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This research is focused on the field of recommender systems. The general aims of 
this thesis are to summary the state-of-the-art in recommendation systems, evaluate 
the efficiency of the traditional similarity metrics with varies of data sets, and 
propose an ideology to model new similarity metrics.  
 
The literatures on recommender systems were studied for summarizing the current 
development in this filed. The implementation of the recommendation and evaluation 
was achieved by Apache Mahout which provides an open source platform of 
recommender engine. By importing data information into the project, a customized 
recommender engine was built. Since the recommending results of collaborative 
filtering recommender significantly rely on the choice of similarity metrics and the 
types of the data, several traditional similarity metrics provided in Apache Mahout 
were examined by the evaluator offered in the project with five data sets collected by 
some academy groups. 
  
From the evaluation, I found out that the best performance of each similarity metric 
was achieved by optimizing the adjustable parameters. The features of each 
similarity metric were obtained and analyzed with practical data sets. In addition, an 
ideology by combining two traditional metrics was proposed in the thesis and it was 
proven applicable and efficient by the metrics combination of Pearson correlation 
and Euclidean distance.  
 
The observation and evaluation of traditional similarity metrics with practical data is 
helpful to understand their features and suitability, from which new models can be 
created. Besides, the ideology proposed for modeling new similarity metrics can be 
found useful both theoretically and practically. 
 
Keywords:  recommender systems, algorithms, CF, similarity metrics. 
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1 INTRODUCTION 

 

1.1 Background and motivation  

 

With the quick development of computer and network techniques in the past decades, 

e-commerce has become shoring of online activities. Increasing attention has been 

paid to online shopping, since it is convenient and timesaving (Chang 2003; Davies 

1995). To date, overwhelming amount of information is freely available on Internet 

(Ghosh 2002), which undoubtedly facilitates people’s lives. However, the information 

posted on Internet is not with uniform quality (Shank 2008) and too much information 

increases the difficulty for sieving. Therefore, a filter is necessary. In view of this, a 

useful technique named recommender system, sometimes it is also referred to as 

recommendation system, has been widely used over the world immediately after it 

was born. (Ricci & Rokach & Shapira 2011, 1.)  

 

The recommender systems studied as an independent research area can be tracked 

back to the mid-1990s when a series of conferences were held, where some 

conference papers on collaborative filtering (hereinafter CF) were published (Resnick 

& Iakovou & Sushak & Bergstrom & Riedl 1994, 175; Hill & Stead & Rosenstein & 

Furnas 1995, 194). Since then, recommender systems have continuously been a 

research discipline with considerable concern. A large amount of research papers and 

books emerged, of which some focused on the review work of the development 

situation and others worked on solving the existing problems (Montaner & Lopez & 

Rosa 2003; Adomavicius & Tuzhilin 2005, 743; Herlocker & Konstan & Terveen & 

Riedl 2004, 5; Beel & Langer & Gipp & Genzmehr & Nürnberger 2013a, 7-10; Beel 

& Langer & Gipp & Genzmehr & Nürnberger 2013b, 15-17; Huangfu & Lin & Zhou 

2009, 54-57). In addition, the practicality of recommender systems pushed them to the 

industry area as well. Many e-commerce websites and electronics companies establish 

the research and development department to specialize in this field and directly 

combine the results into application. For instance, Amazon.comTM provides 

recommendations of products to their users and even non-registered guests. The 

products involve many fields, including books, CDs, electronics, clothes and so on. 

Amazon’s recommendation methods are complex, however, it is centered on item-to-
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item CF (Linden & Smith & York 2003, 76-80). Youtube recommends videos to their 

users. If one has a YouTube account, YouTube records every video he/she has seen or 

just browsed. Based on the watching history, YouTube predicts which videos might 

be interesting to him/her and then they would be recommended. Different with 

Amazon, YouTube mainly conducts the recommendation by combining the related 

videos association rules with the users’ personal behaviors. (Cha & Kwak & 

Rodriguez & Ahn & Moon 2007, 1-14; Gill & Arlitt & Li & Mahanti 2008; Zink & 

Suh & Gu & Kurose 2008; Davidson & Liebald & Liu & Nandy & Vleet & Gargi & 

Gupta & He & Lambert & Livingston & Sampath 2010, 293-296.) 

 

In general, recommender systems are designed to help users reduce overload 

(Adomavicius & Tuzhilin 2005, 743). They are tools or techniques to provide 

personalized suggestions to users (Sarwar & Karypis & Konstan & Riedl 2000, 285). 

In other words, considering users’ needs or interests, recommender systems pick up 

small amount but accurate information from large-scale data, in order to achieve the 

aim of information screening. As a subclass of information screening system, 

recommender systems seek to predict the users’ ratings or preference on items, and 

then intellectively recommend to users according to users’ personal history activities 

and the features of the items. (Li & Hsu &Lee 2011, 8.) 

 

With the development in this area, several types of recommendation systems grew up 

(Papagelis & Plexousakis 2005, 781). They are commonly CF, content-based filtering 

and hybrid filtering recommendation systems. They conduct predictions based on 

different indicators. Each system has its intrinsic merits and demerits. Accordingly, 

the selection of recommender system in a specific situation depends on the particular 

environment. For instance, the cold start problem deactivates the CF recommendation 

(Schein & Popescul & Ungar & Pennock 2002, 253; Bobadilla, Ortega, Hernando & 

Gutiérrez, 2013). Before collecting enough data, other methods such as content-based 

recommendation should be exploited. Meta data is required to make the content-based 

recommendations, whereas, CF can solve this problem (Bellogín & de Vries 2013, 13). 

Actually, content-based filtering can be employed to screen the results of CF 

recommendations (Bogers & Bosch 2009, 1; Campos & Fernándex-Luna & Huete & 
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Rueda-Morales 2010, 785). Therefore, in real life, the combination of CF and content-

based filtering methods are always exploited to make recommendations.  

 

Recommendation is a complex process and many factors can influence the 

recommending results, among which, similarity metric is undoubtedly a crucial one 

(Bellogín & de Vries 2013, 13). The traditional calculation methods on similarity 

include Pearson correlation similarity, Euclidean distance similarity, Cosine-based 

similarity, City Block similarity, Log Likelihood similarity, Spearman correlation 

similarity and Tanimoto coefficient similarity.  

 

Even though the research on recommendation systems has proceeded for over thirty 

years and many breakthroughs were realized in every aspect, problems still exist. 

Every time when I exert myself to search a preferred movie, a song or a piece of 

favorite clothes out of the thousands of choices from Internet, I am not satisfied with 

all the recommendations made by the website. Accordingly, given the importance of 

the similarity metrics, my motivation of this study refers to finding the most suitable 

similarity metrics for CF recommender system in certain practical cases and 

modelling a new metric in terms of better predictions.  

 

 

1.2 Objectives 

 

The first objective is to summarize the present research situation on recommender 

system.  I investigate the existing recommendation methods, which are Collaborative 

filtering, Content-based filtering and Hybrid recommendation as well as their 

mechanisms. The strengths and weakness of each recommendation methods are 

pointed out as well. Some traditional similarity algorithms are widely used in the 

existing recommendation systems (Adomavicus & Tuzhilin 2005; Kim & Ji & Ha & 

Jo 2010, 75). By analyzing the mathematical formulas of the similarity algorithms, I 

expand on the principle of each algorithm including Pearson correlation similarity, 

Euclidean distance similarity, Cosine-based similarity, City Block similarity, Log 

Likelihood similarity, Spearman correlation similarity and Tanimoto coefficient 

similarity. 
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Evaluating the traditional similarity algorithms is the second objective of the present 

research. Before conducting the evaluation, obtaining recommendations or predictions 

from datasets with different algorithms is indispensable. The recommendations are 

implemented by way of Taste, which is a useful application in Apache Mahout (The 

Apache Software Foundation 2014a). Taste enables to achieve the implementation of 

recommendation engine and also provides free implantation of similarity metrics both 

on stand-alone and on Hadoop platform. The software tools for building Taste include 

JDK, Eclipse, Maven, and MySQL. The roles of aforementioned software and the 

installation are presented in the fourth chapter of the thesis. Once the recommendation 

engine is built, some datasets accessible online could be adopted. Recommendations 

or predictions are performed by each algorithm. Several methods could be used for 

the evaluation of the recommendations: the recommendations can be compared with 

users' real decisions, for which it needs to separate the dataset into training set and 

testing set; datasets with different scales of ratings can help to test its effect to 

recommendation results. In addition, Taste also contains a sub-application for 

evaluating the similarity metrics.  

 

The traditional similarity metrics have their own shortcomings. Among them, Pearson 

correlation, uncentered Cosine and Spearman correlation metrics measure the cosine 

of the vectors defined by users’ ratings on items. They neglect the distance between 

the vectors. Euclidean distance and Manhattan distance metrics emphasize the 

distances but overlook the trend of the ratings users gave. Tonimato coefficient and 

Log Likelihood metrics do not take the exact rating values into consideration and 

regard all the rated items as preferences. The features of these metrics may lead to 

unreasonable similarity between users or items. In this sense, the last objective of this 

thesis is providing a model of new similarity metric and evaluating it with real data.  

 

 

1.3 Structure of thesis 

 

The structure of this thesis is as follows. Chapter 2 defines the scope of this research: 

answers to three research questions and corresponding research methodologies are 

presented. In Chapter 3, the state-of-the-art in the field of recommendation systems is 
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focused on. CF, content-based filtering and mixed filtering recommendation systems 

as well as their recommendation mechanisms are summarized in the first section. 

Issues related to traditional similarity measures are stated in the second section. The 

last section of this Chapter involves in the application of recommender systems in E-

commerce. Chapter 4 and Chapter 5 are related to practical parts, including 

implementation of recommender engine in Windows 7 with Apache Mahout and 

assessing traditional similarity metrics. The configurations of computer and 

installation details of required software tools are discussed in Chapter 4. Evaluation of 

seven frequently used similarity metrics is the main concern of Chapter 5. In addition, 

a new model of similarity metric is proposed according to the features of the 

traditional metrics. The Chapter 6 concludes the present research and outlooks the 

future. 
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2 RESEARCH SCOPE, QUESTIONS, METHODOLOGY 

 

2.1 Research scope 

 

Many types of recommender systems come to the fore with the fast development of 

web 2.0 technique and the ease of access to big data. They compute predictions based 

on different indicators. To have a thorough knowledge on the development in this area, 

summary of the types of recommenders and their recommending mechanisms are 

presented in this research. The process of making recommendations is complex, 

during which many factors can influence the recommending results, such as 

recommender algorithms, types of the data. Similarity metric is the core of CF 

recommender. Accordingly, several traditional similarity metrics are to be evaluated 

with MovieLens 100K, 1M, 10M data (GroupLens 2014; Miller Albert & Lam & 

Konstan & Riedl 2003, 263-266), Book-Crossing data (Ziegler & McNee & Konstan 

& Lausen 2005) and online Dating data (Brozovsky & Petricek 2007).  In view of the 

limitations of the traditional similarity metrics, a new model of similarity metric is put 

forward. 

 

My research work covers several disciplines: the similarity measures refer to 

Mathematics and Statistics. The knowledge of Database is involved during the 

construction of recommender engine. To carry out the research successfully, Apache 

Mahout, MySQL and Java are basic software tools. Subsequently, a recommendation 

platform is set up, with which the recommended results are yielded based on different 

similarity measures in CF recommender. By comparing the results from different 

similarity metrics, most efficient metrics in each case are to be found out. At last, on 

the basis of analyzing the features of the traditional metrics, a new model is proposed, 

which requires the theoretical background of Advanced Mathematics. 

 

 

2.2 Research questions 

 

As briefly stated above, three major research questions are put forward to achieve the 

objectives, followed by the corresponding explanations. 
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1. What is the mechanism of recommendation systems to generate predictions or 

recommendations, and what are the principles of these similarity measures? 

 

Several types of recommender systems such as CF recommendation, content-

based recommendation and hybrid filtering-based recommendation have been 

developed. Each of them has its distinct recommending mechanism. For CF, 

the most popular algorithm, similarity calculation is involved in for finding the 

similar users or items. With the research on this field going on, some classic 

metrics have been exploited in recommender system. They yield predictions 

with different accuracies and varieties. Understanding the principles of these 

algorithms is necessary. This is the basis to find out the impact of similarity 

metrics on recommendation results. 

 

2. How can the recommendations of different similarity measures be achieved? 

 

Implementation of the recommendation is the key step of this project. A 

recommender framework or platform is the tool to realize the recommendation. 

Taste, a filtering engine of Java, is an open sourced application in Apache 

Mahout (The Apache Software Foundation 2014a). Taste could generate 

predictions from the imported data, working as a customized recommender 

system. In this thesis, this project is used to test the performance of the 

traditional similarity metrics. Obviously, this is a technologically achievable 

issue. Several interfaces are defined in Taste, such as DataModel, 

UserSimilarity, ItemSimilarity, UserNeighborhood, and Recommender. Sub 

packages of org.apache.mahout.cf.taste.impl control the implementation of 

these interfaces. By exploiting the aforementioned java applications, I can set 

up a homemade recommender engine satisfied with my requirements. 

 

3. How can the similarity metrics be evaluated? 

 

With respect to the evaluation of similarity metrics, an equitable way to assess 

these metrics makes the evaluation reliable. It is difficult and unfair to point 

out which similarity measure is the best one, because each of them has its own 
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characteristics. Its performance depends on the data, the application 

environment and performance requirements. In view of this, various datasets 

with different features are involved in this study. The evaluations are 

performed in terms of average absolute difference. 

 

This research involves several methods to achieve the objectives and answer the 

research questions. These are the contents in the next section. 

 

 

2.3 Research methodology 

 

The research methodologies used in this work include analysis of documents, the 

construction of a customized recommendation system and evaluation of the traditional 

similarity metrics. They correspond to the objectives of the research thesis. 

 

For the first research objective, the main research method is analysis of documents.  

Review articles and books in the field of recommendation systems emerged in the past 

few decades.  Many worldwide conferences and workshops are also held every year. 

They refer to the latest progresses on each aspect in this field. Through examining the 

published review articles, books, and the latest information in the conferences and 

workshops, I can understand more about recommender systems and get a 

comprehensive view of it. Thereby, the state-of-the-art of recommender systems is 

elaborated from my perspective. In addition to the introduction to the 

recommendation mechanisms of the three types of recommender systems 

(Adomavicius & Tuzhilin 2005, 743; Candillier, Jack, Fessant & Meyer, 2009), the 

similarity metrics based on different principles such as Pearson correlation, Euclidean 

distance, Cosine-based, Log Likelihood, Tanimoto coefficient, and Spearman 

correlation (Huang 2008, 49) are also exhibited in detail. Accordingly, the principles 

of recommendation and similarity metrics can be interpreted. 

 

The techniques used for the second research objective is construction of a 

recommender system. Building a recommender engine is similar with building a 

website. They all require configuration of computer, modeling the data. Because in 
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the recent decades, research on recommendation systems is a hot topic, the method of 

constructing a customized recommendation engine has also been studied. As a project 

to produce implementations of scalable machine learning algorithms, Apache Mahout 

provides the implementations not only on stand-alone platform but also on Hadoop 

(The Apache Software Founcdation 2014a). Taste, mainly used in this research, is a 

useful component of Apache Mahout. However, to build Taste in windows operating 

system, several other programs have to be installed for preparation. Cygwin provides 

a Linux environment for windows (The Cygwin DLL and utilities 2013). JDK is the 

abbreviation of Java Development Kit. It can help achieve the implantation of 

recommendation (Oracle 2014). When the datasets ate large, they need to be 

deposited in MySQL (Oracle MySQL 2014). Maven helps manage the build of the 

project-oriented model Taste (The Apache Software Foundation 2014b). Subversion 

controls the version system of open sourced software (The Apache Software 

Foundation 2011). Consequently, by testing several datasets with different features, 

the results can represent the adapting environment of each similarity metric. It is 

worth noting that the collected data sometimes cannot be directly used by the program. 

It is necessary to dealt with before using. In real life, the data can either be "like or 

dislike" (Billsus & Pazzani 1999, 393), 'numerical ratings" (Lops & Gemmis & 

Semeraro 2009, 73), "symbolic ratings" (Pazzani & Muramatsu & Billsus 1996) or 

"text comments" (Picard 2000, 705). Each type of data has different treating means. 

They have been reported in the published articles. The data imported to Taste should 

be in the form of a three-dimensional matrix consisted of user-id, item-id and rating 

values (Koren 2009, 89). The detailed steps to install the platform are provided in 

Apache’s website. (The Apache Software Foundation, 2014a.)  

 

Once the recommender engine is built and the collected data are handled, the next step 

is evaluating the recommendations with different similarity metrics. The approach to 

treat the recommending results is essential. There is a model in Mahout, which could 

separate the rating data into two sets, namely training set and testing set. The training 

set is imported to predict the preference of the users in testing set. Comparing the 

results of the predictions from training set and the real values in testing set, the degree 

of matching between them can be evaluated. The matching can be examined by 

average absolute difference, the precision and recall. In practical application, the 
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evaluation of precision and recall entirely relies on how the good recommendation is 

defined. This definition is usually artificial, so that the precision and recall are 

practically not useful for the data with exact ratings. However, they are found 

valuable for evaluating the Boolean datasets (Owen & Anil & Dunning & Friedman 

2011, 75-76). Therefore, in this thesis, the average absolute difference is used as the 

criterion for evaluation. The low average absolute differences between the predictions 

for training set and the real ratings in testing set indicate that the performances of the 

similarity metric are good. In addition to the method explained above, another fact is 

also verified in this thesis that the numbers of ratings in the dataset affect the accuracy 

of the predictions. Therefore, same kinds of datasets with different amounts of rating 

values are used. Fortunately, the group of MovieLens (GroupLens 2014; Miller Albert 

& Lam & Konstan & Riedl 2003, 263-266) provides movies data with 100 thousand, 

1 million and 10 ratings.  
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3 CURRENT DEVELOPMENT SITUATION OF RECOMMENDER SYSTEM 

 

The study on recommender systems can be tracked back to the mid-1990s when the 

first paper on CF appeared. Since then, recommender systems have attracted 

significant attention. During the last decades, recommender systems undergo rapid 

development in both academia and industry area. However, it is still a problem-rich 

research topic.  

 

 

3.1 Recommender systems and the classification 

 

Recommender systems are working to reduce overload and provide personalized, 

useful and effective suggestions for users according to their historical preferences. In 

other words, they are high-level intelligence machine learning, data mining or 

information filtering technique to help users find unseen but valuable information 

(Ghazanfar & Prügel-Bennett 2010, 94). A case in point is YouTube which 

recommends videos to users relevant to their watching history. Another example is 

Amazon, which employs recommender engine for the online sale most successfully. It 

helps the customers out of the ocean of millions of items and find what they are 

interested in. Currently, most online companies are beneficiaries of recommender 

systems by involving recommender engines in their websites to increasing sales. 

 

According to the recommending mechanism, recommender systems can be classified 

into three types, content-based Filtering, CF, and hybrid recommender system 

(Melville & Sindhwani 2010, 829). No matter which type is used, all systems are 

initiated by collecting enough users’ information or data. Those information or data 

can be obtained from users’ activities on items, like, rating, voting, forwarding, 

bookmarking, clickstream, residence time on webpage and purchase (IBM 2013). 

When the data collection is done, the systems analyze the data and calculate 

predictions successively. Recommender systems differ from each other in these 

processes. 
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CF Recommender systems track users’ browsing records and feedbacks, analyze the 

tracked information to find their similar users, i.e. neighborhoods, with some metric, 

and generate the well-matched items for them (Zhou & Khemmarat & Gao 2010, 440). 

There are three sub-categories regarding CF, including memory-based CF, model-

based CF and hybrid CF. Memory-based CF method, also called similarity-based 

method, refers to the way that makes rating predictions by computing similarity 

between users or items on the basis of users’ rating history. Several similarity metrics 

are produced for the neighborhood calculation (Yu et al. 2004, 56), which are 

expounded in detail in the next section. Examples of this category include 

neighborhood-based CF and top-N recommendations. The model–based CF focuses 

on machine learning. In this method, all the predictions are done by a preformed 

model, which is built from the users’ preferences analysis (Su & Khoshgoftaar 2009, 

1). The popular clustering methods, Bayesian networks and graphical models belong 

to this category.  

 

CF as the most prevalent recommendation method is allegedly successful on finding 

users’ potential preferences from considerable information. However, there exist some 

limitations about CF (Ghazanfar & Prügel-Bennett 2010, 94). One typical problem is 

cold start (Schein & Popescul & Ungar & Pennock 2002, 253; Bobadilla, Ortega, 

Hernando & Gutiérrez, 2013). As I presented above that CF method recommends 

items based on users purchase history or previous behaviors, it is not possible to find 

the similar users when there is no record of activity for new customers.  It is also true 

for the new items. When a new item is added to the system, there is no rating 

information about it. Therefore, no one can get the recommendation on this item. 

(Bobadilla & Ortega & Hernando & Bernal 2012, 225-238.) 

 

Another typical problem is the sparsity of the data. Based on the nature of the 

similarity metrics, to calculate the similarity between two users, the system needs at 

least two items simultaneously rated by the involved two users. A precise prediction 

always requires the data to be dense enough (Huang & Chen & Zeng 2004, 116; 

Papgelis & Plexousakis & Kutsuras 2005, 224-239). Thereof, a dense dataset is better 

than the sparse one; whereas, the dense dataset is usually very large, which brings 

another problem, called scalability. During the development of recommender systems, 
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the responding time is a factor to be specially taken into consideration. Computation 

is the most time consuming process. In practice, the system needs to respond 

immediately to all the online users. The computing time increase significantly with 

the data size growing. Accordingly, CF suffers increasingly scalability problems. 

Dimensionality reduction techniques such as Singular Value Decomposition (SVD) 

and Principal Component Analysis (PCA) can solve the problem brought about by 

scalability. (Gupta & Goel & Lin & Sharma & Wang & Zadeh 2013, 505-514.) 

 

Another common recommender algorithm is content-based filtering recommender 

system, which recommends items depending on the content description. In reality, the 

description can be key words, tags or labels. The system assumes that users like the 

similar items they used to like. Item representation or Content descriptions are crucial 

to the recommender system. They are used to obtain users’ profile. The new items 

most correlated to the users’ profile would be recommended to them. The advantages 

of this recommender method compared to CF method are the user independence, 

transparency and new item recommended without problem. However, they also have 

many defects. It is sometimes very difficult to extract the characteristics for the items 

and almost impossible to fully get the properties of the items. For example, if the 

textual description of the items does not contain enough information to distinguish 

from others accurately, the profile of the users related to these items could not be 

precise, further leading to the final recommendation lack of accuracy. Because all the 

recommendations are generated from their previous tastes, content-based systems 

would only recommend items whose descriptions are highly correlated against the 

user's profile, and thus it is not able to dig out users’ potential interests. This problem 

is termed as Over-specialization. The CF recommender engine has the cold-start 

problem; while similarly, the content-based recommender system cannot predict 

recommendations for new users due to no profile of these users learnt. (Lops & 

Gemmis & Semeraro 2011, 74; Pazzani 1999, 393; Pazzani & Billsus 2007, 325.)  

 

Both recommender algorithms have their own intrinsic limitations. Nevertheless, 

some disadvantages of one algorithm are just the advantages of another.  Content-

based recommender does not extract the similarity between users across their profiles, 

while CF recommender only analyzes users’ preferences on items but neglects the 
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natural similarity between users or items. Therefore, the easiest way to overcome 

these defects is combining them or adding the characteristics of one to another, viz. 

hybrid recommender system (Burke 2002, 331.) Invoking the appropriate one for 

proper cases could ingeniously avoid some of the problems and enable this kind of 

system work best. That is why most of the online companies in reality deploy this 

method in their recommender engine. 

 

 

3.2 Similarity metrics in recommender systems 

 

Recommender systems include many similarity metrics. Most of them come from 

machine learning. They are crucial to recommender systems. The selection of 

similarity metrics in specific cases is intuitively an experienced job, however, it 

should actually be experimentally tested. Therefore, to understand the main attribute 

of each similarity algorithm is necessary and essential.  

 

The similarity between two users in the user-based CF recommenders is computed in 

accordance with their ratings on the same items they both made. Similarly, the 

similarity between two items is calculated in item-based CF recommenders on the 

basis of the users who rated the both items. They are of the same principle. However, 

in the practical cases, the number of the users is highly greater than that of the items. 

Thus, computation of the similarity between items is more complicated. Below, I 

illustrate the principle of each metric both from their physical meaning and from the 

mathematical formula. (Herlocker et al. 2004, 5.) 

 

All the measures of similarity are based on the vector space method; however, there 

are many ways to define the similarity. In principle, it can be classified as the 

distances measurement and degrees measurement. Metrics measuring distances 

include Euclidean distance and Manhattan distance, while the popular metrics by 

measuring the degrees involve Pearson correlation, Spearman correlation, centered or 

uncentered Cosine methods, Tanimoto coefficient and Log Likelihood. All 

measurements could represent the similarity or dissimilarity between two vectors.  
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Given two points in the n-dimensional space A and B with the Cartesian coordinates 

of (A1, A2, ⋯, Ai, Ai+1, ⋯, An) and (B1, B2, ⋯, Bi, Bi+1, ⋯, Bn), respectively. Then, 

1. Euclidean distance between A and B is just the length of the segment linking 

them. In mathematics, the length can be represented as D= !
!

(𝐴! − 𝐵!)!!
!!! ;  

2. Manhattan distance, also vividly referred to as City Block distance, means the 

shortest distance between two points in square city building blocks regardless 

of the one-way street. Mathematically, it equals to the sum of distances of the 

segment 𝐴𝐵 projected to the axes. The algebraic form is D= 𝐴! − 𝐵!!
!!! ;  

3. Pearson correlation similarity, i.e. centered Cosine similarity (Resnick & 

Iacovou & Suchak & Bergstrom & Riedl 1994) measures that to what extent 

two vectors linearly relate with each other, which can be calculated as 

P= (!!!!)(!!!!)
!
!!!

(!!!!)!!
!!! (!!!!)!!

!!!

;  

4. Spearman correlation similarity is one of the variations of Pearson correlation 

similarity. The only difference is that the ratings of the items are re-given 

according to the rank of the primitive ratings before expanding the correlation 

calculation.  

5. Uncentered Cosine similarity measures basically the cosine of the angle 

formed by the two vectors in the Cartesian coordinate system, represented in 

mathematical term as: cos(θ)= !!×!!
!
!!!

(!!)!!
!!! × (!!)!!

!!!

;  

6. Tanimoto coefficient, which is easily confused with the cosine similarity, 

typically refers to the ratio of the overlap part to the whole set. Its expression 

over two bit vectors can be written as: 

T(A,B)= !∙!
! !! ! !!!∙!

= !!×!!
!
!!!

(!!)!!
!!! ! (!!)!! !!×!!!

!!!
!
!!!

;  

7. Log Likelihood similarity, similar with Tanimoto coefficient similarity, also 

measures the similarity for Boolean data. The difference from Tanimoto 

coefficient metric is that it emphasizes the unlikelihood of the two arrays. 

(Owen et al. 2011.) 
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3.3 Application of recommender systems in E-commerce 

 

With the widespread of the Internet, growing number of customers prefer shopping 

online. They can purchase whatever they want from the Internet without visiting the 

stores. However, the explosive emerging of online products dazzles netizens. 

Deploying recommender engine to the commerce website help the online customers 

easily find their preferences and then increase the sales. Generally, the E-commerce 

sites employ hybrid recommender systems to achieve the best recommendations for 

each individual. The recommender systems help to increase sales in three ways. 

Despite developing rapidly, online shopping is a new shopping manner not accepted 

by all the people. Many netizens just browse over the Internet without buying 

anything, simply because there are too many choices that they cannot make decisions. 

They are the potential customers for the merchants.  If there is an approach to find the 

products most probably interesting to the potential customers, they would initiate their 

online shopping trips. Recommender systems are qualified to this job.  Another way 

to enhance sales for the merchants is making the current customers purchase more 

commodities from their sites. In early stage, most recommender systems are content-

based filtering ones, which recommend products only based on users historical tastes. 

They fail in digging out the users' potential interests. When the CF recommender 

systems are used, they generate predictions according to the similar users, in which 

way, the items interested by the similar users but not correlated with their previous 

preferences would be recommended as well. A more promising way to recommend 

potential products to users is cross-sell. Recommender engine first analyzes peoples 

purchasing behavior and figure out the implicit correlation between the items. For 

example, the customers who bought diapers also bought milk powder or breast pumps. 

The diapers themselves seemingly have nothing to do with the milk powder or breast 

pumps, nonetheless, all of them are maternity. If the E-commerce websites conduct 

this kind of recommendations, the sales would also be improved. Practically, any 

approach used by the traditional market is also usable for the E-commerce. Repeat 

customers and customers introduced by regular customers usually have great 

contributions to the merchants. Recommender systems as machine learning technics 

are able to study the customers' behavior, and then create relationship between 

customers. If customers find "friends" customers to communicate, they would 
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probably return and introduce their real friends to their websites. (Schafer & Konstan 

& Riedl 1999, 158.)  

 

In fact, various recommender systems have applied to the E-commerce websites and 

successfully increased the sales. The most famous examples are Amazon.com 

(www.amazon.com), eBay (www.ebay.com), Alibaba (http://www.alibaba.com/), 

Taobao (www.taobao.com), JD (www.jd.com) and so on.    
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4 IMPLEMENTATION OF RECOMMENDER SYSTEM IN WINDOW 7 BY 

APACHE MAHOUT 

 

Many open source frameworks have been developed for building, researching and 

studying recommender systems, such as Apache Mahout (The Apache Software 

Foundation 2014a), LensKit (LensKit Recommender Toolkit), Waffles (Gashler 2013) 

Crab (Limonada 2011), Recommenderlab (Hahsler 2014). They were built with 

different programming languages, among which, Mahout and LensKit are based on 

Java; Waffles is based one C++; Crab is on the basis of Python; and R language is 

adopted in Recommenderlab. In this thesis, the research work has been done with 

Apache Mahout.  

 

 

4.1 Introduction to recommendation in Apache Mahout 

 

The detailed introduction to Apache Mahout can be found in their website (The 

Apache Software Foundation 2014a). Some of the points are highlighted in this 

section. The recommender engine within Apache Mahout is achieved via Taste, a 

formerly separated project written by Sean Owen and Sebastian Schelter (The Apache 

Software Foundation 2014a). Now, Taste can be regarded as a flexible, mature and 

kind of independent component inside Mahout. It not only supports the basic user-

based and item-based CF approaches, but also provides extendable interfaces to 

connect and conduct users’ customized recommendation. Compared to the currently 

prevalent Hadoop technology, Taste is focused on dealing with single-machine tasks. 

 

Taste has five package interfaces as key abstractions to conduct recommendations: 

DataModel is a connector to extract the information of user preference from the data 

source. JDBCDataModel and FileDataModel are possible to excess and read the 

information from data base and files, respectively; Usersimilarity and Itemsimilarity 

are the another package interfaces to figure out similar users or items for the specific 

users or items, namely neighborhood. Similarity algorithm is the core for CF 

recommendation engine. Taste packages many popular similarity algorithms, like 

Pearson correlation similarity, Euclidean distance similarity, Spearman correlation 
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similarity, Tanimoto coefficient similarity, uncentered Cosine similarity, and so on to 

meet users’ different requirement; UserNeighborhood is particularly for user-based 

recommendation, which generate recommender results from the given user’s 

neighbors. In the UserNeighborhood model, one could define different number of 

neighborhood to fine-tuning the recommendation results. Typically, the neighborhood 

is found out by UserSimilarity; the last interface is Recommender, which implements 

the recommendation. Provided a DataModel, Recommender could generate the 

prediction by making use of the GenericUserBasedRecommender or 

GenericItemBasedRecommender.  

 

 

4.2 Installation of Apache Mahout 

 

4.2.1 Software preparation 

 

To enable the recommender of Apache Mahout to act to the most extent, some 

fundamental software is necessary. For example, Apache Maven helps to manage 

dependencies, compile code and package source by automatically downloading the 

necessary libraries for the projects. Apache Maven distribution is provided in several 

formats (The Apache Software Foundation 2014b). A Java Servlet, like Apache 

Tomcat, can be used to present dynamic content via a web server (The Apache 

Software Foundation 1999-2014). As aforementioned, JDBCDataModel and 

FileDataModel are provided in the DataModel package. When running applications 

with data of big size, JDBCDataModel is much helpful, from which 

MySQLJDBCDataModel makes connection to a database through MySQL and JDBC. 

Accordingly, MySQL is required (Oracle MySQL 2014).  In addition, in order to 

realize the UNIX-like environment on Microsoft Windows, Cygwin needs to be 

installed (The Cygwin DLL and utilities 2013). Apache Mahout is basically a Java 

style framework, therefore, to run or develop java packages, a useful integrated 

development environment (IDE) Eclipse could be employable (The Eclipse 

Foundation 2010).   
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4.2.2 Computer configuration 

 

Since Apache Mahout is working with Java, installation and configuration of 

environment for Java in windows 7 is indispensable. First, after downloading Java 

Development Kit (JDK) and installing it on the system, new system variable needs to 

be created with the variable_name of java_home and the location of JDK should be 

set to the variable_value. Second, 

“.;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\tools.jar” should be added to 

the variable of CLASSPATH. When this is done, the computer configuration for JDK 

is finalized by locating the variable PATH and adding 

“;%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin” to the end of its value.  

 

The instruction of the installation of Cygwin can be found in the Cygwin website (The 

Cygwin DLL and utilities 2013). Operation according to the instruction allows for 

getting it downloaded and installed on the computer easily. Be advised that adding the 

installation directory to the system variable PATH enables the Linux-commands 

executable directly in cmd.exe, which simplifies the usage of Cygwin. 

 

The installation and configuration instructions are printed in the same webpage as 

download (The Apache Software Foundation 2014b). The installation is even simpler 

than those for Java and Cygwin, whereas the configuration process is similar. 

 

 

4.2.3 Setting up Mahout within Eclipse 

 

Version 0.9 of Apache Mahout has been released in February of 2014, which is going 

to be used in the present research to make sure that all the recommender methods and 

algorithms are up-to-date (The Apache Software Foundation 2014a).  

 

Java IDE is very useful to build, edit and compile Java projects. In this thesis, the 

popular Java IDE Eclipse is utilized. Some other IDE frameworks like NetBeans and 

IntelliJ IDEA are also acceptable. The installation of Eclipse on windows 7 is easily 
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done by prompt. It is worth noting that to make the management of Mahout Projects 

with Maven easier, it is necessary to have the m2eclipse plugin installed to Eclipse. 

 

 

4.3 Building a customized recommender engine 

 

The construction of the recommender engine was done exactly according to the 

websites (IBM coorperation 2008), where both the detailed instructions for the 

implementation of the Demo with Taste and the building of a customized 

recommender system with MovieLens Dataset could be found. I do not verbosely 

narrative them here. Note that the latest version of Mahout is 0.9. Some modifications, 

such as the /taste-web directory did not exist anymore and all the files are put under 

/integrate directory, have been made to the versions above 0.5.  What it is also 

necessary to be aware of is the compatibility among the software. When the 

construction is successfully done, the recommendation results of users can be 

dynamically shown through a browser. 

 

Compared to dynamically displaying the recommendations for users, the construction 

of the engine only for evaluation of the similarity metrics is much easier. Steve Cook 

made a video tutorial (The Apache Software Foundation 2014a) to demonstrate the 

construction of a simple recommender engine. Alternatively, the textural literature 

(Schelter & Owen 2013) can also be referred to.  
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5 EVALUATION OF TRADITIONAL SIMILARITY METRICS AND NEW 

PROPOSED METRIC 

 

The available recommender algorithms in the latest Apache Mahout include user-

based CF, item-based CF, Matrix factorization-based recommenders, K-Means and 

Fuzzy K-Means clustering and so on (The Apache Software Foundation 2014). The 

predictions generated by the recommender engine rely on the correlations among 

users or items to a wide extent. Almost all the efforts made on recommender focus on 

dealing with this issue. The way directly measuring the similarity between users or 

items according to the profiles of the users or the descriptions of the items is content-

based filtering recommender. If users' behaviors are taken into account and the 

similarity is calculated based on these preferences, the recommendation belongs to CF 

recommender.   

 

The correlations among users or items are admittedly crucial, however, many other 

factors, for instance, the number of neighborhood, the type of items, the size of the 

data, could affect the performance of recommender as well. The optimization of the 

parameters usually improves the predictions. 

 

 

5.1 Parameters optimization for CF recommender  

 

The data used for optimizing the parameters for CF recommender are from 

GroupLens Research group. The data can be downloaded from their website 

(GroupLens 2014) for research work free of charge. Three data sets with different 

numbers of ratings are provided, i.e. the 100K data contain 100000 ratings for 1682 

movies made by 943 users; the 1M data consist of 1000209 ratings from 6040 users 

on 3900 movies; the 10M data set is the largest one, which encapsulates 71567 

MovieLens users’10000054 rating scores for 10681 movies. All the ratings in the 

three data sets range from 1 to 5. The big number indicates users' highly preference. 

The three data sets are simply analyzed. For the 100K data, 106 ratings per user are 

given in average, with each user rating at least 20 movies, and each movie is rated by 

average of 59 times. For the 1M data, the average times of rating by each user and for 
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each movie are 166 and 256, respectively, while these numbers are 140 per user and 

936 per movie in 10M data. Even though more ratings are included when the data size 

is increasing, the averaging times for each user on each movie are decreasing, i.e., the 

densities are 0.063 for 100K data, 0.042 for 1M data, and 0.013 for 10M data. From 

this point of view, the sparseness of the 100K data is better than the other two. In 

addition, much short time is needed with the 100K data to run the recommender 

engine for the adjustment. Consequently, 100 K data is the best one for optimization. 

 

Most of the algorithms and similarity metrics in Mahout recommender engine are 

built-in components. Users still, however, have chances to adjust some of the 

parameters to improve the recommendation to be optimal, for example, number of the 

nearest neighborhood or neighborhood threshold, the weighting factors for Pearson 

correlation similarity and Euclidean distance similarity. Below, I firstly find out the 

best parameter combinations for all the similarity metrics available in Mahout. Note 

that, to make sure that there are enough ratings in the training set, a ratio of 0.9 is 

applied to divide the whole data set. 

 

  
 

Figure 1. Evaluation of Pearson correlation similarity in User-based CF: left, with 

NearestN neighborhood as criteria; right, with the threshold as criteria. 

 

Figure 1 illustrates the performance of Pearson correlation similarity in user-based CF 

with the whole set of the MovieLens 100K data. The similar users were defined either 

by the fixed number or by the threshold. Generally, a small number of nearest 

neighborhood represents a high threshold value. From this point of view, these two 

0 100 200 300 400 500 600
0,78

0,80

0,82

0,84

0,86

0,88

0,90

0,92

0,94

0,96

Av
er

ag
e 

Ab
so

lu
te

 D
iff

er
en

ce

Number of Nearest Neighborhood

 Unweighted
 Weighted

0,0 0,2 0,4 0,6 0,8 1,0
0,78

0,80

0,82

0,84

0,86

0,88

0,90

0,92

Av
er

ag
e 

Ab
so

lu
te

 D
iff

er
en

ce

Neighborhood Threshold

 Unweighted
 Weighted



30	
  
	
  

figures match with each other. When only two nearest users or the users with 

similarity threshold of 0.9 are defined as the neighborhoods, the mean absolute 

differences between the predicted ratings obtained from training set and real ratings in 

the testing set are over 0.9. With the nearest neighbors increasing or the threshold 

becoming more tolerance, the differences decrease dramatically. The corresponding 

best performance occurs at 300 neighbors selected as user neighborhoods or at a 

threshold of 0.3. Further increasing the number of the nearest neighbors as user 

neighborhoods after 200 or loosening the threshold after 0.4 slightly makes the 

performance worse. Because the primitive Pearson correlation similarity metric does 

not take into account the numbers of the common items two users rated, a weighted 

Pearson correlation metric is also implemented in the similarity model. The lines in 

red in Figure 1 represent the performances of the weighted Pearson correlation metric. 

They slightly improve the overall predictions. 

 

    
 

Figure 2. Evaluation for Euclidean distance similarity in User-based CF: left, with 

NearestN neighborhood as criteria; right, with the threshold as criteria. 

 

Figure 2 plots the prediction results of user-based CF with both unweighted and 

weighted Euclidean distance similarity metrics. Similar with the evaluation for 

Pearson correlation metric, criteria that were used to define the user neighborhoods 

are set with fixed number of nearest neighbors (left) and with thresholds (right). The 

standard Euclidean distance similarity measure also neglects the number of common 

items rated by two users, for which reason a weighted model is offered as well, and 

the evaluation results indicate that the weighted model is only slightly better than the 
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unweighted metric. Compared with the Pearson correlation metric, the performance of 

Euclidean distance metric is better, particularly at the place of 100 nearest neighbors 

and 0.5 of the threshold, where the average absolute differences for Euclidean 

distance similarity metric are less than 0.75. 

 

   
 

Figure 3. Evaluation for City Block similarity in User-based CF: left, with NearestN 

neighborhood as criteria; right, with the threshold as criteria. 

 

The results of evaluation for City Block similarity metric is exhibited in Figure 3. The 

average absolute difference is inversely correlated to the number of the nearest 

neighborhood. It is surprisingly found that the evaluation fails with neighborhood 

threshold higher than 0.05. This indicates that the correlation among the users is very 

low from the sense of City Block metric.  

 

  
 

Figure 4. Evaluation for uncentered Cosine similarity in User-based CF: left, with 

NearestN neighborhood as criteria; right, with the threshold as criteria. 
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Performance of uncentered Cosine similarity is shown in Figure 4. The tendency of 

the average absolute difference as a function of number of nearest neighborhood is 

similar with that in Pearson correlation metric and it reaches the best performance at 

nearest neighborhood of 300 as well. Actually, they are both cosine-based metrics. 

However, they are different when using criterion of neighborhood threshold. As seen 

in the right plots of Figure 4, the average absolute difference keeps at the level of 

around 0.81 when neighborhood threshold increases from 0.1 to 0.8. From 0.8 to 1.0, 

the difference value drops significantly to 0.77 at threshold of 0.97 and jumps back to 

high value. At the threshold of 0.99, the performance worsens to 0.83.  

 

   
 

Figure 5. Evaluation for Spearman correlation similarity in User-based CF: left, with 

NearestN neighborhood as criteria; right, with the threshold as criteria. 

 

Spearman correlation metric is examined and the performances are displayed in 

Figure 5. Even though the results are as good as those in Pearson correlation metric, 

the computation time with Spearman correlation similarity is significantly higher, 

which restricts its practicality. 
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Figure 6. Evaluation for Tanimoto coefficient similarity in User-based CF: left, with 

NearestN neighborhood as criteria; right, with the threshold as criteria. 

 

Tanimoto coefficient similarity has wide application in Boolean data. Nevertheless, it 

is also applicable in the cases with exact rating data. The trend of the performance 

here with criterion of number of nearest neighborhood (Figure 6, left) is similar with 

that of the unweighted Euclidean distance (Figure 2, left), although the absolute 

values are higher in Tanimoto coefficient metric. It is necessary to point out that the 

evaluation fails when the neighborhood threshold higher than 0.4 (Figure 6). Actually, 

for Tanimoto coefficient metric, neighborhood threshold of 0.4 is already very high. 

 

 
 

Figure 7. Evaluation for Log Likelihood similarity in User-based CF: left, with 

NearestN neighborhood as criteria; right, with the threshold as criteria. 

 

Figure 7 illustrates the evaluation results of Log Likelihood similarity metric in user-

based CF with the whole set of MovieLens 100K data. Log Likelihood similarity is 
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also a metric designed for Boolean data, whereas when it is used in dataset with 

ratings, the performance is also satisfactory. Interestingly, the performance of this 

metric is very stable with the neighborhood threshold as criterion (Figure 7, right).  

 

From the results shown in Figure 1-7, almost all the average absolute differences fall 

in the range from 0.7 to 1.0. The difference values are not high for the 1-5 rating 

grades. Despite similar among similarity metrics, the evaluation still shows subtle 

differences.   

 

Within a particular similarity metric, a small number used or a strict threshold would 

result in small amount of similar users with high correlation from the intuition, thus 

leading to a better prediction; whereas, the testing results display almost exactly 

opposite trend. The discrepancy could be explained by the broad interests for movies. 

More neighbors enable the engine recommend movies of different kinds, which is 

more like the real case. Another explanation could be from the statistics. More or less, 

noise exists in the rating data. This may probably cause a big difference between the 

expectation and the real ratings. When only a few neighbors are matched, a relatively 

small amount of movies are going to be recommended to the user, where even low 

noise has big influence on the evaluation. To disperse the deviation resulted from the 

noise, relatively more recommendations for each user are expected. However, the 

performance of the recommender is neither proportional to the number of nearest 

neighborhood nor inversely proportional to the threshold. This can be easily 

understood by the intuition: too many predictions would bring too many less 

correlated results. In practice, the best performance always comes from a certain 

criteria. What is more, the criteria differ among similarity metrics.  
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Figure 8. The impact of different ratio of the data used for evaluation to the 

neighborhood selection criteria: left, criterion by NearestN neighborhood; right, 

criterion by threshold. 

 

The criterion by neighborhood number and that by threshold are quite different. The 

former relies significantly on the size of the data set. A large data set requires a big 

number of neighbors. The latter one is, however, independent from the size of the data. 

The threshold, in principle, should keep at some certain value when the size of the 

data is changed. My testing results are exactly in line with this inference (Figure 8). 

The Figure 8 displays the best performances of Euclidean distance similarity metric 

using different ratios of the MovieLens 1M data evaluated with fixed number of 

nearest neighbors (Figure 8, left) and threshold (Figure 8, right). Obviously, the most 

appropriate numbers of nearest neighbors move from 100 via 200 to 300, while the 

best neighborhood threshold is always at 0.5, when the size of ratings increases from 

10%, via 20% to 30% of 1M data. 

 

It is also necessary to point out that some similarity metrics are particularly insensitive 

to the threshold of the neighborhood. The average absolute differences vary only from 

0.812 to 0.813 when the threshold changes from 0.1 to 0.9 for the Log Likelihood 

similarity (Figure 7). Log Likelihood metric neglecting the exact rating values as 

Tanimoto coefficient metric measures the ratio of the overlap of the two users' 
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preferences to the union of their preferences. The insensitive performance to the 

threshold of neighborhood indicates the even distribution of the dataset.  

 

Some similarity metrics are very sensitive to the neighborhood threshold. In the City 

Block similarity (Figure 3), if the threshold is larger than 0.05, the recommender 

cannot be evaluated. The understanding of this phenomenon is not achievable 

intuitively. An unconvincing answer from the author of the book of "Mahout in 

Action" is that this similarity metric is rarely useful and implemented in Mahout just 

for completeness. It might be useful in the case with discrete ratings. Such similar 

phenomenon also happens to the Tanimoto coefficient similarity (Figure 6). It is more 

understandable for Tanimoto coefficient metric, because the neighborhood threshold 

means the ratio of the movies they both rated to the movies either of them rated. 

When the threshold is over 0.4, no neighborhood can be found at all for the users. 

 

From the evaluation results of Pearson correlation similarity and Euclidean distance 

similarity, the weighted similarity metrics are only slightly better than the unweighted 

ones. Its impact sometimes is even lower than the threshold. This might be caused by 

the appropriate weighting schemes. Unfortunately, it is not possible to modify 

weighting schemes because this model is fixed in the “black box” of similarity metric 

package. 
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Figure 9. The comparison of the effect of different similarity metrics on User-based 

CF with 100K MovieLens data.  

 

Figure 9 illustrates the best performance of each similarity metric to find the most 

suitable metric by comparison. It is obvious that the Euclidean distance similarity 

metric is significantly more suitable for the 100K movie data than all the others are. In 

general, the neighborhood criteria according to threshold result in better evaluation 

values than those based on neighborhood numbers. Accordingly, the Euclidean 

distance similarity metric would be used to compare the effect of the data size on the 

recommendation. 

 

 

5.2 Impact of data size on recommendation 

 

Movielens provides three movies datasets with around 100 thousand, 1 million and 10 

million ratings. Therefore, they are particularly helpful to examine the effect of size of 

dataset to the similarity measures, which is one of the import aims of the present 

research. 
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Figure 10. Plots to show that the evaluation results are independent from the ratio of 

the data employed for the testing: left, in the case of 1M data; right, in the case of 

10M data. 

 

Before the evaluation to be calculated, it is wise to test whether the ratio of the data 

used for calculation has apparent impact on the evaluation results. This is extremely 

helpful because it could save plenty of time when the data size is large. This 

adjustable parameter was tested with both the 1M data and 10M data. The results were 

shown in Figure 10. They show amazing consistency in both cases although for the 

10M data, only six ratios were tested due to the too long calculation time. 

 

 
 

Figure 11. Evaluation of Euclidean distance similarity at neighborhood threshold of 

0.5 with 100K, 1M and 10M MovieLens data. 
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Undoubtedly, more data information always produces better predictions. This could 

be easily verified by running the evaluator in Mahout on 100K, 1M and 10M 

MovieLens datasets. The declining line in Figure 11 displays the tendency. 

 

What is more interesting to study is that whether the size of the dataset affects the 

similarity selection or not. In view of the fact that the threshold is stable regardless of 

the data size and the fact that the performance of the recommender engine is 

independent from the ratio of the datasets applied, it only needs to evaluate the 

similarity metrics on a small part of the 1M and 10M data with corresponding best 

threshold values.  

 

 
 

Figure 12. Histograms to compare the performance of seven similarity metrics at the 

corresponding best threshold values on 100K (black), 1M (red) and 10M (blue) 

MovieLens datasets. 

 

The above figure reveals some different trends for the three datasets, though 

Euclidean distance similarity metric has the best performance on all of them, whereas, 

the uncentered cosine measure is comparable to Euclidean distance similarity for 1M 
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million to 10 million. Even worse is found in Tanimoto coefficient similarity metric. 

The 1 million data makes its evaluation worsen to 0.829 compared to 100K data of 

0.797. This is rare, but interesting, and it is meaningful to examine the possible 

reasons. In the evaluator model of Mahout, the training set and testing set are divided 

by random. Difference division might cause the results different. To exclude this 

factor, several times of calculation have been done for both datasets. The average 

absolute differences for 100K data range from 0.795-0.805 with the average value of 

0.800, while, those for 1M data vary from 0.820 to 0.852 averaging at 0.831. Still, the 

performance of Tanimoto coefficient similarity on 1M data is remarkably worse than 

that on 100K data. Therefore, it needs to look into the principle of the metric to 

explore the reasons. Tanimoto coefficient metric ignores the exact rating values, 

thereof recommending movies to users not by the rank of ratings but by the rank of 

recommendation times for the neighborhoods. The recommendations generated this 

way may differ remarkably from the real ratings in the testing set. The detailed 

relative rank of the performance of the seven similarity metrics for 100K, 1M and 

10M datasets are listed in the Table 1. 

 

Table 1. The relative performance of the similarity metrics in 100K, 1M and 10M 

datasets. 

 

Ranks 100K 1M 10M 

1 Euclidean Euclidean Euclidean 

2 uncentered Cosine uncentered Cosine Tanimoto coefficient 

3 Pearson correlation Spearman correlation uncentered Cosine 

4 Spearman correlation Pearson correlation Pearson correlation 

5 Tanimoto coefficient City Block Log Likelihood 

6 Log Likelihood Log Likelihood City Block 

7 City Block Tanimoto coefficient Spearman correlation 
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5.3 Similarity metrics evaluation in various cases  

 

Other real cases have also been evaluated with similar analyzing approach as 

MovieLens data. The purpose of this experiment is trying to find the best similarity 

metrics for other real cases and find out the relationship between datasets and 

similarity metrics. 

 

 

5.3.1 Book-Crossing data  

 

The Book-Crossing data contain 1149780 rating for 271379 books from 278858 users 

collected by Cai-Nicolas Ziegler in 2004 from the Book-Crossing community (Ziegler 

& McNee & Konstan & Lausen 2005). The rating scale is from 0 to 10 with the 

higher score representing the more preference. The examination of the similarity 

metrics on this data was conducted with 10% of the whole data for saving time.  

 

 
 

Figure 13. Evaluation of the similarity metrics on Book-Crossing data with 

neighborhood threshold from 0.1 to 0.9. 
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The evaluation results were plotted in the Figure 13. Overall, the values lied in the 

range of 2.8-3.8, slightly high for the ten-point ratings. The Euclidean distance 

similarity metric made the best performance again, notably better than all the others. 

The neighborhood thresholds above 0.2, say from 0.2 to 0.9, led to very similar 

average difference values with the lowest difference of 2.828 occurring at o.6. When 

the neighborhood threshold adjusted to be 0.6, Spearman correlation similarity metric 

got the second best. The reason is that the rating span of the Book-Crossing data is 

from 0 to 10, much larger than that in MovieLens data. When the rating span is large, 

people’s ratings are relatively not normally distributed, where rank correlation could 

work better than the direct correlation method, i.e. Pearson and uncentered Cosine 

method. However, this similarity metric was too time-consuming to be usable in real 

time recommender engine in spite of its academic value. Unexpectedly, the 

uncentered Cosine similarity and Pearson correlation similarity metrics performed the 

worst, even worse than Log Likelihood did. The measure of City Block similarity, 

also known as Manhattan distance similarity, failed for evaluation with positive 

thresholds. Similarly, I could only examine Tanimoto coefficient similarity metric 

with the neighborhood threshold of 0.1 and 0.2, where they resulted in the deviation 

higher than 5.50, so out of the performing range of other metrics that not displayed in 

the figure.  

 

 

5.3.2 Online Dating data  

 

The online Dating dataset is provided by Oldrich Neuberger, cleaned up and 

generated by Lukas Brozovsky in 2006 (Brozovsky & Petricek 2007). It contains 

17359346 anonymous ratings from 135359 LibimSeTi users for 168791 profiles 

(Dating Agency 2006).  
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Figure 14. Evaluation of the similarity metrics on online Dating data with 

neighborhood threshold from 0.1 to 0.9. 
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al. 2011) and the results indicated that the higher the threshold was, the better the 
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true. A more careful investigation with more similarity metrics and broader threshold 

range has been done here with proper reasons (Figure 14).   
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0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50
A

ve
ra

ge
 A

bs
ol

ut
e 

D
iff

er
en

ce

Neighborhood Threshold

 Pearson Correlation
 Euclidean Distance
 Log Likelihood
 Uncentered Cosine
 Tanimoto Coefficient
 Spearman Correlation



44	
  
	
  

situations contradict with each other, while they are both truly happening. Then, 

which situation is more important differing from case to case. In the case of Dating, 

people are always cautious of making the decision, where the rating means like no 

matter how high or how low the value is. Therefore, the good performance of 

Tanimoto coefficient similarity metric makes sense. The non-results evaluation at 

high neighborhood threshold for this metric has already been explained in the 

MovieLens case. Here, the 30% of the overlap ratings by both users in all the ratings 

made by either user is not low. Pearson correlation metric also did a slightly better job 

than Euclidean distance metric by 0.04. Interestingly, in this online Dating data, the 

best performance in all metrics but Euclidean distance metric took place at high 

neighborhood threshold. In another words, for dating, a strict threshold to select 

neighborhood could help the engine to make a good prediction.  I can understand this 

trend as that everyone has particular taste on mate. It is difficult to find another one 

with similar taste for them. Therefore, the stricter the neighborhood threshold is, the 

better the recommendations are.  

 

 

5.4 Evaluation of the new similarity metric 

  

Each of the similarity metric has its own features and merits. They are valuable in 

different cases. If two or more similarity metrics were combined into one or the 

intersection of the neighborhoods generated by the two metrics were taken, the 

recommendation would probably be better and more precise.  

 

This viewpoint can be verified by combining Pearson correlation similarity and 

Euclidean distance similarity. The idea is that Pearson correlation similarity measures 

cosine of the angle of the two vectors defined by the users' ratings, while Euclidean 

distance similarity measures the distance of the vectors. Therefore, getting the product 

of Pearson correlation and Euclidean distance allows for taking both the angle and the 

distance into account. The exact algebraic form of the new metric is 
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, in which the first part is the formula expression 

of Pearson correlation similarity metric, followed by that of Euclidean distance metric. 

The code of the new model is provided in Appendix 1. 

 

 
 

Figure 15. Comparison of the performances of Pearson correlation, Euclidean 

distance, and the combined similarity metrics on MovieLens 100K data (A), Book-

Crossing data (B) and online Dating data (C). 

 

The Figure 15 displays the results obtained for the new similarity with the 100K 

MovieLens data (A), Book-Crossing data (B), and online Dating data (C). 

Surprisingly, the similarity metric is significantly improved on online Dating data 
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after combination. The lowest error at neighborhood threshold of 0.6 is even better 

than the performance of Tanimoto coefficient similarity metric (refer to Figure 14). 

The tendency along neighborhood threshold is similar with that of Euclidean distance 

metric; however, the effect of Pearson correlation metric is evident at high 

neighborhood thresholds. For 100K data (Figure 15A), the new similarity metric is 

neither the best compared to pure Pearson correlation and Euclidean distance 

similarity nor the worst. For the Book-Crossing data (Figure 15B), the new combined 

similarity metric does not work well. Its lowest error at threshold of 0.7 is 3.35, 

slightly higher than that of Pearson correlation metric of 3.25. Despite the not-so-good 

performance on MovieLens 100K and Book-Crossing data, the advantage of the new 

metric is obvious on online Dating data (Figure 15C), which confirms the practicality 

of the new idea.  
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6 CONCLUSION 

 

With the advent of the information age, access to information becomes easier. 

Meanwhile, the explosion of information also brings about the problem of overload. 

Recommender system was consequently developed as an information filtering technic. 

Based on recommending mechanisms, recommender systems are divided into three 

types. They are content-based filtering, CF and hybrid filtering recommender. The 

intrinsic limitations and strengths of these conventional recommender algorithms as 

well as their application in E-commerce were discussed in this work. As the core of 

the CF algorithm, similarity metrics are critical to the recommendations. Many 

similarity metrics have been exploited and each of them has its features. They are 

suitable in particular cases. To find out this issue, seven similarity metrics available in 

Mahout are evaluated for user-based CF recommender algorithm with five real cases 

collected by different academic groups. The five datasets include three GroupLens 

movies data with different sizes, Book-Crossing data and online Dating data.  

 

Some parameters such as the neighborhood threshold, the number of the 

neighborhood, and different ratio of the datasets were optimized to make each metric 

achieve its best performance. From the test of neighborhoods generated by fixed 

numbers and threshold, I found that the threshold method could simplify the 

evaluation experiment because the threshold value was stable when different ratio of 

the selected data were used for the evaluation, while the numbers of the 

neighborhoods should be modified to get the best performance of the metrics. From 

the evaluation results obtained by different ratios of the dataset, I observed that the 

performance of the metric is independent of the ratio of the dataset used for test.   

 

The measure of Euclidean distance similarity in CF algorithm is the best similarity 

metric for all the 100K, 1M and 10M GroupLens datasets. Even though the bigger 

data in general result in better recommendation, they have different impact on 

different similarity metrics. For example, the performance of Tanimoto coefficient 

and Log Likelihood similarity metrics has significantly changes with the data size 

increasing compared to others due to the very different recommendation principles.  
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When the rating data are for books, Euclidean distance similarity metric still have 

advantage over other metrics, while Pearson correlation similarity metric has 

relatively bad performance compared to other metrics. Explicit in this fact is that the 

absolute values of the ratings made by users are more important than the correlation 

of the vectors constituted by the ratings. Also found from this dataset is that the higher 

threshold is beneficial for the performance. 

 

Online Dating data was also employed to evaluate the similarity metric. Unexpectedly 

yet reasonably, Tanimoto coefficient similarity metric works best at the neighborhood 

threshold of 0.3. In this case, Pearson correlation similarity is slightly better than 

Euclidean distance metric. 

 

The evaluations allow for concluding the seven traditional similarities. It takes into 

account the magnitude difference of rating values. The better performances indicate 

that people involved in making the ratings have consistent standard of grading. In 

some cases, the situation might be different, where some users have very strict 

grading criteria, thus grading the movie they consider good a "3" out of "5" and 

grading the movie they think acceptable a "2", while, other users have lenient grading 

criteria. They may give the movie they consider good a "5" and the one they think 

acceptable a "3". In those cases, the neighborhoods calculated from Euclidean 

distance similarity metric would be biased and the metrics based on orientation 

measures such as Pearson correlation or Cosine-based similarity metrics are advised 

for use.  

 

Pearson correlation similarity metric, as one of the most used similarity metrics in 

academy research, has its own advantage. Nevertheless, it is never the best metric in 

all the tested cases in the present research. This cannot deny its practicality. Research 

by other groups showed that this metric is very useful (Sarwar & Karypis & Konstan 

& Riedl 2001, 285). Many similar metrics derived from Pearson correlation metric 

have emerged and put into use in other works. (Kreinovich & Nguyen & Wu 2013, 

215.) 
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Spearman correlation similarity metric is a variant of Pearson correlation similarity 

metric. It is valuable in academic study because it works better than other cosine-

based metrics when the ratings are not normally distributed. However, the metric is 

not useful in real recommender engine because of the high computation cost.   

 

The performance of uncentered Cosine metric is in general worse than that of Pearson 

method, because the latter centers the rating data before calculating the correlations. 

As the most basic form of cosine-based methods, this metric helps to understand the 

correlation calculation and derive many other metrics.  

 

Tanimoto coefficient similarity metric has the best performance in online Dating data 

while it performs the worst in the book data. The nature of the Tanimoto coefficient 

similarity metric reveals that it ignores the rating values by taking all the items with 

ratings as users’ preferences. Therefore, the importance of the rating values to the 

recommendation could affect the performance of this similarity metric. In real life, 

people are more cautious in making decision of dating persons than reading a book. 

Thence the rating itself indicate the preference, no matter what score it is. However, 

for the books or movies, if people do not like, they may give very low rating values 

indicating their disfavor. Given this fact, it is understandable that Tanimoto 

coefficient similarity metric has poor performances in movie and book data. 

 

Log Likelihood similarity metric also neglecting the exact rating values are very 

useful in the Boolean data. The difference between Log Likelihood and Tanimoto 

coefficient similarity metrics is that compared to the highlight of the ratio of the 

intersection of users' preferences to the union, Log Likelihood emphasizes how 

unlikely the overlap between two users is by accident. The math behind the 

computing is complicated, while their difference is reflected in the different 

performance in different cases. 

 

City Block similarity metric rejects working if the neighborhood threshold is high, i.e. 

for the MovieLens data, the critical threshold is 0.05; for Book-Crossing data, the 

threshold cannot be higher than 0.3; for online Dating data, it fails in all the positive 

thresholds. According to the explanation given by Sean Owen (Stack Overflow 2013), 
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one of the authors of the book "Mahout in Action", City Block similarity metric is 

rarely useful, and it is implemented in Mahout just for completeness. It might be 

useful in the cases with discrete ratings because of its fine-tuning nature. 

 

The new model of similarity metric by combining two or more traditional metrics has 

also proven to be useful. The combination of Pearson correlation metric and 

Euclidean distance metric not only measures the angle similarity but also measures 

the distance similarity of two vectors defined by users’ ratings. The superiority over 

all the other metrics has been represented in the online Dating data. 
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APPENDIX  

 

Appendix 1. Code of the new model of similarity metric. 

 

package Similarity; 

 

import org.apache.mahout.cf.taste.common.TasteException; 

import org.apache.mahout.cf.taste.common.Weighting; 

import org.apache.mahout.cf.taste.model.DataModel; 

import com.google.common.base.Preconditions; 

 

public NewSimilarity(DataModel dataModel) throws TasteException { 

    this(dataModel, Weighting.UNWEIGHTED); 

  } 

  public NewSimilarity(DataModel dataModel, Weighting weighting) throws 

TasteException { 

    super(dataModel, weighting, false); 

    Preconditions.checkArgument(dataModel.hasPreferenceValues(), "DataModel 

doesn't have preference values"); 

  } 

  @Override 

  double computeResult(int n, double sumXY, double sumX2, double sumY2, double 

sumXYdiff2) { 

   return  

Math.pow((sumXY/Math.sqrt(sumX2)/Math.sqrt(sumY2)),1)*((1.0/(1.0+Math.sqrt(su

mXYdiff2)/Math.sqrt(n)))); 

  } 

} 

 

	
  


