

Data Science Techniques Used in Process Mining

for Removing Noise

Kalle Heinonen

Master’s Thesis

Master of Engineering - Big Data Analytics

2023

2

MASTER’S THESIS

Arcada

Degree Programme: Master of Engineering - Big Data Analytics

Identification number: 9206

Author: Kalle Heinonen

Title: Data Science Techniques Used in Process Mining for

Removing Noise

Supervisor (Arcada): Leonardo Espinosa-Leal

Commissioned by:

Abstract:

Process mining supports organisations to understand and improve existing processes by

extracting event log data from IT systems and visualising it. This study explores the main

challenges associated with event log data processing. One of the most significant chal-

lenges is the presence of noise activities, which are infrequent and do not accurately repre-

sent the typical behaviour of the process. A process model, known as a Petri net, is gener-

ated using process mining techniques to enable business stakeholders to analyse and verify

processes. In this thesis, the methods that are effective at handling noise in event log data

are investigated. An experiment was conducted using two real-life event logs to evaluate

which algorithm is best suited to handle noisy data. Two Petri nets were generated using

Integer Linear Programming (ILP) and Inductive Miner algorithms. Generalisation and

complexity were compared in addition to quality metrics such as F-score. The results indi-

cate that the Inductive Miner algorithm generates a Petri net with a good F-score and suit-

able complexity metrics. When dealing with a more complex event log with a higher num-

ber of events and more noise, the ILP Miner produced a slightly better F-score by replicat-

ing more transitions in the model. The algorithms perform well for use cases where precise

results are not essential. However, in industries such as medicine or fraud detection, where

accuracy is critical, it is recommended that the excluded traces are checked by an expert to

ensure that vital information is not omitted in a discovered model.

Keywords: discovery algorithms, inductive miner, integer linear

programming miner, noise reduction, petri net, process

mining, process modelling

Number of pages: 33

Language: English

Date of acceptance: 18.05.2023

3

CONTENTS

1 Introduction .. 6

1.1 Background ... 6

1.2 Research aim .. 7

2 Literature review .. 8

2.1 Process mining and data science overview .. 8

2.2 Process modelling ... 9

2.3 Petri net ... 12

2.4 α-algorithm... 14

2.5 Main challenges ... 17

2.6 Quality of event log .. 18

2.6.1 Noise.. 18

2.6.2 Incompleteness ... 20

2.7 Quality of discovered model .. 21

2.8 Discovery algorithms for coping with noise ... 22

3. Research methodology ... 25

3.1 Research datasets... 25

3.2 Proposed method .. 26

3.3 Results ... 28

3.4 Limitations ... 31

4. Conclusions ... 32

4.1 Discussion ... 32

4.2 Future research ... 33

References .. 34

4

Figures

Figure 1. Process flow .. 10

Figure 2. Conformance checking ... 11

Figure 3. Process enhancement .. 11

Figure 4. Types of blocks ... 12

Figure 5. Process model discovered by α-algorithm based on set of traces 13

Figure 6. Typical process patterns and footprints in event log 16

Figure 7. Footprint of L1: a # L a, a → L1 b, a → L1 c, etc. .. 17

Figure 8. Filter for selecting end event threshold ... 27

Figure 9. Experiment setup for real-life logs .. 27

Figure 10. Petri net generated by ILP Miner algorithm of BPI 2012 event log 28

Figure 11. Petri net generated by ILP Miner algorithm of BPI 2014 event log 29

Figure 12. Petri net generated by Inductive Miner algorithm of BPI 2012 event log 29

Figure 13. Petri net generated by Inductive Miner algorithm of BPI 2014 event log 30

Tables

Table 1. Example of event log data .. 13

Table 2. Characteristics of selected event logs ... 25

Table 3. F-score and complexity metrics.. 30

5

Abbreviations

IT Information technology

BPMN Business Process Modelling Notation

ID Identification

WF Workflow

CFC Control-flow complexity

ACD Average connector degree

CNC Coefficient of Network connectivity

APD Automated Process Discovery

ILP Integer Linear Programming Miner

IEEE Institute of Electrical and Electronic Engineers

BPI Business Process Intelligence

6

1 INTRODUCTION

1.1 Background

With the current market challenges of component shortages, rising labour and material

costs, and logistics disruptions, companies are seeking ways to enhance the efficiency of

their processes (Espinosa-Leal et al., 2020). One of the key obstacles in achieving this is

gaining a clear understanding of the current state of business processes. This is where

process mining comes in, helping organisations to create a digital representation of their

processes. With this information, data-driven root-cause analyses can be performed to

identify inefficiencies.

Process mining is a set of techniques that aim to discover, monitor, and improve real-

world processes by extracting event log data from IT systems. By understanding current

processes, organisations can identify areas for improvement, detect variations, and inves-

tigate root causes. In the past, processes were analysed by manual means, such as inter-

views with employees. Such an approach has been missing a link between company pro-

cesses and IT systems. This gap has been filled by process mining which links data to

operational processes and uses a set of data mining techniques to visualise and analyse

company processes. (van der Aalst, 2016)

Process mining techniques are built on classical data mining techniques which link pro-

cesses to the data science field. Data mining is defined as “the analyses of (often large)

datasets to find unsuspected relationships and to summarise the data in novel ways that

are both understandable and useful to the data owner” (Hand et al., 2001). In this study,

process mining techniques such as Petri net and α-algorithm are covered (van der Aalst,

2016). These techniques are used to get a better understanding of the process perfor-

mance.

Process mining and data mining techniques have been studied for many years by various

researchers. One of the most experienced researchers in this area is Wil van der Aalst, a

7

Dutch computer scientist. He has been contributing to the area of process mining with his

publications (van der Aalst, 2016), (van der Aalst et al., 2004), (van der Aalst et al., 2011),

(Leemans et al., 2013), (Günther & van der Aalst, 2007), (Adriansyah et al., 2012) and

(Rozinat & van der Aalst, 2008). Currently, he is acting as Chief Scientist at Celonis

company bringing practical applications of process mining into businesses. This study

follows the ideas presented in the studies of process mining “Process Mining: Data Sci-

ence in Action” (van der Aalst, 2016) and “Process Mining in Action: Principles, Use

Cases and Outlook” (Reinkemeyer, 2020). The research will be complemented by data

mining literature to cover data mining techniques in detail.

1.2 Research aim

Incorporating process mining in business poses several data-related obstacles. Overcom-

ing these challenges is crucial for leveraging process mining generated models to enhance

processes. (van der Aalst et al. 2009) The research aims to examine the challenges asso-

ciated with data quality in process mining and explore potential solutions.

The study will focus on two main research questions:

• What are the primary challenges related to data quality in process mining?

• What kind of techniques exists in process mining for removing noise?

First, the study will cover the literature on process mining and the main challenges related

to quality in process mining will be identified. Then one of the challenges will be selected

for in-depth research. In the final part of this thesis, a comparison of two existing noise

filtering algorithms will be made using ProM software. A conclusion will be drawn on

which is the most suitable algorithm to tackle the noise.

8

2 LITERATURE REVIEW

2.1 Process mining and data science overview

Process mining is a discipline that acts as the bridge between data science and process

science. The goal of process mining is to discover, monitor and improve real processes

by extracting data from event logs available from IT systems (van der Aalst, 2016). These

insights are used to identify process improvements, check compliance, compare process

variants, and discover inefficiencies such as rework and bottlenecks.

Data science is “a set of fundamental principles that support and guide the principled

extraction of information and knowledge from data” (Provost & Fawcett, 2013). One of

the concepts that is closely related to data science is data mining. Data mining can be

defined as “the analysis of (often large) datasets to find unsuspected relationships and to

summarise the data in novel ways that are both understandable and useful to the data

owner” (Hand et al., 2001).

One of the areas of data science is machine learning. Machine learning focuses on the

question of how to build programs that automatically improve with experience. Machine

learning refers to “algorithms that give computers the capability to learn without being

explicitly programmed (learning from experience)” (Samuel, 1959). Process mining adds

process perspective to data science, as data mining and machine learning techniques do

not consider end-to-end process view.

Process science refers to the broader discipline that combines knowledge from infor-

mation technology and management sciences to improve and run operational processes.

One of the key concepts in process science is business process management, the discipline

combining design execution, control, and measurement of business processes (van der

Aalst, 2016). Process mining complements process science with a data-driven approach.

Process science focuses on process models, whereas process mining focuses on the in-

sights that can be achieved from event data. Process science is emphasising process

9

models such as Petri nets and Business Process Model and Notation (BPMN). Petri nets

and BPMN are both graphical notations used to model business processes, workflows,

and other types of systems (van der Aalst, 2016). BPMN is a standard notation used to

represent business processes and workflows in a clear and standardised way. It uses a set

of symbols and shapes to represent different types of activities, events, and flow elements,

as well as swimlanes to group activities by roles or departments (Acosta-Velásquez et al.,

2022).

Alternatively, Petri nets are a mathematical modelling language used to describe and an-

alyse systems with concurrency, synchronisation, and other complex behaviours. Petri

nets use a set of nodes and arcs. (van der Aalst, 2016)

2.2 Process modelling

To explain how process mining supports business process management, the phases in-

volved in the business process management cycle are covered in the research. Process

mining supports a business process management life cycle consisting of the following

phases. (Wil et al., 2003)

• Vision: The vision is created based on the changes an organisation would like to

implement.

• Diagnosis: An analysis of the selected processes is carried out to obtain an under-

standing of the current performance. The performance is evaluated based on key

performance indicators such as throughput time and customer satisfaction.

• Process redesign: KPIs are set for the selected scope of the redesign targets. The

requirements and the necessary supporting technology and information systems

are defined.

• System design and construction: Because of redesign, an outline of the technol-

ogy components and their interaction process is created. The architecture of the

process is developed at this phase.

10

• Transfer and implementation: The newly redesigned process is handed over to

the organisation. The changes to the process (including roles, processes, and sys-

tem functionality) are communicated to the organisation.

• Evaluation: The continuous phase of monitoring starts for the developed process.

Process mining uses event logs to conduct three types of analyses (van der Aalst, 2016).

The first type is called process discovery. Process mining takes an event log and produces

a model. The result of the process discovery is a process flow illustrated in Figure 1. The

process flow points out the inefficiencies in the process. It is also used as the basis for all

process mining analyses including conformance checking.

Figure 1. Process flow (Celonis, 2023)

The second type of process mining analyses is conformance checking where a process

model produced in the process discovery phase is compared with the model from an event

log. Conformance checking allows the detection of deviations and the measurement of

their impact on the process performance. Figure 2 illustrates the results of conformance

checking.

11

Figure 2. Conformance checking (Celonis, 2023)

The third type of process mining analyses is called process enhancement. The main pur-

pose of this step is to improve the existing process model using the information obtained

from process mining discovery and conformance checking. For example, in Figure 3 the

automation rate of the process is present, and the most frequent manual activities are dis-

played. One of possible the actions is to review the reasons for manual changes and au-

tomate the manual activities.

Figure 3. Process enhancement (Celonis, 2023)

12

2.3 Petri net

Process mining uses event log data to automatically discover a process model. A process

model is expressed in terms of a Petri net. Petri nets are the oldest and best-investigated

process modelling language allowing the modelling of concurrency (van der Aalst, 2016).

A Petri net consists of places, transitions, and a flow relation between them. Places act as

used reached milestones and transitions as individual tasks. Places are shown as circles

and transitions are shown as rectangles. The arc describes the relationship between dif-

ferent activities. The state of a Petri net is determined by the distribution of tokens within

the network and referred to as marking. The network structure is governed by a firing

rule. A transition is enabled to fire if its input places are marked, and thus tokens can flow

through the network (van Hee & Reijers, 2000). The process constructions are called

blocks which are presented in Figure 4.

Figure 4. Types of blocks (van Hee & Reijers, 2000)

The first block represents the process where two tasks are in sequential order. The second

task can be only completed when the first task is carried out. The second block represents

a process where either of the activities is carried out. The third block illustrates that the

two tasks can be executed simultaneously. In the last block, there is a repetition of a task.

13

Figure 5 is an example of a process model that is discovered by the α-algorithm with

several traces {(a,b,d,e,h), (a,d,c,e,g), (a,c,d,e,f,b,d,e,g), (a,d,b,e,h),

(a,c,d,e,f,d,c,e,f,c,d,e,h), (a,c,d,e,g)}.

Figure 5. Process model discovered by α-algorithm based on set of traces (van der Aalst et al., 2004)

In process mining an event log data is used to construct a Petri net. The event log data

contains the event name, the timestamp when the event has happened, and the case ID to

which the event belongs. An example of event log data is presented in Table 1, where

Order 365 is a case ID, Order creation is an event name and 30-12-2021:11.02 is a time

stamp.

Order ID Activity Timestamp Country

365 Order creation 30-12-2021:11.02 Finland

365 Order shipped 15-03-2022:12.10 Finland

534 Order packed 15-12-2021:14.15 Germany

895 Order creation 10-02-2022:09.08 Germany

Table 1. Example of event log data

14

The event log data can be enriched with additional information. Additional event log data

may contain information such as resources, location, and monetary information. Depend-

ing on process mining techniques only part of the information will be used in analyses.

Process mining aims to generalise the behaviour contained in the event logs to show the

most likely underlying model. One of the challenges in process mining is to find a balance

between overfitting and underfitting models. An overfitting model is too specific showing

rare behaviours, and an underfitting model is illustrating too generic behaviours (van der

Aalst, 2016). Process mining can facilitate the construction of better models in less time.

Process discovery algorithms like the α-algorithm can automatically generate a process

model. The α-algorithm produces a Petri net. The α-algorithm is one of the possible pro-

cess discovery algorithms. To find a balance between overfitting and underfitting models,

more advanced algorithms are needed. The models also help to deal with quality-related

challenges such as incompleteness (e.g. logs containing only a small portion of possible

behaviours because of several alternative traces) and noise (containing rare behaviour that

should not be automatically taken in the model).

Workflow (WF) nets are a natural subclass of Petri nets used for modelling and analysing

operational processes. Workflow nets model the creation and the completion of the cases

flowing through the event log. Creation of the model is started by putting a token in a

unique start place and completed by reaching a unique sink plan or end of the process.

The Petri net presented in Figure 5 is a Workflow net. (van der Aalst, 2016)

2.4 α-algorithm

Process mining can facilitate the construction of better models in less time. Process dis-

covery algorithms like the α-algorithm can automatically generate a process model. The

α-algorithm produces a Petri net. The algorithm represents the generic idea used by many

process mining algorithms. α-algorithm starts with an empty Petri net and iteratively adds

transitions and places to the net based on a set of structural constraints. The algorithm

uses ordering relations between events in the event log to derive a process model. Next,

15

it constructs a footprint matrix and converts the footprint matrix into a Petri net. The

resulting Petri net is generally compact and may contain complex behaviour.

The α-algorithm has problems with noise, infrequent or incomplete behaviour, and com-

plex routing constructs (van der Aalst, 2016). The event log is assumed to be noise free

and complete when using an α-algorithm. The algorithm does not consider the frequency

or relation making it sensitive to noise. The idea of this algorithm has been used in devel-

oping more complex and robust techniques. Later, Alves de Medeiros et al. developed the

α+ algorithm, which can detect short loops (de Medeiros et al., 2004). Wen et al. proposed

additional extensions to the α-algorithm: the β-algorithm to detect concurrency and the

α++ algorithm uses non-local information in an event log to discover non-free choice

constructs (Wen et al., 2007).

Input for the α-algorithm is a simple event log L over A, i.e. L ∈ B(A∗). The event log is

referred to as L. A stands for activities in the event log. The capital letters, e.g. A and B

are sets of activities. Inside these are individual activities where no capitalisation is used,

e.g. a, b, c ∈ A. The output of the α-algorithm is a marked Petri net.

The α-algorithm identifies patterns within the event log, as illustrated in Figure 6. When

an activity a is followed by b but b is never followed by a, the algorithm infers a causal

relationship between a and b. As a result, the Petri net will contain a place that connects

a to b. Four relations capture patterns from an event log. (de Medeiros et al., 2004)

16

Figure 6. Typical process patterns and footprints in event log (van der Aalst, 2016)

Let L be an event log over A, i.e. L ∈ B (A ∗). Let a, b ∈ A.

• Directly follows relation: a >L b, a is directly followed by b if and only if there

is a trace σ = (t1,t2,t3,...,tn) and i ∈ {1,...,n − 1} such that σ ∈ L and ti = a and ti+1 =

b.

• Sequence relation: a →L b if and only if a >L b and b ≯L a.

• Non-direct relation: a #Lb if and only if a ≯L b and b ≯L a.

• Parallel relation: a ∥ Lb if and only if a >L b and b >L a.

Let’s consider a log L1 = [(a,b,c,d)3, (a,c,b,d)2, (a,e,d)]. For this event log, the following

log-based ordering relations can be found:

• >L1 = (a,b),(a,c),(a,e),(b,c),(c,b),(b,d),(c,d),(e,d)

• →L1 = (a,b),(a,c),(a,e),(b,d),(c,d),(e,d)

• #L1 = (a,a),(a,d),(b,b),(b,e),(c,c),(c,e),(d,a),(d,d),(e,b),(e,c),(e,e)

• ∥L1 = (b,c),(c,b)

The footprint of the log is present in Figure 7.

17

Figure 7. Footprint of L1: a # L a, a → L1 b, a → L1 c, etc. (van der Aalst, 2016)

These relations are used to discover patterns in process models. For instance, if a and b

occur in sequence, the event log will indicate an a →Lb relationship. If after a there is a

choice between b and c, the log will show a →Lb, a →Lc, and b #Lc because a can be

followed by b and c, but b will not be followed by c and other way around. If a → Lc, b

→Lc, and a #Lb, then this implies that after the occurrence of either a or b, c should hap-

pen. If a →L b, a →L c, and b ∥Lc, then it appears that after a, both b and c can be executed

in parallel (AND-split pattern). If a →Lc, b →L c, and a ∥Lb, then the log suggests that c

needs to synchronise a and b (AND-join pattern). The α-algorithm generates the Work-

flow net based on information provided in L.

2.5 Main challenges

Despite the existing process mining techniques and tools, there are still challenges that

need to be solved. For example, process discovery is one of the biggest challenges in

process mining. It is difficult to construct a process model based on event logs that are

incomplete and noisy.

In process mining, representational bias should be considered. There are graph-based

notations that allow models to contain deadlocks, that are defined as disconnected parts.

α-algorithm may discover Workflow nets that have a deadlock. Approaches using process

trees do not have this problem, but they have difficulties in expressing certain process

constructs and fail to duplicate activities when needed. (van der Aalst et al., 2011)

18

Another challenge is called concept drift, meaning that processes change while being

observed. Existing process discovery approaches do not take these changes into account.

It could be beneficial to detect process changes and visualise these changes. (van der

Aalst, 2016)

There are always trade-offs between the quality criteria of process models (van der Aalst,

2016). Finding a solution where the following four criteria balance each other is challeng-

ing and requires continuous experimentation. When selecting a suitable algorithm for

noise removal the following criteria should be considered.

• Fitness: The model should represent the behaviour observed in the event log.

• Precision: The discovered model should not contain any behaviour completely

unrelated to what was present in the event log.

• Generalisation: The discovered model should provide a generic overview of the

behaviour observed in the model.

• Simplicity: The model should be as simple as possible.

2.6 Quality of event log

In the discovery of a process model, it is assumed that the model contains a representative

sample of behaviour. However, there are challenges such as noise and incompleteness

that can prevent this from happening. Noise and incompleteness refer closely to the qual-

ity of an event log. Noise means that the event log contains rare infrequent behaviour

which is not representative of the typical behaviour of the process. Incompleteness repre-

sents an issue where an event log contains too few events to discover the underlying con-

trol flow structures.

2.6.1 Noise

Real-world logs are often noisy because they may contain duplicated, inconsistent, and

incorrectly logged sequences of events. Such problems can result from IT system issues,

data entry problems, data transmission, and streaming problems, or other technology-

19

related limitations. Noisy exceptional or infrequent behaviour should not be included in

the discovered model. It is often very hard to extract useful information from the behav-

iour which occurs rarely. However, noise does not mean the data in the event log is in-

correct. Instead, there are always some infrequent occurrences or outliers. Such inputs

usually lead to the creation of exceptional paths in the process model.

Identifying issues as soon as possible is important when extracting event log data from

various sources. Sometimes it can be difficult to distinguish between noise and desired

infrequent behaviour. It is often hard for a discovery algorithm to distinguish incorrect

logging from exceptional events. This can be tackled by human judgment while manual

processing of the event log data. There are also discovery algorithms that help in reducing

noise in the data such as Fuzzy Mining and Heuristic Mining (van der Aalst, 2016).

The metrics of support and confidence are useful when using association rules in the form

of X ⇒ Y. The support of a rule X ⇒ Y indicates the applicability of the rule, i.e. the

instances where both preceding and subsequent instances are true. The confidence metric

measures the reliability of the rule. For example, a rule about flakes ∧ coffee with milk

having a support of 0.2 and confidence of 0.9 means that 20% of customers buy flakes,

coffee, and milk at the same time, whereas 90% of the customers that buy flakes and

coffee also buy milk. Rules with low confidence can be considered noise.

This is how the rules can be applied to α-algorithm. The α-algorithm begins with the

establishment of the relation >L. This relation is defined as follows: a >L b holds true if

and only if there exists a trace in the event log L where activity a is directly followed by

activity b. The support of a >L b can be determined by the number of times the pattern

(...,a,b,...) appears in the log. a >L b has a reasonable support if the pattern (...,a,b,...)

appears 1000 times. Moreover, if a appears 1500 times and b 1000 times, then a >L b has

good confidence. However, if the pattern appears frequently but a and b appear more

frequently on their own, the confidence is low. Therefore, removing noisy a > L b rules

can result in a more accurate log, which is better input for the α-algorithm. Considering

20

noise, an 80/20 model is favoured as it allows the process model to describe 80% of the

behaviour observed in the log.

2.6.2 Incompleteness

Incompleteness refers to a situation where there is too little data to derive the process

model (Wang, 2022). The process model allows for an exponential number of different

traces. An event log might not contain every possible trace, because some are rarer than

others. In a complex example with multiple possible paths, the log may contain only a

fraction of these. This can be caused by the fact that certain events might be missed due

to recording errors. The α-algorithm assumes a relatively weak notion of completeness to

avoid this problem. Most process mining algorithms currently in use operate under the

assumption that the log is complete, implying that the direct successor relationship, causal

dependency, and overall log are all complete. The α-algorithm uses a local completeness

notion based on >L, i.e. if there are two activities a and b and a can be directly followed

by b, then this should be observed in the log at least once (van der Aalst, 2016). Often,

weaker completeness notions are needed.

To highlight the importance of completeness, let's consider a process comprising 10 ac-

tivities that can be executed simultaneously, along with a corresponding log containing

information about 10,000 cases. The total number of possible interleavings in the model,

considering the 10 concurrent activities, is 10! = 3,628,800. Therefore, it is not possible

for each interleaving to be present in the log since there are fewer cases than potential

traces. In a process where 10 activities can be executed in parallel, local completeness

can reduce the required number of observations dramatically. For example, for the α-

algorithm only 10 × (10 − 1) = 90, rather than 3,628,800 different observations are needed

to construct the model.

Some algorithms assume that the event log contains all possible traces. A very strong

completeness assumption easily results in an overfitting model. Weak completeness as-

sumption results in underfitting models.

21

2.7 Quality of discovered model

The concept of process model quality was first introduced by Rozinat and van der Aalst

in terms of fitness and precision (Rozinat & van der Aalst, 2008). The quality of the dis-

covered model is measured based on four dimensions: recall, precision, generalisation,

and simplicity.

Fitness or recall measures how well the model represents the behaviour observed in the

event log. A recall measurement of 0 indicates the inability to reproduce the behaviour

from the event log, whereas a value of 1 indicates the opposite.

Precision measures the capability of a model to reproduce only the behaviour seen in the

event log. The identified model must not include any behaviour that is entirely discon-

nected from what was observed in the event log. The value 0 indicates that the model can

reproduce the behaviour never observed in the log, whereas a value of 1 indicates that the

model only reproduces the behaviour observed in the log. The measurement is calculated

based on the ratio between the number of executed actions and the number of possible

actions. The key to understanding the difference between fitness and precision is that

fitness measures only how well the model represents the behaviour in the event log

whereas precision measures the capability to reproduce only the behaviour observed in

the event log. (Adriansyah et al., 2012).

F-score combines measures of fitness and precision as a measure of accuracy.

𝐹 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
fitness ∗ precision

recall + precision
 (1)

Generalisation means that the discovered model should provide a generic overview of

the behaviour observed in the model. It can be thought of as the opposite of precision,

providing a measurement of the model’s capability to reproduce behaviour never ob-

served in the log. The measurement is calculated using 10-fold cross-validation, a method

commonly used in data mining. (Kohavi, 1995)

22

Simplicity indicates that the model should be as simple as possible. There are different

ways how simplicity can be measured. (Wen et al., 2009)

• Size: # of places, # transitions, and # of arcs.

• Density: Proportion between the actual number of arcs and the maximum potential

number of arcs in a model that has the same quantity of nodes.

A good balance between overfitting and underfitting is important for process discovery.

An optimal model should generalise and at the same time to not restrict behaviour ob-

served in the event log. A model that does not generalise easily becomes overfitting al-

lowing only a specific pattern in the log. An underfitting model has the opposite problem.

It is generalising the data too much in the log and has poor precision. For example, the

Petri net shown in Figure 5 generalises as it allows more patterns than seen in the training

set. The behaviour (a,h) where the request is registered and immediately rejected is not

present. This does not necessarily imply that it is not possible. However, having a model

where (a,h) is present although it is not in the event log would result in underfitting. This

dilemma is caused by the lack of negative examples in the event log.

Noise impacts the quality dimensions differently. The recall might not be reliable as hav-

ing a too high value of it does not guarantee that the discovered model is an exact repre-

sentation of reality. Precision tends to be lower because noise introduces new connections

in the model that should not be there. Generalisation is higher due to the increased number

of connections. Simplicity tends to be lower because the model becomes complex con-

taining more activities and connections.

2.8 Discovery algorithms for coping with noise

Some algorithms cope with noise better than α-algorithm. Algorithms such as Heuristics

Miner, Fodina, and Inductive Miner are often used with noisy event logs. (van der Aalst,

2016) These algorithms are called Automated Process Discovery techniques (APD). APD

techniques filter out noisy behaviour during the process discovery phase. Such techniques

can produce a process model that contains the most frequent traces, thus reducing the

23

complexity of the model. Most APD techniques cannot identify duplicate activities which

appear in different parts of the process model.

Heuristics Miner algorithm discovers a model using the α-relationship. This algorithm

uses the frequency of binary relations among tasks and detects direct dependency, con-

currency, and non-directly connectedness. By considering all task pair dependencies and

their frequency, this technique identifies short loops and non-free choice structures from

noisy logs. By calculating the dependency measure between activities, this approach fil-

ters out noise by eliminating causal dependencies that fall below a specified threshold.

Sometimes this technique generates a model with incorrect behaviour as soundness and

fitness are not guaranteed. The soundness is not guaranteed when the final place is marked

but one token is left behind.

Despite having noise-tolerant capabilities, noise has a significant impact on the quality of

the models produced by these algorithms. For instance, Heuristics Miner which employs

a technique for disambiguating event dependencies due to noise can have a 45% drop in

accuracy when the level of noise is 3% of the total log size. To limit the impact of noise

the Heuristics Miner has a frequency-based metric. Given two labels a and b, a ⇒ b =

(|a>b| - |b>a|) / (|a>b| + |b>a| + 1). This metric is used to verify if || relationship has been

correctly identified and if the value of ⇒ is above the given threshold. || relationship will

be replaced by → relationship. A similar approach is used in the Fodina algorithm.

(Weijters & Ribeiro, 2011)

Alves de Medeiros et al. proposed a Genetic algorithm that can detect non-local relation-

ships that are not explicit in the event log because of a global search ability based on the

use of fitness function using a recall and precision measure to find the best-matched mod-

els. Genetic Miner can detect a non-local pattern. (de Medeiros et al., 2007)

Inductive Miner is a discovery algorithm based on a divide-and-conquer approach. This

algorithm generates a directly follows graph. It identifies a cut (i.e. ×, →, ∧) in the graph

along which the log is split. It then detects an operator. This operation is repeated until

24

more cuts are identified or no more cuts can be identified. From each sub-log, it builds a

sub-model. The process model then is built based on these sub-models. While the model's

soundness is assured, its precision is notably low, and the model tends to be overly gen-

eralised. To cope with the noise, the algorithm applies filters like Heuristics Miner, which

removes edges from the directly follows graph. It uses an eventually follows graph to

remove edges that the first filter did not remove. (Leemans et al., 2013) As limitations,

the dependencies are removed only if they are ambiguous (e.g. replacing || dependency

with → dependency). It does not remove dependencies that are simply infrequent. De-

pendencies are only removed from the dependency graph, leaving the log unaffected, in-

fluencing the result of the discovery.

Fuzzy Miner is another algorithm applying noise filtering a-posteriori directly on the

model discovered. The algorithm discovers behaviour models from the event log based

on correlation and significance, producing a fuzzy net where each node and edge is asso-

ciated with a value of correlation and significance. After mining the user provides signif-

icance and correlation thresholds that are used for filtering. These two thresholds can

simplify the model by preserving significant behaviour, aggregating less significant but

correlated behaviour (by clustering of nodes and edges), and abstracting less significant

and less correlated behaviour (by removal). One of the downsides is that a fuzzy net only

provides an abstract representation of the process behaviour extracted from the log due to

its intentionally underspecified semantics which leaves room for interpretation. This tech-

nique produces a model without executable semantics. Its soundness and fitness are not

guaranteed. (Günther & van der Aalst, 2007)

Integer Linear Programming Miner (ILP) handles noise by integrating noise into the

discovered model. This algorithm translates relations observed in the logs into an Integer

Linear Programming problem, where the solution is a Petri net capable of reproducing all

behaviour present in the log. The negative effect of this approach is to generate so-called

“flower” models which suffer from very low precision. (van der Werf et al., 2009)

25

3. RESEARCH METHODOLOGY

3.1 Research datasets

Process data is considered a critical asset of a business as it contains valuable data on

company operations, for example, delivery data of products including lead times of dif-

ferent processes, sales figures, and locations. There are not many companies that publish

their data as datasets for research purposes. Therefore, publicly available datasets were

used in this research. The data is available at http://www.processmining.org/event-

data.html or Process Mining Event Logs - IEEE Task Force on Process Mining (tf-

pm.org). The selected datasets are included in a collection of datasets originally utilised

in a Business Process Intelligence Challenge organised annually. The data is published

for the annual competition where participants are to utilise the data to uncover insights

about a certain process. For this purpose, the anonymised datasets are made publicly

available by different companies sponsoring the event.

For the research two individual event logs called BPI 2012 and BPI 2014 were used. The

datasets represent different processes and industries. Table 2 indicates the characteristics

of the event logs in terms of the number of case IDs, number of events, and per cent of

noise.

Log # of case IDs # of events % Noise

Dataset 1

BPI 2012

13087 148192 25%

Dataset 2

BPI 2014

42790 392320 57%

Table 2. Characteristics of selected event logs

The first dataset relates to a loan application process. The event log data is from a Dutch

financial institute. The event log consists of event classes such as offer, final decision,

and suspicion of fraud. The second dataset is from Rabobank Netherlands Group ICT

26

department and includes record details from an ITIL Service Management tool called HP

Service Manager. The event log contains incident cases.

3.2 Proposed method

Many trial Petri nets were created on different models to sort out a suitable model for

handling noisy and incomplete data. An emphasis was put on Automated Process Discov-

ery techniques that address data quality issues and affect the accuracy and comprehensi-

bility of the models. Eventually, Inductive Miner and ILP Miner were selected to process

the datasets and to discover the Petri nets. The basic α-algorithm was not selected because

of its poor characteristics in handling event logs with noise as described in chapter 2.4.

ProM software was used to generate the Petri nets and evaluate the data quality. ProM is

a framework that includes plugins for supporting various process mining techniques

(ProM Tools, 2023). Being implemented in Java, ProM is platform-independent and free

to download. The ProM program was chosen because of its accessibility and wide adop-

tion among process mining professionals (Claes & Poels, 2013). Anyone can contribute

to the development of the tool by developing new process mining plugins.

After uploading the event log data, a filter log function was used in the Simple Heuristics

plugin of ProM to remove infrequent labels with a threshold value of 90%. The filter log

function in Simple Heuristics plugin removes all traces that do not start or end with a

particular event. It can also remove all events related to a specific process task by calcu-

lating the frequencies of event occurrence. Furthermore, the filter log function using pre-

fix close language eliminates all traces that are not a prefix of another prefix in the log by

using a frequency threshold defined by the user.

The first filter applied was an event-type filter, that allowed the user to select multiple

types of events, tasks, or audit trail entries for consideration while mining the log. All

event types were kept. The second filter was applied to keep only traces or cases that start

with indicative tasks. A threshold was adjusted to 90%, meaning that the most frequent

start events were selected until at least 90% of the traces were covered. The third filter

27

was an end event filter, which kept only traces or cases that ended with the indicated

tasks. The range was again set to 90% to select the most frequent end events.

The final filter revealed all unselected events from the log. The threshold was set to 100%

to select the most frequent events. An example of a filter selection process is indicated in

Figure 8.

Figure 8. Filter for selecting end event threshold

After using the filter log function in Simple Heuristics plugin, ILP Miner and Inductive

Miner were applied to discover Petri nets. Finally, the quality of discovered algorithms

was measured using quality metrics. ProM has a specific quality metrics plugin to com-

pute projected fitness and precision. It also has a plugin to show Petri net metrics for

calculating generalisation and complexity grades. The whole experiment process is illus-

trated in Figure 9.

Figure 9. Experiment setup for real-life logs

28

3.3 Results

As the experiment result, the Inductive Miner model is the best algorithm for handling

noise when the log has fewer event activities and less noise. The Petri net produced by

this algorithm exhibits a good simplicity level, meaning it has fewer arcs and places, and

has a much higher F-score result of 0.86. However, when event logs are more complex

and contain more events, the ILP Miner algorithm produces slightly better results with an

F-score of 0.67 compared to a score of 0.56 using Inductive Miner. Apparently, the ILP

Miner algorithm can replay more relations than the Inductive Miner algorithm. Addition-

ally, the clarity of the Petri net is better when comparing visually generated models.

The performance of the algorithms to generate the Petri nets was acceptable up until 15

minutes. The generated Petri nets by the ILP Miner algorithm are presented in Figures 10

and 11, and by the Inductive Miner algorithm in Figures 12 and 13.

Figure 10. Petri net generated by ILP Miner algorithm of BPI 2012 event log

29

Figure 11. Petri net generated by ILP Miner algorithm of BPI 2014 event log

Figure 12. Petri net generated by Inductive Miner algorithm of BPI 2012 event log

30

Figure 13. Petri net generated by Inductive Miner algorithm of BPI 2014 event log

The results of the quality metrics are presented in Table 3.

 Algorithm ILP Miner Inductive Miner

BPI2012 F-score 0.35 0.86

Number of arcs 332 80

Number of places 36 30

Number of transitions 23 35

Density 0.2 0.038

BPI2014 F-score 0.67 0.56

Number of arcs 97 64

Number of places 11 24

Number of transitions 9 27

Density 0.489 0.049

Table 3. F-score and complexity metrics

31

3.4 Limitations

The outlier detection model is a simplified way of sanitising the log before applying dis-

covery model algorithms. One of the biggest disadvantages of the selected approach is

that the method removes the traces that contain either noise or infrequent but correct be-

haviour. The noise does not mean incorrect data in the event log. The event log may also

contain infrequent behaviour or outliers. Such behaviour usually leads to the creation of

exceptional paths in the process. It is possible that the selected approach may remove

traces that contain critical and useful information. Not always this might be a critical

issue, but in specific applications like medical treatment or compliance investigations,

such information could prove to be meaningful. To improve the accuracy of the model

even further the classification rules may be applied to the log to detect noisy traces. For

this, manual input is needed for the classification algorithm to generate rules. In addition,

rules generated can be checked manually and corrected by experts.

Another limitation of this research is that only two algorithms were selected for compar-

ison due to long processing times. To produce a Petri net using other algorithms such as

Fodina or Heuristics Miner proved to be challenging due to the limited computing power

available. A computer with better processing capability could help to reduce the pro-

cessing times.

32

4. CONCLUSIONS

4.1 Discussion

Process mining has become an effective tool for companies to analyse their processes.

This study aimed to identify the main challenges related to data quality in process mining.

The main challenges were identified as representational bias, concept drift, noise, and

incompleteness. Noise is one of the main challenges when it comes to working with real-

life logs. Logs contain errors or infrequent behaviour which prevents generating a good

quality process model. The quality of the model is measured by quality metrics such as

precision, fitness, complexity, and generalisation. Noise level must be reduced to generate

a process model that can be used to discover, check compliance, and monitor processes

in business.

This study aimed to identify the existing approaches for handling noise and compare

them. The existing solutions for handling noise have been improved since the first devel-

oped α-algorithm that is assuming that the event log is noise free. Algorithms such as

Heuristics Miner, Fuzzy Miner, Integer Linear Programming (ILP) Miner, and Inductive

Miner have been developed to tackle noise.

The initial aim of this study was to test and compare multiple major process mining algo-

rithms in removing noise. However, when running the algorithms, the processing capacity

of the computer to generate process models soon became a limiting factor. It took several

days for the computer to run the algorithms, and eventually not generate any results. Due

to such limitations, only the Inductive Miner and the ILP Miner algorithms were selected

for comparison as these algorithms were able to generate results. Event log data was fil-

tered using the Simple Heuristics plugin. However, there was no measurement of how

clean the data became after applying the filter. A more sophisticated approach is needed

to indicate how clean the data is before applying algorithms to the event log.

33

Handling noise in the generation of Petri nets is a critical aspect of process mining since

Petri nets are a fundamental component in checking process compliance. The study of

available algorithms and their performance on real-life event logs revealed that the ILP

Miner algorithm produces a slightly better F-score when the log is complex and has more

noise. This is because the ILP Miner algorithm is better able to replicate connections

between event activities. However, the Petri net produced by the ILP Miner algorithm is

much more complex in terms of complexity metrics, making it more difficult for business

users to understand.

Alternatively, for simpler logs with fewer events, cases, and less noise, the Inductive

Miner algorithm outperforms the ILP Miner algorithm by a higher F-score and better

performance in complexity metrics. In areas where outliers are crucial, such as compli-

ance checks related to fraud or medical use cases, removed activities should be addition-

ally checked by an expert to ensure that important but infrequent activities are not filtered

out.

4.2 Future research

As future research, it is recommended to expand the algorithmic comparison by incorpo-

rating additional algorithms such as Fodina and Heuristics Miner. Furthermore, it could

be beneficial to explore ways in which the algorithms can be combined with human re-

view to enhance results and prevent the exclusion of crucial logs that contribute to under-

standing the process model. Additionally, investigating various algorithms’ impact on the

quality parameters of the produced Petri nets could be valuable.

Future research could also focus on other quality issues that have not been widely studied

such as concept drift. As companies operate in dynamic environments, the processes

change constantly and an effective way to visualise changes through time to process

model is needed.

REFERENCES

Acosta-Velásquez, R. D., León-Pulido, J., García-Pérez, A., Fajardo-Moreno, W. S., &

Espinosa-Leal, L. (2022). Contemporary Management Practice Applying the Dynamic

Absorptive Capacity Measurement Model (PM4AC) for Improved Business Sustaina-

bility. Sustainability, 14(17), 11036. https://doi.org/10.3390/su141711036

Adriansyah, A. A., Munoz-Gama, J., Carmona, J., van Dongen, B. F., & van der Aalst,

W. M. P. (2012). Alignment Based Precision Checking. Springer Berlin Heidelberg

eBooks, 137-149. https://doi.org/10.1007/978-3-642-36285-9_15

Claes, J., & Poels, G. (2013). Process mining and the prom framework: An exploratory

survey. Business Process Management Workshops, 187-198.

https://doi.org/10.1007/978-3-642-36285-9_19

de Medeiros, A. K. A., van Dongen, B., van der Aalst, W. M. P., & Weijters, T. (2004).

Process Mining: Extending the α-algorithm to Mine Short Loops. TU Eindhoven, 113.

https://doi.org/10.1007/756-6-842-83454_52

de Medeiros, A. K. A., Weijters, A. J., & van der Aalst, W. M. P. (2007). Genetic process

mining: An experimental evaluation. Data Mining and Knowledge Discovery, 14(2),

245-304. https://doi.org/10.1007/s10618-006-0061-7

Espinosa-Leal, L., Chapman, A., & Westerlund, M. (2020). Autonomous industrial man-

agement via reinforcement learning. Journal of intelligent & Fuzzy systems, 39(6),

8427-8439. https://doi.org/10.3233/JIFS-189161

Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Tech-

nometrics, 11(1), 1–21. https://doi.org/10.1080/00401706.1969.10490657

Günther, C. M., & van der Aalst, W. M. P. (2007). Fuzzy Mining – Adaptive Process

Simplification Based on Multi-perspective Metrics. Lecture Notes in Computer Sci-

ence, 328-343. https://doi.org/10.1007/978-3-540-75183-0_24

Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining (1st ed.). The

MIT Press.

How does process mining work? (2023, May). Celonis. https://www.celonis.com/pro-

cess-mining/how-does-process-mining-work

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and

model selection. International Joint Conference on Artificial Intelligence, 2, 1137–

1143. https://ijcai.org/Proceedings/95-2/Papers/016.pdf

Leemans, S. S., Fahland, D., & van der Aalst, W. M. P. (2013). Discovering Block-Struc-

tured Process Models from Event Logs Containing Infrequent Behaviour. Business

Process Management Workshops, 66-78. https://doi.org/10.1007/978-3-319-06257-

0_6

ProM Tools (2023, May). ProM. https://promtools.org

Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-

driven decision making. Big Data, 1(1), 51-59. https://doi.org/10.1089/big.2013.1508

Reinkemeyer, L. (2020). Process Mining in Action: Principles, Use Cases and Outlook

(1st ed.). Springer Nature.

Rozinat, A. A., Veloso, M., & van der Aalst, W. M. P. (2008). Evaluating the quality of

discovered process models. European Conference on Principles of Data Mining and

Knowledge Discovery, 45–52. https://pure.tue.nl/ws/files/3045384/Metis219033

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, 3(3), 210-229.

https://doi.org/10.1147/rd.33.0210

van der Aalst, W., Buijs, J., & van Dongen, B. (2012). Towards improving the represen-

tational bias of process mining. Lecture Notes in Business Information Processing, 39-

54. https://doi.org/10.1007/978-3-642-34044-4_3

van der Aalst, W. M. P. (2016). Process Mining: Data Science in Action (2nd ed.).

Springer.

van der Aalst, W. M. P., Desel, J., & Oberweis, A. (2003). Business Process Management:

Models, Techniques, and Empirical Studies (1st ed.). Springer.

van der Aalst, W. M. P., van Dongen, B. F., Günther, C. W., Rozinat, A., Verbeek, E., &

Weijters, T. (2009). ProM: The process mining toolkit. BPM (Demos), 489(31), 2.

https://doi.org/10.1007/934-3-532-68455-875

van der Aalst, W. M. P., Weijters, T., & Maruster, L. (2004). Workflow mining: discov-

ering process models from event logs. IEEE Transactions on Knowledge and Data

Engineering, 16(9), 1128–1142. https://doi.org/10.1109/tkde.2004.47

van der Werf, J. M., van Dongen, B. F., Hurkens, C. A. J., & Serebrenik, A. (2009).

Process Discovery Using Integer Linear Programming. Lecture Notes in Computer

Science, 368–387. https://doi.org/10.1007/978-3-540-68746-7_24

van Hee, K. M. & Reijers, H. A. (2000). Using Formal Analysis Techniques in Business

Process Redesign. Lecture Notes in Computer Science, 142–160.

https://doi.org/10.1007/3-540-45594-9_10

Wang, L., Fang, X., & Shao, C. (2022). Discovery of business process models from in-

complete logs. Electronics, 11(19), 3179. https://doi.org/10.3390/electronics11193179

Weijters, A. J., & Ribeiro, J. (2011). Flexible Heuristics Miner (FHM). Computational

Intelligence and Data Mining. https://doi.org/10.1109/cidm.2011.5949453

Wen, L., van der Aalst, W. M. P., Wang, J., & Sun, J. (2007). Mining process models

with non-free-choice constructs. Data Mining and Knowledge Discovery, 15(2), 145–

180. https://doi.org/10.1007/s10618-007-0065-y

Wen, L., Wang, J., van der Aalst, W. M. P., Huang, B., & Sun, J. (2009). A novel ap-

proach for process mining based on event types. Journal of Intelligent Information

Systems, 32(2), 163–190. https://doi.org/10.1007/s10844-007-0052-1

.

