, and move it to the position of (0,1,3) and the request is

understood accordingly.

Not only does NetworkObject hold the ID of its parent object, it also stores certain

values that are necessary in a multiplayer game. A NetworkObject always has a

value for an owner – the machine that is authorized to manipulate it. By default,

this owner is set to server or host, depending on the structure of the network.

Only the owner of the object can spawn it or change its ownership status of the

object itself.

In Netcode, there is a special NetworkObject which is the PlayerObject. It is

unique to each client and clients cannot have more than one player object. When

set up, Netcode will automatically spawn the player object for each player when

they join the game. In most action games, players control a single character that

can move or shoot, the logic of which can be effortlessly implemented using this

feature.

NetworkObject also holds some configuration information like transform

synchronization, which decides whether that object needs to be considered as

something that moves in the scene, or a purely logical object (which many

26

GameObjects are). Another choice is to whether keep that object when changing

scenes on the clients or not.

As explained above, NetworkObject is the core of the Netcode system, and it is

made with the Unity’s code flow in mind. To spawn a NetworkObject in the game,

the following code is used:

GetComponent<NetworkObject>().Spawn();

3.1.2 NetworkBehaviour

Requires NetworkObject on the same GO, or parent, auto add. Derives from

MonoBehaviour.OnNetworkSpawn

NetworkBehaviour component, as suggested from the name, is a network-aware

replacement for MonoBehaviour. It is in fact derived from the class

MonoBehaviour and behaves like its parent class. NetworkBehaviour requires a

NetworkObject component on the same GameObject as itself, or on a parenting

GameObject. The reason for this requirement is that Netcode needs to identify

the GameObject that is making the request, as explained from chapter 3.1.1. If

the assigned object does not have a NetworkObject component ready, Netcode

automatically adds one.

NetworkBehaviour enables the usage of NetworkVariables and RPCs, which are

the network versions of common C# variables and functions. NetworkBehaviour

acts like a common MonoBehaviour class with network features added. It adds

custom logic to the GameObject, much like offline game scripting. However, there

are network specific differences that the user has to be aware of. For example,

other than the common Start() function that is common between MonoBehaviour

and NetworkBehaviour, the network version also has a method called

OnNetworkSpawn() that is called before or after Start(), depending on whether

the object was created dynamically or placed in the scene before game start. The

interaction is well explained on Unity’s Netcode documents, about when to use

which version of these slightly different functions.

27

Figure 18. Netcode "IsSpawned" usage

The field IsSpawned is also a network-aware version of IsActive, which is

implemented in the Update loot demonstrated in Figure 18. In the mentioned

code, the local object will check if it is spawned over the network, then return

specific codes.

3.1.3 NetworkVariables

Much like common variables in C#, NetworkVariable are nouns that are used in

scripting logics. To make the distinction between the two mentioned nouns, the

following example can be referred to. A door in the game can have two states,

either opened or closed, which can be stored in a Boolean variable named

IsOpen with the value of either true or false. If said variable is changed, the door

state is also reflected in the game scene. However, the other clients in the

network also need to be aware of the variable in the original player’s computer.

To make that happen, the developer can write custom logic to broadcast to the

network everytime IsOpen is changed, or make use of Netcode’s

NetworkVariable. NetworkVariable is automatically handled by the Netcode

backend system. Utilizing this feature speeds up the development process and

improve the code’s readability. NetworkVariables can be customized to work the

same way any common variable does, while also being aware of network

permissions and other important information.

28

3.2 Remote Procedure Calls

Remote Procedure Calls, or RPC, are the main way for developers to send

custom messages over the network. It is the Netcode-awared version of

functions. RPCs can either be called from clients or the server. To utilize RPCs,

developers have to follow a naming requirement of adding the tag [ClientRpc] (or

[ServerRpc]) before a function, and putting ClientRpc (or ServerRpc) suffix in that

function’s name. RPCs have parameters much like common C# functions.

Figure 19. Client RPCs

Figure 20. Server RPCs

Figures 19 and 20 shows the process of client and server RPCs. ClientRPCs are

called by the server and executed on the client,and the vice versa is applied to

ServerRPCs.

29

3.3 Components

Well embedded in Unity, Netcode adds to the natural workflow of Unity

developers by providing ready-to-use components that can be used to replace

their traditional counterparts to add network related logic to the game. Some

noticeable components are NetworkManager, NetworkTransform and

NetworkAnimator.

3.3.1 NetworkManager

NetworkManager is the core component of Netcode. It handles network logics in

games similar to a GameManager object in offline matters.

NetworkManager comes with a readily available connection system that

developer can test right out of the box. It provides three options for roles that a

machine in the network can take (depending on Netcode’s network topology). A

computer can assume the role of a server that runs game logic or other

machines, a client that listens to said server, or a host that is both a server and a

client. The three connecting functions are also conveniently placed in the

Inspector view of this component.

NetworkManager requires a Transport or Unity Transport component, that

handles the connecting details like IP and Port. It is a primitive way of handling

connection however, and such tasks should be delegated to Relay which is

mentioned in chapter 3.4.

To disconnect from the network, the following code can be used:

public void Disconnect()

{

 NetworkManager.Singleton.Shutdown();

 // At this point we must use the UnityEngine's SceneManager to

switch back to the MainMenu

 UnityEngine.SceneManagement.SceneManager.LoadScene("MainMenu");

}

The NetworkManager class also have a wide range of crucial network

configurations and data that is explained in Table 5.

30

Table 5. Important NetworkManager fields

Field name Description

Log level Detail level of debug information

PlayerPrefab A special prefab that is unique to each player. Auto

matically spawned and assigned when a client

connects to the game

NetworkPrefab A list of all prefabs that need to be network-aware in

the game

Protocol Version Made for matching build versions so as not to

create conflicts over the network

Network Transport A set of configurations for the transport method

Tick Rate Number of times the network updates per second

(like frame rate)

Connection Approval Used along with

NetworkManager.ConnectionApprovalCallback.

Helps implementing custom connection logic.

Load Scene Time

Out

The amount of time the NetworkSceneManager

wait before considering the loading a failed

connection.

3.3.2 NetworkTransform

NetworkTransform, as suggested from the name, is a network-aware version of

the component Transform. It handles all of the positioning logic of an online

object automatically when put on an object (that already has a NetworkObject

component attached to it). The high-level logic of this feature includes:

- Being aware of the local object’s position.
- Serializing that position object to optimize bandwidth.
- Broadcasting the serialized position over the network (usually through the

help of the server).
- Deserialize the position object locally on other machines.
- Other machines apply the new value to their local GameObjects.

Other than these steps, it also must take care of the details:

- The owner/authority of the position change (whether it is a client or a
server).

- Tick rate/Interpolation: The trade off between smoothness and accuracy.

31

- Quaternion or Euler rotation: Euler is more efficient in terms of data load,
while Quaternion gives more flexibility to the rotation.

- Which information need to be sent over the network: In most first-person
shooter games, the character does not turn sideways. Therefore, the
rotation on the horizontal axis can be left out for optimization.

3.3.3 NetworkAnimator

NetworkAnimator is the network version of Unity’s Animator. It handles animation

related information over the network, including date like animation states,

transitions, and properties. Naturally due to the way animation states are

synchronized, if a player joins the game in the middle of an animation, they will

not receive that animation on their machine. This is because animator use a

trigger property to mark the start of an animation. Animations are stored locally

on each machine, and only the trigger and variables are sent over the network to

ensure the optimized usage of bandwidth.

There are two modes for the NetworkAnimator, each with its own advantages and

drawbacks: Server Authoritative (default mode), and Client Authoritative. These

modes decide the machine that has the authority to initiate a state change.

The Server Authoritative mode reduces the synchronization latency between all

client animations and ensures that players see what other players are doing in

roughly the same time. However, because the input from the client must be sent

as a request to the server before coming back to the screen of the user, it causes

a delay for the owner of the action itself, hurting the gaming experience of

players.

The Owner Authoritative mode fixes the above problem by showing the animation

on the user’s screen first, then broadcasting to the network. However, this also

means that players will see the Owner’s animation after a full round trip time. This

might cause unfair situations like a player feels like they have hit another player

with a bullet, while in fact they are a few frames behind.

3.4 Relay

To connect two machines over different networks (over the Internet) Unity provide

a service outside of Netcode named Relay. Relay is a third party server on the

Internet with a public-facing IP that both computers can reach. Instead of

32

connecting directly using IP and port information, the clients send game data over

the Relay server.

Like a common online game experience, Relay provide online “lobbies” that

players can create and join. To enable Relay in a project, the developer needs to

install its SDK, and enable it in their Unity Dashboard. The “lobbies” are created

using such code:

//Ask Unity Services to allocate a Relay server that will handle up

to eight players: seven peers and the host.

Allocation allocation = await

Unity.Services.Relay.RelayService.Instance.CreateAllocationAsync(7);

Here, Allocation is a class that holds all the needed information to create such

lobby. Developers can specify the capacity of the lobby by changing the

parameter of the function CreateAllocationAsync().

It is worth noting that Relay is not a part of Netcode but belongs to Unity’s gaming

service which acts like a game publishing platform. It has a price model which

starts with free usage, and scales up in price according to the number of players

using the game.

4 GAME PROTOTYPE

Prototyping is a common video game development technique which aims to test

out a game’s vision – with minimal time and effort invested (UXPIN 2023). Game

prototypes are a minimal version of the game, focusing on a rather narrow scope

that aims to gauge certain metrics of said game. Key areas can include execution

feasibility, player interest, procedure effectiveness, etc.

Prototypes can be made in form of physical assets like paper or figures, or they

can be made in wireframe to demonstrate the implementation of UI/UX. In this

research, the auther utilizes a method called ”Greybox prototyping”, meaning

creating the game in Unity in while stripping it of visual elements as well as other

uninteresting parts. The prototype will focus on exploring the networking side of

the game and only have minimal visualization and gameplay mechanics.

33

4.1 Pillars of Tagteam

A game’s core pillars are a set of parameters that the game team set out at the

start of the development process and follow through as there can be various

questions that emerge during the developement process where they need a

reference for decision making.

Core pillars help the development team understand the overall picture of the

game, ensuring a smoother development process. Core pillars empowers the

team to make more informed design decisions. They act as guidelines to help

make the game team’s life easier. (Max 2017.)

In this thesis, a game’s core pillars will not only carry the meaning in the sense of

game design, but also in fulfilling the project’s goal and requirements. The main

purpose of the project is to demonstrate how a 3D multiplayer game can be made

in a short time period in order to test the gameplay and functions of the program,

accounting for the fast production cycle of modern game development.

With the knowledge above, Tagteam’s core pillars can be stated as bellow:

- Playability: Users can use features such as multiplayer input and output,
and interact with other players.

- Reusability: The components of the game are created in a way that can
be copied over to later versions or to other games. This can also come in a
form of a full creation process for other areas other than code.

4.2 Game Design

The game is played using the same controls as third-person shooter games.

WS keys: moving forwards and backwards

Space key: jump

AD keys: turn the character.

As understood from the name of the game, it involves players chasing each

other, if the chaser manages to touch the runner, the game ends in victory for the

chasing side. On the other hand, if the runners can survive for a long enough

time period (3 minutes), they win the game.

4.3 Implementation

The author planned to carry out the game in the span of 2 weeks. To make the

most out of the short development period, the author used Unity starter assets for

34

the base game, and built the game utilizing its models, pre-built map, and some

animations. Then, the author rewrote the game’s logic and updated Unity

components to transform it into a multiplayer game.

4.3.1 Starter Assets

Unity provides a starter asset for kickstarting prototyping projects that is totally

free. The asset pack has a prebuilt map with various objects and a prefab for the

player character with ready-made animations and meshes. This is a very good

starting point for any project. The starter asset can be found in Unity's online

asset store (Figure 21) by typing the name in the search bar.

Figure 21. Starter Assets store page

After purchasing and opening the asset in Unity, the next step is to immediately

load the asset. By going to

StarterAssets>ThirdPersonController>Scenes>Playground. Unity, the user can

see the ready-made playground and placed characters (Figure 22).

35

Figure 22.Starter Asset default view in Unity

The player can move around and jump off objects. However, this scene lacks

multiplayer content and features.

4.3.2 Netcode implementation

It is important to note that Netcode only supports later Unity versions. According

to Unity’s documentation, here are the requirements for Netcode:

• Unity 2020.3, 2021.1, 2021.2, and 2021.3 LTS

• Mono and IL2CPP Scripting Backends

Since Netcode is not yet an entry in Unity’s registry of packages in the Package

Manager in its 2020 versions, the user has to take some extra steps to install

Netcode.

1. Open Unity Hub and select the current project/New project.
2. Click Window then Package Manager.
3. For users of versions 2021.3+, the package has to be added by name

(Figure 23), accessed throught he plus sign in the Package Manager’s
status bar.

4. For Unity editor versions lower than 2020.3LTS, adding package by name
is not an option. In this case, users need to choose the option : “Add
package from git URL”.

5. Next the link of the package needs to be inserted in the pop-up window:
“com.unity.netcode.gameobjects”.

36

6. After the user clicking Add, the package appears as Netcode for
GameOjects in the Package Manager.

Figure 23. Adding package by name

4.3.3 NetworkManager

The NetworkManager component is required for every project using Netcode. A

good practice is to create an empty GameObject in a used scene and assign the

component to it.

From the dropdown bar of the Hierarchy window (opened by right-clicking

anywhere in the Hierarchy window), a new empty object can be created as the

first choice (Figure 24). That empty object should be called “NetworkManager” for

ease of object management (Figure 25).

Figure 24. Creating an empty GameObject

37

Figure 25. Renaming newly created GameObject to NetworkManager

The Network component details have been listed in Chapter 3.2.1. The most

noticeable thing is that it has 3 functions exposed to the user: StartHost,

StartServer, and StartClient in the bottom area as shown in Figure 26. These

functions can later be called within the game to initialize the game automatically.

• Server: the machine where the game is run on, server assumes all
authority unless specified otherwise.

• Client: clients are the machines that by default receive information from
the server and mirror on their own build.

• Host: A host is both a server and a client.

38

Figure 26. The three network options

4.3.4 Prefab

The Player prefab needs to be created and assigned to the NetworkManager field

called Player Prefab. It will then be generated automatically upon players joining

the game. The player prefab needs to at least have the NetworkObject and

NetworkTransform components (Figure 27).

39

Figure 27. Common components of a Player Prefab

4.3.5 UIManager

Although the start-game functions are exposed to the game developer, they are

unreachable for players, rendering them only functional for playtesting. To start a

lobby within the game, the player needs a UI button that calls those three

functions. A new UI canvas is created in the game along with some script to

connect it to the function (Figure 28).

Figure 28. Implementation of network options in the user interface

In the script, these buttons need to be referenced and listened to trigger the

function StartHost(), StartClient() and StartServer() (Figure 29).

Figure 29. Scripts to trigger Netcode's function

40

To define to Unity which button is connected to each function, the UI element has

to be dragged and dropped into the exposed field in the custom UI Manager

script (Figure 30)

. Fields that are marked as public or with the tag [SerializableField] are

automatically exposed in the Inspector window and are modifiable in-game.

Figure 30. Assigning buttons to the C# script variables

4.3.6 Player’s movement

To add player movement, there needs to be a script taking in the controls of

players and then send that information to the server to be broadcast to the

network. If the player object is going to be moved and rotated in one client, it’s

new position and rotation is sent as two 3D vectors over the server with the

function shown in Figure 31, while the object is not actually moved in the physics

engine.

Figure 31. A function to help with updating position and rotation

Then the client itself fetches that information back from the server and run it in

the same update frame (Figure 32). This means that according to Netcode’s

logic, the client is not allowed to move the object itself. It has to, however, send a

request to the server, where the physics is calculated, and authority is verified

before updating what the player sees. This procedure ensures not only

antihacking, but also the integrity of what all players see.

41

Normally in a multiplayer action games, fairness is of utmost importance for

players, which is why this method of networking is implemented. The

disadvantage of this process is that it depends enormously on the quality of

internet services. Lagged payloads will affect player’s experience directly,

causing the character to move too far, too short, or back in time in between

frames.

Figure 32. Receiving the information from server to move the object

Another implementation approach is having the server trust the client, where

players see exactly their own movement, but not neccessarily of other

players.This method, on the other hand, does not ensure smooth multiplayer

interactions.

Most advanced action multiplayer games address this by implementing a

prediction system where the server guesses before hands where the player will

move, bringing the best of both worlds: smooth control and fairness.

4.3.7 Player’s Animation

For this, the Prefab of the player needs to have the component NetworkAnimator

that is connected to the offline version of the Animator. To do that, the client has

to take the state of the online player in a similar fashion as the movement script.

Then it refers to the animator and sets the animation state to the right type. In the

script in Figure 33, it can be seen that the server-client communication system

will not send the whole animation information like the movement system. Only a

simple int is sent over the network to trigger a pre-loaded animation on the client-

side. This means that the client and server always have to be the same version to

function correctly.

42

Figure 33. Client-side animation script

5 CONCLUSION

This thesis project was aimed to explore the feasibility of a multiplayer project

with the assistance of the newly released Unity Netcode for GameObject.

Throughout the thesis, the game development tools and process used in the

project have been described.

Within 2 weeks of development, the game was able to be played online, with the

player’s ability to move in the game world, and seen by others players while

doing so. Twenty clients are able to connect in and out of the game easily without

crashes or lag (local networking might have played a major role). Players could

interact with each other with Unity’s physics engine.

However, the result of the project fell short of the set of expectation in chapter 4.1

where the game’s core pillars is discussed. The custom logic of dividing a

chasing and running side, and the winning condition along with common user

interface update could not fit in the scope. The base project is not entirely

reusable because many heavy networking logics are individual to the game itself.

The project scope was cut down as many unresolved bugs and technological

roadblocks emerge during the development.

The author believes this solution has potentials, being the officially supported and

commercially advertised networking solution of Unity. During the time the project

occurred, there was not much community support surrounding Netcode which

was bound to grow. Considering that the project was powered by one person, a

43

small development team has good possibility of finishing said project (with

previous knowledge of Netcode and a refined working process.

REFERENCES

 [1] Tom, W. 2021. The Games Market and Beyond in 2021: The Year in
Numbers. Web page. Available at: https://newzoo.com/insights/articles/the-
games-market-in-2021-the-year-in-numbers-esports-cloud-gaming/ [Accessed 25
May 2023].

[2] Facebook. 2021. Games Marketing Insights for 2021. Pdf report. Available at:
https://www.facebook.com/fbgaminghome/marketers/find-new-
players/advertising-hub/gaming-marketing-insights-2021 [Accessed 25 May
2023].

[3] Eric, C.P. 2019. How Unity built the world’s most popular game engine.
Available at: https://techcrunch.com/2019/10/17/how-unity-built-the-worlds-most-
popular-game-
engine/#:~:text=Unity%20was%20founded%20in%20Copenhagen,based%20ga
me%20developers%20like%20himself [Accessed 25 May 2023].

[4]Romain, D. 2018. Unity CEO says half of all games are built on Unity. Website.
https://techcrunch.com/2018/09/05/unity-ceo-says-half-of-all-games-are-built-on-
unity/ [Accessed 25 May 2023].

[5]Clayton, M.C, Micheal, E.R & Rory, M. 2015. What Is Disruptive Innovation?
Website. Available at: https://hbr.org/2015/12/what-is-disruptive-innovation
[Accessed 25 May 2023].

[6]UXPIN. n.d. Video Game Prototyping – How To Do It and Why You Should!
Available at: https://www.uxpin.com/studio/blog/why-and-how-to-use-video-game-
prototyping/ [Accessed 25 May 2023].

[7]Max, P. 2017. Design Pillars – The Core of Your Game. Available at:
http://www.maxpears.com/2017/09/02/design-pillars-the-core-of-your-game/
[Accessed 25 May 2023].

https://newzoo.com/insights/articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming/
https://newzoo.com/insights/articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming/
https://www.facebook.com/fbgaminghome/marketers/find-new-players/advertising-hub/gaming-marketing-insights-2021
https://www.facebook.com/fbgaminghome/marketers/find-new-players/advertising-hub/gaming-marketing-insights-2021
https://techcrunch.com/2019/10/17/how-unity-built-the-worlds-most-popular-game-engine/#:~:text=Unity%20was%20founded%20in%20Copenhagen,based%20game%20developers%20like%20himself
https://techcrunch.com/2019/10/17/how-unity-built-the-worlds-most-popular-game-engine/#:~:text=Unity%20was%20founded%20in%20Copenhagen,based%20game%20developers%20like%20himself
https://techcrunch.com/2019/10/17/how-unity-built-the-worlds-most-popular-game-engine/#:~:text=Unity%20was%20founded%20in%20Copenhagen,based%20game%20developers%20like%20himself
https://techcrunch.com/2019/10/17/how-unity-built-the-worlds-most-popular-game-engine/#:~:text=Unity%20was%20founded%20in%20Copenhagen,based%20game%20developers%20like%20himself
https://techcrunch.com/2018/09/05/unity-ceo-says-half-of-all-games-are-built-on-unity/
https://techcrunch.com/2018/09/05/unity-ceo-says-half-of-all-games-are-built-on-unity/
https://hbr.org/2015/12/what-is-disruptive-innovation
https://www.uxpin.com/studio/blog/why-and-how-to-use-video-game-prototyping/
https://www.uxpin.com/studio/blog/why-and-how-to-use-video-game-prototyping/
http://www.maxpears.com/2017/09/02/design-pillars-the-core-of-your-game/

	1 INTRODUCTION
	2 UNITY
	2.1.1 Unity Editor
	2.1.2 Scene view
	2.1.3 Hierarchy view
	2.1.4 Game view
	2.1.5 Project explorer
	2.1.6 Inspector
	2.1.7 Build settings
	2.2 Unity mechanics
	2.2.1 Components
	2.2.2 GameObjects
	2.2.3 Assets
	2.2.4 Prefab
	2.2.5 Scenes
	2.2.6 Scripting

	2.3 Asset store and Package manager

	3 NETCODE
	3.1 Network
	3.1.1 NetworkObject
	3.1.2 NetworkBehaviour
	3.1.3 NetworkVariables

	3.2 Remote Procedure Calls
	3.3 Components
	3.3.1 NetworkManager
	3.3.2 NetworkTransform
	3.3.3 NetworkAnimator

	3.4 Relay

	4 Game Prototype
	4.1 Pillars of Tagteam
	4.2 Game Design
	4.3 Implementation
	4.3.1 Starter Assets
	4.3.2 Netcode implementation
	4.3.3 NetworkManager
	4.3.4 Prefab
	4.3.5 UIManager
	4.3.6 Player’s movement
	4.3.7 Player’s Animation

	5 Conclusion
	REFERENCES

