

Kien Pham Gia

A WORK TIME MANAGEMENT WEB APPLICATION USING GPS

A WORK TIME MANAGEMENT WEB APPLICATION USING GPS

Kien Pham Gia
Final projects
Spring 2023
Bachelor of Engineering, Information
Technology
Oulu University of Applied Sciences

ABSTRACT

Oulu University of Applied Sciences
ICT, Web Development option

Author(s): Kien Pham Gia
Title of the thesis: A Work Time Management Web Application using GPS
Thesis examiner(s): Lasse Haverinen
Term and year of thesis completion: Spring 2023 Pages: 46 + 2 appendices

The main purpose of this thesis is to report on the process and the result of a creation of a web
application. This application is a combination of two main parts: the website for the employer to
monitor the time checked in by the employee, and a mobile app created using React Native for the
employee to check in and check out of the workplace.

Additionally, this thesis will not just go through the process but explain the thought process during
the creation and the lesson learnt after finishing the project.

The result of this project is a working, functional website and a mobile application for small busi-
nesses and their employees to monitor, check in and check out working time using GPS to validate
location upon check-in and check-out. Most of the goals set out at the beginning are satisfied.
Further improvements in testing and features are planned and will be implemented in the nearest
future.

Keywords: GPS, time monitoring system, react native, expressJS.

PREFACE

The basis of this thesis came from a conversation with a senior developer I met at a conference,

he gave the idea for this application to improve my ability in both backend and frontend. The de-

velopment of this application and thesis took place in Oulu, Finland.

Oulu,

Kien Pham Gia

CONTENTS

ABSTRACT .. 3

PREFACE .. 4

CONTENTS ... 5

VOCABULARY .. 7

1 INTRODUCTION ... 8

2 GOALS .. 9

2.1 Short Description: ... 9

2.2 Goals: ... 9

2.2.1 Employee applications: .. 9

2.2.2 Employer website ... 9

3 TECHNOLOGY USED ... 10

3.1 NodeJS .. 10

3.2 NPM ... 11

3.3 ExpressJS .. 11

3.4 MySQL ... 11

3.5 EJS ... 12

3.6 React Native ... 12

3.7 Expo ... 12

3.8 Google Geocoding API ... 13

3.9 Postman ... 15

3.10 HTTP Sessions .. 16

3.11 Redis .. 17

3.12 GPS .. 17

4 DESIGN DECISIONS .. 18

4.1 Project architecture .. 18

4.2 File Structure .. 19

4.2.1 Employee React Native App: ... 19

4.2.2 Employer Website: ... 20

4.3 Technology thought process and decision ... 21

4.3.1 Front-end: .. 21

4.3.2 Back-end: ... 22

4.3.3 Authentication: ... 22

4.4 Frontend UI decision .. 23

4.4.1 Employer website: .. 23

4.4.2 Employee application ... 23

5 IMPLEMENTATION ... 24

5.1 Employer Website and Backend API .. 24

5.1.1 Database Model ... 24

5.1.2 Backend API .. 25

5.1.3 Authorization .. 25

5.1.4 Listing users, changing passwords, and adding new users 25

5.1.5 Creating a new employee account: .. 26

5.1.6 Showing time data by day or month ... 27

5.2 Employee Application ... 28

5.2.1 Authorization .. 28

5.2.2 Location Checking ... 28

5.2.3 Submit customised work time and change password................................. 28

6 TESTING METHOD AND RESULT ... 29

6.1 Testing ... 29

6.2 The result compared to the goal. .. 30

6.2.1 Employer website ... 30

6.2.2 Employee Application .. 32

7 CONCLUSION ... 34

7.1 Future Improvement ... 34

REFERENCES .. 35

APPENDIX .. 36

VOCABULARY

API – Application Programming Interface

Apps – Application

CSS – Cascading Style Language

HTML – Hypertext Markup Language

JS – JavaScript

NPM – Node Package Manager

SQL – Structured Query Language

UI – User Interface

GPS – Global Positioning System

EJS – Embedded JavaScript

1 INTRODUCTION

This thesis is to report on the implementation of a web application for small businesses to moni-

tor/manage their employees. This application is a personal project for the author to learn/improve

on their development of full stack web apps using React Native JS and Express JS.

The backend of this project will use Express JS for a simple API which will be made to easy expand

in the future and MySQL for the database. The application has 2 different front-end, one using EJS

as view for admins of the employer and one using React Native JS for employees to use. In the

employer website, EJS file will be sent to the frontend to show the content of the website. Redis

are used to initiate and store session cookie for persistence session for employee website. Library

such as Datatable and chart JS also be used to show data such as employee/employer listing with

pagination and search. In the employee React Native app, geolocation library in the react-native-

community and Geocoding API from google will be used to obtain the location and address of the

employee to check-in/check-out of the workplace.

This thesis report will show detailed information about the technology used in the process of making

this application.

2 GOALS

2.1 Short Description:

This project is a small employee management system for small businesses that aim to replace

physical timecards. It will have two main components; one is the mobile app for the employee which

allows the employee to count the time using GPS, and the second is the website for the employer

to monitor their employee. The estimated time for this project will be 250-270 hours.

2.2 Goals:

2.2.1 Employee applications:

 Employees should be able to sign in.

 Employees should be able to change their password.

 Employees should be able to check in at their workplace using GPS.

 Employees should be able to enter custom working time data in case not working at the

workplace.

 Employees should be able to send an absent message.

2.2.2 Employer website

 Employers should be able to sign in.

 Employers should be able to create a new employee account.

 Employers should be able to check and see their employee working time.

 Employers should be able to see their employee profile (Full name, email, address, and

other contact information).

 Employers should be able to see their employee working time both per day and per month.

3 TECHNOLOGY USED

This chapter will define the technologies used within the project.

3.1 NodeJS

‘As an asynchronous event-driven JavaScript runtime, Node.JS is designed to build a scalable

network application’ (1).

The server-side execution of JavaScript code can be done using the Node.JS runtime environment.

Due to its effective and scalable architecture, it gained popularity after its initial release in 2009.

Node.JS has an event-driven, non-blocking I/O architecture, which enables it to handle many con-

current connections without obstructing the performance of other processes, in contrast to conven-

tional server-side technologies like PHP or Ruby (1).

The V8 JavaScript engine, which is also utilized by Google Chrome, is the foundation upon which

Node.JS is built. This engine converts JavaScript script into machine code, which the computer's

processor subsequently runs. Node.JS can deliver quick and effective performance thanks to V8.

Although Node.JS is frequently used to create web servers and APIs, it may also be used to create

desktop programs, command-line tools, and even robotics applications. The ease with which

Node.JS can manage real-time, data-intensive applications is one of its main advantages. This is

made possible by its event-driven architecture, which enables it to manage several connections at

once and process data as it comes in rather than pausing to wait for it to load completely (1).

The extensive and vibrant ecosystem of NodeJS is an additional advantage. Over a million open-

source packages and modules are accessible using NodeJS package management, NPM. Func-

tionality can easily be added by developers to their applications because of this (1).

Node.JS has a wide range of scalability options, including running on a single server or in a distrib-

uted setting with the aid of tools like Kubernetes or Docker. Additionally, it contains an integrated

clustering module that enables programmers to extend their programs horizontally and benefit from

multi-core CPUs (1).

3.2 NPM

NPM or Node Package Manager is the default package manager that comes with Node.JS. NPM

allows developers to access, use and submit to a library of millions of open-source packages and

modules. These packages can be anything from providing a small utility solution to an entire frame-

work or application. Using NPM requires developers to have a ‘package.JSON’ file which contains

the metadata of the project and its dependencies. NPM then will read the ‘package.JSON’ file to

install the required dependency using CMD or Linux terminal to ‘node_module’ folder. NPM does

not just allow the installation of the newest version of a dependency but also any version required

by the developer. NPM also allows the developers to manage, update, and uninstall packages (2.)

3.3 ExpressJS

Express is a minimal and flexible Node.JS web application framework that provides a robust set of

features for web and mobile applications (3).

Express JS is known for its lightweight, simplistic, and minimalistic approach. Express JS has many

key features, such as Routing, Middleware, Templating Engines, Error Handling, and Static file

Serving. ExpressJS also allow integration with other Node.JS libraries like database integration

with MySQL or authentication with passport(3.)

Express will be used as the main backend framework for this project. Express provides an easy

and quick way to create a REST API which will be used to send and receive required data from

and to employee applications, along with sending EJS and JS files to the frontend of the employer’s

website.

3.4 MySQL

MySQL is an open-source relational database management system or RDBMS. MySQL uses struc-

tured Query language to manage data. MySQL can be used with a wide range of operating systems

and programming languages. MySQL allows a wide range of data types, like string, int, DateTime,

Boolean, JSON, blob etc... Data are stored in tables with multiple columns and rows which can be

individually defined according to the need of the project. MySQL also allows the use of a variety of

storage engines, which decide how data is stored and manipulated. InnoDB is the default engine

since the release of MySQL 5.5.5 in 2010, replacing MyISAM (4.)

This project uses MySQL as its database. This project only requires a small number of simple

tables, making MySQL an excellent choice for its speed and ease of use.

3.5 EJS

EJS is a simple templating language that lets you generate HTML markup with plain JavaScript.

EJS allows JavaScript to be embedded inside HTML code with simple syntax. EJS can be used

with ExpressJS which will be the main use case in this project to create a website for the user. With

EJS, templates and partials can be used to reuse the same component as header or footer across

multiple pages. EJS can easily be used with ExpressJS by simply defining the view engine with

EJS. First, install EJS with NPM: ‘NPM i EJS’ or ‘NPM i -g EJS’ if developers want to install EJS

globally. Then in app.JS, set view engine to EJS.‘app.set(‘view engine’, ‘EJS’)’ (5.)

3.6 React Native

‘React Native combines the best parts of native development with React, a best-in-class JavaScript

library for building user interfaces’ (6).

React Native is an open-source application framework for mobile created by Facebook. It allows

developers to create applications for both iOS and Android with React and a single codebase.

React Native allows the use of native UI components, hence making the application has the native

look and feel (6.)

React Native will be mainly used for the employee mobile application, this allows a nice-looking

application without using platform-specific language i.e., Java for Android, and Swift for iOS.

3.7 Expo

Expo is an open-source tool for building mobile applications using React Native which consolidates

logic for both iOS and Android)(7).

Expo comes with a CLI (command-line interface) that allows developers to create, develop and test

their React Native applications. Expo also comes with various pre-built components and APIs like

camera, geolocation, and storage, allowing developers to use and test their application directly in

the browser or an iOS/Android simulator. Another feature of Expo that makes the development

process easier is the ability to send the app using its own Expo app on mobile phones by simply

scanning the QR code. Applications published using Expo can update using OTA or over the air

without requiring another download, this allows fast and easy bug fixes and feature updates. Expo

also offers Expo push notification, authentication, and distribution application for developers (7.)

3.8 Google Geocoding API

Google Geocoding API is an API provided by Google to retrieve addresses from coordinates or

vice versa, this will be the main tool to retrieve locations (8).

Google Geocoding API can be used by enabling Geocoding API from Google Cloud Console. After

enabling, developers can use their API to send HTTP requests to Google servers for data. Re-

trieved data can be in either XML or JSON format (8).

To use the API, developers send the HTTP request with the following form:

https://maps.googleapis.com/maps/api/geocode/outputFormat?parameters

outputFormat can be either JSON ‘JSON’ or XML ‘XML’

parameters contain :
 Can be ‘address=‘ for geocode, the street address element should be delimited by spaces

(url-escaped by %20).

OR

 Can be ‘latlng=‘ for reverse geocode lookup, retrieving the closest human-readable ad-

dress.

AND

 ‘key=’ this for Geocoding API key.

Optional parameters for reverse geocode lookup:
 ‘language’: for the language of the return response, if not included, the response will use

the preferred language stated in the header or the native language of the domains.
 ‘region’ for regional code, using ccTLD (‘top-level domain’) two-character value.
 ‘result_type’ to filter address, separated by a pipe |.(8.)

The response of the API comes with the format in Figure 1.

{

 “results” : [

 “address_components” : [

 {

 “long_name” : string,

 “short_name” : string,

 “type” : [string]

},

 …

].

 “formatted_address” : string,

 “geometry” : {

 “location” : {

 “lat” : float,

 “lng”: float

 },

 “location_type” : string,

 “view_port” : {

 “northeast” : {

“lat” : float,

 “lng”: float

 },

 “southeast” : {

“lat” : float,

 “lng”: float

 }

 }

 }

]

}

Figure 1, format of the received response from google geocoding API (8).

In this project, ‘formatted_address’ will be used.

3.9 Postman

Postman is used by developers to design, test, build and iterate their API (Application Programming

Interface) (9.)

Postman has an easy-to-use, friendly UI (User Interface) that allow the ease of making HTTP re-

quest. Developers can modify everything in the HTTP request, from header, body, params, author-

ization, and even making scripts to test API(9). Figure 2 shows a part of Postman UI that shows

how to configure the header part of the HTML POST request.

Figure 2. Header part of a POST request in Postman UI shown.

Postman auto-generated all the common headers but still allows the developer to add additional

header elements with ease, in this case, cookies in Figure 3.

Figure 3. Cookie section of Postman UI.

Body:

Figure 4. the Body part of a POST request in Postman UI shown.

Postman allows a variety of different body data formats, from raw, none formatted to in this case,

JSON in the example in Figure 4.

3.10 HTTP Sessions

HTTP sessions are a mechanism for a web server to maintain and store user-specific data across

multiple interactions with a web server. In other words, it allows user identity to be tracked across

different pages and requests. The session is stored in a single-server, non-replicated persistent

storage mechanism memory like cookie-based session persistent or file system persistent. HTTP

sessions usually initiate when a client logs into an application. Once the server received the re-

quest, it will generate a Session ID. Subsequent request from the user will have the session ID

included in the header, typically as a cookie from the browser or sent as a parameter in the URL.

Using session ID, the server can associate user data, user preferences, and authentication infor-

mation with the current session used by the user in the browser. HTTP sessions typically store

user-specific data like session identifier or session ID, creation time, last accessed time, and other

contextual info in memory (10.)

3.11 Redis

Redis or Remote Dictionary Server is an open-source, in-memory data structure store to be used

as a real-time data store, caching, session storage, and streaming and messaging. Redis support

a variety of in-memory data structure like string, hashes, lists, sets, sorted sets, streams and more.

Redis data kept in memory allowing for quick access also can persist write to permanent storage,

allowing for reboot or system failure. Redis also support server-side scripting with Lua with an ex-

tensive modular API for building custom extension (11.)

3.12 GPS

GPS or Global Positioning System is a system developed by the United State Department of De-

fence. This system uses a network of satellites orbiting around the Earth combines with a system

of ground stations and user receivers to determine the location of the users. To GPS, a GPS re-

ceiver is required which is integrated into most if not all mobile devices. A GPS receiver uses the

signal from the GPS to obtain a collection of data, such as location in the form of a set of coordinates

and time. From the location and time data received from the GPS signal, the host machine can

then calculate more information for the user like the velocity at which the user is travel at (12.)

4 DESIGN DECISIONS

4.1 Project architecture

Below in Figure 5 is the architecture of this project, as the diagram points out, there will be 2 differ-

ent viewpoints, one for the employer and one for the employee. The one for the employer will be

sent directly from the NodeJS server running ExpressJS as an EJS file to display. The one for the

employee will be a standalone application written using React Native framework.

The employer website will have direct access to all the routes will authentication using a cookie.

The employee application will only have access to the ‘/employee’ route using an API Key embed-

ded into the config file of the application.

The database will run on MySQL database system using its default engine InnoDB. There will be

4 tables: admin, employee, ‘employee_checkin_time’ and settings. ‘admin’ and ‘employee’ tables

will be responsible for storing data for admin and employee, in which password will be hashed with

bcrypts. ‘employee_checkin_time’ table will be responsible to store each time employee check in

or check out of their workplace. ‘settings’ table will store setting profile of which includes normal

working time and workplace location.

Geocoding API from Google will be the only outside API being used for this project to send requests

for location based on user latitude and longitude, which are obtained by using GPS.

Figure 5. Application architecture illustration.

4.2 File Structure

4.2.1 Employee React Native App:

.

└ ─ ─ mobileApp

 ├ ─ ─ App.js

 ├ ─ ─ assets

 │ ├ ─ ─ adaptive-icon.png

 │ ├ ─ ─ favicon.png

 │ ├ ─ ─ icon.png

 │ └ ─ ─ splash.png

 ├ ─ ─ babel.config.js

 ├ ─ ─ components

 │ ├ ─ ─ changePassword.js

 │ ├ ─ ─ customTime.js

 │ ├ ─ ─ login.js

 │ └ ─ ─ mainPage.js

 ├ ─ ─ package.json

 └ ─ ─ package-lock.json

Figure 6. Employee application file structure.

The above Figure 6 shows the file structure of the mobile app which be used by the employee. The

‘App.JS’ file is the main master file. The assets like icons are stored in the appropriate named

assets folder. Individual components like the login page, ‘customTime’ form and ‘changePassword’

form and main page are stored in the component folder which will be imported into the app.JS file

to show at the appropriate time.

4.2.2 Employer Website:

└ ─ ─ server

 ├ ─ ─ app

 │ ├ ─ ─ passport

 │ ├ ─ ─ routes

 │ └ ─ ─ services

 ├ ─ ─ app.js

 ├ ─ ─ bin

 │ └ ─ ─ www

 ├ ─ ─ config

 │ ├ ─ ─ index.js

 │ └ ─ ─ schema.js

 ├ ─ ─ lib

 │ ├ ─ ─ db.js

 │ └ ─ ─ logger.js

 ├ ─ ─ package.json

 ├ ─ ─ package-lock.json

 ├ ─ ─ public

 │ ├ ─ ─ assets

 │ └ ─ ─ logos

 └ ─ ─ views

 ├ ─ ─ errors

 ├ ─ ─ index.ejs

 ├ ─ ─ layouts

 ├ ─ ─ login.ejs

 └ ─ ─ pages

Figure 7. Backend, and employee website.

In the above Figure 7 contains the backend API and employee website files.

In this file, there are 3 main folders: app, public and views, these folders contain the main part of
this part of the project. The app folder contains 3 sub-folders, ‘passport’ containing the logic for
checking and enriching the user credential. Routes responsible for handling different routes of the
API. Services are for SQL calls to the database. Inside the public folder are the assets like logos
and JS files. Views folders responsible for the employee website view file, written in EJS, these

files are sent when an authorized user access certain routes including errors like 404 or invalid
routes.

The other 3 folders: ‘bin’, ‘config’, and ‘lib’ responsible for the initialization of the server. The bin
folder contains the script that would be run when the server initiates. Config and lib contain the
information required by the application like MySQL credentials, ports, and console logging format.

4.3 Technology thought process and decision

4.3.1 Front-end:

The front end of this project makes use of 2 different technology, EJS and React Native JS.

For the employer side, the choice of EJS provides a quick and lightweight way to show data to the

user. EJS in simple terms is an HTML file but can use JavaScript logic throughout to make the

process easier. While it is entirely possible to do just an HTML file, EJS ‘include’ keyword allows

the author to segment the common components to use across different pages to reduce repetition

and allow a more consistent look. Another alternative would be using another front-end framework

like React or Angular, however, the requirement for this part of the project is only for simply showing

data and updating data using forms, the uses of EJS satisfied the requirement while being the

simplest solution while still allow expansion if needed in the future.

For the employee site, with the need of being able for the employee to use their phone to check in

to their workplace, the application needs to be coded in a way that it can work on 2 major phone

operating systems: Android and iOS. To full fill this requirement, there are 3 main options, one is

to use a web app, 2 is to use a native app, and the last is a hybrid app. The option of native apps

requires the developer in this case, the author to write 2 different code bases, one for each platform,

which complicated the process for a one-person team. The first option which is the traditional web-

site used in a browser, comes with the benefit of the user can use the app without having to down-

load or install additional applications directly on their device. However, the web app experience is

also affected by which browser is used by the user, and web app tends to have features like buttons

and menu bar that are difficult to use on a phone. The last option, a hybrid app is, as the name

suggests, a between a traditional web app and a native app, in that it can be written with a single

code base like a web app but can be translated into and used native feature (13.) It makes the

process of making this application easier since while the targeted audience using a phone, the

application does not require a large amount of device resources. From the pros and cons of said

options, hybrid apps full fill the requirement the most. Within a hybrid app platform, React Native

not only full fill the technical requirement for the project, but it also full fills the personal requirement

of this project for the author as it is written in JavaScript which is the language the author wanted

to improve in.

4.3.2 Back-end:

The backend of this project uses Express JS and MySQL.

ExpressJS provides an easy and simple way to create an API for the uses of this project. There
are other alternatives to ExpressJS like NestJS or Fasify, each comes with its pros and cons. How-
ever, with the timeframe and the scope of the project, which is for small businesses without too
much traffic, the author decided on ExpressJS due to the experience of working with it in past
projects.

MySQL is the database of choice for this project. There are other alternatives like PostgreSQL or
MongoDB. However, the scope of this project is small, without needing complicated queries or
databases, making MySQL for its ease of use, author familiarity and fast to set up while not com-
promising on speed compared to its competition in this scope of the project a perfect choice.

4.3.3 Authentication:

The project required the user to log in on both the employee side and the employer side. There are

a lot of options to achieve this, in this section, we will evaluate and choose one from 3 options:

cookie-based, token-based and OpenID. Cookie-based authentication uses cookies to handle user

authentication. In this method, after the user posts the credential, the server will verify and create

a session with the session ID. This ID is stored in the server and then send to the user using a

cookie. Subsequent requests will require this cookie to work. Token-based works similarly but in-

stead of saving the token in the server, the token will be saved in the local storage on the client

side. Token-based authentication does not require the server to remember the interaction between

it and the client. Each token is a self-contained string which includes enough data for the server to

verify the user (14.) The last way or OpenID is using a third-party identity provider for the user to

log in. However, since this application is meant for business use which might require a certain part

of the application to run locally only on the business's server, this way of authentication would not

work. Between token-based and cookie-based authentication, the main difference is where it is

stored and how the server tracks user interaction (15.) In this case, the user needed to be tracked

across different requests in a session which makes cookie-based authentication the better choice.

4.4 Frontend UI decision

All frontends of both applications will be broken down into small components.

4.4.1 Employer website:

In this case, using EJS, the header, footer, and each modal used for forms are contained in a

separate EJS file and stored accordingly to keep the design consistent across multiple pages.

Header and footer are stored in ‘/views/layout/header’ and ‘/views/layout/footer’ respectively.

HTML header where packages and script are included also will be done in a separate file to keep

the file clean and easy to read and modify.

Each page will be shown by using the ‘include’ statement from EJS in a master EJS file.

After that, the master file will be included in the ‘index.EJS’ which also includes header, html header,

footer, and logic to send JavaScript script according to which view file is sent to the frontend.

4.4.2 Employee application

This application is simplistic in terms of design. It only has 4 main pages: login page, main page,

change password form and change custom time form.

However, it will still be broken down into components, and be included in the main ‘app.JS’ file.

Figure 8. an example of importing component to ‘app.JS’..

5 IMPLEMENTATION

5.1 Employer Website and Backend API

5.1.1 Database Model

There will be 4 main tables: ‘admin’, ‘employee’, ‘employee_checkin_time’ and settings in this pro-

ject database. Figure 9 is the visualisation of the database which will be used for this project. In

Figure 20 in the appendix section, the author includes a schema of the database. The admins and

employee table are used to store the admin and employee credentials and other data with the

password hashed for security reasons. In ‘employee_checkin_time’, data involving time in and out

of the employee are stored, ‘employee_id’ column is used to reference between this table and the

employee table. The settings table will be used to contain other data like the location of the work-

place to avoid hardcode the location in the application. The ‘working_time’ field of the table is con-

figured to accept JSON files which allow for expansion in the future in terms of setting the exact

working time for each role or payment per hour.

Figure 9. Visualisation of the database table.

5.1.2 Backend API

The backend API of this project contains 6 main routes: ‘/auth’, ‘/admins’, ‘/login’, ‘/’, ‘/employee’,

‘/settings’. In these 6 routes, only ‘/login’ is openly accessible, the rest requires either a session ID

which is received by using login or an API key. When a user tries to access other routes without a

session ID or API Key, they will be redirected back to login. When accessing ‘/login’, the client will

receive an EJS file which contains the form to enter their credential, if correct, the server will create

a session and send a session ID back to the user which will be used to access other routes. In case

‘/login’ does not work, credentials can be sent directly to ‘/auth/login’ to retrieve a session ID .’/em-

ployee’ route is the only other route that does not require a session ID but required an API Key,

this route is used for the employee application in which the API is stored in. ‘/admins’ and ‘/em-

ployee’ and ‘/settings’ are used to retrieve/ enter data related to the name of the respective route.

More detailed documentation of the API can be found in the appendix.

5.1.3 Authorization

To authorize the user, in this project, Redis and passport middleware creates a session.

Users who access the website for the first time or logged out at the last accessed time, regardless

of which route will be redirected back to ‘/login’ if not authorized.

When redirected to ‘/login’, the user will be prompted to input their account credential including

email and password. After the credential is submitted, data will be sent to the server in the body

using POST to ‘/auth/login’. The server then trimmed and lowercase the received email data to

search in the database using ‘adminServices’. If the email does not exist, then the server will send

a message back to the client. If an entry can be found with the given email, then the password will

be compared to the hashed password stored in the database. Credential is authenticated using

passport Local Strategy to be serialised or deserialised. User session data is then stored using

Redis store.

5.1.4 Listing users, changing passwords, and adding new users

Listing users

Employee and employer are both listed in ‘/employee’ and ‘/employer’ respectively. Data are pagi-

nated, sorted, and searched using the Datatable library. Data are sent from the database alongside

the view file. Data is then parsed using the ‘for’ statement in the EJS file to be initiated into a

Datatable.

Change the password, and Create New User

Both actions are done using forms. Both action forms are using bootstrap modals, and open using

a button. Create new user button is above the listing table, allowing admins to add another admins

user. The change password button for an individual user is on their page where more detailed data

are shown. When data are submitted to the server, they will be validated. For changing the pass-

word, the old password will be compared to the hashed password in the database then the new

password will be hashed and changed in the database, replacing the old one. For creating a new

user, the email needs to be unique so no other entry with the same password should be found in

the database.

5.1.5 Creating a new employee account:

Creating new employee data are entered by a form which in a modal, opens using a button above

the employee list. Data needed to create a new employee are their name both first and last, in

separate input, and their date of birth, shown in Figure 10. The custom email is then created using

the first 2 letters of both their first and last name with the last 2 digits of their year of birth. If an

email already exists, a number will be added at the end and its numeric value will continuously

increase until a valid email is found. The new account is then prompted as in Figure 11.

Figure 10. Adds a new employee form.

Figure 11. New employee account created.

5.1.6 Showing time data by day or month

First, the time data of the employee will be grabbed from ‘/employee/{employeeID}’. Data will be

shown in the default setting of per day work time in a chart using the ChartJS library. How the data

is grouped is selected using a dropdown which includes 2 options of day and month. This dropdown

will trigger an ‘onChange’ function once it changes. Then the data will be calculated and added to

a ‘modifiedData’ array which includes a date (‘DD/MM/YYYY’ for the day option and ‘MM/YYYY’ for

the month option) and work time according to the data. When data is calculated, the chart will

change accordingly.

5.2 Employee Application

5.2.1 Authorization

To authorize the user, the application after receiving the login credential from the login form will be

sent a POST HTTP request to ‘/employee’ with the data. After the server verifies the credential, the

application receives a code 200 with a success message and the employee for future requests.

‘isLogin’ state then changes to true, allowing the user to access other pages in the application.

5.2.2 Location Checking

When a user clicks on the check-in or check-out buttons, the coordinate of the user will be deter-

mined using the geolocation library. The coordinate which includes latitude and longitude then send

to Google geocoding API to get the location. The address in the ‘formatted_address’ in the re-

sponse JSON received from Google API, then is sent to ‘/employee/time’ using a POST request.

After the address is sent to the backend, it would be compared to the set address of the workplace.

If the address is correct, then the time which is sent along with the address will be logged into the

system and counted for the employee.

5.2.3 Submit customised work time and change password

Users can send customised worktime and change their password in the application. Both actions

are sent using a form. To submit customised work time, users need to fill in their start and end work

time. The data will be sent in 2 separate HTTP requests, one for ‘in’ time and one for ‘out’ time,

with the same format for normal check-in/check-out except with no location and ‘custom_time’ set

to 1. To change the password, both old and new password need to be entered, then send to the

server with POST protocol with the data a JSON format in the body. If the data is correct and the

action succeeds, the user will be redirected back to the main menu.

6 TESTING METHOD AND RESULT

6.1 Testing

Due to time constraints, testing for this project are mainly using human interaction with the product

and using postman for testing the API. The application is tested with wrong data input, trying to

access routes which are supposed to be private. The application also stress-tested with a large

amount of data in the database, created using a custom script in the MySQL database (Figure 12).

‘data’ table is a table that contains a set of valid data.

`

CREATE DEFINER = ‘root’@’localhost’

PROCEDURE ‘INSERTRAND’ (IN numRows INT)

BEGIN

 DECLARE i INT;

 SET i = 1;

 START TRANSACTION;

 WHILE i <= numRows DO

INSERT INTO admins (first_name, last_name, role, email, password)

VALUES (

(SELECT first_name FROM data ORDER BY RAND() LIMIT 1),

 (SELECT last_name FROM data ORDER BY RAND() LIMIT 1),

 (SELECT role FROM data ORDER BY RAND() LIMIT 1),

(CONCAT(MD(UUID()), ‘@TEST.OAMK’),

(SELECT password FROM data ORDER BY RAND() LIMIT 1)

);

SET i = i + 1;

END WHILE;

COMMIT;

END

`

Figure 12. Code for the procedure to generate data for testing.

6.2 The result compared to the goal.

6.2.1 Employer website

The result of the employer website does allow the user to log in with the admin email and password.

After entering the credential, the user will be prompted according to whether the credential is correct

or not.

Figure 13. The login page of the employer website.

Upon entering the website, the user can see the list of all the admin, or the employee depending

on which tab the user chooses in the navigation bar (Figure 15). There are also forms available for

inputting new accounts or changing passwords. In the lists of both admins and employees, the user

can sort the table, choose to show the number of entries per page as it is paginated and search for

the entry required(Figure 14).

Figure 14. Example of a list of users along with their roles, name, and last login time.

Figure 15. Navigation bar.

In the form to add new admins(Figure 16), the email will need to be unique, or the user will be

prompted to enter a new unique email as the email will be used to log in.

Figure 16. Example of a form.

On each employee profile page, the employer can see their details (Figure 17) and their work time

both on per day or monthly basis (Figures 18 and 19).

Figure 17. Employee details.

Figure 18. Total work hour chart group by day.

Figure 19. Total work hours sorted by month.

Compared to the set goals, the employer website result had fulfilled all of it from login, seeing all

the employee data to sorting the working hour by day and month.

6.2.2 Employee Application

The result application is a working hybrid application using React Native. The screenshot in this

section is taken using Expo web view (Figure 21) and an Android simulator (Figure 20) to show

that it works both as a web app and natively in an Android environment This application allows the

user to log in using their credential (Figure 20).

Figure 20. login page of the mobile app.

After login, the user can access the main page which contains a button for check-in, checkout,

change password, custom check-in/out and logout which fulfilled the goals for the application set

out in the Goal section.

Figure 21. The main page of the employee’s application.

7 CONCLUSION

The main objective of this thesis is to create a system in which there are a website, a backend API,

and a mobile application for small business to monitor their employee worktime using GPS as a

tool to check in and check out of the workplace. During the making of this project, the author learnt

more in-depth about React Native, Express JS, MySQL and SQL and JavaScript and API.

The result of the project while having fulfilled the goal set out at the beginning, it still hasn’t reached

the point where it can be deployed to the production level and be used as an employee manage-

ment system. The GPS while does result in an accurate address each time, the author had to point

out that the location in which the system is tested is only in Oulu, Finland and the premises of the

address used for testing is quite large, in a more dense area like in the middle of the city centre

where premises of each business is small, the GPS might result in an inaccurate reading, rendering

the time recorded inaccurately. The design of the application UI is also still very basic with white

background and blue buttons, which are not pleasing to the eyes and can be not very end-user

friendly. However, the project is built that new functionality, and the changing of the UI element are

easily implemented in the future.

Due to the scope of the project, some areas haven’t been monitored such as deploying the appli-

cation on a public domain using AWS or similar services or testing with scripts. The application had

only successfully deployed on a local level which did successful and functional.

The result of this project is a management system that with more refinement can be used in small

businesses that required their employee to be in the physical location like small restaurant or small

shops.

7.1 Future Improvement

Due to time constrain, testing wasn’t done with any testing script which would provide a better and

more precise result. In future versions, other than the unfulfilled goals, salary calculation with cus-

tom tax, salary for overtime, and insurance should be added for a more complete experience for

small businesses which this app aims at. Furthermore, in the working hour chart, more ways of

sorting like sorting in a user-set time range would be better for the employer.

REFERENCES

1. About Node.js. Node.js. [Cited: 20 April 2023.] https://nodejs.org/en/about.

2. About npm. npm Docs. [Cited: 20 April 2023.] https://docs.npmjs.com/about-npm.

3. ExpressJS. [Cited: 20 April 2023.] https://expressjs.com/.

4. Oracle. What is MySQL? [Cited: 20 April 2023.]. https://dev.mysql.com/doc/refman/8.0/en/what-

is-mysql.html.

5. Eemisse, Matthew. EJS. EJS. [Cited: 20 April 2023.] https://ejs.co/.

6. Meta OpenSource. React Native. React Native. [Cited: 20 April 2023.] https://reactnative.dev/.

7. Expo. Overvew. Expo docs. [Cited: 20 April 2023.] https://docs.expo.dev/overview/.

8. Google. Google API overview. Google Maps Platform. [Cited: 20 April 2023.]

https://developers.google.com/maps/documentation/geocoding/overview.

9. Postman, Inc. About Postman. Postman. [Cited: 20 April 2023.]

https://www.postman.com/company/about-postman/.

10. Mozilla Foundation. Basic of HTTP. mdn web docs. [Cited: 20 April 2023.]

https://www.postman.com/company/about-postman/.

11. Redis Ltd. Introduction to Redis. Redis. [Cited: 20 April 2023.] https://redis.io/docs/about/.

12. National Geographic Society. GPS. National Geographic. [Cited: 20 April 2023.]

https://education.nationalgeographic.org/resource/gps/.

13. Amazon Web Service, Inc. What's The Difference Between Web Apps, Native Apps, And Hybrid

Apps? AWS. [Cited: 20 April 2023.] https://aws.amazon.com/compare/the-difference-between-

web-apps-native-apps-and-hybrid-apps/.

14. Fatunmbi, Teniola. A Comparison of Cookies and Tokens for Secure Authentication. Okta

Developer. 8 Feb 2022. [Cited: 20 April 2023.]

https://developer.okta.com/blog/2022/02/08/cookies-vs-tokens.

15. Madurai, Vivek. Different ways to Authenticate a Web Application. Medium. 5 Feb 2018. [Cited:

20 April 2023.] https://medium.com/@vivekmadurai/different-ways-to-authenticate-a-web-

application-e8f3875c254a.

APPENDIX

CREATE TABLE `admins` (
 `id` int PRIMARY KEY NOT NULL AUTO_INCREMENT,
 `email` varchar(128) NOT NULL DEFAULT "",
 `password` varchar(64) DEFAULT "",
 `name` varchar(128) NOT NULL DEFAULT "",
 `role` varchar(128) DEFAULT NULL,
 `created` datetime NOT NULL DEFAULT (CURRENT_TIMESTAMP),
 `last_login` datetime DEFAULT NULL,
 `is_active` tinyint NOT NULL DEFAULT "1"
);
CREATE TABLE `employee` (
 `id` int PRIMARY KEY NOT NULL AUTO_INCREMENT,
 `email` varchar(128) NOT NULL DEFAULT "",
 `password` varchar(64) DEFAULT "",
 `name` varchar(128) NOT NULL DEFAULT "",
 `created` datetime NOT NULL DEFAULT (CURRENT_TIMESTAMP),
 `last_login` datetime DEFAULT NULL,
 `is_active` tinyint NOT NULL DEFAULT "1"
);

CREATE TABLE `employee_checkin_time` (
 `id` int PRIMARY KEY NOT NULL AUTO_INCREMENT,
 `type` ENUM ('in', 'out') NOT NULL,
 `time` datetime NOT NULL,
 `employee_id` int NOT NULL,
 `custom_time` tinyint NOT NULL DEFAULT "0"
);

CREATE TABLE `settings` (
 `id` int NOT NULL AUTO_INCREMENT,
 `working_time` json DEFAULT NULL,
 `location` varchar(256) DEFAULT NULL
);

CREATE UNIQUE INDEX `email` ON `admins` (`email`);

CREATE UNIQUE INDEX `email` ON `employee` (`email`);

ALTER TABLE `employee` ADD FOREIGN KEY (`id`) REFERENCES
`employee_checkin_time` (`employee_id`);

Appendix 1. Database table create command.

Appendix 2. API documentation.

‘/auth/login’: Get login cookie to access admins and time route.

POST

 Request:

o Body: JSON

{

email : string,

password : string

}

 Response:

o If credential correct:

 Return cookies and Raw/JSON in body :

{ success : ‘logged in!’ }

o If credential incorrect:

 Return errors.

’/login’

GET

 Request: Doesn’t has any requirement.

 Response:

o Return login.EJS

/

GET

 Request:

o Header:

 Include cookies received after /auth/login.

 Response:

o If correct cookies:

 Return ‘index.EJS’.

o Incorrect cookies:

 Redirect to ‘/login’.

‘/admin/’

GET: Get admin list page.

 Request:

o Header:

 Include cookies received after ‘/auth/login’.

 Response:

o If correct cookies:

 Return ‘list.EJS’.

o Incorrect cookies:

 Redirect to ‘/login’.

GET: Get admin page with ID number.

 Request:

o Header:

 Include cookies received after ‘/auth/login’.

o Params: ‘/{ID : int}’

 Response:

o If correct cookies:

 Return admin data in form of EJS file for display.

o Incorrect cookies:

 Redirect to ‘/login’.

o Invalid ID:

 Redirect to ‘/admin’

 Return code 401 with message in body: ‘{ errors : ‘Invalid ID’ }’.

‘/admin/new’

POST: Add new admin.

 Request:

o Header:

 Include cookies received after ‘/auth/login’.

o Body:

{

name : string,

password : string,

role : string,

email : string

}

 Response:

o If correct cookies:

 Return code 200 with success message in body.

o Incorrect cookies:

 Redirect to ‘/login’

o Duplicate email or empty:

 Redirect to /admin

 Return code 401 with error message in body.

‘/admin/password’

POST: change password for admin with ID:

 Request:

o Header:

 Include cookies received after ‘/auth/login’.

o Body:

{

password : string,

newPassword : string,

}

 Response:

o If correct cookies:

 Return code 200 with success message in body.

o Incorrect cookies:

 Redirect to ‘/login’.

o Incorrect old password or empty new password:

 Redirect to ‘/admin’

 Return code 401 with error message in body.

‘/employee/’

GET: Get employee list page.

 Request:

o Header:

 Include cookies received after ‘/auth/login.’

 Response:

o If correct cookies:

 Return ‘list.EJS’

o Incorrect cookies:

 Redirect to ‘/login’.

POST: To verify employee credential

 Request:

o Params : include API key:

‘/employee/API_Key’

o Body:

{

email : string,

password : string

}

 Response:

o If correct credential:

 Return code 200 and JSON:

{

 employeeId : int,

 success : ‘logged in’

}

o Incorrect credential:

 Return code 401 and error message.

{ errors : Error Message }

GET: Get employee page with ID number.

 Request:

o Header:

 Include cookies received after ‘/auth/login’.

o Params: ‘/{ID : int}’

 Response:

o If correct cookies:

 Return employee data in form of EJS file for display.

 Format:

{

 ID : int,

 email: string,

 name: name,

 created : datetime,

 timeData: {

 [

 date : date (DD/MM/YYYY),

 workTime : float (round to the first deci-

mal place)

],

[

…

],

…

}

}

 timeData are calculated in the server to consolidate workhour to

individual day from check-in and check-out data.

o Incorrect cookies:

 Redirect to ‘/login’

o Invalid ID:

 Redirect to ‘/admin’

 Return code 401 with message in body: { errors : ‘Invalid ID’ }

‘/employee/time’

POST Send in check in/out request with time and location to check in/out.

 Request:

o Params : include API key:

‘/employee/time/API_Key’

o Body:

{

 ID : int,

type : string (accept ‘in’ or ‘out’),

time : datetime,

customTime: in (accept 1 or 0),

location : string

}

 Response:

o If correct API key and correct syntax:

 Return code 200 and JSON:

{

 success : ‘Checked in/out’

}

o Incorrect syntax/ Incorrect Location:

 Return code 401 and error message.

‘{ errors : Error Message }’

‘/settings’

GET Get the setting.EJS file.

 Request:

o Header:

 Include cookies received after ‘/auth/login’.

 Response:

o If correct cookies:

 Return ‘settings.EJS’

o Incorrect cookies:

 Redirect to ‘/login’

POST Get the current setting.

 Request:

o Header:

 Include cookies received after ‘/auth/login’.

 Response:

o If correct cookies:

 Return code 200 and JSON file containing current settings.

{

 workingTime :

{

 in : string (between ‘0000’ and ‘2400’)

 out : string (between ‘0000’ and ‘2400’)

 },

 location : string

}

o Incorrect cookies:

 Redirect to ‘/login’.

‘/settings/update’

POST Update current setting.

 Request:

o Header:

 Include cookies received after ‘/auth/login’.

o Body:

 Include a JSON file containing the new settings.

{

 workingTime :

{

 in : string (between ‘0000’ and ‘2400’)

 out : string (between ‘0000’ and ‘2400’)

 },

 location : string

}

 Response:

o If correct cookies and correct format:

 Return ‘list.EJS’

o Incorrect cookies:

 Redirect to ‘/login’.

o Incorrect format:

 Return code 401 and error message.

