
	

	

Analysis and Evaluation of Similarity Metrics in Collaborative
Filtering Recommender System

Shuhang Guo

Bachelor's thesis of the Degree Programme in Business Information Technology

Bachelor of Business Administration

TORNIO 2014

	

	

ABSTRACT

KEMI-TORNIO UNIVERSITY OF APPLIED SCIENCES

Degree programme: Business Information Technology
Writer: Guo, Shuhang
Thesis title: Analysis and evaluation of similarity metrics in

collaborative filtering recommender system
Pages (of which appendix): 62 (1)
Date: May 15, 2014
Thesis instructor: Ryabov, Vladimir

This research is focused on the field of recommender systems. The general aims of
this thesis are to summary the state-of-the-art in recommendation systems, evaluate
the efficiency of the traditional similarity metrics with varies of data sets, and
propose an ideology to model new similarity metrics.

The literatures on recommender systems were studied for summarizing the current
development in this filed. The implementation of the recommendation and evaluation
was achieved by Apache Mahout which provides an open source platform of
recommender engine. By importing data information into the project, a customized
recommender engine was built. Since the recommending results of collaborative
filtering recommender significantly rely on the choice of similarity metrics and the
types of the data, several traditional similarity metrics provided in Apache Mahout
were examined by the evaluator offered in the project with five data sets collected by
some academy groups.

From the evaluation, I found out that the best performance of each similarity metric
was achieved by optimizing the adjustable parameters. The features of each
similarity metric were obtained and analyzed with practical data sets. In addition, an
ideology by combining two traditional metrics was proposed in the thesis and it was
proven applicable and efficient by the metrics combination of Pearson correlation
and Euclidean distance.

The observation and evaluation of traditional similarity metrics with practical data is
helpful to understand their features and suitability, from which new models can be
created. Besides, the ideology proposed for modeling new similarity metrics can be
found useful both theoretically and practically.

Keywords: recommender systems, algorithms, CF, similarity metrics.

3	

	

CONTENTS

ABSTRACT

ABSTRACT .. 2

FIGURES .. 5

1 INTRODUCTION ... 7

1.1 Background and motivation ... 7

1.2 Objectives ... 9

1.3 Structure of thesis ... 10

2 RESEARCH SCOPE, QUESTIONS, METHODOLOGY .. 12

2.1 Research scope ... 12

2.2 Research questions ... 12

2.3 Research methodology ... 14

3 CURRENT DEVELOPMENT SITUATION OF RECOMMENDER SYSTEM 17

3.1 Recommender systems and the classification .. 17

3.2 Similarity metrics in recommender systems .. 20

3.3 Application of recommender systems in E-commerce 22

4 IMPLEMENTATION OF RECOMMENDER SYSTEM IN WINDOW 7 BY

APACHE MAHOUT .. 24

4.1 Introduction to recommendation in Apache Mahout ... 24

4.2 Installation of Apache Mahout ... 25

4.2.1 Software preparation .. 25

4.2.2 Computer configuration ... 26

4.2.3 Setting up Mahout within Eclipse ... 26

4.3 Building a customized recommender engine ... 27

5 EVALUATION OF TRADITIONAL SIMILARITY METRICS AND NEW

PROPOSED METRIC .. 28

4	

	

5.1 Parameters optimization for CF recommender .. 28

5.2 Impact of data size on recommendation ... 37

5.3 Similarity metrics evaluation in various cases ... 41

5.3.1 Book-Crossing data ... 41

5.3.2 Online Dating data ... 42

5.4 Evaluation of the new similarity metric ... 44

6 CONCLUSION .. 47

REFERENCES ... 51

APPENDIX ... 62

5	

	

FIGURES

Figure 1. Evaluation for Pearson correlation similarity in User-based CF: left, with

NearestN neighborhood as criteria; right, with the threshold as criteria. 29

Figure 2. Evaluation for Euclidean distance similarity in User-based CF: left, with

NearestN neighborhood as criteria; right, with the threshold as criteria. 30

Figure 3. Evaluation for City Block similarity in User-based CF: left, with NearestN

neighborhood as criteria; right, with the threshold as criteria. 31

Figure 4. Evaluation for uncentered Cosine similarity in User-based CF: left, with

NearestN neighborhood as criteria; right, with the threshold as criteria. 31

Figure 5. Evaluation for Spearman correlation similarity in User-based CF: left, with

NearestN neighborhood as criteria; right, with the threshold as criteria. 32

Figure 6. Evaluation for Tanimoto coefficient similarity in User-based CF: left, with

NearestN neighborhood as criteria; right, with the threshold as criteria. 33

Figure 7. Evaluation for Log Likelihood similarity in User-based CF: left, with

NearestN neighborhood as criteria; right, with the threshold as criteria. 33

Figure 8. The impact of different ratio of the data used for evaluation to the

neighborhood selection criteria: left, criterion by NearestN neighborhood; right,

criterion by threshold. .. 35

Figure 9. The comparison of the effect of different similarity metrics on User-based

CF with 100K MovieLens data. ... 37

Figure 10. Plots to show that the evaluation results are independent from the ratio of

the data employed for the testing: left, in the case of 1M data; right, in the case of

10M data. ... 38

Figure 11. Evaluation of Euclidean distance similarity at neighborhood threshold of

0.5 with 100K, 1M and 10M MovieLens data. .. 38

Figure 12. Histograms to compare the performance of seven similarity metrics at the

corresponding best threshold values on 100K (black), 1M (red) and 10M (blue)

MovieLens datasets. ... 39

Figure 13. Evaluation of the similarity metrics on Book-Crossing data with

neighborhood threshold from 0.1 to 0.9. .. 41

Figure 14. Evaluation of the similarity metrics on online Dating data with

neighborhood threshold from 0.1 to 0.9. .. 43

6	

	

Figure 15. Comparison of the performances of Pearson correlation, Euclidean distance,

and the combined similarity metrics on MovieLens 100K data (A), Book-Crossing

data (B) and online Dating data (C). .. 45

7	

	

1 INTRODUCTION

1.1 Background and motivation

With the quick development of computer and network techniques in the past decades,

e-commerce has become shoring of online activities. Increasing attention has been

paid to online shopping, since it is convenient and timesaving (Chang 2003; Davies

1995). To date, overwhelming amount of information is freely available on Internet

(Ghosh 2002), which undoubtedly facilitates people’s lives. However, the information

posted on Internet is not with uniform quality (Shank 2008) and too much information

increases the difficulty for sieving. Therefore, a filter is necessary. In view of this, a

useful technique named recommender system, sometimes it is also referred to as

recommendation system, has been widely used over the world immediately after it

was born. (Ricci & Rokach & Shapira 2011, 1.)

The recommender systems studied as an independent research area can be tracked

back to the mid-1990s when a series of conferences were held, where some

conference papers on collaborative filtering (hereinafter CF) were published (Resnick

& Iakovou & Sushak & Bergstrom & Riedl 1994, 175; Hill & Stead & Rosenstein &

Furnas 1995, 194). Since then, recommender systems have continuously been a

research discipline with considerable concern. A large amount of research papers and

books emerged, of which some focused on the review work of the development

situation and others worked on solving the existing problems (Montaner & Lopez &

Rosa 2003; Adomavicius & Tuzhilin 2005, 743; Herlocker & Konstan & Terveen &

Riedl 2004, 5; Beel & Langer & Gipp & Genzmehr & Nürnberger 2013a, 7-10; Beel

& Langer & Gipp & Genzmehr & Nürnberger 2013b, 15-17; Huangfu & Lin & Zhou

2009, 54-57). In addition, the practicality of recommender systems pushed them to the

industry area as well. Many e-commerce websites and electronics companies establish

the research and development department to specialize in this field and directly

combine the results into application. For instance, Amazon.comTM provides

recommendations of products to their users and even non-registered guests. The

products involve many fields, including books, CDs, electronics, clothes and so on.

Amazon’s recommendation methods are complex, however, it is centered on item-to-

8	

	

item CF (Linden & Smith & York 2003, 76-80). Youtube recommends videos to their

users. If one has a YouTube account, YouTube records every video he/she has seen or

just browsed. Based on the watching history, YouTube predicts which videos might

be interesting to him/her and then they would be recommended. Different with

Amazon, YouTube mainly conducts the recommendation by combining the related

videos association rules with the users’ personal behaviors. (Cha & Kwak &

Rodriguez & Ahn & Moon 2007, 1-14; Gill & Arlitt & Li & Mahanti 2008; Zink &

Suh & Gu & Kurose 2008; Davidson & Liebald & Liu & Nandy & Vleet & Gargi &

Gupta & He & Lambert & Livingston & Sampath 2010, 293-296.)

In general, recommender systems are designed to help users reduce overload

(Adomavicius & Tuzhilin 2005, 743). They are tools or techniques to provide

personalized suggestions to users (Sarwar & Karypis & Konstan & Riedl 2000, 285).

In other words, considering users’ needs or interests, recommender systems pick up

small amount but accurate information from large-scale data, in order to achieve the

aim of information screening. As a subclass of information screening system,

recommender systems seek to predict the users’ ratings or preference on items, and

then intellectively recommend to users according to users’ personal history activities

and the features of the items. (Li & Hsu &Lee 2011, 8.)

With the development in this area, several types of recommendation systems grew up

(Papagelis & Plexousakis 2005, 781). They are commonly CF, content-based filtering

and hybrid filtering recommendation systems. They conduct predictions based on

different indicators. Each system has its intrinsic merits and demerits. Accordingly,

the selection of recommender system in a specific situation depends on the particular

environment. For instance, the cold start problem deactivates the CF recommendation

(Schein & Popescul & Ungar & Pennock 2002, 253; Bobadilla, Ortega, Hernando &

Gutiérrez, 2013). Before collecting enough data, other methods such as content-based

recommendation should be exploited. Meta data is required to make the content-based

recommendations, whereas, CF can solve this problem (Bellogín & de Vries 2013, 13).

Actually, content-based filtering can be employed to screen the results of CF

recommendations (Bogers & Bosch 2009, 1; Campos & Fernándex-Luna & Huete &

9	

	

Rueda-Morales 2010, 785). Therefore, in real life, the combination of CF and content-

based filtering methods are always exploited to make recommendations.

Recommendation is a complex process and many factors can influence the

recommending results, among which, similarity metric is undoubtedly a crucial one

(Bellogín & de Vries 2013, 13). The traditional calculation methods on similarity

include Pearson correlation similarity, Euclidean distance similarity, Cosine-based

similarity, City Block similarity, Log Likelihood similarity, Spearman correlation

similarity and Tanimoto coefficient similarity.

Even though the research on recommendation systems has proceeded for over thirty

years and many breakthroughs were realized in every aspect, problems still exist.

Every time when I exert myself to search a preferred movie, a song or a piece of

favorite clothes out of the thousands of choices from Internet, I am not satisfied with

all the recommendations made by the website. Accordingly, given the importance of

the similarity metrics, my motivation of this study refers to finding the most suitable

similarity metrics for CF recommender system in certain practical cases and

modelling a new metric in terms of better predictions.

1.2 Objectives

The first objective is to summarize the present research situation on recommender

system. I investigate the existing recommendation methods, which are Collaborative

filtering, Content-based filtering and Hybrid recommendation as well as their

mechanisms. The strengths and weakness of each recommendation methods are

pointed out as well. Some traditional similarity algorithms are widely used in the

existing recommendation systems (Adomavicus & Tuzhilin 2005; Kim & Ji & Ha &

Jo 2010, 75). By analyzing the mathematical formulas of the similarity algorithms, I

expand on the principle of each algorithm including Pearson correlation similarity,

Euclidean distance similarity, Cosine-based similarity, City Block similarity, Log

Likelihood similarity, Spearman correlation similarity and Tanimoto coefficient

similarity.

10	

	

Evaluating the traditional similarity algorithms is the second objective of the present

research. Before conducting the evaluation, obtaining recommendations or predictions

from datasets with different algorithms is indispensable. The recommendations are

implemented by way of Taste, which is a useful application in Apache Mahout (The

Apache Software Foundation 2014a). Taste enables to achieve the implementation of

recommendation engine and also provides free implantation of similarity metrics both

on stand-alone and on Hadoop platform. The software tools for building Taste include

JDK, Eclipse, Maven, and MySQL. The roles of aforementioned software and the

installation are presented in the fourth chapter of the thesis. Once the recommendation

engine is built, some datasets accessible online could be adopted. Recommendations

or predictions are performed by each algorithm. Several methods could be used for

the evaluation of the recommendations: the recommendations can be compared with

users' real decisions, for which it needs to separate the dataset into training set and

testing set; datasets with different scales of ratings can help to test its effect to

recommendation results. In addition, Taste also contains a sub-application for

evaluating the similarity metrics.

The traditional similarity metrics have their own shortcomings. Among them, Pearson

correlation, uncentered Cosine and Spearman correlation metrics measure the cosine

of the vectors defined by users’ ratings on items. They neglect the distance between

the vectors. Euclidean distance and Manhattan distance metrics emphasize the

distances but overlook the trend of the ratings users gave. Tonimato coefficient and

Log Likelihood metrics do not take the exact rating values into consideration and

regard all the rated items as preferences. The features of these metrics may lead to

unreasonable similarity between users or items. In this sense, the last objective of this

thesis is providing a model of new similarity metric and evaluating it with real data.

1.3 Structure of thesis

The structure of this thesis is as follows. Chapter 2 defines the scope of this research:

answers to three research questions and corresponding research methodologies are

presented. In Chapter 3, the state-of-the-art in the field of recommendation systems is

11	

	

focused on. CF, content-based filtering and mixed filtering recommendation systems

as well as their recommendation mechanisms are summarized in the first section.

Issues related to traditional similarity measures are stated in the second section. The

last section of this Chapter involves in the application of recommender systems in E-

commerce. Chapter 4 and Chapter 5 are related to practical parts, including

implementation of recommender engine in Windows 7 with Apache Mahout and

assessing traditional similarity metrics. The configurations of computer and

installation details of required software tools are discussed in Chapter 4. Evaluation of

seven frequently used similarity metrics is the main concern of Chapter 5. In addition,

a new model of similarity metric is proposed according to the features of the

traditional metrics. The Chapter 6 concludes the present research and outlooks the

future.

12	

	

2 RESEARCH SCOPE, QUESTIONS, METHODOLOGY

2.1 Research scope

Many types of recommender systems come to the fore with the fast development of

web 2.0 technique and the ease of access to big data. They compute predictions based

on different indicators. To have a thorough knowledge on the development in this area,

summary of the types of recommenders and their recommending mechanisms are

presented in this research. The process of making recommendations is complex,

during which many factors can influence the recommending results, such as

recommender algorithms, types of the data. Similarity metric is the core of CF

recommender. Accordingly, several traditional similarity metrics are to be evaluated

with MovieLens 100K, 1M, 10M data (GroupLens 2014; Miller Albert & Lam &

Konstan & Riedl 2003, 263-266), Book-Crossing data (Ziegler & McNee & Konstan

& Lausen 2005) and online Dating data (Brozovsky & Petricek 2007). In view of the

limitations of the traditional similarity metrics, a new model of similarity metric is put

forward.

My research work covers several disciplines: the similarity measures refer to

Mathematics and Statistics. The knowledge of Database is involved during the

construction of recommender engine. To carry out the research successfully, Apache

Mahout, MySQL and Java are basic software tools. Subsequently, a recommendation

platform is set up, with which the recommended results are yielded based on different

similarity measures in CF recommender. By comparing the results from different

similarity metrics, most efficient metrics in each case are to be found out. At last, on

the basis of analyzing the features of the traditional metrics, a new model is proposed,

which requires the theoretical background of Advanced Mathematics.

2.2 Research questions

As briefly stated above, three major research questions are put forward to achieve the

objectives, followed by the corresponding explanations.

13	

	

1. What is the mechanism of recommendation systems to generate predictions or

recommendations, and what are the principles of these similarity measures?

Several types of recommender systems such as CF recommendation, content-

based recommendation and hybrid filtering-based recommendation have been

developed. Each of them has its distinct recommending mechanism. For CF,

the most popular algorithm, similarity calculation is involved in for finding the

similar users or items. With the research on this field going on, some classic

metrics have been exploited in recommender system. They yield predictions

with different accuracies and varieties. Understanding the principles of these

algorithms is necessary. This is the basis to find out the impact of similarity

metrics on recommendation results.

2. How can the recommendations of different similarity measures be achieved?

Implementation of the recommendation is the key step of this project. A

recommender framework or platform is the tool to realize the recommendation.

Taste, a filtering engine of Java, is an open sourced application in Apache

Mahout (The Apache Software Foundation 2014a). Taste could generate

predictions from the imported data, working as a customized recommender

system. In this thesis, this project is used to test the performance of the

traditional similarity metrics. Obviously, this is a technologically achievable

issue. Several interfaces are defined in Taste, such as DataModel,

UserSimilarity, ItemSimilarity, UserNeighborhood, and Recommender. Sub

packages of org.apache.mahout.cf.taste.impl control the implementation of

these interfaces. By exploiting the aforementioned java applications, I can set

up a homemade recommender engine satisfied with my requirements.

3. How can the similarity metrics be evaluated?

With respect to the evaluation of similarity metrics, an equitable way to assess

these metrics makes the evaluation reliable. It is difficult and unfair to point

out which similarity measure is the best one, because each of them has its own

14	

	

characteristics. Its performance depends on the data, the application

environment and performance requirements. In view of this, various datasets

with different features are involved in this study. The evaluations are

performed in terms of average absolute difference.

This research involves several methods to achieve the objectives and answer the

research questions. These are the contents in the next section.

2.3 Research methodology

The research methodologies used in this work include analysis of documents, the

construction of a customized recommendation system and evaluation of the traditional

similarity metrics. They correspond to the objectives of the research thesis.

For the first research objective, the main research method is analysis of documents.

Review articles and books in the field of recommendation systems emerged in the past

few decades. Many worldwide conferences and workshops are also held every year.

They refer to the latest progresses on each aspect in this field. Through examining the

published review articles, books, and the latest information in the conferences and

workshops, I can understand more about recommender systems and get a

comprehensive view of it. Thereby, the state-of-the-art of recommender systems is

elaborated from my perspective. In addition to the introduction to the

recommendation mechanisms of the three types of recommender systems

(Adomavicius & Tuzhilin 2005, 743; Candillier, Jack, Fessant & Meyer, 2009), the

similarity metrics based on different principles such as Pearson correlation, Euclidean

distance, Cosine-based, Log Likelihood, Tanimoto coefficient, and Spearman

correlation (Huang 2008, 49) are also exhibited in detail. Accordingly, the principles

of recommendation and similarity metrics can be interpreted.

The techniques used for the second research objective is construction of a

recommender system. Building a recommender engine is similar with building a

website. They all require configuration of computer, modeling the data. Because in

15	

	

the recent decades, research on recommendation systems is a hot topic, the method of

constructing a customized recommendation engine has also been studied. As a project

to produce implementations of scalable machine learning algorithms, Apache Mahout

provides the implementations not only on stand-alone platform but also on Hadoop

(The Apache Software Founcdation 2014a). Taste, mainly used in this research, is a

useful component of Apache Mahout. However, to build Taste in windows operating

system, several other programs have to be installed for preparation. Cygwin provides

a Linux environment for windows (The Cygwin DLL and utilities 2013). JDK is the

abbreviation of Java Development Kit. It can help achieve the implantation of

recommendation (Oracle 2014). When the datasets ate large, they need to be

deposited in MySQL (Oracle MySQL 2014). Maven helps manage the build of the

project-oriented model Taste (The Apache Software Foundation 2014b). Subversion

controls the version system of open sourced software (The Apache Software

Foundation 2011). Consequently, by testing several datasets with different features,

the results can represent the adapting environment of each similarity metric. It is

worth noting that the collected data sometimes cannot be directly used by the program.

It is necessary to dealt with before using. In real life, the data can either be "like or

dislike" (Billsus & Pazzani 1999, 393), 'numerical ratings" (Lops & Gemmis &

Semeraro 2009, 73), "symbolic ratings" (Pazzani & Muramatsu & Billsus 1996) or

"text comments" (Picard 2000, 705). Each type of data has different treating means.

They have been reported in the published articles. The data imported to Taste should

be in the form of a three-dimensional matrix consisted of user-id, item-id and rating

values (Koren 2009, 89). The detailed steps to install the platform are provided in

Apache’s website. (The Apache Software Foundation, 2014a.)

Once the recommender engine is built and the collected data are handled, the next step

is evaluating the recommendations with different similarity metrics. The approach to

treat the recommending results is essential. There is a model in Mahout, which could

separate the rating data into two sets, namely training set and testing set. The training

set is imported to predict the preference of the users in testing set. Comparing the

results of the predictions from training set and the real values in testing set, the degree

of matching between them can be evaluated. The matching can be examined by

average absolute difference, the precision and recall. In practical application, the

16	

	

evaluation of precision and recall entirely relies on how the good recommendation is

defined. This definition is usually artificial, so that the precision and recall are

practically not useful for the data with exact ratings. However, they are found

valuable for evaluating the Boolean datasets (Owen & Anil & Dunning & Friedman

2011, 75-76). Therefore, in this thesis, the average absolute difference is used as the

criterion for evaluation. The low average absolute differences between the predictions

for training set and the real ratings in testing set indicate that the performances of the

similarity metric are good. In addition to the method explained above, another fact is

also verified in this thesis that the numbers of ratings in the dataset affect the accuracy

of the predictions. Therefore, same kinds of datasets with different amounts of rating

values are used. Fortunately, the group of MovieLens (GroupLens 2014; Miller Albert

& Lam & Konstan & Riedl 2003, 263-266) provides movies data with 100 thousand,

1 million and 10 ratings.

17	

	

3 CURRENT DEVELOPMENT SITUATION OF RECOMMENDER SYSTEM

The study on recommender systems can be tracked back to the mid-1990s when the

first paper on CF appeared. Since then, recommender systems have attracted

significant attention. During the last decades, recommender systems undergo rapid

development in both academia and industry area. However, it is still a problem-rich

research topic.

3.1 Recommender systems and the classification

Recommender systems are working to reduce overload and provide personalized,

useful and effective suggestions for users according to their historical preferences. In

other words, they are high-level intelligence machine learning, data mining or

information filtering technique to help users find unseen but valuable information

(Ghazanfar & Prügel-Bennett 2010, 94). A case in point is YouTube which

recommends videos to users relevant to their watching history. Another example is

Amazon, which employs recommender engine for the online sale most successfully. It

helps the customers out of the ocean of millions of items and find what they are

interested in. Currently, most online companies are beneficiaries of recommender

systems by involving recommender engines in their websites to increasing sales.

According to the recommending mechanism, recommender systems can be classified

into three types, content-based Filtering, CF, and hybrid recommender system

(Melville & Sindhwani 2010, 829). No matter which type is used, all systems are

initiated by collecting enough users’ information or data. Those information or data

can be obtained from users’ activities on items, like, rating, voting, forwarding,

bookmarking, clickstream, residence time on webpage and purchase (IBM 2013).

When the data collection is done, the systems analyze the data and calculate

predictions successively. Recommender systems differ from each other in these

processes.

18	

	

CF Recommender systems track users’ browsing records and feedbacks, analyze the

tracked information to find their similar users, i.e. neighborhoods, with some metric,

and generate the well-matched items for them (Zhou & Khemmarat & Gao 2010, 440).

There are three sub-categories regarding CF, including memory-based CF, model-

based CF and hybrid CF. Memory-based CF method, also called similarity-based

method, refers to the way that makes rating predictions by computing similarity

between users or items on the basis of users’ rating history. Several similarity metrics

are produced for the neighborhood calculation (Yu et al. 2004, 56), which are

expounded in detail in the next section. Examples of this category include

neighborhood-based CF and top-N recommendations. The model–based CF focuses

on machine learning. In this method, all the predictions are done by a preformed

model, which is built from the users’ preferences analysis (Su & Khoshgoftaar 2009,

1). The popular clustering methods, Bayesian networks and graphical models belong

to this category.

CF as the most prevalent recommendation method is allegedly successful on finding

users’ potential preferences from considerable information. However, there exist some

limitations about CF (Ghazanfar & Prügel-Bennett 2010, 94). One typical problem is

cold start (Schein & Popescul & Ungar & Pennock 2002, 253; Bobadilla, Ortega,

Hernando & Gutiérrez, 2013). As I presented above that CF method recommends

items based on users purchase history or previous behaviors, it is not possible to find

the similar users when there is no record of activity for new customers. It is also true

for the new items. When a new item is added to the system, there is no rating

information about it. Therefore, no one can get the recommendation on this item.

(Bobadilla & Ortega & Hernando & Bernal 2012, 225-238.)

Another typical problem is the sparsity of the data. Based on the nature of the

similarity metrics, to calculate the similarity between two users, the system needs at

least two items simultaneously rated by the involved two users. A precise prediction

always requires the data to be dense enough (Huang & Chen & Zeng 2004, 116;

Papgelis & Plexousakis & Kutsuras 2005, 224-239). Thereof, a dense dataset is better

than the sparse one; whereas, the dense dataset is usually very large, which brings

another problem, called scalability. During the development of recommender systems,

19	

	

the responding time is a factor to be specially taken into consideration. Computation

is the most time consuming process. In practice, the system needs to respond

immediately to all the online users. The computing time increase significantly with

the data size growing. Accordingly, CF suffers increasingly scalability problems.

Dimensionality reduction techniques such as Singular Value Decomposition (SVD)

and Principal Component Analysis (PCA) can solve the problem brought about by

scalability. (Gupta & Goel & Lin & Sharma & Wang & Zadeh 2013, 505-514.)

Another common recommender algorithm is content-based filtering recommender

system, which recommends items depending on the content description. In reality, the

description can be key words, tags or labels. The system assumes that users like the

similar items they used to like. Item representation or Content descriptions are crucial

to the recommender system. They are used to obtain users’ profile. The new items

most correlated to the users’ profile would be recommended to them. The advantages

of this recommender method compared to CF method are the user independence,

transparency and new item recommended without problem. However, they also have

many defects. It is sometimes very difficult to extract the characteristics for the items

and almost impossible to fully get the properties of the items. For example, if the

textual description of the items does not contain enough information to distinguish

from others accurately, the profile of the users related to these items could not be

precise, further leading to the final recommendation lack of accuracy. Because all the

recommendations are generated from their previous tastes, content-based systems

would only recommend items whose descriptions are highly correlated against the

user's profile, and thus it is not able to dig out users’ potential interests. This problem

is termed as Over-specialization. The CF recommender engine has the cold-start

problem; while similarly, the content-based recommender system cannot predict

recommendations for new users due to no profile of these users learnt. (Lops &

Gemmis & Semeraro 2011, 74; Pazzani 1999, 393; Pazzani & Billsus 2007, 325.)

Both recommender algorithms have their own intrinsic limitations. Nevertheless,

some disadvantages of one algorithm are just the advantages of another. Content-

based recommender does not extract the similarity between users across their profiles,

while CF recommender only analyzes users’ preferences on items but neglects the

20	

	

natural similarity between users or items. Therefore, the easiest way to overcome

these defects is combining them or adding the characteristics of one to another, viz.

hybrid recommender system (Burke 2002, 331.) Invoking the appropriate one for

proper cases could ingeniously avoid some of the problems and enable this kind of

system work best. That is why most of the online companies in reality deploy this

method in their recommender engine.

3.2 Similarity metrics in recommender systems

Recommender systems include many similarity metrics. Most of them come from

machine learning. They are crucial to recommender systems. The selection of

similarity metrics in specific cases is intuitively an experienced job, however, it

should actually be experimentally tested. Therefore, to understand the main attribute

of each similarity algorithm is necessary and essential.

The similarity between two users in the user-based CF recommenders is computed in

accordance with their ratings on the same items they both made. Similarly, the

similarity between two items is calculated in item-based CF recommenders on the

basis of the users who rated the both items. They are of the same principle. However,

in the practical cases, the number of the users is highly greater than that of the items.

Thus, computation of the similarity between items is more complicated. Below, I

illustrate the principle of each metric both from their physical meaning and from the

mathematical formula. (Herlocker et al. 2004, 5.)

All the measures of similarity are based on the vector space method; however, there

are many ways to define the similarity. In principle, it can be classified as the

distances measurement and degrees measurement. Metrics measuring distances

include Euclidean distance and Manhattan distance, while the popular metrics by

measuring the degrees involve Pearson correlation, Spearman correlation, centered or

uncentered Cosine methods, Tanimoto coefficient and Log Likelihood. All

measurements could represent the similarity or dissimilarity between two vectors.

21	

	

Given two points in the n-dimensional space A and B with the Cartesian coordinates

of (A1, A2, ⋯, Ai, Ai+1, ⋯, An) and (B1, B2, ⋯, Bi, Bi+1, ⋯, Bn), respectively. Then,

1. Euclidean distance between A and B is just the length of the segment linking

them. In mathematics, the length can be represented as D= !
!

(𝐴! − 𝐵!)!!
!!! ;

2. Manhattan distance, also vividly referred to as City Block distance, means the

shortest distance between two points in square city building blocks regardless

of the one-way street. Mathematically, it equals to the sum of distances of the

segment 𝐴𝐵 projected to the axes. The algebraic form is D= 𝐴! − 𝐵!!
!!! ;

3. Pearson correlation similarity, i.e. centered Cosine similarity (Resnick &

Iacovou & Suchak & Bergstrom & Riedl 1994) measures that to what extent

two vectors linearly relate with each other, which can be calculated as

P= (!!!!)(!!!!)
!
!!!

(!!!!)!!
!!! (!!!!)!!

!!!

;

4. Spearman correlation similarity is one of the variations of Pearson correlation

similarity. The only difference is that the ratings of the items are re-given

according to the rank of the primitive ratings before expanding the correlation

calculation.

5. Uncentered Cosine similarity measures basically the cosine of the angle

formed by the two vectors in the Cartesian coordinate system, represented in

mathematical term as: cos(θ)= !!×!!
!
!!!

(!!)!!
!!! × (!!)!!

!!!

;

6. Tanimoto coefficient, which is easily confused with the cosine similarity,

typically refers to the ratio of the overlap part to the whole set. Its expression

over two bit vectors can be written as:

T(A,B)= !∙!
! !! ! !!!∙!

= !!×!!
!
!!!

(!!)!!
!!! ! (!!)!! !!×!!!

!!!
!
!!!

;

7. Log Likelihood similarity, similar with Tanimoto coefficient similarity, also

measures the similarity for Boolean data. The difference from Tanimoto

coefficient metric is that it emphasizes the unlikelihood of the two arrays.

(Owen et al. 2011.)

22	

	

3.3 Application of recommender systems in E-commerce

With the widespread of the Internet, growing number of customers prefer shopping

online. They can purchase whatever they want from the Internet without visiting the

stores. However, the explosive emerging of online products dazzles netizens.

Deploying recommender engine to the commerce website help the online customers

easily find their preferences and then increase the sales. Generally, the E-commerce

sites employ hybrid recommender systems to achieve the best recommendations for

each individual. The recommender systems help to increase sales in three ways.

Despite developing rapidly, online shopping is a new shopping manner not accepted

by all the people. Many netizens just browse over the Internet without buying

anything, simply because there are too many choices that they cannot make decisions.

They are the potential customers for the merchants. If there is an approach to find the

products most probably interesting to the potential customers, they would initiate their

online shopping trips. Recommender systems are qualified to this job. Another way

to enhance sales for the merchants is making the current customers purchase more

commodities from their sites. In early stage, most recommender systems are content-

based filtering ones, which recommend products only based on users historical tastes.

They fail in digging out the users' potential interests. When the CF recommender

systems are used, they generate predictions according to the similar users, in which

way, the items interested by the similar users but not correlated with their previous

preferences would be recommended as well. A more promising way to recommend

potential products to users is cross-sell. Recommender engine first analyzes peoples

purchasing behavior and figure out the implicit correlation between the items. For

example, the customers who bought diapers also bought milk powder or breast pumps.

The diapers themselves seemingly have nothing to do with the milk powder or breast

pumps, nonetheless, all of them are maternity. If the E-commerce websites conduct

this kind of recommendations, the sales would also be improved. Practically, any

approach used by the traditional market is also usable for the E-commerce. Repeat

customers and customers introduced by regular customers usually have great

contributions to the merchants. Recommender systems as machine learning technics

are able to study the customers' behavior, and then create relationship between

customers. If customers find "friends" customers to communicate, they would

23	

	

probably return and introduce their real friends to their websites. (Schafer & Konstan

& Riedl 1999, 158.)

In fact, various recommender systems have applied to the E-commerce websites and

successfully increased the sales. The most famous examples are Amazon.com

(www.amazon.com), eBay (www.ebay.com), Alibaba (http://www.alibaba.com/),

Taobao (www.taobao.com), JD (www.jd.com) and so on.

24	

	

4 IMPLEMENTATION OF RECOMMENDER SYSTEM IN WINDOW 7 BY

APACHE MAHOUT

Many open source frameworks have been developed for building, researching and

studying recommender systems, such as Apache Mahout (The Apache Software

Foundation 2014a), LensKit (LensKit Recommender Toolkit), Waffles (Gashler 2013)

Crab (Limonada 2011), Recommenderlab (Hahsler 2014). They were built with

different programming languages, among which, Mahout and LensKit are based on

Java; Waffles is based one C++; Crab is on the basis of Python; and R language is

adopted in Recommenderlab. In this thesis, the research work has been done with

Apache Mahout.

4.1 Introduction to recommendation in Apache Mahout

The detailed introduction to Apache Mahout can be found in their website (The

Apache Software Foundation 2014a). Some of the points are highlighted in this

section. The recommender engine within Apache Mahout is achieved via Taste, a

formerly separated project written by Sean Owen and Sebastian Schelter (The Apache

Software Foundation 2014a). Now, Taste can be regarded as a flexible, mature and

kind of independent component inside Mahout. It not only supports the basic user-

based and item-based CF approaches, but also provides extendable interfaces to

connect and conduct users’ customized recommendation. Compared to the currently

prevalent Hadoop technology, Taste is focused on dealing with single-machine tasks.

Taste has five package interfaces as key abstractions to conduct recommendations:

DataModel is a connector to extract the information of user preference from the data

source. JDBCDataModel and FileDataModel are possible to excess and read the

information from data base and files, respectively; Usersimilarity and Itemsimilarity

are the another package interfaces to figure out similar users or items for the specific

users or items, namely neighborhood. Similarity algorithm is the core for CF

recommendation engine. Taste packages many popular similarity algorithms, like

Pearson correlation similarity, Euclidean distance similarity, Spearman correlation

25	

	

similarity, Tanimoto coefficient similarity, uncentered Cosine similarity, and so on to

meet users’ different requirement; UserNeighborhood is particularly for user-based

recommendation, which generate recommender results from the given user’s

neighbors. In the UserNeighborhood model, one could define different number of

neighborhood to fine-tuning the recommendation results. Typically, the neighborhood

is found out by UserSimilarity; the last interface is Recommender, which implements

the recommendation. Provided a DataModel, Recommender could generate the

prediction by making use of the GenericUserBasedRecommender or

GenericItemBasedRecommender.

4.2 Installation of Apache Mahout

4.2.1 Software preparation

To enable the recommender of Apache Mahout to act to the most extent, some

fundamental software is necessary. For example, Apache Maven helps to manage

dependencies, compile code and package source by automatically downloading the

necessary libraries for the projects. Apache Maven distribution is provided in several

formats (The Apache Software Foundation 2014b). A Java Servlet, like Apache

Tomcat, can be used to present dynamic content via a web server (The Apache

Software Foundation 1999-2014). As aforementioned, JDBCDataModel and

FileDataModel are provided in the DataModel package. When running applications

with data of big size, JDBCDataModel is much helpful, from which

MySQLJDBCDataModel makes connection to a database through MySQL and JDBC.

Accordingly, MySQL is required (Oracle MySQL 2014). In addition, in order to

realize the UNIX-like environment on Microsoft Windows, Cygwin needs to be

installed (The Cygwin DLL and utilities 2013). Apache Mahout is basically a Java

style framework, therefore, to run or develop java packages, a useful integrated

development environment (IDE) Eclipse could be employable (The Eclipse

Foundation 2010).

26	

	

4.2.2 Computer configuration

Since Apache Mahout is working with Java, installation and configuration of

environment for Java in windows 7 is indispensable. First, after downloading Java

Development Kit (JDK) and installing it on the system, new system variable needs to

be created with the variable_name of java_home and the location of JDK should be

set to the variable_value. Second,

“.;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\tools.jar” should be added to

the variable of CLASSPATH. When this is done, the computer configuration for JDK

is finalized by locating the variable PATH and adding

“;%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin” to the end of its value.

The instruction of the installation of Cygwin can be found in the Cygwin website (The

Cygwin DLL and utilities 2013). Operation according to the instruction allows for

getting it downloaded and installed on the computer easily. Be advised that adding the

installation directory to the system variable PATH enables the Linux-commands

executable directly in cmd.exe, which simplifies the usage of Cygwin.

The installation and configuration instructions are printed in the same webpage as

download (The Apache Software Foundation 2014b). The installation is even simpler

than those for Java and Cygwin, whereas the configuration process is similar.

4.2.3 Setting up Mahout within Eclipse

Version 0.9 of Apache Mahout has been released in February of 2014, which is going

to be used in the present research to make sure that all the recommender methods and

algorithms are up-to-date (The Apache Software Foundation 2014a).

Java IDE is very useful to build, edit and compile Java projects. In this thesis, the

popular Java IDE Eclipse is utilized. Some other IDE frameworks like NetBeans and

IntelliJ IDEA are also acceptable. The installation of Eclipse on windows 7 is easily

27	

	

done by prompt. It is worth noting that to make the management of Mahout Projects

with Maven easier, it is necessary to have the m2eclipse plugin installed to Eclipse.

4.3 Building a customized recommender engine

The construction of the recommender engine was done exactly according to the

websites (IBM coorperation 2008), where both the detailed instructions for the

implementation of the Demo with Taste and the building of a customized

recommender system with MovieLens Dataset could be found. I do not verbosely

narrative them here. Note that the latest version of Mahout is 0.9. Some modifications,

such as the /taste-web directory did not exist anymore and all the files are put under

/integrate directory, have been made to the versions above 0.5. What it is also

necessary to be aware of is the compatibility among the software. When the

construction is successfully done, the recommendation results of users can be

dynamically shown through a browser.

Compared to dynamically displaying the recommendations for users, the construction

of the engine only for evaluation of the similarity metrics is much easier. Steve Cook

made a video tutorial (The Apache Software Foundation 2014a) to demonstrate the

construction of a simple recommender engine. Alternatively, the textural literature

(Schelter & Owen 2013) can also be referred to.

28	

	

5 EVALUATION OF TRADITIONAL SIMILARITY METRICS AND NEW

PROPOSED METRIC

The available recommender algorithms in the latest Apache Mahout include user-

based CF, item-based CF, Matrix factorization-based recommenders, K-Means and

Fuzzy K-Means clustering and so on (The Apache Software Foundation 2014). The

predictions generated by the recommender engine rely on the correlations among

users or items to a wide extent. Almost all the efforts made on recommender focus on

dealing with this issue. The way directly measuring the similarity between users or

items according to the profiles of the users or the descriptions of the items is content-

based filtering recommender. If users' behaviors are taken into account and the

similarity is calculated based on these preferences, the recommendation belongs to CF

recommender.

The correlations among users or items are admittedly crucial, however, many other

factors, for instance, the number of neighborhood, the type of items, the size of the

data, could affect the performance of recommender as well. The optimization of the

parameters usually improves the predictions.

5.1 Parameters optimization for CF recommender

The data used for optimizing the parameters for CF recommender are from

GroupLens Research group. The data can be downloaded from their website

(GroupLens 2014) for research work free of charge. Three data sets with different

numbers of ratings are provided, i.e. the 100K data contain 100000 ratings for 1682

movies made by 943 users; the 1M data consist of 1000209 ratings from 6040 users

on 3900 movies; the 10M data set is the largest one, which encapsulates 71567

MovieLens users’10000054 rating scores for 10681 movies. All the ratings in the

three data sets range from 1 to 5. The big number indicates users' highly preference.

The three data sets are simply analyzed. For the 100K data, 106 ratings per user are

given in average, with each user rating at least 20 movies, and each movie is rated by

average of 59 times. For the 1M data, the average times of rating by each user and for

29	

	

each movie are 166 and 256, respectively, while these numbers are 140 per user and

936 per movie in 10M data. Even though more ratings are included when the data size

is increasing, the averaging times for each user on each movie are decreasing, i.e., the

densities are 0.063 for 100K data, 0.042 for 1M data, and 0.013 for 10M data. From

this point of view, the sparseness of the 100K data is better than the other two. In

addition, much short time is needed with the 100K data to run the recommender

engine for the adjustment. Consequently, 100 K data is the best one for optimization.

Most of the algorithms and similarity metrics in Mahout recommender engine are

built-in components. Users still, however, have chances to adjust some of the

parameters to improve the recommendation to be optimal, for example, number of the

nearest neighborhood or neighborhood threshold, the weighting factors for Pearson

correlation similarity and Euclidean distance similarity. Below, I firstly find out the

best parameter combinations for all the similarity metrics available in Mahout. Note

that, to make sure that there are enough ratings in the training set, a ratio of 0.9 is

applied to divide the whole data set.

Figure 1. Evaluation of Pearson correlation similarity in User-based CF: left, with

NearestN neighborhood as criteria; right, with the threshold as criteria.

Figure 1 illustrates the performance of Pearson correlation similarity in user-based CF

with the whole set of the MovieLens 100K data. The similar users were defined either

by the fixed number or by the threshold. Generally, a small number of nearest

neighborhood represents a high threshold value. From this point of view, these two

0 100 200 300 400 500 600
0,78

0,80

0,82

0,84

0,86

0,88

0,90

0,92

0,94

0,96

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

Number of Nearest Neighborhood

 Unweighted
 Weighted

0,0 0,2 0,4 0,6 0,8 1,0
0,78

0,80

0,82

0,84

0,86

0,88

0,90

0,92

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

Neighborhood Threshold

 Unweighted
 Weighted

30	

	

figures match with each other. When only two nearest users or the users with

similarity threshold of 0.9 are defined as the neighborhoods, the mean absolute

differences between the predicted ratings obtained from training set and real ratings in

the testing set are over 0.9. With the nearest neighbors increasing or the threshold

becoming more tolerance, the differences decrease dramatically. The corresponding

best performance occurs at 300 neighbors selected as user neighborhoods or at a

threshold of 0.3. Further increasing the number of the nearest neighbors as user

neighborhoods after 200 or loosening the threshold after 0.4 slightly makes the

performance worse. Because the primitive Pearson correlation similarity metric does

not take into account the numbers of the common items two users rated, a weighted

Pearson correlation metric is also implemented in the similarity model. The lines in

red in Figure 1 represent the performances of the weighted Pearson correlation metric.

They slightly improve the overall predictions.

Figure 2. Evaluation for Euclidean distance similarity in User-based CF: left, with

NearestN neighborhood as criteria; right, with the threshold as criteria.

Figure 2 plots the prediction results of user-based CF with both unweighted and

weighted Euclidean distance similarity metrics. Similar with the evaluation for

Pearson correlation metric, criteria that were used to define the user neighborhoods

are set with fixed number of nearest neighbors (left) and with thresholds (right). The

standard Euclidean distance similarity measure also neglects the number of common

items rated by two users, for which reason a weighted model is offered as well, and

the evaluation results indicate that the weighted model is only slightly better than the

0 100 200 300 400 500 600
0,74

0,76

0,78

0,80

0,82

0,84

0,86

0,88

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

Number of Nearest Neighborhood

 Unweighted
 Weighted

0,0 0,2 0,4 0,6 0,8 1,0
0,72

0,74

0,76

0,78

0,80

0,82

0,84

0,86

0,88

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

Neighborhood Threshold

 Unweighted
 Weighted

31	

	

unweighted metric. Compared with the Pearson correlation metric, the performance of

Euclidean distance metric is better, particularly at the place of 100 nearest neighbors

and 0.5 of the threshold, where the average absolute differences for Euclidean

distance similarity metric are less than 0.75.

Figure 3. Evaluation for City Block similarity in User-based CF: left, with NearestN

neighborhood as criteria; right, with the threshold as criteria.

The results of evaluation for City Block similarity metric is exhibited in Figure 3. The

average absolute difference is inversely correlated to the number of the nearest

neighborhood. It is surprisingly found that the evaluation fails with neighborhood

threshold higher than 0.05. This indicates that the correlation among the users is very

low from the sense of City Block metric.

Figure 4. Evaluation for uncentered Cosine similarity in User-based CF: left, with

NearestN neighborhood as criteria; right, with the threshold as criteria.

0 100 200 300 400 500 600

0,81

0,82

0,83

0,84

0,85

0,86

Av
er

ag
e

Ab
so

lu
te

 S
im

ila
rit

y

Number of Nearest Neighborhood

 CityBlockSimilarity

0,01 0,02 0,03 0,04 0,05

0,84

0,86

0,88

0,90

0,92

0,94

0,96

Av
er

ag
e

Ab
so

lu
te

 S
im

ila
rit

y

Neighborhood Threshold

 CityBlockSimilarity

0 100 200 300 400 500 600 700 800

0,80

0,84

0,88

0,92

0,96

1,00

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

Number of Nearest Neighborhood

 UncenteredCosineSimilarity

0,0 0,2 0,4 0,6 0,8 1,0

0,77

0,78

0,79

0,80

0,81

0,82

0,83

0,84

Neighborhood Threshold

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

 UncenteredCosineSimilarity

32	

	

Performance of uncentered Cosine similarity is shown in Figure 4. The tendency of

the average absolute difference as a function of number of nearest neighborhood is

similar with that in Pearson correlation metric and it reaches the best performance at

nearest neighborhood of 300 as well. Actually, they are both cosine-based metrics.

However, they are different when using criterion of neighborhood threshold. As seen

in the right plots of Figure 4, the average absolute difference keeps at the level of

around 0.81 when neighborhood threshold increases from 0.1 to 0.8. From 0.8 to 1.0,

the difference value drops significantly to 0.77 at threshold of 0.97 and jumps back to

high value. At the threshold of 0.99, the performance worsens to 0.83.

Figure 5. Evaluation for Spearman correlation similarity in User-based CF: left, with

NearestN neighborhood as criteria; right, with the threshold as criteria.

Spearman correlation metric is examined and the performances are displayed in

Figure 5. Even though the results are as good as those in Pearson correlation metric,

the computation time with Spearman correlation similarity is significantly higher,

which restricts its practicality.

0 100 200 300 400 500 600
0,78

0,80

0,82

0,84

0,86

0,88

0,90

0,92

0,94

0,96

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

Number of Nearest Neighborhood

 SpearmanCorrelationSimilarity

0,0 0,2 0,4 0,6 0,8 1,0

0,80

0,82

0,84

0,86

0,88

0,90

0,92

Neighborhood Threshold

 SpearmanCorrelationSimilarity

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

33	

	

Figure 6. Evaluation for Tanimoto coefficient similarity in User-based CF: left, with

NearestN neighborhood as criteria; right, with the threshold as criteria.

Tanimoto coefficient similarity has wide application in Boolean data. Nevertheless, it

is also applicable in the cases with exact rating data. The trend of the performance

here with criterion of number of nearest neighborhood (Figure 6, left) is similar with

that of the unweighted Euclidean distance (Figure 2, left), although the absolute

values are higher in Tanimoto coefficient metric. It is necessary to point out that the

evaluation fails when the neighborhood threshold higher than 0.4 (Figure 6). Actually,

for Tanimoto coefficient metric, neighborhood threshold of 0.4 is already very high.

Figure 7. Evaluation for Log Likelihood similarity in User-based CF: left, with

NearestN neighborhood as criteria; right, with the threshold as criteria.

Figure 7 illustrates the evaluation results of Log Likelihood similarity metric in user-

based CF with the whole set of MovieLens 100K data. Log Likelihood similarity is

0 100 200 300 400 500 600

0,805

0,810

0,815

0,820

0,825

0,830

0,835
Av

er
ag

e
Ab

so
lu

te
 D

iff
er

en
ce

Number of Nearest Neighborhood

 TanimotoCoefficientSimilarity

0,10 0,15 0,20 0,25 0,30 0,35 0,40

0,80

0,85

0,90

0,95

1,00

1,05

Neighborhood Threshold

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

 TanimotoCoefficientSimilarity

0 100 200 300 400 500 600
0,800

0,805

0,810

0,815

0,820

0,825

0,830

0,835

0,840

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

Number of Nearest Neighborhood

 LogLikelihoodSimilarity

0,0 0,2 0,4 0,6 0,8 1,0
0,810

0,811

0,812

0,813

0,814

0,815

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

Neighborhood Threshold

 LogLikelihoodSimilarity

34	

	

also a metric designed for Boolean data, whereas when it is used in dataset with

ratings, the performance is also satisfactory. Interestingly, the performance of this

metric is very stable with the neighborhood threshold as criterion (Figure 7, right).

From the results shown in Figure 1-7, almost all the average absolute differences fall

in the range from 0.7 to 1.0. The difference values are not high for the 1-5 rating

grades. Despite similar among similarity metrics, the evaluation still shows subtle

differences.

Within a particular similarity metric, a small number used or a strict threshold would

result in small amount of similar users with high correlation from the intuition, thus

leading to a better prediction; whereas, the testing results display almost exactly

opposite trend. The discrepancy could be explained by the broad interests for movies.

More neighbors enable the engine recommend movies of different kinds, which is

more like the real case. Another explanation could be from the statistics. More or less,

noise exists in the rating data. This may probably cause a big difference between the

expectation and the real ratings. When only a few neighbors are matched, a relatively

small amount of movies are going to be recommended to the user, where even low

noise has big influence on the evaluation. To disperse the deviation resulted from the

noise, relatively more recommendations for each user are expected. However, the

performance of the recommender is neither proportional to the number of nearest

neighborhood nor inversely proportional to the threshold. This can be easily

understood by the intuition: too many predictions would bring too many less

correlated results. In practice, the best performance always comes from a certain

criteria. What is more, the criteria differ among similarity metrics.

35	

	

Figure 8. The impact of different ratio of the data used for evaluation to the

neighborhood selection criteria: left, criterion by NearestN neighborhood; right,

criterion by threshold.

The criterion by neighborhood number and that by threshold are quite different. The

former relies significantly on the size of the data set. A large data set requires a big

number of neighbors. The latter one is, however, independent from the size of the data.

The threshold, in principle, should keep at some certain value when the size of the

data is changed. My testing results are exactly in line with this inference (Figure 8).

The Figure 8 displays the best performances of Euclidean distance similarity metric

using different ratios of the MovieLens 1M data evaluated with fixed number of

nearest neighbors (Figure 8, left) and threshold (Figure 8, right). Obviously, the most

appropriate numbers of nearest neighbors move from 100 via 200 to 300, while the

best neighborhood threshold is always at 0.5, when the size of ratings increases from

10%, via 20% to 30% of 1M data.

It is also necessary to point out that some similarity metrics are particularly insensitive

to the threshold of the neighborhood. The average absolute differences vary only from

0.812 to 0.813 when the threshold changes from 0.1 to 0.9 for the Log Likelihood

similarity (Figure 7). Log Likelihood metric neglecting the exact rating values as

Tanimoto coefficient metric measures the ratio of the overlap of the two users'

0
10

0
20

0
30

0
40

0
50

0

0.6

0.7

0.8

0.9

 100K data
 10% of 1M data
 20% of 1M data
 30% of 1M data

Number of Neighborhood

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.6

0.7

0.8

0.9

A
ve

ra
ge

 A
bs

ol
ut

e
D

iff
er

en
ce

 100K data
 10% of 1M data
 20% of 1M data
 30% of 1M data

Neighborhood Threshold

36	

	

preferences to the union of their preferences. The insensitive performance to the

threshold of neighborhood indicates the even distribution of the dataset.

Some similarity metrics are very sensitive to the neighborhood threshold. In the City

Block similarity (Figure 3), if the threshold is larger than 0.05, the recommender

cannot be evaluated. The understanding of this phenomenon is not achievable

intuitively. An unconvincing answer from the author of the book of "Mahout in

Action" is that this similarity metric is rarely useful and implemented in Mahout just

for completeness. It might be useful in the case with discrete ratings. Such similar

phenomenon also happens to the Tanimoto coefficient similarity (Figure 6). It is more

understandable for Tanimoto coefficient metric, because the neighborhood threshold

means the ratio of the movies they both rated to the movies either of them rated.

When the threshold is over 0.4, no neighborhood can be found at all for the users.

From the evaluation results of Pearson correlation similarity and Euclidean distance

similarity, the weighted similarity metrics are only slightly better than the unweighted

ones. Its impact sometimes is even lower than the threshold. This might be caused by

the appropriate weighting schemes. Unfortunately, it is not possible to modify

weighting schemes because this model is fixed in the “black box” of similarity metric

package.

37	

	

Figure 9. The comparison of the effect of different similarity metrics on User-based

CF with 100K MovieLens data.

Figure 9 illustrates the best performance of each similarity metric to find the most

suitable metric by comparison. It is obvious that the Euclidean distance similarity

metric is significantly more suitable for the 100K movie data than all the others are. In

general, the neighborhood criteria according to threshold result in better evaluation

values than those based on neighborhood numbers. Accordingly, the Euclidean

distance similarity metric would be used to compare the effect of the data size on the

recommendation.

5.2 Impact of data size on recommendation

Movielens provides three movies datasets with around 100 thousand, 1 million and 10

million ratings. Therefore, they are particularly helpful to examine the effect of size of

dataset to the similarity measures, which is one of the import aims of the present

research.

0,60

0,65

0,70

0,75

0,80

0,85

0,90

LikelihoodCoefficientCorrelationCosineBlockDistanceCorrelation
LogTanimotoSpearmanUncenteredCityEuclideanPearson

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

Similarity Metrics

 Number of Nearest Neighborhood

 Neighborhood Threshold

38	

	

Figure 10. Plots to show that the evaluation results are independent from the ratio of

the data employed for the testing: left, in the case of 1M data; right, in the case of

10M data.

Before the evaluation to be calculated, it is wise to test whether the ratio of the data

used for calculation has apparent impact on the evaluation results. This is extremely

helpful because it could save plenty of time when the data size is large. This

adjustable parameter was tested with both the 1M data and 10M data. The results were

shown in Figure 10. They show amazing consistency in both cases although for the

10M data, only six ratios were tested due to the too long calculation time.

Figure 11. Evaluation of Euclidean distance similarity at neighborhood threshold of

0.5 with 100K, 1M and 10M MovieLens data.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0,60

0,62

0,64

0,66

0,68

0,70

0,72

0,74

0,76

0,78

0,80
 1M data

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

Ratio of the Data

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0,58

0,60

0,62

0,64

0,66

0,68

0,70

0,72

0,74

0,76

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

Ratio of the Data

 10M data

0 20 40 60 80 100

0,66

0,68

0,70

0,72

0,74

10M

1M

100k

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

Relative Data Size

39	

	

Undoubtedly, more data information always produces better predictions. This could

be easily verified by running the evaluator in Mahout on 100K, 1M and 10M

MovieLens datasets. The declining line in Figure 11 displays the tendency.

What is more interesting to study is that whether the size of the dataset affects the

similarity selection or not. In view of the fact that the threshold is stable regardless of

the data size and the fact that the performance of the recommender engine is

independent from the ratio of the datasets applied, it only needs to evaluate the

similarity metrics on a small part of the 1M and 10M data with corresponding best

threshold values.

Figure 12. Histograms to compare the performance of seven similarity metrics at the

corresponding best threshold values on 100K (black), 1M (red) and 10M (blue)

MovieLens datasets.

The above figure reveals some different trends for the three datasets, though

Euclidean distance similarity metric has the best performance on all of them, whereas,

the uncentered cosine measure is comparable to Euclidean distance similarity for 1M

data. Its performance does not turn better with the ratings data increasing from 1

1 2 3 4 5 6 7

0.60

0.65

0.70

0.75

0.80

0.85

Neighborhood Threshold

Coefficient
Tanimoto

Likelihood
LogSpearman

Block Cosine
UncenteredCity

DistanceCorrelation

A
ve

ra
ge

 A
bs

ol
ut

e
D

iff
er

en
ce

X Axis Title

 MovieLens 100K
 MovieLens 1M
 MovieLens 10M

Pearson
Correlation

Euclidean

40	

	

million to 10 million. Even worse is found in Tanimoto coefficient similarity metric.

The 1 million data makes its evaluation worsen to 0.829 compared to 100K data of

0.797. This is rare, but interesting, and it is meaningful to examine the possible

reasons. In the evaluator model of Mahout, the training set and testing set are divided

by random. Difference division might cause the results different. To exclude this

factor, several times of calculation have been done for both datasets. The average

absolute differences for 100K data range from 0.795-0.805 with the average value of

0.800, while, those for 1M data vary from 0.820 to 0.852 averaging at 0.831. Still, the

performance of Tanimoto coefficient similarity on 1M data is remarkably worse than

that on 100K data. Therefore, it needs to look into the principle of the metric to

explore the reasons. Tanimoto coefficient metric ignores the exact rating values,

thereof recommending movies to users not by the rank of ratings but by the rank of

recommendation times for the neighborhoods. The recommendations generated this

way may differ remarkably from the real ratings in the testing set. The detailed

relative rank of the performance of the seven similarity metrics for 100K, 1M and

10M datasets are listed in the Table 1.

Table 1. The relative performance of the similarity metrics in 100K, 1M and 10M

datasets.

Ranks 100K 1M 10M

1 Euclidean Euclidean Euclidean

2 uncentered Cosine uncentered Cosine Tanimoto coefficient

3 Pearson correlation Spearman correlation uncentered Cosine

4 Spearman correlation Pearson correlation Pearson correlation

5 Tanimoto coefficient City Block Log Likelihood

6 Log Likelihood Log Likelihood City Block

7 City Block Tanimoto coefficient Spearman correlation

41	

	

5.3 Similarity metrics evaluation in various cases

Other real cases have also been evaluated with similar analyzing approach as

MovieLens data. The purpose of this experiment is trying to find the best similarity

metrics for other real cases and find out the relationship between datasets and

similarity metrics.

5.3.1 Book-Crossing data

The Book-Crossing data contain 1149780 rating for 271379 books from 278858 users

collected by Cai-Nicolas Ziegler in 2004 from the Book-Crossing community (Ziegler

& McNee & Konstan & Lausen 2005). The rating scale is from 0 to 10 with the

higher score representing the more preference. The examination of the similarity

metrics on this data was conducted with 10% of the whole data for saving time.

Figure 13. Evaluation of the similarity metrics on Book-Crossing data with

neighborhood threshold from 0.1 to 0.9.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

2,8

3,0

3,2

3,4

3,6

3,8

4,0

Av
er

ag
e

Ab
so

lu
te

 D
iff

er
en

ce

Neighborhood Threshold

 Pearson Correlation

 Euclidean Distance

 Log Likelihood

 Uncentered Cosine

 Spearman Correlation

42	

	

The evaluation results were plotted in the Figure 13. Overall, the values lied in the

range of 2.8-3.8, slightly high for the ten-point ratings. The Euclidean distance

similarity metric made the best performance again, notably better than all the others.

The neighborhood thresholds above 0.2, say from 0.2 to 0.9, led to very similar

average difference values with the lowest difference of 2.828 occurring at o.6. When

the neighborhood threshold adjusted to be 0.6, Spearman correlation similarity metric

got the second best. The reason is that the rating span of the Book-Crossing data is

from 0 to 10, much larger than that in MovieLens data. When the rating span is large,

people’s ratings are relatively not normally distributed, where rank correlation could

work better than the direct correlation method, i.e. Pearson and uncentered Cosine

method. However, this similarity metric was too time-consuming to be usable in real

time recommender engine in spite of its academic value. Unexpectedly, the

uncentered Cosine similarity and Pearson correlation similarity metrics performed the

worst, even worse than Log Likelihood did. The measure of City Block similarity,

also known as Manhattan distance similarity, failed for evaluation with positive

thresholds. Similarly, I could only examine Tanimoto coefficient similarity metric

with the neighborhood threshold of 0.1 and 0.2, where they resulted in the deviation

higher than 5.50, so out of the performing range of other metrics that not displayed in

the figure.

5.3.2 Online Dating data

The online Dating dataset is provided by Oldrich Neuberger, cleaned up and

generated by Lukas Brozovsky in 2006 (Brozovsky & Petricek 2007). It contains

17359346 anonymous ratings from 135359 LibimSeTi users for 168791 profiles

(Dating Agency 2006).

43	

	

Figure 14. Evaluation of the similarity metrics on online Dating data with

neighborhood threshold from 0.1 to 0.9.

Neighborhood thresholds from 0.7 to 0.95 for this online Dating data with Pearson

correlation similarity, Euclidean distance similarity, Log Likelihood similarity and

Tanimoto coefficient similarity were tested in the book of Mahout in Action (Owen et

al. 2011) and the results indicated that the higher the threshold was, the better the

metric performed. Based on my experience collected from above data, it is not always

true. A more careful investigation with more similarity metrics and broader threshold

range has been done here with proper reasons (Figure 14).

Compared with all the other similarity metrics, Tanimoto coefficient similarity

performs the best when the threshold adjusted at 0.3. The reason is that Tanimoto

coefficient ignores the rating values when it measures the user similarity. It takes all

the items with ratings as users’ preferences. This is only half true because, on one

hand, people do not want to waste time on the items they do not like, in which case, if

they rate the items, it means somewhat they like them; on the other hand, people do

not actually know whether they like the items or not before having them. After they

have experience on the items, low rating values are the indication of dislike. The two

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50
A

ve
ra

ge
 A

bs
ol

ut
e

D
iff

er
en

ce

Neighborhood Threshold

 Pearson Correlation
 Euclidean Distance
 Log Likelihood
 Uncentered Cosine
 Tanimoto Coefficient
 Spearman Correlation

44	

	

situations contradict with each other, while they are both truly happening. Then,

which situation is more important differing from case to case. In the case of Dating,

people are always cautious of making the decision, where the rating means like no

matter how high or how low the value is. Therefore, the good performance of

Tanimoto coefficient similarity metric makes sense. The non-results evaluation at

high neighborhood threshold for this metric has already been explained in the

MovieLens case. Here, the 30% of the overlap ratings by both users in all the ratings

made by either user is not low. Pearson correlation metric also did a slightly better job

than Euclidean distance metric by 0.04. Interestingly, in this online Dating data, the

best performance in all metrics but Euclidean distance metric took place at high

neighborhood threshold. In another words, for dating, a strict threshold to select

neighborhood could help the engine to make a good prediction. I can understand this

trend as that everyone has particular taste on mate. It is difficult to find another one

with similar taste for them. Therefore, the stricter the neighborhood threshold is, the

better the recommendations are.

5.4 Evaluation of the new similarity metric

Each of the similarity metric has its own features and merits. They are valuable in

different cases. If two or more similarity metrics were combined into one or the

intersection of the neighborhoods generated by the two metrics were taken, the

recommendation would probably be better and more precise.

This viewpoint can be verified by combining Pearson correlation similarity and

Euclidean distance similarity. The idea is that Pearson correlation similarity measures

cosine of the angle of the two vectors defined by the users' ratings, while Euclidean

distance similarity measures the distance of the vectors. Therefore, getting the product

of Pearson correlation and Euclidean distance allows for taking both the angle and the

distance into account. The exact algebraic form of the new metric is

45	

	

 (!!)(!!)
!
!!!

(!!)!!
!!! (!!)!!

!!!

× !

!! !
! (!!!!!)!!

!!!

, in which the first part is the formula expression

of Pearson correlation similarity metric, followed by that of Euclidean distance metric.

The code of the new model is provided in Appendix 1.

Figure 15. Comparison of the performances of Pearson correlation, Euclidean

distance, and the combined similarity metrics on MovieLens 100K data (A), Book-

Crossing data (B) and online Dating data (C).

The Figure 15 displays the results obtained for the new similarity with the 100K

MovieLens data (A), Book-Crossing data (B), and online Dating data (C).

Surprisingly, the similarity metric is significantly improved on online Dating data

46	

	

after combination. The lowest error at neighborhood threshold of 0.6 is even better

than the performance of Tanimoto coefficient similarity metric (refer to Figure 14).

The tendency along neighborhood threshold is similar with that of Euclidean distance

metric; however, the effect of Pearson correlation metric is evident at high

neighborhood thresholds. For 100K data (Figure 15A), the new similarity metric is

neither the best compared to pure Pearson correlation and Euclidean distance

similarity nor the worst. For the Book-Crossing data (Figure 15B), the new combined

similarity metric does not work well. Its lowest error at threshold of 0.7 is 3.35,

slightly higher than that of Pearson correlation metric of 3.25. Despite the not-so-good

performance on MovieLens 100K and Book-Crossing data, the advantage of the new

metric is obvious on online Dating data (Figure 15C), which confirms the practicality

of the new idea.

47	

	

6 CONCLUSION

With the advent of the information age, access to information becomes easier.

Meanwhile, the explosion of information also brings about the problem of overload.

Recommender system was consequently developed as an information filtering technic.

Based on recommending mechanisms, recommender systems are divided into three

types. They are content-based filtering, CF and hybrid filtering recommender. The

intrinsic limitations and strengths of these conventional recommender algorithms as

well as their application in E-commerce were discussed in this work. As the core of

the CF algorithm, similarity metrics are critical to the recommendations. Many

similarity metrics have been exploited and each of them has its features. They are

suitable in particular cases. To find out this issue, seven similarity metrics available in

Mahout are evaluated for user-based CF recommender algorithm with five real cases

collected by different academic groups. The five datasets include three GroupLens

movies data with different sizes, Book-Crossing data and online Dating data.

Some parameters such as the neighborhood threshold, the number of the

neighborhood, and different ratio of the datasets were optimized to make each metric

achieve its best performance. From the test of neighborhoods generated by fixed

numbers and threshold, I found that the threshold method could simplify the

evaluation experiment because the threshold value was stable when different ratio of

the selected data were used for the evaluation, while the numbers of the

neighborhoods should be modified to get the best performance of the metrics. From

the evaluation results obtained by different ratios of the dataset, I observed that the

performance of the metric is independent of the ratio of the dataset used for test.

The measure of Euclidean distance similarity in CF algorithm is the best similarity

metric for all the 100K, 1M and 10M GroupLens datasets. Even though the bigger

data in general result in better recommendation, they have different impact on

different similarity metrics. For example, the performance of Tanimoto coefficient

and Log Likelihood similarity metrics has significantly changes with the data size

increasing compared to others due to the very different recommendation principles.

48	

	

When the rating data are for books, Euclidean distance similarity metric still have

advantage over other metrics, while Pearson correlation similarity metric has

relatively bad performance compared to other metrics. Explicit in this fact is that the

absolute values of the ratings made by users are more important than the correlation

of the vectors constituted by the ratings. Also found from this dataset is that the higher

threshold is beneficial for the performance.

Online Dating data was also employed to evaluate the similarity metric. Unexpectedly

yet reasonably, Tanimoto coefficient similarity metric works best at the neighborhood

threshold of 0.3. In this case, Pearson correlation similarity is slightly better than

Euclidean distance metric.

The evaluations allow for concluding the seven traditional similarities. It takes into

account the magnitude difference of rating values. The better performances indicate

that people involved in making the ratings have consistent standard of grading. In

some cases, the situation might be different, where some users have very strict

grading criteria, thus grading the movie they consider good a "3" out of "5" and

grading the movie they think acceptable a "2", while, other users have lenient grading

criteria. They may give the movie they consider good a "5" and the one they think

acceptable a "3". In those cases, the neighborhoods calculated from Euclidean

distance similarity metric would be biased and the metrics based on orientation

measures such as Pearson correlation or Cosine-based similarity metrics are advised

for use.

Pearson correlation similarity metric, as one of the most used similarity metrics in

academy research, has its own advantage. Nevertheless, it is never the best metric in

all the tested cases in the present research. This cannot deny its practicality. Research

by other groups showed that this metric is very useful (Sarwar & Karypis & Konstan

& Riedl 2001, 285). Many similar metrics derived from Pearson correlation metric

have emerged and put into use in other works. (Kreinovich & Nguyen & Wu 2013,

215.)

49	

	

Spearman correlation similarity metric is a variant of Pearson correlation similarity

metric. It is valuable in academic study because it works better than other cosine-

based metrics when the ratings are not normally distributed. However, the metric is

not useful in real recommender engine because of the high computation cost.

The performance of uncentered Cosine metric is in general worse than that of Pearson

method, because the latter centers the rating data before calculating the correlations.

As the most basic form of cosine-based methods, this metric helps to understand the

correlation calculation and derive many other metrics.

Tanimoto coefficient similarity metric has the best performance in online Dating data

while it performs the worst in the book data. The nature of the Tanimoto coefficient

similarity metric reveals that it ignores the rating values by taking all the items with

ratings as users’ preferences. Therefore, the importance of the rating values to the

recommendation could affect the performance of this similarity metric. In real life,

people are more cautious in making decision of dating persons than reading a book.

Thence the rating itself indicate the preference, no matter what score it is. However,

for the books or movies, if people do not like, they may give very low rating values

indicating their disfavor. Given this fact, it is understandable that Tanimoto

coefficient similarity metric has poor performances in movie and book data.

Log Likelihood similarity metric also neglecting the exact rating values are very

useful in the Boolean data. The difference between Log Likelihood and Tanimoto

coefficient similarity metrics is that compared to the highlight of the ratio of the

intersection of users' preferences to the union, Log Likelihood emphasizes how

unlikely the overlap between two users is by accident. The math behind the

computing is complicated, while their difference is reflected in the different

performance in different cases.

City Block similarity metric rejects working if the neighborhood threshold is high, i.e.

for the MovieLens data, the critical threshold is 0.05; for Book-Crossing data, the

threshold cannot be higher than 0.3; for online Dating data, it fails in all the positive

thresholds. According to the explanation given by Sean Owen (Stack Overflow 2013),

50	

	

one of the authors of the book "Mahout in Action", City Block similarity metric is

rarely useful, and it is implemented in Mahout just for completeness. It might be

useful in the cases with discrete ratings because of its fine-tuning nature.

The new model of similarity metric by combining two or more traditional metrics has

also proven to be useful. The combination of Pearson correlation metric and

Euclidean distance metric not only measures the angle similarity but also measures

the distance similarity of two vectors defined by users’ ratings. The superiority over

all the other metrics has been represented in the online Dating data.

51	

	

REFERENCES

Adomavicius, Gediminas & Tuzhilin, Alexander 2005. Toward the Next Generation

of Recommender Systems: A Survey of the State-of-the-Art and Possible

Extensions. IEEE Transactions on Knowledge and Data Engineering. 2005, 743-

749. Downloaded 9 June, 2013.

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1423975>

Beel, Joeran & Langer, Stefan & Gipp, Bela & Genzmehr, Marcel & Nürnberger,

Andreas 2013a. A Comparative Analysis of Offline and Online Evaluations and

Discussion of Research Paper Recommender System Evaluation. Proceedings of

the Workshop on Reproducibility and Replication in Recommender Systems

Evaluation, New York, ACM, 2013, 7-14. Downloaded 16 June, 2013.

<http://docear.org/papers/a_comparative_analysis_of_offline_and_online_evalu

ations_and_discussion_of_research_paper_recommender_system_evaluation.pd

f>

Beel, Joeran & Langer, Stefan & Gipp, Bela & Genzmehr, Marcel & Nürnberger,

Andreas 2013b. Research Paper Recommender System Evaluation: A

Quantitative Literature Survey. Proceedings of the Workshop on Reproducibility

and Replication in Recommender Systems Evaluation, New York, ACM, 2013,

15-22. Downloaded 9 October, 2013.

<http://delivery.acm.org/10.1145/2540000/2532512/p15-

beel.pdf?ip=130.234.128.85&id=2532512&acc=ACTIVE%20SERVICE&key=

74A0E95D84AAE420%2E06A1DC718DC957B2%2E4D4702B0C3E38B35%2

E4D4702B0C3E38B35&CFID=329541158&CFTOKEN=95738120&__acm__

=1398809040_6fbc61355ac6944206a1869264bb81d6>

Bellogín, Alejandro & de Vries, Arjen P. 2013. Understanding Similarity Metrics in

Neighbor-based Recommender Systems. Proceedings of the 2013 Conference on

the Theory of Information Retrieval. ACM, 2013, 13. Downloaded 11 May,

2014.

<http://ir.ii.uam.es/~alejandro/2013/ictir.pdf>

Bobadilla, Jesús & Ortega, Fernando & Hernando, Antonio & Bernal, Jesús 2012. A

collaborative filtering approach to mitigate the new user cold start problem.

52	

	

Knowledge-Based Systems, Volume 26, 225-238. Downloaded 7 November,

2013.

<http://ac.els-cdn.com/S0950705111001882/1-s2.0-S0950705111001882-

main.pdf?_tid=101d07f2-c97f-11e3-89f8-

00000aab0f6b&acdnat=1398103512_55a55ff2bffccfd2345f887b9e178893>

Bogers, Toine & van den Bosch, Antal 2009. Collaborative and Content-based

Filtering for Item Recommendation on Social Bookmarking Websites.

Proceedings of the Workshop on Recommender Systems and the Social Web,

New York, ACM, October 25, 2009. Downloaded 7 November, 2013.

<http://ceur-ws.org/Vol-532/paper2.pdf>

Brozovsky, Lukas & Petricek, Vaclav 2007. Recommender System for Online Dating

Service. Proceedings of Conference Znalosti 2007 Ostrava: VSB. Downloaded

20 January, 2014.

<http://www.occamslab.com/petricek/papers/Dating/brozovsky07recommender.

pdf>

Burke, Robin 2002. Hybrid Recommender Systems: Survey and Experiments. User

Modeling and User-Adapted Interaction, Volume 12, 331-370. Downloaded 13

February, 2014.

<http://download.springer.com/static/pdf/990/art%253A10.1023%252FA%253

A1021240730564.pdf?auth66=1398277386_004610f85ea7aaff44ee609396bbf8

32&ext=.pdf>

Campos, Lius M. de & Fernández-Luna, Juan M. & Huete, Juan F. & Rueda-Morales,

Miguel A. 2010. Combining content-based and collaborative recommendations:

A hybrid approach based on Bayesian networks. International Journal of

Approximate Reasoning, Volume 51, 785-799. Downloaded 5 January, 2014.

<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.303.2679&rep=rep1

&type=pdf>

Cha, Meeyoung & Kwak, Haewoon & Rodriguez, Pablo & Ahn, Yong-Yeol & Moon.

Sue 2007. I Tube, You Tube, Everybody Tubes: Analyzing the World’s Largest

User Generated Content Video System. Proceedings of the 7th ACM SIGCOMM

Conference on Internet Measurement, New York, ACM, 2007, 1-14. Download

23 September, 2013.

<http://dl.acm.org/citation.cfm?id=1298309>

53	

	

Chang, Joshua 2004. Online Shopping: Advantages over the Offline Alternative. The

Journal of Internet Banking and Commerce, Volume 9, Number 1, 2004.

Accessed 11 May, 2014.

<http://www.arraydev.com/commerce/jibc/0311-07.htm>

Dating Agency 2006. Collaborative filtering dataset - Dating agency. Downloaded 15

January, 2014.

<http://www.occamslab.com/petricek/data/>

Davies, Gary 1995. Bringing Stores to Shoppers - Not Shoppers to Stores.

International Journal of Retail and Distribution Management, Volume 23,

Number 1, 18-23. Accessed 11 May, 2014.

<http://www.emeraldinsight.com/journals.htm?articleid=857126>

Davidson, James & Liebald, Benjamin & Liu, Junning & Nandy, Palash & Vleet,

Taylor Van & Gargi, Ullas & Gupta, Sujoy & He, Yu & Lambert, Mike &

Livingston, Blake & Sampath, Dasarathi 2010. The YouTube video

recommendation system. Proceedings of the 4th ACM Conference on

Recommender Systems, New York, ACM, 2010:293-296. Downloaded 23

September, 2013.

<http://dl.acm.org/citation.cfm?id=1864770>

Gashler, Michael S. 2013. Lecture notes on Machine Learning. Version 2013-12-07.

Downloaded 3 April, 2014.

<http://uaf46365.ddns.uark.edu/lab/ml.pdf>

Ghazanfar, Mustansar Ali & Prugel-Bennett. Adam 2010. Scalable, Accurete Hybrid

Recommender System. Processings of the 3rd International AAAI Conference on

Knowledge Discovery and Data Mining, IEEE 2010, 94-98. Downloaded 13

November, 2013.

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432716>

Ghosh, Tarak B. 2002. Freely available online information sources and their impact

on libraries and information centres. In 9th National Convention, CALIBER-

2002, Jaipur, India, 14-16 February 2002. Downloaded 11 May, 2014.

<http://eprints.rclis.org/5640/1/inflibnet2002_upload.pdf>

Gill, Phillipa & Arlitt, Martin & Li, Zongpeng & Mahanti. Anirban 2008.

Characterizing Users Sessions on YouTube. Proceedings of SPIE/ACM

54	

	

Conference on Multimedia Computing and Networking (MMCN), Santa Clara,

USA. Downloaded 23 September, 2013.

<http://www.reelseo.com/wp-content/uploads/mmcn08.pdf>

GroupLens 2014. GroupLens. Downloaded 22 December, 2013.

<http://grouplens.org/datasets/movielens/>

Gupta, Pankaj & Goel, Ashish & Lin, Jimmy & Sharma, Aneesh & Wang, Dong &

Zadeh, Reza 2013. WTF: the who to follow service at Twitter. Proceedings of

the 22nd International Conference on World Wide Web, New York, AMC,

2013:505-514. Downloaded 23 September, 2013.

<http://delivery.acm.org/10.1145/2490000/2488433/p505-

gupta.pdf?ip=130.234.128.85&id=2488433&acc=ACTIVE%20SERVICE&key

=74A0E95D84AAE420%2E06A1DC718DC957B2%2E4D4702B0C3E38B35

%2E4D4702B0C3E38B35&CFID=443604056&CFTOKEN=38717628&__acm

__=1398110111_aecfcd6553fbb45fdf709233b9e20f0d>

Hahsler, Michael 2014. Recommenderlab: Lab for developing and testing

recommender algorithms, published on January 13, 2014. Retrieved 2 February,

2014.

<http://cran.r-project.org/web/packages/recommenderlab/index.html>

Herlocker, Jonathan L. & Konstan, Joseph A. & Terveen, Loren G. & Riedl, John, T.

2004. Evaluating collaborative filtering recommender systems. ACM

Transactions on Information System, Volume 22, 5-53. Downloaded 17

November, 2013.

<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.5270&rep=rep1&

type=pdf>

Hill, Will & Stead, Larry & Rosenstein, Mark & Furnas, George 1995.

Recommending and Evaluating Choices in a Virtual Community of Use.

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems. New York, ACM 1995, 194-201. Downloaded 17 November, 2013.

<http://dl.acm.org/citation.cfm?id=223929>

Huang, Anna 2008. Similarity Measures for Text Document Clustering. 2008.

Christchurch, New Zealand 2008, 49-56. Downloaded 23 September, 2013.

55	

	

<http://www.milanmirkovic.com/wp-

content/uploads/2012/10/pg049_similarity_Measures_for_Text_Document_Clus

tering.pdf>

Huang, Zan & Chen, Hsinchun & Zeng, Daniel 2004. Applying associative retrieval

techniques to alleviate the sparsity problem in collaborative filtering. ACM

Transactions on Information Systems (TOIS), Volume 22, 116-

142. Downloaded 23 September, 2013.

<http://arizona.openrepository.com/arizona/bitstream/10150/105493/1/huang.pd

f>

Huangfu, Dapeng & Lin, Qianhui & Zhou, Jingmin 2009. An Improved Similarity

Algorithm for Personalized Recommendation. International Forum on Computer

Science-Technology and Applications, IEEE computer society 2009, 54-57.

Downloaded 19 December, 2013.

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5385135&tag=1>

IBM Corporation, 2008. IBM developerWorks. Accessed 28 March, 2013.

<http://www.ibm.com/developerworks/library/os-recommender1/>

Kim Heung-Nam & Ji, Ae-Ttie & Ha, Inay & Jo, Geum-Sik 2010. Collaborative

filtering based on collaborative tagging for enhancing the quality of

recommendation. Electronic Commerce Research and Applications, Volume 9,

73-78. Latest accessed 27 February, 2014.

<http://www.sciencedirect.com/science/article/pii/S1567422309000544>

Koren, Yehuda 2010. Collaborative filtering with temporal dynamics.

Communications of the ACM, Volume 53, Issue 4, 89-97. Downloaded 30

September, 2013.

<http://sydney.edu.au/engineering/it/~josiah/lemma/kdd-fp074-koren.pdf>

Kreinovich, Vladik & Nguyen, Hung T. & Wu, Berlin 2013. Towards a Localized

Version of Pearson’s correlation coefficient. Journal of Intelligent Technologies

and Applied Statistics, Volume 6, Issue 3, 215-224. Downloaded 9 January,

2014.

<http://www.cs.utep.edu/vladik/2013/tr13-46.pdf>

Li, Li-Hua & Hsu, Rong-Wang & Lee, Fu-Ming 2011. Review of Recommender

Systems and Their Application. T&S Journal Publications, 2011, 1-38.

Downloaded 17 November, 2014.

56	

	

<http://tands-journal-publications.com/wp-

content/uploads/2011/12/Reviewed_Review-of-Recommender-Systems-and-

their-Application.pdf>

Linden, Greg & Smith, Brent & York, Jeremy 2003. Amazon.com Recommendations

Item-to-Item Collaborative Filtering, Internet Computing, IEEE, Volume 7,

Issue 1, 76-80. Downloaded 17 November, 2013.

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1167344>

Linmonada, W. Y. 2011. Crab-Recommender systems in Python. Retrieved 20 July,

2013.

<http://muricoca.github.io/crab/>

LensKit Recommender Toolkit: 2010–2014 Regents of the University of Minnesota.

Retrieved 20 July, 2013.

<http://lenskit.grouplens.org/>

Lops, Pasquale & de Gemmis, Marco & Semeraro, Giovanni 2011. Content-based

Recommender Systems: State of the Art and Trends, Chapter 3 in Recommender

System Handbook 2011, 73-105. Downloaded 17 November, 2013.

<Content-based Recommender Systems: State of the Art and Trends, Chapter 3

in Recommender System Handbook 2011>

Melville, Prem & Sindhwani, Vikas 2010. Recommender systems. Encyclopedia of

Machine Learning, Springer-Verlag Berlin Herdelberg, 2010. Downloaded 28

March, 2013.

<http://www.prem-melville.com/publications/recommender-systems-

eml2010.pdf>

Miller, Bradley N. & Albert, Istvan & Lam, Shyong K. & Konstan, Joseph A. & Riedl,

John, 2003. MovieLens Unplugged: Experiences with an Occasionally

Connected Recommender System. Proceedings of the 8th International

Conference on Intelligent User Interfaces, New York, ACM 2003, 263-266.

Downloaded 21 October, 2013.

<http://delivery.acm.org/10.1145/610000/604094/p263-

miller.pdf?ip=130.234.128.85&id=604094&acc=ACTIVE%20SERVICE&key=

74A0E95D84AAE420%2E06A1DC718DC957B2%2E4D4702B0C3E38B35%2

E4D4702B0C3E38B35&CFID=449393462&CFTOKEN=82379573&__acm__

=1398854252_1a5c78ce9471d7a257879ecc1d5bffa6>

57	

	

Montaner, Montaner & Lopez, Beatriz & de la Rosa, Josep Lluis 2003. A Taxonomy

of Recommender Agents on the Internet. Artificial Intelligence Review, Volume

19, Issue 4, 285–330. Download 16 October, 2013.

<http://eia.udg.edu/~blopez/publicacions/montaner-aireview03.pdf>

MySQL 2014. The world's most popular open source database. Downloaded 22

December, 2013.

<http://dev.mysql.com/>

Owen, Sean & Anil, Robin & Dunning, Ted & Friedman, Ellen 2011. Mahout in

action. Manning Publications Co. 2012.

Oracle 2014, Java Development Kit. Downloaded 22 December, 2013.

<http://www.oracle.com/technetwork/java/javase/downloads/index.html>

Oracle Corporation and/or its affiliates 2014, MySQL Downloads. Downloaded 22,

December, 2013.

<http://www.mysql.com/downloads/>

Papagelis, Manos & Plexousakis, Dimitris 2005. Qualitative Analysis of User-Based

and Item-Based Prediction Algorithms for Recommendation Agents,

Cooperative Information Agents VIII, Lecture Notes in Computer Science,

Volume 3191, 152-166. Downloaded 16 January, 2014.

<http://www.sciencedirect.com/science/article/pii/S0952197605000825>

Papagelis, Manos & Plexousakis, Dimitris & Kutsuras, Themistoklis 2005.

Alleviating the sparsity problem of collaborative filtering using trust inferences.

In Proceedings of the Third International Conference on Trust Management,

2005, 224-239. Downloaded 18 January, 2014.

<http://queens.db.toronto.edu/~papaggel/docs/papers/all/iTrust05-

Alleviating_the_Sparsity_Problem_of_Collaborative_Filtering_Using_Trust_Inf

erences.pdf>

Pazzani, Michael J. & Muramatsu, Jack & Billsus, Daniel 1996. Syskill and Webert:

Identifying interesting web sites. Workshop on Machine Learning in

Information Access, AAAI Spring Symposium Series, Stanford, CA.

Downloaded 10 November, 2013.

<http://www.aaai.org/Papers/Symposia/Spring/1996/SS-96-05/SS96-05-

010.pdf>

58	

	

Pazzani, Michael J. 1999. A Framework for Collaborative, Content-Based and

Demographic Filtering, Artificial Intelligence Review. Special issue on data

mining on the Internet, Volume 13, Issue 5-6, 393-408. Downloaded 23

September, 2013.

<http://www.cs.northwestern.edu/~pardo/courses/mmml/papers/collaborative_fi

ltering/a_framework_for_content_based_demographic_filtering_AIR99.pdf>

Pazzani, Michael J. & Billsus, Daniel 2011. Content-Based Recommendation Systems,

The adaptive web. Springer-Verlag Berlin, Heidelberg, 2007, 325-341.

Downloaded 9 October, 2013.

<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.8327&rep=rep1

&type=pdf>

Picard, Rosalind W. 2000. Toward computers that recognize and respond to user

emotion. IBM Systems, Volume 3, 705-719. Downloaded 25 September, 2013.

<http://dm.finearts.yorku.ca/~navarres/FACS2936/a1/article.pdf>

Resnick, Paul & Iakovou, Neophytos & Sushak, Mitesh & Bergstrom, Peter & Riedl,

John 1994. GroupLens: An Open Architecture for Collaborative Filtering of

Netnews, Proceedings of the 1994 ACM conference on Computer Supported

Cooperative Work, New York, ACM, 1994, 175-186. Downloaded 13 July,

2013.

<http://su-2010-projekt.googlecode.com/svn-

history/r202/trunk/literatura/resnick1994grouplens.pdf>

Ricci, Francesco & Rokach, Lior & Shapira, Bracha 2011. Introduction to

recommender systems handbook, Springer US, 2011:1-35. Downloaded 25

April, 2013.

<http://www.cs.bme.hu/nagyadat/Recommender_systems_handbook.pdf>

Sarwar, Badrul & Karypis, George & Konstan, Joseph & Riedl, John, 2001. Item-

based collaborative filtering recommendation algorithms. WWW ’01

Proceedings of the 10th International Conference on World Wide Web, New

York, ACM, 2001, 285-295. Downloaded 13 July, 2013.

<http://delivery.acm.org/10.1145/380000/372071/p285-

sarwar.pdf?ip=130.234.150.101&id=372071&acc=ACTIVE%20SERVICE&ke

y=74A0E95D84AAE420%2E06A1DC718DC957B2%2E4D4702B0C3E38B35

59	

	

%2E4D4702B0C3E38B35&CFID=443514996&CFTOKEN=53901149&__acm

__=1398103834_a49aded535721cc339428e067a7290a7>

Schafer, J. Ben & Konstan, Joseph & Riedl, John, 1999. Recommender systems in e-

commerce. Proceedings of the 1st ACM conference on Electronic commerce,

New York, ACM, 1999, 158-166. Downloaded 16 July, 2013.

<http://delivery.acm.org/10.1145/340000/337035/p158-

schafer.pdf?ip=130.234.150.101&id=337035&acc=PUBLIC&key=74A0E95D8

4AAE420%2E06A1DC718DC957B2%2E4D4702B0C3E38B35%2E4D4702B0

C3E38B35&CFID=443514996&CFTOKEN=53901149&__acm__=139810637

2_bc4020059b47bd869f2bd6fac9689db4>

Schein, Andrew I. & Popescul, Alexandrin & Ungar, Lyle H. & Pennock, David M.

2002. Methods and Metrics for Cold-Start Recommendations. Proceedings of

the 25th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, New York, ACM, 2002, 253–260.

Downloaded 17 November, 2013.

<http://repository.upenn.edu/cgi/viewcontent.cgi?article=1141&context=cis_pap

ers>

Schelter, Sebastian & Owen, Sean 2013. Collaborative Filtering with Apache Mahout.

Downloaded 22 December, 2013.

<http://ssc.io/wp-content/uploads/2013/02/cf-mahout.pdf>

Shank, Steve 2008. Online Information Reliability. Oregon Computer Solution,

September 2008. Retrieved 11 May, 2014.

<http://steveshank.com/cgi-bin/article.pl?aid=312>

Shardanand Upendra & Maes, Pattie 1995. Social Information Filtering: Algorithms

for Automating ‘Word of Mouth’, Proceedings of the SIFCHI Conference on

Human Factors in Computing Systems, New York, ACM, 1995, 210-217.

Stack Overflow is a question and answer site for professional and enthusiast

programmers. The questioned was answered on January 20, 2013 by Sean Owen.

<http://stackoverflow.com/questions/12499705/example-where-manhattan-

cityblock-distance-is-used-to-generate-recommendations>

Su, Xiaoyuan & Khoshgoftaar, Taghi M., 2009. A Survey of Collaborative Filtering

Techniques. Advances in Artificial Intelligence, Volume 2009, Article No. 4.

New York: Hindawi Publishing Corporation. Downloaded 27 September, 2013.

60	

	

<http://delivery.acm.org/10.1145/1730000/1722966/p4-

su.pdf?ip=130.234.150.101&id=1722966&acc=PUBLIC&key=74A0E95D84A

AE420%2E06A1DC718DC957B2%2E4D4702B0C3E38B35%2E4D4702B0C3

E38B35&CFID=443514996&CFTOKEN=53901149&__acm__=1398103872_0

903b9cb922022f7bbbd2913b4765889>

The Apache Software Foundation 2009-2014. Apache Tomcat. Downloaded 22,

December, 2013.

<http://tomcat.apache.org/index.html>

The Apache Software Foundation 2011. Apache subversion. Downloaded 22,

December, 2013.

<http://subversion.apache.org/>

The Apache Software Foundation 2014a. Mahout. First downloaded 22 December,

2013 and modified 12 March, 2014.

<http://mahout.apache.org/>

The Apache Software Foundation 2014b. Apache Maven Project. Downloaded 22,

December, 2013.

<http://maven.apache.org/>

The Cygwin DLL and utilities 2013, Red Hat Cygwin. Downloaded 22 December,

2013.

<http://www.cygwin.com/>

The Eclipse Foundation 2010. Eclipse Juno Sr1 Packages. Downloaded 22 December,

2013.

<http://www.eclipse.org/downloads/packages/release/juno/sr2>

Yu, Kai & Schwaighofer, Anton & Tresp, Volker & Xu, Xiaowei & Kriegel, Hans-

Peter, 2004. Probabilistic Memory- Based Collaborative Filtering. IEEE

Transactions on Knowledge and engineering, Volume 16, Issue 1, 56-69.

Downloaded 9 October, 2013.

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1264822>

Ziegler, Cai-Nicolas & McNee, Sean M. & Konstan, Joseph A. & Lausen, Georg

2005. Improving Recommendation Lists Through Topic Diversification.

Proceedings of the 14th International World Wide Web Conference, Chiba,

Japan, 10-14 May, 2005. Retrieved 6 January, 2014.

61	

	

Zink, Michael & Suh, Kyoungwon & Gu, Yu & Kurose, Jim 2008. Watch Global,

Cache Local: YouTube Network Traffic at a Campus Network - Measurements

and Implications. Proceedings of SPIE/ACM Conference on Multimedia

Computing and Networking (MMCN), Santa Clara, USA, January 2008.

Downloaded 17 November, 2013.

<http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1178&context=cs_f

aculty_pubs >

Zhou, Renjie & Khemmarat, Samamon & Guo, Lixin 2010. The impact of YouTube

recommendation on Video views. Proceeding of the 10th ACM SIGCOMM

Conference on Internet measurement, New York, ACM, 2010, 404-410.

Downloaded 17, November, 2013.

<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.353.1816&rep=rep1

&type=pdf>

62	

	

APPENDIX

Appendix 1. Code of the new model of similarity metric.

package Similarity;

import org.apache.mahout.cf.taste.common.TasteException;

import org.apache.mahout.cf.taste.common.Weighting;

import org.apache.mahout.cf.taste.model.DataModel;

import com.google.common.base.Preconditions;

public NewSimilarity(DataModel dataModel) throws TasteException {

 this(dataModel, Weighting.UNWEIGHTED);

 }

 public NewSimilarity(DataModel dataModel, Weighting weighting) throws

TasteException {

 super(dataModel, weighting, false);

 Preconditions.checkArgument(dataModel.hasPreferenceValues(), "DataModel

doesn't have preference values");

 }

 @Override

 double computeResult(int n, double sumXY, double sumX2, double sumY2, double

sumXYdiff2) {

 return

Math.pow((sumXY/Math.sqrt(sumX2)/Math.sqrt(sumY2)),1)*((1.0/(1.0+Math.sqrt(su

mXYdiff2)/Math.sqrt(n))));

 }

}

	

